TY - CONF A1 - Hahn, Marc Benjamin T1 - Geant4: A universal Monte-Carlo toolkit for Particle scattering simulations N2 - Particle scattering simulations are an useful tool to plan experiments, design detectors, estimate doses in irradiated materials and medical treatment planning. Geant4 is a Monte-Carlo toolkit for the simulation of of particles scattering in matter. Photons, electrons, ions etc can be simulated with energies in the eV to GeV range. Their interactions with matter in arbitrary scattering geometries be studied. Scattering models, cross sections and material parameters can be set to cover interactions in gas, liquid and solid state. The import of geometries from computer aided design files or the protein data base is possible. It is currently being applied in high energy and nuclear physics, accelerator and detector design, space application, dosimetry and medical sciences. In this first part of the talk a brief overview over the structure, functionality and possible applications of Geant4 will be given. In the second part an example application will be presented: The determination of the microscopic dose-damage relations in aqueous environment for electron irradiated plasmid DNA will be explained. Therefore, we combine electron scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We present, how to combine these simulational results and experimental data via a generalized damage model to determine the microscopic dose-damage relation at a molecular level. T2 - Department 6 Seminar CY - Berlin, Germany DA - 04.04.2019 KW - Geant4 KW - Dosimetry KW - Microdosimetry KW - Radiation damage KW - Electron irradiation KW - Monte-Carlo Simulation KW - Monte-Carlo Simulations KW - DNA KW - Computer simulation KW - Geant4-DNA PY - 2019 AN - OPUS4-47819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Measurement and Simulation of the Microscopic Energy Deposit: A general approach applicable to Ionizing Radiation Sources of varying Linear Energy Transfer N2 - The determination of microscopic dose-damage relations in aqueous environment is of fundamental interest for dosimetry and its application in radiation-therapy and protection. We present a combined experimental and simulational approach to quantify the microscopic energy deposit at biomolecules in liquid environment which is applicable to a wide range of primary radiation sources, e.g. photons, electrons or ions, and targets, such as DNA, proteins or cells.Therefore, we combine Geant4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We present, how to combine these simulational results and experimental data via a generalised damage model to determine the microscopic dose-damage relation at a molecular level. To show the viability of this approach, we apply this method to an experimentally challenging system, the direct irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here we combine electron-scattering simulations with calculations concerning the diffusion and convection induced movement of the DNA, within a coarse-grained model of the irradiated liquid. Additionally a microscopic target model for DNA molecules based on the relation of lineal energy and radiation quality is used to calculate their effective target volume. It was found that on average fewer than two ionisations within a 7.5\,nm radius around the sugar-phosphate backbone are sufficient to cause a single strand break, with a corresponding median lethal energy deposit being E\textsubscript{1/2}=6+-4\,eV. The presented method is applicable for all types of ionising radiation and a broad variety of biological targets. T2 - CCQM Workshop CY - Paris, France DA - 09.04.2019 KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - Geant4-DNA KW - DNA KW - Electron irradiation KW - Monte-Carlo Simulation PY - 2019 UR - https://www.bipm.org/utils/en/pdf/Workshop-CCQM2019-EP1.pdf AN - OPUS4-47810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Altmann, Korinna A1 - Braun, Ulrike T1 - Notwendigkeit von (Realistischen) Referenzmaterialien N2 - Die Herstellung von Mikroplastik Referenzmaterialien wird vorgestellt. T2 - Statusfonferenz der BMBF Fördermassnahme "Plastik in der Umwelt" CY - Berlin, Germany DA - 09.04.2019 KW - Ringversuch KW - Mikroplastik KW - Referenzmaterialien PY - 2019 AN - OPUS4-47798 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Thermal properties of polymer nanocomposites based on polycarbonate (PC) and boehmite N2 - Nanocomposites are extremely versatile due to their physicochemical properties, which differ significantly from bulk homopolymers. One of the inorganic nanomaterials which are increasingly used as a filler in polymer matrices is boehmite, typically used as an inexpensive flame retardant. Here, it is used as a nanofiller in polycarbonate and polyamide, expecting to improve their mechanical properties. For industrial use boehmite is obtained by the solvothermal method, resulting in a layered nanomaterial, whereas naturally it occurs as single crystals with the size of <100µm. In this work we are obtaining and isolating boehmite crystals by a bottom-up method, in which a reaction between aluminum nitride and sodium hydroxide. Obtaining boehmite as microcrystals is necessary for its analysis and characterization, as well as to investigate its interaction with polymer matrices at the polymer/particle interface. Here, the obtained particles in polymer matrices are characterized with differential scanning calorimetry and thermogravimetry analysis. T2 - 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Boehmite KW - Polycarbonate PY - 2019 AN - OPUS4-47769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Thermal properties of polymer nanocomposites based on polycarbonate (PC) and boehmite N2 - Nanocomposites are extremely versatile due to their physicochemical properties, which differ significantly from bulk homopolymers. One of the inorganic nanomaterials which are increasingly used as a filler in polymer matrices is boehmite, typically used as an inexpensive flame retardant. Here, it is used as a nanofiller in polycarbonate and polyamide, expecting to improve their mechanical properties. For industrial use boehmite is obtained by the solvothermal method, resulting in a layered nanomaterial, whereas naturally it occurs as single crystals with the size of <100µm. In this work we are obtaining and isolating boehmite crystals by a bottom-up method, in which a reaction between aluminum nitride and sodium hydroxide. Obtaining boehmite as microcrystals is necessary for its analysis and characterization, as well as to investigate its interaction with polymer matrices at the polymer/particle interface. Here, the obtained particles in polymer matrices are characterized with differential scanning calorimetry and thermogravimetry analysis. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 31.03.2019 KW - Boehmite KW - Polycarbonate PY - 2019 AN - OPUS4-47768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Füllenbach, L.C. A1 - Perez, J. P. H. A1 - Freeman, H.M. A1 - Thomas, A.N. A1 - Mayanna, S. A1 - Parker, J. E. A1 - Göttlicher, J. A1 - Steininger, R. A1 - Radnik, Jörg A1 - Benning, L.G. A1 - Oelkers, E.H. T1 - Nanoanalytical Identification of Siderite Dissolution-Coupled Pb Removal Mechanisms from Oxic and Anoxic Aqueous Solutions N2 - Lead(II) is a toxic pollutant often found in metalcontaminated soils and wastewaters. In acidic aqueous environments, Pb(II) is highly mobile. Chemical treatment strategies of such systems therefore often include neutralization agents and metal sorbents. Since metal solubility and the retention potential of sorbents depend on the redox state of the aqueous system, we tested the efficiency of the naturally occurring redox-sensitive ferrous iron carbonate mineral siderite to remove Pb(II) from acidic aqueous solutions in batch experiments under oxic and anoxic conditions over a total of 1008 h. Siderite dissolution led to an increase in reactive solution pH from 3 to 5.3 and 6.9, while 90 and 100% of the initial aqueous Pb(II) (0.48 × 10−3 mol kg−1) were removed from the oxic and anoxic systems, respectively. Scanning and transmission electron microscopy, combined with X-ray absorption and photoelectron spectroscopy, indicated that under oxic conditions, Pb(II) was consumed by cerussite precipitation and inner-sphere surface complexation to secondary goethite. Under anoxic conditions, Pb(II) was removed by the rapid precipitation of cerussite. This efficient siderite dissolution-coupled sequestration of Pb(II) into more stable solid phases demonstrates this potential method for contaminated water Treatment regardless of the redox environment. KW - Siderite KW - X-ray absorption spectroscopy KW - X-ray photoelectron spectroscopy KW - Wastewater treatment PY - 2020 DO - https://doi.org/10.1021/acsearthspacechem.0c00180 VL - 4 IS - 11 SP - 1966 EP - 1977 PB - ACS Publication AN - OPUS4-51961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Dietrich, P. M. A1 - Thissen, A. A1 - Radnik, Jörg A1 - Nefedov, A. A1 - Natzeck, C. A1 - Wöll, C. A1 - Unger, Wolfgang T1 - Application of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) in an in-situ analysis of the stability of the surface-supported metal-organic framework HKUST-1 in water, methanol and pyridine atmospheres N2 - Surface-supported metal-organic frameworks HKUST-1 (Hong Kong University of Science and Technology) were used as a model system for a development of a near ambient pressure (NAP) XPS based approach to investigate interaction with atmospheres of water, methanol or pyridine at pressures ranging from 1 to 4 mbar. The films were grown on a gold substrate functionalized with a COOH-terminated self-assembled monolayer using liquidphase epitaxy in a step-by-step fashion. Measurement protocols were developed and optimised for different gases in order to obtain spectra of similar quality in terms of signal intensity, noise and shape. Peak shapes were found to depend on the efficiency of charge compensation. Reference measurements in argon proved to be a useful strategy not only for the evaluation of the Cu(II)-fraction in pristine samples, but also to identify the contributions by the respective gas atmosphere to the C 1s and O 1s photoelectron spectra. Reduced copper was found during the exposition of HKUST-1 to water vapour and pyridine, but this effect was not observed in case of methanol. Additionally, it was established that there are no changes in relative Cu(II) percentage with increasing exposure time. This indicates that saturation was reached already at the lowest time of gas exposure. A detailed elucidation of the mechanism of Cu(II) reduction to Cu(I) in HKUST-1 mediated by water and pyridine is part of ongoing work and not in the scope of the present paper. KW - HKUST-1 KW - Near-ambient pressure X-ray photoelectron spectroscopy KW - Metal-organic frameworks KW - Interaction with atmospheres KW - Water PY - 2021 DO - https://doi.org/10.1016/j.elspec.2020.147042 SN - 0368-2048 IS - 247 SP - 147042 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-52098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Realitätsnahe Referenzmaterialien für die Mikroplastik-Analytik und Vergleichsuntersuchungen N2 - Zur Validierung und Harmonisierung von verschiedenen Methoden in der Mikroplastik-Analytik werden polymere Referenzmaterialien benötigt. In diesem Vortrag wird dargestellt, was bisher an der BAM zu Referenzmaterialien für die Mikroplastik-Analytik entwickelt wurde, wo es hingehen soll und ein Überblick über bisher gelaufene Vergleichsuntersuchungen gebracht. T2 - Kick-off Meeting "Mikroplastik in Lebensmitteln" CY - Online meeting DA - 03.12.2020 KW - Mikroplastik KW - Referenzmaterial KW - Vergleichsuntersuchungen KW - Ringversuche PY - 2020 AN - OPUS4-51743 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - DNA based Reference Materials: In Biodosimetry and Pharmaceutical Quality Control N2 - Applications of plasmid DNA base reference materials in dosimetry and pharmaceutical research. T2 - Physical and Chemical Analysis of Polymers seminar CY - Online meeting DA - 29.03.2021 KW - Analytic KW - Certification KW - DNA KW - Dosimetry KW - Homogeneity KW - Quality testing KW - Reference material KW - Referenzmaterialien KW - Stability KW - Dose KW - Radiation KW - Pharmacy KW - Electrohpresis PY - 2021 AN - OPUS4-52361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Reference Materials at BAM N2 - A introduction into reference materials, the certification process and brief over current reference projects at BAM is given. T2 - AK-Postdoc seminar CY - BAM Berlin, Germany DA - 02.02.2021 KW - Referenzmaterialien KW - Reference material KW - Homogeneity KW - Stability KW - Quality testing KW - Analytic KW - DNA KW - Dosimetry KW - Certification PY - 2021 AN - OPUS4-52060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Data processing and nonlinear curve Fitting with fityk N2 - A brief introduction into fityk is given. The introduction is followed by a pratical session. Fityk is a versatile data processing tool for nonlinear curve fitting. T2 - AFM Data analysis seminar CY - Online meeting DA - 23.02.2021 KW - Fityk KW - Curve fitting KW - Analysis KW - Raman KW - IR KW - XPS PY - 2021 AN - OPUS4-52154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, Jeffey Paulo H. A1 - Tobler, Dominique J. A1 - Thomas, Andrew N. A1 - Freeman, Helen M. A1 - Dideriksen, Knud A1 - Radnik, Jörg A1 - Benning, Liane G. T1 - Adsorption and reduction of arsenate during the Fe2+-induced transformation of ferrihydrite N2 - Iron (oxyhydr)oxides play an important role in controlling the mobility and toxicity of arsenic (As) in contaminated soils and groundwaters. However, dynamic subsurface geochemical conditions can potentially impact As sequestration since this is highly dependent on the dominant iron mineral phases present and the pathways through which they form. In this study, we investigated the Fe2+-induced transformation of As(V)-bearing ferrihydrite (As-FH) to more crystalline phases under relevant anoxic subsurface conditions. Specifically, we examined the influence of varying Fe2+(aq)/Fe(III)solid¬ ratios on the behavior and speciation of the mineral-bound As species during the mineralogical transformation of As-FH at pH 6.5 for 24 h. At lower Fe2+(aq)/Fe(III)solid¬ ratios (0.5 to 1), goethite, green rust sulfate (GR¬SO4) and lepidocrocite formed within the first 2 hours of the reaction, but only goethite and some unreacted FH remained after 24 h. At Fe2+(aq)/Fe(III)solid¬ ratio = 2, GRSO4 remained stable throughout the 24 h reaction, alongside goethite and unreacted FH. Despite >82% of the As-FH being transformed to goethite  GRSO4 in these reactions, no significant As release (>99.9% removal) was observed. However, while As remained mineral-bound, partial oxidation of the initially added As(V) was reduced to As(III), most likely, by the goethite-Fe2+(aq) redox couple. The extent of As(V) reduction increased from ~40% to ~50%, as the Fe2+(aq)/Fe(III)solid¬ ratio increased from 0.5 to 2. Overall, these results provide important insights into transformation pathways of iron (oxyhydr)oxide minerals in As contaminated, anoxic soils and sediments, and also demonstrate the great impact these can have on As oxidation state and, hence, toxicity and mobility in these environments. KW - Ferrihydrite KW - Mineral tranformation KW - XPS KW - Green rust KW - Goethite KW - XAS PY - 2019 DO - https://doi.org/10.1021/acsearthspacechem.9b00031 SN - 2472-3452 VL - 3 IS - 6 SP - 884 EP - 894 PB - ACS AN - OPUS4-48436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zutta Villate, J. M. A1 - Hahn, Marc Benjamin T1 - Radioactive gold nanoparticles for cancer treatment N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive 198 Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply 198 AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. KW - Gold KW - Nanoparticle KW - Cancer KW - Monte-Carlo KW - Simulation KW - Cluster PY - 2019 DO - https://doi.org/10.1140/epjd/e2019-90707-x SN - 1434-6060 SN - 1434-6079 VL - 73 IS - 95 SP - 1 EP - 7 PB - Springer CY - Berlin AN - OPUS4-47964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Kunz, Valentin A1 - Schneider, Markus A1 - Nymark, Penny A1 - Grafström, Roland A1 - Unger, Wolfgang T1 - Combining surface analytic and toxicity data for safer nanomaterials N2 - Nanomaterials are present in our everyday life. Paint coats, sunscreens, catalysts and additives for tyres are good examples for the use of such materials in mass-market products. The problem of the safety of nanomaterials is recognized as a problem for health and environment, which lead to the special registration of nanomaterials according to an annex of REACH as of 2020. But a great problem for the risk assessment of nanomaterials that several factors could influence the hazardous nature of them. Additional to composition, crystal structure, size and shape the surface properties of such particles belong to these parameters for risk assesment. The reason for the relevance of the surface is obvious: the smaller the particle, the higher is the share of the surface. Additionally, the surface is the region of the particle which interacts with the surrounding which is another crucial factor for the understanding the effect of a nanomaterial on health and environment. In the OECD Testing Programme on Manufactured Nanomaterials exists consequently an Endpoint 4.30 Surface Chemistry in Chapter 4. PHYSICAL AND CHEMICAL PROPERTIES. In summary, there is obviously a need for a correlation between surface chemical analytic data and toxicity. To fill in this gap, we present surface analytic results obtained with X-ray photoelectron spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry and correlate them with cytotoxic data gain by high-throughput screening experiments. It must be noted, that these experiments were done at the same set of titania materials taken from the JRC (Joint Research Centre of the European Union) Nanomaterials Repository. As material TiO2 was chosen due to its widespread use in consumer products, e.g. paint coats and sunscreens. With this new approach a better understanding of the influence of surface properties on the toxicity can be expected leading to a better risk assessment of these materials. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Risk assessment KW - Nanomaterials KW - Surface analytic KW - Toxicology PY - 2019 AN - OPUS4-49090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of rheology modifying admixtures on early hydration of cementitious suspensions N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has enormous influence on the early hydration of cement. C3A as the most reactive phase of Portland cement plays a significant role in early hydration reactions and affects the rheological performance. Therefore, this talk presents experimental results about the influence of delayed addition of PCEs on the Hydration of alite and C3A-gypsum pastes investigated by isothermal heat flow calorimetry. Complementary in-situ XRD was carried out on C3S and C3A-gypsum pastes to analyze hydration and phase changes related to the addition of PCE. Cement pastes with a delayed addition of PCE showed less retardation compared to simultaneous addition. The alteration caused by PCE is much more pronounced for C3A-gypsum mixes. With a delayed addition of SP, the hydration of C3A is less retarded or even accelerated. It is obvious that there is less retardation the later the addition of SP. Furthermore, the PCE alter the hydration of C3A when added delayed and exhibit changes in kinetics and Hydration rates. XRD results showed that more C3A is dissolved in the presence of PCE. Also, the gypsum depletion occurs earlier in the presence of PCE and even faster with delayed addition. Without PCE AFm starts to form just after the gypsum depletion. However, in the presence of PCE AFm already starts to form at the beginning of the hydration. Due to the faster gypsum depletion in the presence of PCE, also the transformation from ettringite into AFm begins earlier, but takes longer as without SP. T2 - 15th International Congress on the Chemistry of Cement CY - Prague, Czech Republic DA - 16.09.2019 KW - Cement KW - Alite KW - C3S KW - C3A KW - Early hydration KW - Polycarboxylate ether (PCE) KW - Delayed addition PY - 2019 AN - OPUS4-49103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Magnetic nanoparticles KW - Stochastic Landau Lifshitz Gilbert equation KW - Magnetic moment KW - Landau Lifshitz equation KW - Exchange interaction KW - OOMMF KW - Object oriented micromagnetic framework KW - Temeprature scaling KW - LLG KW - Ferromagnetism KW - Micromagnetism PY - 2019 AN - OPUS4-48762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - Radioactive gold nanoparticles for cancer treatment: Size and cluster dependent damage studied by Geant4 Monte-Carlo simulations N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive ¹⁹⁸Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply ¹⁹⁸AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - DNA KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - MCS KW - Nanoparticle KW - AuNP KW - Gold Nanoparticle KW - low energy electrons KW - LEE KW - OH radicals KW - particle scattering KW - Radiationtherapy KW - Radioactive decay KW - Monte-Carlo simulation KW - Energy deposit KW - DNA damage PY - 2019 AN - OPUS4-48763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Ghasem Zadeh Khorasani, Media A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Water as side effect of reinforcing boehmite filler Local changes in anhydride cured epoxy resin N2 - Nanocomposites offer wide opportunities for lightweight constructions and enable reduction of weight and volume. Beside macroscopic toughening nanoparticle reinforced polymers show a soft interface around boehmite (AlOOH) filler nanoparticles. A related strong interaction between boehmite and the anhydride cured resin system is widely suspected in literature but not determined by structural Analysis. Determination of the molecular structure is important to allow simulations approaching the real system and predict future reinforcing effects. DRIFT (diffuse refletance infrared fourier transformed) spectra of the boehmite reinforced anhydride cured epoxy show significant changes in the molecular structure compared to the neat polymer. Further investigations of the interactions between the single components of the resin system and the boehmite filler pointed out reactions between released water released from the boehmite filler and the anhydride hardener or amine accelerator. This leads to the discussion of competing polymerisation mechanisms that highly influence the polymer properties. Ongoing experiments and literature research approve that this impact of water is able to locally change the stoichiometrie, alter the curing mechanism or support an inhomogeneous crosslink density. T2 - Polydays 2019 CY - Erwin-Schrödinger-Zentrum, Berlin Adlershof, Germany DA - 11.09.2019 KW - Nanocomposites KW - Epoxy KW - FTIR spectroscopy KW - Boehmite alumina PY - 2019 AN - OPUS4-49010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Topolniak, Ievgeniia A1 - Schenderlein, Matthias A1 - Sturm, Heinz T1 - Nano polymer (composite) printing N2 - This talk introduces the PolyPoly, a new device at BAM which enables the three-dimensional structuring of polymer nanocomposites with an extremely high resolution of 150x150x600 nm. Initial examples and findings will be shown. T2 - BAM-IFW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - Multiphoton laser structuring KW - Polymer nanocomposites KW - 3d structuring KW - Additive manufacturing PY - 2019 AN - OPUS4-48041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Szymoniak, Paulina A1 - Qu, Xintong A1 - Schönhals, Andreas A1 - Sturm, Heinz ED - Sinapius, M. ED - Ziegmann, G. T1 - Characterization of Polymer Nanocomposites N2 - The complex effect of nanoparticles on an epoxy-based and anhydride cured DGEBA/Boehmite nanocomposite with different particle concentrations is considered in this chapter. A combination of X-ray scattering, calorimetry (fast scanning and temperature modulated calorimetry) and dielectric spectroscopy was employed to characterize the structure, vitrification kinetics and the molecular dynamics of the nanocomposites. Firstly, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking density, indicated by two separate dynamic glass transitions. Moreover, the glass transition temperature decreases with increasing nanoparticle concentration, as a result of changes in the crosslinking density. In addition, it was shown that the incorporation of nanoparticles can result in simultaneous increase in the number of mobile segments for low nanoparticle concentrations and on the other hand, for higher loading degrees the number of mobile segments decreases, due to the formation of an immobilized interphase. KW - Rigid amorphous fraction KW - Epoxy nanocomposites KW - X-ray scattering KW - Differential scanning calorimetry KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2021 DO - https://doi.org/10.1007/978-3-030-68523-2_4 SP - 55 EP - 77 PB - Springer Nature AN - OPUS4-52698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Hertwig, Andreas A1 - Kraehnert, Ralph T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrO IrOxfilms revealed under realistic OER conditions N2 - Rising energy demand and the impending climate change require the development of a sustainable, fossil-free fuel and chemical production on a global scale. Hydrogen production via water electrolysis will be a fundamental cornerstone in this endeavor. The activity and stability of respective electrode coatings strongly depends on the coating's properties, i.e. phase composition, crystallinity, electrical conductivity, accessible surface, wettability and many other factors. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physicochemical properties. However, those relations can be complex, and are strongly influenced also by the reaction environment. Hence, operando analysis of the catalyst material during catalysis at realistic potentials and current densities is highly desirable. Yet, many analytical techniques cannot be applied in liquid environments at realistic potentials and current densities. We propose environmental ellipsometric analysis in a dedicated electrochemical flow cell as a new method to evaluate gas evolution reactions operando under realistic working conditions. Figure 1 illustrates schematically the developed technique. Key factors to success are highly active model-type catalysts with template-controlled porosity, a suitable sample environment, a deep understanding of the spectroscopic method and respective model development, as well as concise cross validation with numerous other analytical techniques. The method was developed and validated by analyzing a calcination series (300 - 600°C) of mesoporous templated IrOx films ex-situ and operando under oxygen evolution reaction (OER) conditions. The employed environmental electrochemical spectroscopic ellipsometric analysis (ECSE) revealed during OER the change of optical and electronic properties, i.e. the dielectric functions (real ε1 and imaginary part ε2), electrical and electronic properties such as resistivity (ρ) and band-to-band transitions (p-d band transitions). Film thickness and porosity were validated by means of scanning electron microscopy (SEM), X-ray reflectometry (XRR) or ellipsometric porosimetry (EP), electrical and electronic properties by means of conductivity measurements, X-ray photoelectron spectroscopy (XPS) or UV-Vis-NIR absorption spectroscopy. The electronic structures of the catalysts from valence electron energy loss spectra (VEELS) derived from the real (ε1) and imaginary part (ε2) of the dielectric function from SE measurements reveal a direct correlation with electrochemical activities in OER. In the presentation reversible and irreversible potential-dependent changes of the catalyst properties during operation will be discussed along with the dynamics of gas formation, transport and dissolution T2 - E MRS 2021 SPRING MEETING CY - Online meeting DA - 31.05.2021 KW - Spectroscopic ellipsometry KW - Ectrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis PY - 2021 AN - OPUS4-52929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Weigert, Florian A1 - Häusler, I. A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Correlating HR-TEM and XPS to elucidate the core-shell structure of ultrabright CdSE/CdS semiconductor quantum dots N2 - Controlling the thickness and tightness of surface passivation shells is crucial for many applications of core-shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the application-relevant functionality like a high photoluminescence (PL) quantum yield. This calls for a whole nanoobject approach. Moreover, the thickness of the organic coating remains often unclear. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. The results of the different methods match very well within the different measurement uncertainties. Additionally, results obtained with energy-resolved XPS using excitation energies between 200 eV and 800 eV are discussed with respect to a potential core/shell intermixing. Moreover, the future application potential of this approach correlating different sizing and structural methods is discussed considering the method-inherent uncertainties and other core/multi-shell nanostructures. T2 - E-MRS Fall Meeting CY - Online meeting DA - 20.09.2021 KW - Core-shell nanoparticles KW - Quantum dots KW - High-resolution transmission electron microscopy KW - X-ray Photoelectron Spectroscopy PY - 2021 AN - OPUS4-53365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - Behind the paper: Radiation, DNA and water: New techniques for deeper insights N2 - To gain deeper insights into the old questions about the influence of water on radiation interaction with DNA, new spectroscopic techniques had to be applied. KW - DNA KW - DNA radiation damage KW - XPS KW - Geant4 KW - Low energy electrons KW - OH radical KW - Hydrated DNA KW - Hydration shell KW - Double-strand break (DSB) KW - Dissociative electron attachment (DEA) KW - Single-strand break (SSB) KW - LEE KW - PES KW - Ionization KW - Reactive oxygen species KW - ROS KW - Base damage KW - Base loss KW - Cancer therapy KW - TOPAS KW - TOPAS-nbio PY - 2021 UR - https://go.nature.com/3gjZVWG SP - 1 EP - 3 PB - Springer Nature CY - London AN - OPUS4-52461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Sturm, Heinz A1 - Fischer, D. A1 - Fischer, F. A1 - Ivleva, N. A1 - Witzig, C. A1 - Zumbülte, N. A1 - Braun, U. T1 - Results of the Plastic in the environment comparative test N2 - The talk describes the sturcture and the results of the "plastics in the environment" comparative test of 2019. T2 - Symposium "Challenges of microplastic analysis – Bridging state of the art and policy needs” CY - Online meeting DA - 09.09.2021 KW - Microplastic KW - Comparative test KW - ILC PY - 2021 AN - OPUS4-53236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Elucidating core shell nanostructures with surface analytics N2 - XPS is a versatile tool for elucidating core shell structures. XPS can obtain information for organic compounds (polymer particle, organic coating ) which are hardly or not detectable with other Methods. XPS is an important tool for the risk assessement of nanoparticles T2 - Kratos German User Meeting CY - Online meeting DA - 26.05.2021 KW - Core-shell nanoparticles KW - X-ray photoelectron spectroscopy KW - Complementary methods PY - 2021 AN - OPUS4-52717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Radnik, Jörg T1 - BAM reference data - XPS raw data of Al-coated titania nanoparticles (JRCNM62001a and JRCNM62002a) N2 - XPS raw data of Al-coated titania nanoparticles (JRCNM62001 and JRCNM62002a) provided by the JRC repository are provided. KW - XPS KW - Titania nanoparticles KW - BAM reference data PY - 2021 DO - https://doi.org/10.5281/zenodo.4986068 PB - Zenodo CY - Geneva AN - OPUS4-52880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zutta Villate, J. M. A1 - Viviana Rojas, J. A1 - Hahn, Marc Benjamin A1 - Anselmo Puerta, J. T1 - Synthesis of 198Au nanoparticles sub 10 nm due optimization on local dose by Monte Carlo simulations for cancer treatment N2 - To enhance the biological effects of radiation damage in cancerous cells, we present an alternative approach to the use of gold nanoparticles (AuNP), focusing on the synthesis and characterization of highly monodisperse, spherical radioactive gold nanoparticles 198AuNP. The size of the AuNP size was optimized with the help of Geant4/TOPAS particle scattering simulations, and energy deposition per nm3 per decay for varying radii (2–10 nm) was evaluated. This work is the foundation for ongoing experimental work to evaluate cell death induced by 198AuNP which aims for the use of radioactive gold nanoparticles in cancer treatment. KW - AuNP KW - Beta decay KW - Beta particle KW - Brachytherapy KW - Cancer treatment KW - Nanoparticles KW - Nanoparticle KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Gamma ray KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - Synthesis KW - TEM KW - OH radicals KW - Particle scattering KW - Radiation damage KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio PY - 2022 DO - https://doi.org/10.1007/s10967-022-08355-5 SN - 1588-2780 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-55132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Häusler, I. A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan A1 - Emmerling, Franziska A1 - Reiss, P. A1 - Resch-Genger, Ute T1 - One-Pot Heat-Up Synthesis of ZnSe Magic-Sized Clusters Using Thiol Ligands N2 - The synthesis of two new families of ZnSe magic-sized clusters (MSCs) is achieved using the thiol ligand 1-dodecanethiol in a simple one-pot heat-up approach. The sizes of the MSCs are controlled with the thiol ligand concentration and reaction temperature. KW - ZnSe KW - Magic-sized cluster KW - Dodecanethiol KW - Semiconductor nanocrystals KW - One-pot synthesis PY - 2022 DO - https://doi.org/10.1021/acs.inorgchem.2c00041 VL - 61 IS - 19 SP - 7207 EP - 7211 PB - ACS Publications CY - Washington, DC (USA) AN - OPUS4-54880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Ciornii, Dmitri A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Hodoroaba, Vasile-Dan T1 - Reliable, and reproducible physico-chemical data of nanomaterials for risk assessment N2 - Nanoforms with at least one dimension below 100 nm have an important part to play in more and more areas of our daily life. Therefore, risk assessment of these materials is becoming increasingly important. In this context, the European Chemical Agency (ECHA) considered eleven physico-chemical properties as relevant, of which the following six are essential for the registration: chemical composition, crystallinity, particle size, particle shape, surface chemistry and specific surface area. Four of these priority properties can be obtained with electron microscopy and surface analytics like XPS and ToF-SIMS. The reliability of this data must be ensured, especially for their use for grouping and read across approaches. On the other hand, the “reproducibility” crisis has revealed major shortcomings in the reliability of published data. In a case study, we show how the quality of the data can be ensured by using existing standards and protocols of each step in the workflow of sample characterization. As exemplary samples, two Al-coated TiO2 samples as nanopowders were selected from the JRC repository, capped either with a hydrophilic or a hydrophobic organic ultrathin shell. SEM results provided the size and shape of the nanoparticles, a first overview about the composition was obtained with EDS. XPS and ToF-SIMS supplied the surface chemistry, especially information about the shell and the coating of the particles. Standards and protocols of all steps of the analytical workflow including preparation and data reduction are discussed regarding reliable and reproducible data. Additionally, uncertainties for the different steps are specified. Only such a detailed description of all these factors allows a comprehensive physico-chemical characterization of the nanoparticles with understanding of their potential risk assessment. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Reference data KW - Risk assessment KW - Nanomaterials KW - Titania PY - 2022 AN - OPUS4-54961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knigge, Xenia A1 - Guo, Z. A1 - Valsami-Jones, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Influence of Sterilization on the Surface of Nanoparticles Studied with XPS / HAXPES in Comparison to SEM / EDS N2 - Nanosafety is becoming increasingly important as nanomaterials are widely used in industrial processes and consumer products. For nanotoxicity measurements prior sterilization of the samples is necessary, but as structure activity relationships are made with properties of pristine particles, the question arises, if the sterilization process has an impact on the physico-chemical properties of nanoparticles and thus on the biological behavior. This question will be addressed in this talk. For this purpose, results from SEM and EDS measurements are combined with those of a novel lab-based HAXPES spectrometer in order to obtain a more complete picture. At the end, an influence of sterilization will be evident, which indicates a restructuring of the nanoparticles owing to sterilization. T2 - Microscopy & Microanalysis 2022 CY - Portland, USA DA - 31.07.2022 KW - XPS KW - HAXPES KW - SEM KW - EDS KW - Nanoparticles PY - 2022 DO - https://doi.org/10.1017/S1431927622004287 VL - 28 SP - 986 EP - 988 PB - Cambridge University Press AN - OPUS4-55352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cifci, G. C. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Polydopamine micropatterning for selective substrate bio-functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA) exhibits strong adhesion to nearly any kind of organic or inorganic surface and shows high ability for surface post-modification and secondary reactions. As a result, PDA has been widely used as a base adlayer to enable versatile surface chemistry and functionalization. It has shown great potential in wide range of applications including biomedical field (e.g., drug delivery, adhesives, photothermal therapy, bone and tissue engineering, cell adhesion, biosensing). However, implementation of PDA in microdevices is still hindered by insufficient spatial and temporal control of excited deposition methods. In this work we present a novel approach to fabricate tunable micropatterned substrates where mussel-inspired chemistry provides base for various surface modification [2]. Current approach applies Multiphoton Lithography (MPL) to initiate local PDA formation, and, therefore, does not require use of microstamp or photomask. As a result, the microstructures of complex designs can be produced with the spatial resolution down to 0.8 μm (Figure 1). The desired design can be easily altered by adjusting the stl model or the fabrication code. Unlike the conventional deposition of PDA based on dopamine auto-oxidation, our method does not require presence of strong oxidants, metal ions or alkaline pH. Herein-demonstrated deposition approach will significantly facilitate applications of polydopamine and other mussel-inspired materials in microdevices and high-resolution active microcomponents (e.g., in MEMS and microfluidics). Adjustment of MPL parameters revealed that the morphology and thickness of resulted PDA microstructures can be controlled by altering the laser power and its scanning velocity. As a result, it also enables the production of micropatterns with structural gradient. Apart from the glass substrate, we performed PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. We tested different composition of dopamine solution for its ability of PDA buildup. Solutions containing Tris buffer, phosphate buffer or DI water only as well as different pH (6.0, 7.0 and 8.5) could be successfully applied for high-precision PDA micropatterning. Moreover, the effect of antioxidants and purging of the solution with oxygen and nitrogen was investigated. In all cases, no decrease of deposition efficiency was observed. The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. To ensure post-modification potential of MPL deposited PDA we demonstrated one-step deposition of micropatterns with trypsin. Obtained bio-functionalised surface can be further applied as a protein sensing active microelement. T2 - Laser Precision Microfabrication CY - Dresden, Germany DA - 07.06.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-55064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Pellegrino, F. A1 - Maurino, V. T1 - Morpho-Chemical Characterisation of Me-TiO2 Nanoparticles for Enhanced Photocatalytical Activity N2 - The conversion of solar energy into electricity and solar fuels is of crucial importance for a green and sustainable future. Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen (H2) fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, etc) and metal concentrations will be discussed. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Titania nanoparticles KW - Photocatalysis KW - Scanning electron microscopy KW - Energy dispersive X-ray spectroscopy PY - 2022 AN - OPUS4-54977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - ISO-G-Scope Standardisation of structural and chemical properties of graphene N2 - The objectives and tasks of the EMPIR project ISO-G-Scope are presented. The last results was shown. Esspecially, the interlaboratory comparison about XPS of functionalized graphene is presented. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Graphene KW - Standardization KW - Structural characterisation KW - Chemical composition PY - 2022 AN - OPUS4-54834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hesse, R. A1 - Denecke, R. T1 - Improved estimation of the transmission function with UNIFIT 2022 N2 - The recent development of x-ray photoelectron spectroscopy using excitation sources different from the usual lab-source Mg Kα and Al Kα and spectrometers with more sophisticated lens systems requires flexible approaches for determining the transmission function. Therefore, the approach using quantified peak areas (QPA) was refined.1 A new algorithm allows a more precise estimation of the transmission function which could be shown by comparing the results obtained with the new version with former calculations. Furthermore, next to the established reference materials Cu, Ag and Au, ionic liquids can be used for estimating the transmission function at beamlines with variable excitation energies. Comparison between the measured and stoichiometric composition shows that a transmission function was determined which allows a reasonable quantification. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Synchrotron radiation KW - Iionic liquid PY - 2022 AN - OPUS4-54962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Ce0.75Zr0.25O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Ce0.75Zr0.25O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Ce0.75Zr0.25O2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7966133 PB - Zenodo CY - Geneva AN - OPUS4-57673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Ce0.25Zr0.75O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Ce0.25Zr0.75O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Ce0.25Zr0.75O2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7966165 PB - Zenodo CY - Geneva AN - OPUS4-57674 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Ce0.1Zr0.9O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Ce0.1Zr0.9O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Ce0.1Zr0.9O2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7965602 PB - Zenodo CY - Geneva AN - OPUS4-57672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Ce0.5Zr0.5O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Ce0.5Zr0.5O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Ce0.5Zr0.5O2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7965445 PB - Zenodo CY - Geneva AN - OPUS4-57670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized ZrO2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized ZrO2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - ZrO2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7965536 PB - Zenodo CY - Geneva AN - OPUS4-57671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized TiO2 D540 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized TiO2 D540 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - TiO2 D540 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7961317 PB - Zenodo CY - Geneva AN - OPUS4-57669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of CeO2/Co3O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of CeO2/Co3O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Nanoparticles KW - CeO2/Co3O4 PY - 2023 DO - https://doi.org/10.5281/zenodo.7989698 PB - Zenodo CY - Geneva AN - OPUS4-57760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of Ce0.9Zr0.1O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of Ce0.9Zr0.1O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Ce0.9Zr0.1O2 KW - Nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7986672 PB - Zenodo CY - Geneva AN - OPUS4-57758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized AlOOH nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized AlOOH nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - AlOOH KW - Nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7966245 PB - Zenodo CY - Geneva AN - OPUS4-57757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habibimarkani, Heydar A1 - John, Elisabeth A1 - Schusterbauer, Robert A1 - Abram, Sarah-Luise A1 - Prinz, Carsten A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Investigating the Synergistic Effects of FeNi-Oxide Nanoparticles as Water Electrolysis Catalysts: A Multi-Technique Characterization Approach N2 - Electrocatalysis is and will continue to play a central role in the development of a new and modern sustainable economy, especially for chemicals and fuels. The storage of excess electrical energy into chemical energy by splitting water into hydrogen and oxygen is a feasible solution in this economic sector. A major drawback of electrical energy lies in the storage. Therefore, hydrogen is discussed as promising alternative. Fortunately, this issue can be effectively addressed through the implementation of chemical storage mechanisms. Due to their abundance on Earth and inherent stability in alkaline solutions, transition-metal oxides have become one of several viable alternatives to conventional noble-metal catalysts. Since FeNi oxide is one of the most active oxygen evolution reaction (OER) electrocatalysts for alkaline water electrolysis, it has been the subject of extensive research. A series of different types of FeNi oxide nanoparticles (NPs) with atomic ratios covering a broad range, and various sizes with specific stoichiometric and non-stoichiometric iron and nickel ratios was synthesized and characterized by the combination of surface analysis techniques, such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The morphology was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the coexistence of mixed and unmixed iron and nickel NPs with comparable sizes in the range of 30–40 nm across all ratios. The synthesis technique displayed control over the iron-nickel ratio, as evidenced by energy dispersive X-ray spectroscopy (EDS) data. The presence of magnetite (Fe3O4) was detected in all samples investigated by X-ray diffraction (XRD). Furthermore, the existence of nickel ferrite (NiFe2O4) was shown in the Fe2Ni by XRD analysis. For the cyclic voltammetry (CV) measurements, the NPs were deposited onto glassy carbon electrodes using Nafion® as an ionomer, and 1 M KOH was employed as the electrolyte. Subsequently, the NPs/Nafion® electrode was transferred into the ToF-SIMS chamber to allow surface analysis and depth profiling. The ToF-SIMS analysis revealed distinct peaks corresponding to Fe, Ni, and other peaks associated with Nafion®, whereas a straightforward correlation between the Ni.Fe ratio and the SIMS peak pattern is not possible. The catalytic activity towards OER was evaluated through CV measurements, where the Fe2Ni3 ratio exhibited the most favorable performance, displaying a lower overpotential. T2 - European Materials Research Society (E-MRS) Fall 2023 CY - Warsaw, Poland DA - 18.09.2023 KW - FeNi-Oxide NPs KW - ToF-SIMS KW - Catalysts KW - OER PY - 2023 AN - OPUS4-59139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habibimarkani, Heydar A1 - John, Elisabeth A1 - Schusterbauer, Robert A1 - Abram, Sarah-Luise A1 - Prinz, Carsten A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Complementary Characterization of FeNi-Oxide Nanoparticles as Catalysts for Water Electrolysis combining Electron Microscopy, EDS, XRD, ToF-SIMS and Electrochemical Analysis N2 - Electrocatalysis is and will continue to play a central role in the development of a new and modern sustainable economy, especially for chemicals and fuels. The storage of excess electrical energy into chemical energy by splitting water into hydrogen and oxygen is a feasible solution in this economic sector. A major drawback of electrical energy lies in the storage. Therefore, hydrogen is discussed as promising alternative. Fortunately, this issue can be effectively addressed through the implementation of chemical storage mechanisms. Due to their abundance on Earth and inherent stability in alkaline solutions, transition-metal oxides have become one of several viable alternatives to conventional noble-metal catalysts. Since FeNi oxide is one of the most active oxygen evolution reaction (OER) electrocatalysts for alkaline water electrolysis, it has been the subject of extensive research. A series of different types of FeNi oxide nanoparticles (NPs) with atomic ratios covering a broad range, and various sizes with specific stoichiometric and non-stoichiometric iron and nickel ratios was synthesized and characterized by the combination of surface analysis techniques, such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The morphology was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the coexistence of mixed and unmixed iron and nickel NPs with comparable sizes in the range of 30–40 nm across all ratios. The synthesis technique displayed control over the iron-nickel ratio, as evidenced by energy dispersive X-ray spectroscopy (EDS) data. The presence of magnetite (Fe3O4) was detected in all samples investigated by X-ray diffraction (XRD). Furthermore, the existence of nickel ferrite (NiFe2O4) was shown in the Fe2Ni by XRD analysis. For the cyclic voltammetry (CV) measurements, the NPs were deposited onto glassy carbon electrodes using Nafion® as an ionomer, and 1 M KOH was employed as the electrolyte. Subsequently, the NPs/Nafion® electrode was transferred into the ToF-SIMS chamber to allow surface analysis and depth profiling. The ToF-SIMS analysis revealed distinct peaks corresponding to Fe, Ni, and other peaks associated with Nafion®, whereas a straightforward correlation between the Ni.Fe ratio and the SIMS peak pattern is not possible. The catalytic activity towards OER was evaluated through CV measurements, where the Fe2Ni3 ratio exhibited the most favorable performance, displaying a lower overpotential. T2 - SIMS Europe 2023 CY - Nottingham, England DA - 02.09.2023 KW - FeNi-Oxide NPs KW - ToF-SIMS KW - Catalysts KW - OER PY - 2023 AN - OPUS4-59143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Knigge, Xenia A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Maskless Micropatterning of Polydopamine for versatile surface functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA has been shown as one of the most versatile platforms for altering the properties and incorporating new functionalities to nearby any material surface despite its nature. Rich chemistry of PDA enables broad variety of surface modification and diverse secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. Despite high potential of polydopamine, the lack of deposition control and precision in existed methods limits their applications in microdevices and miniaturized functional systems like, for example, MEMS, microfluidic and sensorics. Herein, we demonstrate a novel maskless approach for surface micropatterning with polydopamine based on Multiphoton Lithography that overcomes present limitations. Neither strong oxidants, metal ions nor adjustment of pH to alkaline is required by this technique. The spatial resolution down to 0.8 µm has been achieved which is at least an order of magnitude smaller than shown by other existed methods. We are able to control the morphology and thickness of the micropattern by altering fabrication parameters allowing structure gradient. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. Post-modification of polydopamine micropatterns with protein enzyme like trypsin is demonstrated to highlight its sensing potential. Presented in this work microfabrication technique empowers advanced applications of mussel-inspired materials in single-molecule bioassays, sensors and other complex microdevices. T2 - International Conference on Precision Engineering and Sustainable Manufacturing CY - Okinawa, Japan DA - 18.07.2023 KW - Multiphoton lithography KW - Polydopamine KW - Micropatterning PY - 2023 AN - OPUS4-58878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized TiO2 PVP nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized TiO2 PVP nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Nanoparticles KW - TiO2 PVP PY - 2023 DO - https://doi.org/10.5281/zenodo.7966354 PB - Zenodo CY - Geneva AN - OPUS4-57761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile ZnO nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of ZnO nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Nanoparticles KW - ZnO PY - 2023 DO - https://doi.org/10.5281/zenodo.7990213 PB - Zenodo CY - Geneva AN - OPUS4-57762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile citrated stabilized Au nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of Au nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Au Nanoparticles KW - NanoSolveIT PY - 2023 DO - https://doi.org/10.5281/zenodo.7990250 PB - Zenodo CY - Geneva AN - OPUS4-57763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile Fe3O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterile Fe3O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Fe3O4 KW - Nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7990301 PB - Zenodo CY - Geneva AN - OPUS4-57764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -