TY - JOUR A1 - Pleskunov, P. A1 - Nikitin, D. A1 - Tafiichuk, R. A1 - Shlemin, A. A1 - Hanus, J. A1 - Kousal, J. A1 - Krtous, Z. A1 - Khalakhan, I. A1 - Kus, P. A1 - Nasu, T. A1 - Nagahama, T. A1 - Funaki, C. A1 - Sato, H. A1 - Gawek, Marcel A1 - Schönhals, Andreas A1 - Choukourov, A. T1 - Plasma polymerization of acrylic acid for the tunable synthesis of glassy abd carboxylated nanoparticle N2 - Polymer nanoparticles (NPs) can be highly attractive in numerous applications including biomedicine where the use of inorganic matter may be detrimental for living tissues. In conventional wet chemistry, polymerization and functionalization of NPs with specific chemical groups involves complex and often numerous reactions. Here, we report on a solvent-free, single-step, low temperature plasma-based synthesis of carboxylated NPs produced by polymerization of acrylic acid under the conditions of a glow discharge. In a monomer-deficient regime, strong fragmentation of the monomer molecules by electron impact results in the formation of 15 nm-sized NPs with <1% retention of the carboxyl groups. In an energy-deficient regime, larger 90 nm-sized NPs are formed with better retention of the carboxyls that reaches 16 %. All types of the NPs exhibit the glass transition above the room temperature which makes them highly stable under aqueous environment with no dissolution or swelling. They are also found to degrade thermally when heated above 150 °C with a decrease of the mean NP size, yet with the retention of the chemical composition. Thus, plasma polymerization proves to be a versatile approach for the production of polymer NPs with tuneable size distribution, chemical composition and physical properties. KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acs.jpcb.9b08960 VL - 124 SP - 668 EP - 678 PB - ACS AN - OPUS4-50351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Esmann, M. A1 - Chimeh, A. A1 - Korte, A. A1 - Zhong, J. A1 - Stephan, S. A1 - Witt, Julia A1 - Wittstock, G. A1 - Talebi, N. A1 - Lienau, C. T1 - Plasmonic nanofocusing spectral interferometry N2 - We describe and demonstrate a novel experimental approach to measure broadband, amplitude- and phase-resolved scattering spectra of single nanoparticles with 10-nm spatial resolution. Nanofocusing of Surface plasmon polaritons (SPPs) propagating along the shaft of a conical gold taper is used to create a spatially isolated, spectrally broad nanoscale light source at ist very apex. The interference between these incident SPPs and SPPs that are backpropagating from the apex leads to the formation of an inherently phase-stable interferogram, which we detect in the far field by partially scattering SPPs off a small protrusion on the taper shaft. We show that these interferograms allow the reconstruction of both the amplitude and phase of the local optical near fields around individual nanoparticles optically coupled to the taper apex. We extract local light scattering spectra of particles and quantify line broadenings and spectral shifts induced by tip-sample coupling. Our experimental findings are supported by corresponding finite-difference time-domain and coupled dipole simulations and Show that, in the limit of weak tip-sample coupling, the measurements directly probe the projected local density of optical states of the plasmonic system. The combination of a highly stable inline interferometer with the inherent optical background suppression through nanofocusing makes it a promising tool for the locally resolved study of the spectral and temporal optical response of coupled hybrid nanosystems. KW - Plasmonic nanofocusing KW - Near-field spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504985 DO - https://doi.org/10.1515/nanoph-2019-0397 VL - 9 IS - 2 SP - 491 EP - 508 PB - De Gruyter AN - OPUS4-50498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kanwal, S. A1 - Ali, Naveed Zafar A1 - Hussain, R. A1 - Shah, F.U. A1 - Akhter, Z. T1 - Poly-thiourea formaldehyde based anticorrosion marine coatings on Type 304 stainless steel N2 - In the present study, hexamethylene diisocyanate (HMDI) encapsulated poly-thiourea formaldehyde (PTF) (10 wt%) coating was developed in an epoxy-polyamine matrix and their anticorrosion studies on Type SS304 stainless steel substrate have been conducted using electrochemistry techniques. The compact and hydrophobic shell wall of PTF proved to be a potent shell wall material for HMDI encapsulation. The effect of temperature and pH values was found to be decisive factor in the synthesis of microcapsules. The PTF microcapsules were synthesized in acidic condition with a pH value of 3. Over 90% of the core fraction is retained in water after 21 days immersion. However, core content decreased with increasing temperature. The capsules were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Electrochemical Impedance spectroscopy (EIS). Scanning electron microscopic analysis depicts the uniform morphology of coating with a particle size in the range of 1.08 µm–22.06 µm. The vibrational band at 2271 cm−1 attributed to NCO signal further endorses the successful encapsulation of HMDI into the PTF capsules. Electrochemical testing on steel specifies the appreciable anticorrosion performance of the synthesized poly thiourea formaldehyde (PTF) coating against artificial sea water. KW - In-situ polymerization KW - Encapsulation KW - Thiourea-formaldehyde KW - Marine corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507932 DO - https://doi.org/10.1016/j.jmrt.2019.12.045 VL - 9 IS - 2 SP - 2146 EP - 2153 PB - Elsevier B.V. AN - OPUS4-50793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, F. A1 - Sordello, F. A1 - Mino, L. A1 - Prozzi, M. A1 - Mansfeld, Ulrich A1 - Hodoroaba, Vasile-Dan A1 - Minero, C. T1 - Polyethylene Glycol as Shape and Size Controller for the Hydrothermal Synthesis of SrTiO3 Cubes and Polyhedra N2 - Understanding the correlation between the morphological and functional properties of particulate materials is crucial across all fields of physical and natural sciences. This manuscript reports on the investigation of the effect of polyethylene glycol (PEG) employed as a capping Agent in the synthesis of SrTiO3 crystals. The crucial influence of PEG on both the shape and size of the strontium titanate particles is revealed, highlighting the effect on the photocurrents measured under UV–Vis irradiation. KW - Polyethylene glycol KW - Strontium titanate KW - Controlled morphology KW - Photoelectrochemistry KW - Electron microscopy KW - EDS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512892 DO - https://doi.org/10.3390/nano10091892 VL - 10 IS - 9 SP - 1892 PB - MDPI CY - Basel, CH AN - OPUS4-51289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Kricheldorf, H. T1 - Polymer mass spectrometry at BAM with special emphasis on MALDI and ESI N2 - Since its introduction mass spectrometric techniques like Matrix-assisted Laser Desorption/ionization (MALDI) and Electrospray Ionization (ESI) have become indispensable for synthetic polymer analyses. Ideally, various polymer properties (monomer structure, masses, mass distribution, end groups) can be determined simultaneously. However, in real life these experiments are always affected by important structural parameters and instrumental limitations. A short introduction focussing on latest findings with respect to ionisation principles and mechanisms will be given. Recent results from our group will be presented and efforts to avoid common drawbacks of polymer mass spectrometry will be discussed. In this regard, MALDI - Imaging mass spectrometry and the 2D hyphenation of MS with different chromatographic separation techniques were especially useful, since they can provide additional information and reduce the complexity of polymer analyses. T2 - 21. European Symposium on Polymer Spectroscopy CY - Linz, Austria DA - 13.01.2020 KW - Mass spectrometry KW - MALDI-TOF MS KW - ESI-TOF MS KW - Polymer PY - 2020 AN - OPUS4-50260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Baer, D. R. A1 - Cant, D. J. H. A1 - Castner, D. G. A1 - Ceccone, G. A1 - Engelhard, M. H. A1 - Karakoti, A. S. A1 - Müller, Anja ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Preparation of nanoparticles for surface analysis N2 - A variety of methods used to prepare nano-objects for surface analysis are described along with information about when they might be best applied. Intrinsic properties of NPs which complicate their characterization and need to be considered when planning for surface or other analyses of NPs are identified, including challenges associated with reproducible synthesis and functionalization of the particles as well as their dynamic nature. The relevant information about the sample preparation processes, along with analysis details and data that need to be added to the collection of material provenance information is identified. Examples of protocols that have been successfully used for preparation of nano-objects for surface analysis are included in an annex. KW - Sample preparation KW - Nanoparticles KW - Surface chemistry KW - XPS KW - Dynamic behavior KW - Nano-object KW - Surface analysis PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00018-3 SP - 295 EP - 347 PB - Elsevier CY - Amsterdam AN - OPUS4-50186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Müller, Anja A1 - Radnik, Jörg A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Laue, P. A1 - Luch, A. A1 - Tentschert, J. T1 - Preparation of Nanoparticles for ToF-SIMS and XPS Analysis N2 - Nanoparticles have gained increasing attention in recent years due to their potential and application in different fields including medicine, cosmetics, chemistry, and their potential to enable advanced materials. To effectively understand and regulate the physico-chemical properties and potential adverse effects of nanoparticles, validated measurement procedures for the various properties of nanoparticles need to be developed. While procedures for measuring nanoparticle size and size Distribution are already established, standardized methods for analysis of their surface chemistry are not yet in place, although the influence of the surface chemistry on nanoparticle properties is undisputed. In particular, storage and preparation of nanoparticles for surface analysis strongly influences the analytical results from various methods, and in order to obtain consistent results, sample preparation must be both optimized and standardized. In this contribution, we present, in detail, some standard procedures for preparing nanoparticles for surface analytics. In principle, nanoparticles can be deposited on a suitable substrate from suspension or as a powder. Silicon (Si) Wafers are commonly used as substrate, however, their cleaning is critical to the process. For sample preparation from suspension, we will discuss drop-casting and spin-coating, where not only the cleanliness of the substrate and purity of the suspension but also its concentration play important roles for the success of the preparation methodology. For nanoparticles with sensitive ligand shells or coatings, deposition as powders is more suitable, although this method requires particular care in fixing the sample. KW - Titania nanoparticles KW - X-ray photoelectron spectroscopy KW - Secondary ion mass spectrometry KW - Surface chemisttry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520103 UR - https://www.jove.com/video/61758 DO - https://doi.org/10.3791/61758 VL - 163 SP - e61758 AN - OPUS4-52010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Preparation of Nanoparticulate Samples for Electron Microscopy N2 - This presentation addresses the importance of proper sample preparation to obtain suitable samples for electron microscopic measurements. The objective as well as the requirements are discussed. Further, different sample deposition methods for various types of nanoparticulate samples are shown. T2 - nPSize Web Conference CY - Online meeting DA - 23.07.2020 KW - Nanoparticles KW - Electron microscopy KW - Sample preparation KW - Particle size distribution KW - Particle number concentration PY - 2020 AN - OPUS4-51047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Petrushina, M. A1 - Dedova, E. A1 - Portnaygin, A. A1 - Papynov, E. A1 - Filatov, E. A1 - Gubanov, A. T1 - Pressure induced change in the ZrWMoO8 N2 - In this paper we report high-pressure synchrotron x-ray powder diffraction data for the cubic ZrWMoO8. For the first time, extensive structural study of ZrWMoO8 solid solution as a function of pressure was performed. This study shows that disordered cubic-ZrWMoO8 (space group Pa) transforms to ordered cubic-ZrWMoO8 (space group P) at low pressure. A further high-pressure influence leads followed by amorphization of the sample at 2.2 GPa. All transformations are irreversible. Our work will have high impact in the design of new composite materials with well-defined thermal expansion, especially for applications under extreme conditions and high mechanic stress. KW - Phase transition KW - High-pressure KW - Complex oxides PY - 2020 DO - https://doi.org/10.1016/j.matpr.2019.12.141 VL - 25 IS - 3 SP - 428 EP - 430 PB - Elsevier Ltd. AN - OPUS4-50822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Altmann, Korinna A1 - Sommerfeld, Thomas A1 - Braun, Ulrike T1 - Quantification of microplastics in a freshwater suspended organic matter using different thermoanalytical methods – outcome of an interlaboratory comparison N2 - A sedimented freshwater suspended organic matter fortified with particles of polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) was employed in an interlaboratory comparison of thermoanalytical methods for microplastics identification and quantification. Three laboratories performed pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), three others provided results using thermal extraction desorption followed by gas chromatography coupled to mass spectrometry (TED-GC-MS). One participant performed thermogravimetry-infrared spectroscopy (TGA-FTIR) and two participants used thermogravimetry coupled to mass spectrometry (TGA-MS). Further participants used differential scanning microscopy (DSC), a procedure based on micro combustion calorimetry (MCC) and a procedure based on elemental analysis. Each participant employed a different combination of sample treatment, calibration and instrumental Settings for polymer identification and quantification. Though there is obviously room for improvements regarding the between-laboratory reproducibility and the harmonization of procedures it was seen that the participants Performing Py-GC-MS, TED-GC-MS, and TGA-FTIR were able to correctly identify all polymers and to report reasonable quantification results in the investigated concentration range (PE: 20.0 μg/mg, PP: 5.70 μg/mg; PS: 2.20 μg/mg, PET: 18.0 μg/mg). Although for the other methods limitations exists regarding the detection of specific polymers, they showed potential as alternative approaches for polymer quantification in solid environmental matrices. KW - Interlaboratory comparison KW - Microplastics KW - Suspended organic matter KW - Pyrolysis PY - 2020 DO - https://doi.org/10.1016/j.jaap.2020.104829 VL - 148 SP - 1 EP - 6 PB - Elsevier B.V. AN - OPUS4-50977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative Microstructural Analaysis under VAMAS/TWA 37 N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the possibility of identifying and launching related VAMAS projects. Need of more promotion for the engagement of more participants from industry and academia at national, European and international level is highlighted. Also, the competition with the other technical working areas (on 'nano' or materials-related) is critically discussed. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 45th Steering Committee Meeting CY - Online meeting DA - 30.09.2020 KW - VAMAS KW - Microbeam analysis KW - Inter-laboratory comparison KW - EBSD KW - FIB PY - 2020 UR - http://www.vamas.org/ AN - OPUS4-51360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn T1 - Quo vadis LIPSS? - Recent and future trends on laser-induced periodic surface structures N2 - Nanotechnology and lasers are among the most successful and active fields of research and technology that have boomed during the past two decades. Many improvements are based on the controlled manufacturing of nanostructures that enable tailored material functionalization for a wide range of industrial applications, electronics, medicine, etc., and have already found entry into our daily life. One appealing approach for manufacturing such nanostructures in a flexible, robust, rapid, and contactless one-step process is based on the generation of laser-induced periodic surface structures (LIPSS). This Perspectives article analyzes the footprint of the research area of LIPSS on the basis of a detailed literature search, provides a brief overview on its current trends, describes the European funding strategies within the Horizon 2020 programme, and outlines promising future directions. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser interference patterning (DLIP) KW - Surface functionalization KW - Literature survey KW - European funding strategies PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513530 DO - https://doi.org/10.3390/nano10101950 SN - 2079-4991 VL - 10 IS - 10 SP - 1950-1 EP - 1950-19 PB - MDPI CY - Basel AN - OPUS4-51353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solomun, Tihomir A1 - Hahn, Marc Benjamin A1 - Smiatek, J. T1 - Raman spectroscopic signature of ectoine conformations in bulk solution and crystalline state N2 - Recent crystallographic results revealed conformational changes of zwitterionic ectoine upon hydration. By means of confocal Raman spectroscopy and density functional theory calculations, we present a detailed study of this transformation process as part of a Fermi resonance analysis. The corresponding findings highlight that all resonant couplings are lifted upon exposure to water vapor as a consequence of molecular binding processes. The importance of the involved molecular groups for water binding and conformational changes upon hydration is discussed. Our approach further Shows that the underlying rapid process can be reversed by carbon dioxide saturated atmospheres. For the first time, we also confirm that the conformational state of ectoine in aqueous bulk solution coincides with crystalline ectoine in its dihydrate state, thereby highlighting the important role of a few bound water molecules. KW - Fermi resonance KW - Ectoine hydration KW - DFT calculations of Raman spectra KW - Position of carboxylate group PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509855 DO - https://doi.org/10.1002/cphc.202000457 SN - 1439-4235 SN - 1439-7641 VL - 21 IS - 17 SP - 1945 EP - 1950 PB - Wiley-VCH CY - Weinheim AN - OPUS4-50985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Realitätsnahe Referenzmaterialien für die Mikroplastik-Analytik und Vergleichsuntersuchungen N2 - Zur Validierung und Harmonisierung von verschiedenen Methoden in der Mikroplastik-Analytik werden polymere Referenzmaterialien benötigt. In diesem Vortrag wird dargestellt, was bisher an der BAM zu Referenzmaterialien für die Mikroplastik-Analytik entwickelt wurde, wo es hingehen soll und ein Überblick über bisher gelaufene Vergleichsuntersuchungen gebracht. T2 - Kick-off Meeting "Mikroplastik in Lebensmitteln" CY - Online meeting DA - 03.12.2020 KW - Mikroplastik KW - Referenzmaterial KW - Vergleichsuntersuchungen KW - Ringversuche PY - 2020 AN - OPUS4-51743 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - Reference material for the determination of the field of view of small-area X-ray photoelectron spectrometers N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces. For evaluating the quality of such microstructures, it is crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. The aperture has a major influence on the signal-contribution from the outside. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize the FoV: The signal-contribution from the outside is reduceable down to lower than 50 %, when the aperture is 30 % of the structure dimension for our Kratos AXIS Ultra DLD system. T2 - Kratos User's Meeting 2020 CY - Online meeting DA - 21.09.2020 KW - Small-area XPS KW - Field of View KW - Imaging XPS KW - Reference Material PY - 2020 AN - OPUS4-51412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fosodeder, P. A1 - Baumgartner, W. A1 - Steinwender, C. A1 - Hassel, A. W. A1 - Florian, Camilo A1 - Bonse, Jörn A1 - Heitz, J. T1 - Repellent rings at titanium cylinders against overgrowth by fibroblasts N2 - The invention of new miniaturized and smart medical implants continues in all medical fields, including miniaturized heart pacemakers. These implants often come with a titanium (Ti) casing, which may have to be removed after several months or years and shall therefore not be completely overgrown by cells or scar tissue after implantation. Scar tissue is mainly formed by fibroblast cells and extracellular matrix proteins like collagen produced by them. Suppression of fibroblast growth at Ti surfaces could be achieved by 800 nm femtosecond laser-ablation creating self-organized sharp spikes with dimensions in the 10 μm-range which are superposed by fine sub-μm parallel ripples. On flat Ti control samples, the best results regarding suppression of cell growth were obtained on spike-structures which were additionally electrochemically anodized under acidic conditions. When Ti cylinders with a diameter of 8 mm (similar as the pacemakers) were placed upright in a culture of murine fibroblasts, a multi-layer cell growth up to a height of at least 1.5 mm occurred within 19–22 days. We have demonstrated that a laser-structured and anodized ring around the Ti cylinder surface is an effective way to create a barrier that murine fibroblasts were not able to overgrow within this time. KW - Cell-repellent surfaces KW - Femtosecond laser-processing KW - Electrochemical treatment KW - Laser-induced micro- and nanostructures KW - Medical implants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509966 DO - https://doi.org/10.1515/aot-2019-0070 SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 3 (Topical issue: Laser micro- and nano-material processing - Part 2) SP - 113 EP - 120 PB - De Gruyter CY - Berlin AN - OPUS4-50996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Reply to the comment on “synthesis of cyclic polymers and flaws of the Jacobson-Stockmayer theory” by R. Szymanski N2 - In a recent publication the authors have presented theoretical and experimental results indicating that the Jacobson–Stockmayer (JS) theory does not provide a correct description of reversible polycondensations for all polymers and for high conversions (e.g. polycondensation in bulk). In this context reversibility means that all condensation step whether resulting in chain growth or in cyclization are reversible and thus, part of an equilibrium. The first two sections of that paper were focused on the demonstration that small, and above all, large cycles can be formed by end-to-end (ete) cyclization in reversible like in irreversible polycondensations. A significant contribution of ete-cyclization to the course of reversible polycondensations was denied by J + S apparently as a contribution to Florýs dogma, that the end groups of long polymer chains will never meet. KW - Polylactide KW - MALDI-TOF MS KW - Jacobsen-Stockmayer theory PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513985 DO - https://doi.org/10.1039/D0PY01118E VL - 11 IS - 38 SP - 6226 EP - 6228 PB - Royal Society of Chemistry AN - OPUS4-51398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Qu, Xintong A1 - Schönhals, Andreas T1 - Resolving the mystery of the molecular dynamics of epoxy-based materials using broadband dielectric spectroscopy and hypheneated calorimetry N2 - A detailed calorimetric and dielectric study on two epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) and methyl tetrahydrophtalic acid anhydride (MTHPA) aas the polymer matrix and taurine-modified MgAL layered double hydroxide (T-LDH) and boehmite as nanofiller. The molecular dynamics investigation revealed an intrinsic structural heterogeneity of the epoxy materials. Moreover the polymer/particle interphase was qualitatively and quantitavely investigated. T2 - Online International Dielectric Society 2020 Workshop CY - Online meeting DA - 28.09.2020 KW - Interfaces KW - Nanocomposites KW - Rigid amorphous fraction KW - BDS KW - TMDSC PY - 2020 AN - OPUS4-51492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reifschneider, O. A1 - Vennemann, A. A1 - Buzanich, Günter A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Hogeback, J A1 - Köppen, C. A1 - Großgarten, M. A1 - Sperling, M. A1 - Wiemann, M. A1 - Karst, U. T1 - Revealing Silver Nanoparticle Uptake by Macrophages Using SR-μXRF and LA-ICP-MS N2 - To better study the impact of nanoparticles on both in vitro and in vivo models, tissue distribution and cellular doses need to be described more closely. Here silver nanoparticles were visualized in alveolar macrophages by means of synchrotron radiation micro X-ray fluorescence spectroscopy (SR-μXRF) with high spatial resolution of 3 × 3 μm2. For the spatial allocation of silver signals to cells and tissue structures, additional elemental labeling was carried out by staining with eosin, which binds to protein and can be detected as bromine signal with SR-μXRF. The method was compatible with immunostaining of macrophage antigens. We found that the silver distribution obtained with SR-μXRF was largely congruent with distribution maps from a subsequent laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of the same tissue sites. The study shows a predominant, though not exclusive uptake of silver into alveolar macrophages in the rat lung, which can be modeled by a similar uptake in cultured alveolar macrophages. Advantages and limitations of the different strategies for measuring nanoparticle uptake at the single cell level are discussed. KW - Synchrotron KW - BAMline KW - XRF KW - Nanoparticle KW - Macrophagen PY - 2020 DO - https://doi.org/10.1021/acs.chemrestox.9b00507 VL - 33 IS - 5 SP - 1250 EP - 1255 PB - American Chemical Society AN - OPUS4-50855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Ring–Ring Equilibration in Solid, Even-Numbered Cyclic Poly(l-lactide)s and their Stereocomplexes N2 - Even-numbered cyclic poly(d-lactide) and poly(l-lactide) are prepared by ringexpansion polymerization. The cyclic pol(l-lactide) is annealed either at 120 or at 160 °C for several days. The progress of transesterification in the solid state is monitored by the formation of odd-numbered cycles via matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The changes of the crystallinity are monitored by differential scanning calorimetry, wideand small-angle x-ray scattering (WAXS and SAXS) measurements. Despite total even-odd equilibration at 160 °C, the crystallinity of poly(l-lactide) is not reduced. Furthermore, the crystallinity of the stereocomplexes of both cyclic polylactides do not decrease or vanish, as expected, when a blocky or random stereosequence is formed by transesterification. This conclusion is confirmed by 13C NMR spectroscopy. These measurements demonstrate that transesterification is a ring–ring equilibration involving the loops on the surfaces of the lamellar crystallites thereby improving crystallinity and 3D packing of crystallites without significant broadening of the molecular weight distribution. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506458 DO - https://doi.org/10.1002/macp.202000012 VL - 221 IS - 9 SP - 2000012 PB - Wiley-VCH Verlag AN - OPUS4-50645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arinchtein, A. A1 - Schnack, R. A1 - Kraffert, K. A1 - Radnik, Jörg A1 - Dietrich, P. A1 - Sachse, René A1 - Krähnert, R. T1 - Role of Water in Phase Transformations and Crystallization of Ferrihydrite and Hematite N2 - The oxides, hydroxides, and oxo-hydroxides of iron belong to the most abundant materials on earth. They also feature a wide range of practical applications. In many environments, they can undergo facile phase transformations and crystallization processes. Water appears to play a critical role in many of these processes. Despite numerous attempts, the role of water has not been fully revealed yet. We present a new approach to study the influence of water in the crystallization and phase transformations of iron oxides. The approach employs model-type iron oxide films that comprise a defined homogeneous nanostructure. The films are exposed to air containing different amounts of water reaching up to pressures of 10 bar. Ex situ analysis via scanning electron microscopy, Transmission electron microscopy, selected area electron diffraction, and X-ray diffraction is combined with operando near-ambient pressure X-ray photoelectron spectroscopy to follow water-induced changes in hematite nd ferrihydrite. Water proves to be critical for the nucleation of ematite domains in ferrihydrite, the resulting crystallite orientation, and the underlying crystallization mechanism. KW - Iron oxide KW - Ferrihydrite KW - Hematite KW - Water KW - NAP-XPS KW - High pressure PY - 2020 DO - https://doi.org/10.1021/acsami.0c05253 VL - 12 SP - 38714 EP - 38722 PB - ACS Publication AN - OPUS4-51201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Scattering is a powerful tool to follow nucleation and growth of minerals from solutions N2 - In recent years, we have come to appreciate the astounding intricacy of the processes leading to the formation of minerals from ions in aqueous solutions. The original, and rather naive, ‘textbook’ image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species. These include solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc.. Does it, however, mean that all the minerals grow through intermediate phases, following a non-classical pathway? In general, the precursor or intermediate species constitute different, often short-lived, points along the pathway from dissolved ions to the final solids (typically crystals in this context). In this regard synchrotron-based scattering (SAXS/WAXS/total scattering) appears to be the perfect tool to follow in situ and in a time-resolved manner the crystallization pathway because of the temporal and spatial length scales that can be directly accessed with these techniques. In this presentation we show how we used scattering to probe the crystallisation mechanisms of calcium sulfate, This system contains minerals that are widespread in diverse natural environments, but they are also important in various industrial settings. Our data demonstrate that calcium sulfate precipitation involves formation and aggregation of sub-3 nm anisotropic primary species. The actual crystallisation and formation of imperfect single crystals of calcium sulfate phases, takes place from the inside of the in itial aggregates. Hence, calcium sulfate follows a non-classical pathway. T2 - X-ray Powder Diffraction at DESY - new opportunities for research and industry CY - Online meeting DA - 22.06.2020 KW - Nucleation KW - Calcium sulfate KW - Diffraction KW - Scattering KW - Synchrotron KW - SAXS/WAXS PY - 2020 AN - OPUS4-50943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Das, S. A1 - Lal, G. A1 - Soni, S. R. A1 - Ghosh, A. A1 - Reddy, C. M. A1 - Ghosh, S. T1 - Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine N2 - Multidrug solids have a potential use to efficiently treat and control a superfluity of medical conditions. To address the current drawbacks of drug development in R&D, it was targeted to achieve new pharmaceutical solid forms of fenamic acids having improved solubility and thermal stability. Subsequently, five new multicomponent solids consisting of three salt hydrates of trimethoprim (TMP) with mefenamic acid (TMP-MFA-H2O), tolfenamic acid (TMP-TFA-H2O) and flufenamic acid (TMP-FFA-H2O), and two cocrystals of sulfamethazine (SFZ) with flufenamic acid (SFZ-FFA) and niflumic acid (SFZ-NFA) were prepared by liquid assisted grinding. Looking at the structures of active pharmaceutical ingredient (API) molecules, it was quite expected that a wide range of supramolecular synthons would lead to cocrystallization. New forms were characterized thoroughly by various solid-state techniques, including single crystal X-ray diffraction (SCXRD), which provided details of hydrogen bonding, molecular packing and interactions between drug and coformer. Kinetic solubility at pH 7.4 buffer study has been carried out and a comparison is made with respect to the parent drugs. A significant enhancement of NSAIDs solubility was observed in all salt hydrate systems of TMP. Thus with increasing physicochemical properties such as improved solubility further leads to the enhancement of bioavailability, which has implications to overcoming the formulation related problems of active pharmaceutical ingredients (APIs). KW - Cocrystals KW - Crystal engineering KW - Solubility PY - 2020 DO - https://doi.org/10.1016/j.molstruc.2019.127028 SN - 0022-2860 VL - 1199 SP - 127028 PB - Elsevier B.V. AN - OPUS4-49873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schaepe, Kaija A1 - Jungnickel, H. A1 - Heinrich, Thomas A1 - Tentschert, J. A1 - Luch, A. A1 - Unger, Wolfgang ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Secondary ion mass spectrometry N2 - This chapter provides an introduction in secondary ion mass spectrometry as one of the leading surface chemical analysis and imaging techniques with molecular specificity in the field of material sciences. The physical basics of the technique are explained along with a description of the typical instrumental setups and their modes of operation. The application paragraph specifically focuses on nanoparticle analysis by SIMS in terms of surface spectrometry, imaging, analysis in organic and complex media, and depth profiling. A review of the existing literature is provided, and selected studies are showcased. Limitations and pitfalls as well as current technical developments of SIMS application in nanoparticle surface chemical analysis are equally discussed. KW - Time-of-flight secondary ion mass spectrometry KW - Surface chemical analysis KW - Imaging KW - Nanomaterials KW - Nanoparticles KW - Core-shell PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00025-0 SP - 481 EP - 509 PB - Elsevier CY - Amsterdam AN - OPUS4-50187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donskyi, Ievgen A1 - Chen, Y. A1 - Nickl, Philip A1 - Guday, G. A1 - Qiao, H. A1 - Achasi, K. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Böttcher, C. A1 - Chen, W. A1 - Adeli, M. A1 - Haag, R. T1 - Self-degrading graphene sheets for tumor therapy N2 - Low biodegradability of graphene derivatives and related health risks are the main limiting factors for their in vivo biomedical applications. Here, we present the synthesis of enzyme-functionalized graphene sheets with self-degrading properties under physiological conditions and their applications in Tumor therapy. The synergistic enzyme cascade glucose oxidase and myeloperoxidase are covalently conjugated to the surface of graphene sheets and two-dimensional (2D) platforms are obtained that can produce sodium hypochlorite from glucose. The enzyme-functionalized graphene sheets with up to 289 nm average size are degraded into small pieces (≤40 nm) by incubation under physiological conditions for 24 h. Biodegradable graphene sheets are further loaded with doxorubicin and their ability for Tumor therapy is evaluated in vitro and in vivo. The laser-triggered release of doxorubicin in combination with the enzymatic activity of the functionalized graphene sheets results in a synergistic antitumor activity. Taking advantage of their neutrophil-like activity, fast biodegradability, high photo- and chemotherapeutic effects, the novel two-dimensional nanoplatforms can be used for tumor therapeutic applications. KW - Graphene KW - Self-degrading KW - Thumor therapy KW - XPS KW - NEXAFS PY - 2020 DO - https://doi.org/10.1039/d0nr02159h SP - 1 EP - 12 PB - The Royal Society of Chemistry AN - OPUS4-50978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Separation of polysterene nanoparticles with different coatings using 2D off-line coupling of asymmetrical flow field flow fractionation and capillary electrophoresis N2 - The successful off-line coupling of asymmetrical flow field flow fractionation (AF4) and capillary electrophoresis (CE) for Separation of nanoparticles (NPs) with different surface coatings was shown. Two mixtures of polystyrene nanoparticles (PS-NPs) with comparable core sizes (20 nm and 50 nm) but different coatings (no coating/carboxyl-coated) were studied. Separation in either method resulted in non-baseline resolved or non-separated peaks. In contrast, two-dimensional off-line coupling of AF4 and CE resulted in clearly separated regions in their 2 D plots and can obviouly improve separation resolution. T2 - FFF 2020 CY - Wien, Austria DA - 23.02.2020 KW - Capillary electrophoresis KW - Nanoparticle PY - 2020 AN - OPUS4-50487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Separation of polystyrene nanoparticles bearing different carboxyl group densities and functional groups quantification with capillary electrophoresis and asymmetrical flow field flow fractionation N2 - Two sets of polystyrene nanoparticles (PSNPs) with comparable core sizes but different carboxyl group densities were made and separated using asymmetric flow field flow fractionation (AF4), capillary electrophoresis (CE), and the off-line hyphenation of both methods. Our results revealed the significant potential of two-dimensional off-line AF4-CE hyphenation to improve the separation and demonstrated for the first time, the applicability of CE to determine the functional group density of nanoparticles (NPs). Compared to the result acquired with conductometric titration, the result obtained with synthesized 100 nm sized PSNPs revealed only a slight deviation of 1.7%. Commercial 100 nm sized PSNPs yielded a deviation of 4.6 %. For 60 nm sized PSNPs, a larger deviation of 10.6 % between both methods was observed, which is attributed to the lower separation resolution. KW - Nanoparticle KW - A4F KW - Capillary electrophoresis KW - Carboxyl group PY - 2020 DO - https://doi.org/10.1016/j.chroma.2020.461392 VL - 1626 SP - 461392 PB - Elsevier B.V. AN - OPUS4-51080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Setup of a Particle Scattering Simulation environment N2 - A step by step introduction to the setup of a particle scattering simulation is given. Followed by an installation session. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Columbia DA - 12.02.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Scattering KW - Simulations KW - Debian KW - Linux KW - Topas KW - C++ KW - Topas-nbio KW - Git KW - Cmake PY - 2020 AN - OPUS4-50366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Simulaciónes de Montecarlo II: El scoring en las superficies N2 - En esta presentación desarrollaremos un ejemplo de aplicación para la dispersión de partículas utilizando el método de simulación de Monte- Carlo. Se discutirá el caso de las nanopartículas de oro radiactivo y como obtener informacions sobre diferente tipos de particulas pasando las superfices. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Colombia DA - 16.03.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Particle scattering simulation KW - Particle scattering simulations KW - Radioactive decay KW - Radioactive nanoparticle KW - Desintegracion radioactiva KW - Geant4 KW - Monte-Carlo simulations KW - Método de Montecarlo KW - Topas KW - nanoparticula PY - 2020 AN - OPUS4-50564 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Falkenhagen, Jana A1 - Panne, Ulrich A1 - Hiller, W. A1 - Gruendling, T. A1 - Staal, B. A1 - Lang, C. A1 - Lamprou, A. T1 - Simultaneous characterization of poly(acrylic acid) andpolysaccharide polymers and copolymers N2 - Copolymer products that result from grafting acrylic acid and other hydrophilicmonomers onto polysaccharides have recently gained significant interest in researchand industry. Originating from renewable sources, these biodegradable, low toxicity,and polar copolymer products exhibit potential to replace polymers from fossil sourcesin several applications and industries. The methods usually employed to character-ize these copolymers are, however, quite limited, especially for the measurement ofbulk properties. With more sophisticated applications, for example, in pharmaceu-tics requiring a more detailed analysis of the chemical structure, we describe a newapproach for this kind of complex polymers. Our approach utilizes chromatographyin combination with several detection methods to separate and characterize reactionproducts of the copolymerization of acrylic acid and chemically hydrolyzed starch.These samples consisted of a mixture of homopolymer poly (acrylic acid), homopoly-mer hydrolyzed starch, and – in a lower amount – the formed copolymers. Several chro-matographic methods exist that are capable of characterizing either poly (acrylic acid)or hydrolyzed starch. In contrast, our approach offers simultaneous characterization ofboth polymers. The combination of LC and UV/RI offered insight into the compositionand copolymer content of the samples. Size exclusion chromatography experimentsrevealed the molar mass distribution of homopolymers and copolymers. FTIR inves-tigations confirmed the formation of copolymers while ESI-MS gave more details onthe end groups of hydrolyzed starches and poly (acrylic acids). Evidence of copolymerstructures was obtained through NMR measurements. Finally, two-dimensional chro-matography led to the separation of the copolymers from both homopolymers as wellas the additional separation of sodium clusters. The methods described in this work area powerful toolset to characterize copolymerization products of hydrolyzed starch andpoly(acrylic acid). Together, our approach successfully correlates the physicochemicalproperties of such complex mixtures with their actual composition. KW - 2D chromatography KW - LC-MS KW - SEC KW - Renewable copolymers KW - Grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508873 DO - https://doi.org/10.1002/ansa.202000044 SP - 1 EP - 12 PB - Wiley-VCH Verlag-GmbH&Co. KGaA CY - Weinheim AN - OPUS4-50887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill T1 - Single-source precursors strategy to access refractory high-entropy alloys for electrocatalytic applications N2 - High-entropy alloys containing up to 6 platinum group metals can be prepared by thermal decomposition of single-source precursors non requiring high temperature. We prepare the first example of a single-phase hexagonal high-entropy alloy. Heat treat- ment up to 1500 K and compression up to 45 GPa do not result in phase changes, a record temperature and pres- sure stability for a single-phase high-entropy alloy. The alloys show pronounced electrocatalytic activity in methanol oxidation, which opens a route for the use of high-entropy alloys as materials for sustainable energy conversion. T2 - HEA2020: first international virtual workshop on high-entropy alloy and complex solid solution nanoparticles for electrocatalysis CY - Online meeting DA - 06.10.2020 KW - High-entropy alloys KW - Single-source precursors PY - 2020 AN - OPUS4-54013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy and Corresponding Nanocomposites by Broadband Dielectric Spectroscopy and Hyphenated Calorimetry N2 - Polymer nanocomposites (PNCs) with inorganic nanofillers dispersed in a polymer matrix have been widely studied from the 1990s, since the pioneering work by Toyota Central Research. The possibility of producing advanced tailor-made, light weight and low-cost materials, inspired academic and commercial research towards numerous potential applications, facilitating PNCs to become a billion-dollar global industry. The introduction of nanoparticles (NPs) to a polymer matrix is expected to result in improved properties. The outstanding performance of PNCs is determined not only by the characteristics of the used components but also by their phase morphology, including the dispersion of NPs and interfacial properties. Understanding of structure-property relationships is particularly important for polymer nanocomposites with high industrial significance, such as epoxy-based materials reinforced with inorganic nanofillers. These PNCs have been successfully adopted by the marine, automotive and aerospace industries, although they are still rarely studied on a fundamental level. Therefore, this thesis aims for a detailed understanding of the structure, molecular mobility and vitrification kinetics first, of two epoxy-based materials with different network structures and second, of the corresponding nanocomposites with different alumina-based nanofillers. The first system considered (EP/T-LDH) was based on bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) and taurine-modified layered double hydroxide (T-LDH) NPs. The taurine molecule bears additional functionalities that could enhance the interactions between the matrix and the nanofiller, improving the interphase formation. The seconds system (EP/BNP) was based on DGEBA and methyl tetrahydrophtalic acid anhydride (MTHPA) as a hardener, reinforced with boehmite nanoparticles (BNPs). The comparison of the two systems enables for a comparative study on the effect of different hardeners and the morphology and modification of the alumina-based nanofillers on the material behavior. The materials were investigated employing complementary techniques with different sensitivities and frequency windows. The following methodology was used: transmission electron microscopy (TEM), small – and wide – angle X-ray scattering (SAXS/WAXS), broadband dielectric spectroscopy (BDS), calorimetry in a form of conventional DSC and fast scanning calorimetry (FSC), as well as specific heat spectroscopy (SHS) in a form of temperature modulated DSC, temperature modulated FSC and static FSC by calculating the thermal relaxation rates from the cooperativity approach. The FSC method (based on adiabatic chip calorimetry to probe micrometer-sized samples) was successfully employed in this work, exploiting all its possibilities for the first time in literature for a PNC. Moreover, a systematic analysis technique was established to overcome the problem of vague glass transition regions observed for highly loaded PNCs in the heat flow and heat capacity curves. First, TEM, SAXS/WAXS and indirectly BDS and SHS were employed to obtain the information about the approximate morphology of the PNCs. It was found that epoxy-based materials exhibit a structural heterogeneity in a form of regions with different average crosslinking density. This was indicated by multiple-peak scattering pattern of the polymer matrix and two distinct α-processes (dynamic glass transition) related to the cooperative fluctuation of the epoxy network found by BDS and SHS. This was described for the first time for epoxy-based materials. The two α-relaxations were evidenced differently for the two systems, which is related to different network structures and dipole moments due to the employed hardeners. Nevertheless, structural heterogeneity is an intrinsic feature of these materials, independent of the type of hardener used for the network formation and nanofiller. In addition, matrix inhomogeneities were more pronounced with increasing nanoparticle content. Furthermore, a powerful new technique was applied for X-ray scattering data, using Monte Carlo fits, to describe the NPs dispersion throughout the whole sample volume (as opposed to the local investigations performed by most researches). Additional structural information of the two systems was extracted by BDS and SHS, such as qualitative and quantitative estimation of polymer segments physically adsorbed and/or chemically bonded onto the nanoparticles. Due to the immobilized character of this interphase with respect to the cooperative segmental motions, it is denoted as a rigid amorphous fraction (RAF). For instance, on the contrary to EP/BNP, for EP/T-LDH a dielectrically active process was found, related to the localized fluctuations within RAF. Moreover, the amount of RAF in EP/T-LDH was reaching up to 40 wt % of the system, whereas in EP/BNP it ranged between 1-7 wt %. In the latter case the presence of NPs was found to simultaneously increase and decrease the number of mobile segments, due to the interphase formation and changes in crosslinking density. The difference between the two systems was ascribed to the presence of additional amine functionalities in the T-LDH nanofiller. Second, employing BDS and SHS, a systematic study on the effect of NPs on the segmental dynamics was performed. For example, depending on the nanofiller, the α-processes related to regions with higher crosslinking density was found to shift to higher and lower temperatures with increasing T-LDH and BNPs concentration, respectively. The observed difference is due to the different synergism of the polymer matrix with the nanofiller. Third, a detailed investigation of the vitrification kinetics was performed with DSC and FSC. The concentration dependence of the glass transition temperature was found, similar to the behavior of the α-processes. It was shown that, in parallel to the detected main glass transition, epoxy-based materials can exhibit an additional low temperature vitrification mechanism. As expected from the two distinct α-processes, this behavior was however not discussed in prior studies for an unfilled network former. This finding was correlated to the structural heterogeneity evidenced by other techniques. This thesis, dealing with an in-depth research on the epoxy-based materials that are already successfully employed in numerous applications underlines the necessity of more fundamental research in this field. It shines light on the complexity of these systems and contributes to defining how the structure-property relationships can be determined by combining multiple experimental techniques and analytical methodology. T2 - PhD defense CY - Online meeting DA - 18.12.2020 KW - Interfaces KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - BDS PY - 2020 AN - OPUS4-52035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Stawski, Tomasz ED - Van Driessche, A. E. S. T1 - Special issue "Formation of sulfate minerals in natural and industrial environments" N2 - Sulfate is abundant in the environment and, as a result, sulfate-containing minerals constitute a large and important focus of research. These minerals play an important role in many geochemical and industrial processes, including the sulfur cycle, the construction industry (e.g., plaster of Paris), fault tectonics, acid mine drainage, and even rare biominerals. Important to note are the abundant amounts of sulfate (minerals) located on the surface of Mars, and in meteorites, extending the relevance of this mineral group beyond the realm of our planet. In geological systems, sulfate minerals such as barite are also important for indicating certain sedimentation environments. In this regard, sulfate deposits can be used to evaluate the redox state of ancient oceans during early Earth time periods. KW - Calcium sulfate KW - Sulfates PY - 2020 UR - https://www.mdpi.com/journal/minerals/special_issues/FSMNIE SN - 2075-163X VL - 10(9)-12(3) SP - 10-812-1 EP - 12-299-3 PB - MDPI CY - Basel AN - OPUS4-54700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Bonse, Jörn ED - Spaltmann, Dirk T1 - Special issue: Laser-induced periodic surface nano- and microstructures for tribological applications N2 - Laser material processing is an emerging technology that generates surface functionalities on the basis of optical, mechanical, or chemical properties. In the form of laser surface texturing (LST), it has attracted a remarkable amount of research to tailor surface properties towards various tribological applications. The main advantages of this single-step, laser-based technology are the contactless machining, featuring a high flexibility, efficiency, and speed, along with the excellent quality of the processed products. LST can be applied precisely localized to sub-micrometric areas, but, via laser beam scanning, it is also feasible for structuring large surface areas at the square meter size. This Special Issue focuses on the latest developments concerning the tribological performance of laser-generated periodic surface nano- and microstructures and their applications. This includes the laser-based processing of different surface patterns, such as “self-organized” laser-induced periodic surface structures (LIPSS, ripples), grooves, micro-spikes, hierarchical hybrid nano-/micro-structures, microfeatures generated by direct laser interference patterning (DLIP), or even dimples or other topographic geometries shaped by direct laser modification or ablation. The applications of these periodically nano- and micro-patterned surfaces may improve the lubricated or non-lubricated tribological performance of surfaces in conformal and even non-conformal contact through a reduction of wear, a variation of the coefficient of friction, altered load carrying capacity, etc., resulting in energy saving, improved reliability, increased lifetimes as well as durability, leading in turn to extended maintenance intervals/reduced down-time. This can be beneficial in terms of bearings, gears, engines, seals, cutting tools, or other tribological components. Fundamental aspects addressed may involve the investigation of the relevant physical and chemical effects accompanying the laser-generated nano- and microscale topographies, such as alterations of the material structures, the hardness, superficial oxidation, the role of additives contained in lubricants, surface wettability, micro-hydrodynamic effects, etc. For this Special Issue we aim to attract both academic and industrial researchers and would like to provide a bridge between research in the fields of tribology and laser material processing in order to foster the current knowledge and present new ideas for future applications and new technologies. KW - Applications KW - Friction KW - Laser-induced periodic surface structures (LIPSS) KW - Tribology KW - Wear PY - 2020 UR - https://www.mdpi.com/journal/lubricants/special_issues/laser_periodic SN - 2075-4442 VL - 8 IS - 3 SP - Article 1 EP - Article 10 PB - MDPI CY - Basel AN - OPUS4-50914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Goedecke, Caroline A1 - Wiesner, Yosri A1 - Jekel, M A1 - Ruhl, A S A1 - Braun, Ulrike T1 - Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine N2 - The adsorption of organic micropollutants onto activated carbon is a favourable solution for the treatment of drinking water and wastewater. However, these adsorption processes are not sufficiently understood to allow for the appropriate prediction of removal processes. In this study, thermogravimetric analysis, alongside evolved gas analysis, is proposed for the characterisation of micropollutants adsorbed on activated carbon. Varying amounts of carbamazepine were adsorbed onto three different activated carbons, which were subsequently dried, and their thermal decomposition mechanisms examined. The discovery of 55 different pyrolysis products allowed differentiations to be made between specific adsorption sites and conditions. However, the same adsorption mechanisms were found for all samples, which were enhanced by inorganic constituents and oxygen containing surface groups. Furthermore, increasing the loadings led to the evolution of more hydrated decomposition products, whilst parts of the carbamazepine molecules were also integrated into the carbon structure. It was also found that the chemical composition, especially the degree of dehydration of the activated carbon, plays an important role in the adsorption of carbamazepine. Hence, it is thought that the adsorption sites may have a higher adsorption energy for specific adsorbates, when the activated carbon can then potentially increase its degree of graphitisation. KW - Aktivkohle KW - TED-GC/MS KW - Adsorption KW - Thermoanalytik PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506946 DO - https://doi.org/10.1038/s41598-020-63481-y VL - 10 IS - 1 SP - 6695 PB - Nature Publishing Group AN - OPUS4-50694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agostini, G. A1 - Radnik, Jörg T1 - Spectroscopy in Catalysis N2 - Knowledge-based catalyst development is always an interaction between preparation, analysis and catalytic testing. Only if these three factors fit together can success be expected. For the analytic side of this triangle, spectroscopic methods play a crucial role. Whereas with diffraction, scattering and microscopy, decisive insights into the structure and morphology of the catalysts can be obtained, spectroscopy produces new knowledge about the chemical nature of the catalyst, e.g., its bonding and valence states. KW - Spectroscopy KW - Catalysis KW - Operando KW - In situ PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506507 DO - https://doi.org/10.3390/catal10040408 VL - 10 IS - 4 SP - 408 PB - MDPI CY - Basel AN - OPUS4-50650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana T1 - SRXRF examples from the BAMline N2 - Synchrotron radiation sources with their unique properties in terms of intensity, polarization and adjustability offer a wide range of possibilities in materials research. A basic introduction about the creation and special properties of synchrotron radiation will be given. Examples of current work at BAMline, the high-energy measuring facility of the Federal Institute for Materials Research and Testing at the synchrotron BESSY, are used to illustrate the possibilities and limitations of existing measuring methods. T2 - Better with Scattering CY - Online meeting DA - 16.03.2020 KW - Synchrotron KW - BAMline KW - XRF PY - 2020 AN - OPUS4-51895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Xu, W. A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Structure and properties of fluorinated and non-fluorinated Ba-coordination polymers - the position of fluorine makes the difference N2 - As the most electronegative element, fluorine has a strong influence on material properties such as absorption behaviour or chemical and thermal stability. Fluorine can be easily integrated into coordination polymers (CPs) via a fluorinated acetate, here trifluoroacetate in Ba(CF3COO)2, or directly via a metal fluorine bond (BaF(CH3COO)). In the present study both possibilities of fluorine integration were tested and their effect on structure and properties of barium coordination polymers was investigated in comparison with the non-fluorinated barium acetate (Ba(CH3COO)2). In addition to the study of their thermal behaviour and their decomposition temperature, the CPs structures were tested for their application as possible anode materials in lithium ion batteries and for their sorption of water and ammonia. The properties of the CPs can be traced back to the individual structural motifs and could thus trigger new design ideas for CPs in LIBs and/or catalysis. KW - Alkaline earth metal coordination polymers KW - Lithium-ion battery KW - Water stability KW - Fluorine coordination PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524041 DO - https://doi.org/10.1002/zaac.202000360 SN - 0044-2313 VL - 647 IS - 9 SP - 1014 EP - 1024 PB - Wiley-VCH GmbH AN - OPUS4-52404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Bertmer, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Dietzel, M. A1 - Ukrainczyk, N. A1 - Grengg, C. T1 - Sulfuric acid resistance of copper-doped and plain metakaolin-based alkali-activated materials studied by 29Si, 27Al and 1H MAS NMR, and Cu K-edge XANES spectroscopy N2 - Alkali-activated materials have been repeatedly reported to exhibit high acid resistance, but no generally accepted hypothesis regarding the underlying mechanisms has emerged yet. To contribute to this issue, K-waterglass-activated metakaolin specimens, with and without the addition of CuSO4·5H2O in the starting mix, were exposed to either a chemically aggressive sewer environment (mortars) or sulfuric acid (pastes). The mode of copper incorporation in the materials and the formation of copper phases in the corroded layers were studied by XANES at the Cu K-edge, and 29Si, 27Al and 1H MAS NMR was employed to understand the processes during acid attack. Copper was found as a spertiniite-like phase in the as-cured materials, while in the deterioration layers of the pastes it was present as copper sulfate. In the corroded regions of the mortars, unequivocal identification of Cu phases was not possible, but the results were reconcilable with the presence of copper carbonate hydroxide. The solid-state NMR results revealed virtually complete dissolution of the K-A-S-H gel and the formation of silica gel, interpreted to be a central mechanism determining the acid resistance. No significant differences between the microstructural alterations of the pastes with and without Cu addition on (chemical) sulfuric acid attack were observed. T2 - 74th RILEM Annual Week & 40th Cement and Concrete Science Conference CY - Online meeting DA - 31.08.2020 KW - Alkali-activated materials KW - Sulfuric acid resistance KW - Sewer structures PY - 2020 AN - OPUS4-51198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aratsu, K. A1 - Takeya, R. A1 - Pauw, Brian Richard A1 - Hollamby, M.J. A1 - Kitamoto, Y. A1 - Shimizu, N. A1 - Takagi, H. A1 - Haruki, R. A1 - Adachi, S. A1 - Yagai, S. T1 - Supramolecular copolymerization driven by integrative self-sorting of hydrogen-bonded rosettes N2 - Molecular recognition to preorganize noncovalently polymerizable supramolecular complexes is a characteristic process of natural supramolecular polymers, and such recognition processes allow for dynamic self-alteration, yielding complex polymer systems with extraordinarily high efficiency in their targeted function. We herein show an example of such molecular recognition-controlled kinetic assembly/disassembly processes within artificial supramolecular polymer systems using six-membered hydrogen-bonded supramolecular complexes (rosettes). Electron-rich and poor monomers are prepared that kinetically coassemble through a temperature-controlled protocol into amorphous coaggregates comprising a diverse mixture of rosettes. Over days, the electrostatic interaction between two monomers induces an integrative self-sorting of rosettes. While the electron-rich monomer inherently forms toroidal homopolymers, the additional electrostatic interaction that can also guide rosette association allows helicoidal growth of supramolecular copolymers that are comprised of an alternating array of two monomers. Upon heating, the helicoidal copolymers undergo a catastrophic transition into amorphous coaggregates via entropy-driven randomization of the monomers in the rosette. KW - Self-assembly KW - Coaggregation KW - Scattering KW - Simulation KW - AFM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506555 DO - https://doi.org/10.1038/s41467-020-15422-6 VL - 11 IS - 1 SP - Article number: 1623 PB - Springer Nature AN - OPUS4-50655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Kjaervik, Marit A1 - Unger, Wolfgang T1 - Surface chemical analysis surface chemical analysis of cells and biofilms N2 - The status of the planned technical report "Surface characterization of biomaterials" will be presented. T2 - ISO TC201 Meeting CY - Online meeting DA - 05.09.2020 KW - X-ray photoelectron spectroscopy KW - X-ray spectroscopy KW - Biomaterials KW - Standardization PY - 2020 AN - OPUS4-51197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface functionalization by laser-induced periodic surface structures N2 - In recent years, the improved understanding of the formation of laser-induced periodic surface structures (LIPSS) has led to an emerging variety of applications that modify the optical, mechanical, and chemical properties of many materials. Such structures strongly depend on the laser beam polarization and are formed usually after irradiation with ultrashort linearly polarized laser pulses. The most accepted explanation for the origin of the structures is based on the interference of the incident laser radiation with electromagnetic surface waves that propagate or scatter at the surface of the irradiated materials. This leads to an intensity modulation that is finally responsible for the selective ablation in the form of parallel structures with periods ranging from hundreds of nanometers up to some micrometers. The versatility when forming such structures is based on the high reproducibility with different wavelengths, pulse durations and repetition rate laser sources, customized micro- and nanometric spatial resolutions, and compatibility with industrially relevant processing speeds when combined with fast scanning devices. In this contribution, we review the latest applications in the rapidly emerging field of surface functionalization through LIPSS, including biomimetic functionalities on fluid transport, control of the wetting properties, specific optical responses in technical materials, improvement of tribological performance on metallic surfaces, and bacterial and cell growth for medical devices, among many others. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Surface functionalization KW - Applications PY - 2020 DO - https://doi.org/10.2351/7.0000103 SN - 1938-1387 VL - 32 IS - 2 SP - 022063 PB - Laser Institute of America AN - OPUS4-50780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface superconductivity changes of niobium sheets by femtosecond laser-induced periodic nanostructures N2 - Irradiation with ultra-short (femtosecond) laser beams enables the generation of sub-wavelength laser-induced periodic surface structures (LIPSS) over large areas with controlled spatial periodicity, orientation, and depths affecting only a material layer on the sub-micrometer scale. This study reports on how fs-laser irradiation of commercially available Nb foil samples affects their superconducting behavior. DC magnetization and AC susceptibility measurements at cryogenic temperatures and with magnetic fields of different amplitude and orientation are thus analyzed and reported. This study pays special attention to the surface superconducting layer that persists above the upper critical magnetic field strength Hc2, and disappears at a higher nucleation field strength Hc3. Characteristic changes were distinguished between the surface properties of the laser-irradiated samples, as compared to the corresponding reference samples (non-irradiated). Clear correlations have been observed between the surface nanostructures and the nucleation field Hc3, which depends on the relative orientation of the magnetic field and the surface patterns developed by the laser irradiation. KW - Niobium KW - Surface superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Nanostructures PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518462 DO - https://doi.org/10.3390/nano10122525 SN - 2079-4991 VL - 10(12) IS - Special issue "Laser-generated periodic nanostructures" SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-51846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cant, D. J. H. A1 - Minelli, C. A1 - Sparnacci, K. A1 - Müller, Anja A1 - Kalbe, H. A1 - Stoger-Pollach, M. A1 - Unger, Wolfgang A1 - Werner, W. S. M. A1 - Shard, A. G. T1 - Surface-Energy Control and Characterization of Nanoparticle Coatings N2 - Accurate and reproducible measurement of the structure and properties of high-value nanoparticles is extremely important for their commercialization. A significant proportion of engineered nanoparticle systems consist of some form of nominally core-shell structure, whether by design or unintentionally. Often, these do not form an ideal core-shell structure, with typical deviations including polydispersity of the core or shell, uneven or incomplete shells, noncentral cores, and others. Such systems may be created with or without intent, and in either case an understanding of the conditions for formation of such particles is desirable. Precise determination of the structure, composition, size, and shell thickness of such particles can prove challenging without the use of a suitable range of characterization techniques. Here, the authors present two such polymer core-shell nanoparticle systems, consisting of polytetrafluoroethylene cores coated with a range of thicknesses of either polymethylmethacrylate or polystyrene. By consideration of surface energy, it is shown that these particles are expected to possess distinctly differing coating structures, with the polystyrene coating being incomplete. A comprehensive characterization of these systems is demonstrated, using a selection of complementary techniques including scanning electron microscopy, scanning transmission electron microscopy, thermogravimetric analysis, dynamic light scattering, differential centrifugal sedimentation, and X-ray photoelectron spectroscopy. By combining the results provided by these techniques, it is possible to achieve superior characterization and understanding of the particle structure than could be obtained by considering results separately. KW - Nanoparticles KW - Core-shell KW - XPS KW - Size KW - Thickness KW - Damage PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c02161 VL - 124 IS - 20 SP - 11200 EP - 11211 PB - ACS CY - Washington DC AN - OPUS4-50899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulka, M.W. A1 - Nie, C. A1 - Nickl, P. A1 - Kerkhoff, Y. A1 - Garg, A. A1 - Salz, D. A1 - Radnik, Jörg A1 - Grunwald, I. A1 - Haag, R. T1 - Surface-Initiated Grafting of Dendritic Polyglycerol from Mussel-Inspired Adhesion-Layers for the Creation of Cell-Repelling Coatings N2 - Biofouling is a major challenge in the application of textiles, biosensors, and biomedical implants. In the current work, a straightforward method for the solvent-free polymerization of antifouling dendritic polyglycerol (dPG) from mussel-inspired dendritic polyglycerol (MI-dPG) coatings on hydrophilic titanium dioxide (TiO2) and hydrophobic polydimethylsiloxane (PDMS) is reported. Surface characterization is performed by static water contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Significant lower CA values are obtained after dPG grafting from MI-dPG-coated TiO2 and MI-dPG coated PDMS. Furthermore, XPS shows a time-dependent increase of the CO bond content upon dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. Analysis of the surface morphology by SEM shows a clear time-dependent increase in the surface roughness upon dPG grafting from MI-dPG-coated TiO2 and MIdPG-coated PDMS. When the viability of two adhesive cell types is studied via LIVE/DEAD staining, a strong reduction in the cell density is observed after the dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS (a decrease of >95% in all cases). The combined results show that biocompatible but highly cell-repelling surfaces are efficiently constructed via the grafting of dPG from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. KW - Repelling surface coatings KW - Dendritic polyglycerol KW - Mussel-inspired adhesives KW - Surface-initated grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516590 DO - https://doi.org/10.1002/admi.202000931 SN - 2196-7350 VL - 7 IS - 24 SP - 931 PB - Wiley VCH AN - OPUS4-51659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Sukhikh, A. A1 - Kraus, Werner A1 - Gromilov, S. T1 - Synthesis and Crystal Chemistry of Octahedral Rhodium(III) Chloroamines N2 - Rhodium(III) octahedral complexes with amine and chloride ligands are the most common starting compounds for preparing catalytically active rhodium(I) and rhodium(III) species. Despite intensive study during the last 100 years, synthesis and crystal structures of rhodium(III) complexes were described only briefly. Some [RhClx(NH3)6-x] compounds are still unknown. In this study, available information about synthetic protocols and the crystal structures of possible [RhClx(NH3)6−x] octahedral species are summarized and critically analyzed. Unknown crystal structuresof(NH4)2[Rh(NH3)Cl5],trans–[Rh(NH3)4Cl2]Cl·H2O,andcis–[Rh(NH3)4Cl2]Clarereported based on high quality single crystal X-ray diffraction data. The crystal structure of [Rh(NH3)5Cl]Cl2 was redetermined. All available crystal structures with octahedral complexes [RhClx(NH3)6-x] were analyzed in terms of their packings and pseudo-translational sublattices. Pseudo-translation lattices suggest face-centered cubic and hexagonal closed-packed sub-cells, where Rh atoms occupy nearly ideal lattices. KW - Pseudo-translationalsublattices KW - Rhodiumcomplexes KW - Ligandsubstitution KW - Crystalstructure PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508194 DO - https://doi.org/10.3390/molecules25040768 VL - 25 IS - 4 SP - 768 PB - MDPI CY - Basel AN - OPUS4-50819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Medeiros, V.L. A1 - Goulart de Araujo, L. A1 - Ratero, D.R. A1 - Paula, A.S. A1 - Ferreira Molina, E. A1 - Jaeger, Christian A1 - Takehiro Marumo, J. T1 - Synthesis and physicochemical characterization of a novel adsorbent based on yttrium silicate: A potential material for removal of lead and cadmium from aqueous media N2 - A new metallosilicate based on yttrium was synthesized and characterized by XRD, FT-IR, 29Si MAS-NMR, and 89Y MAS-NMR. The mixed framework of the material was confirmed by the detection of distinct chemical shift groups using 29Si MAS-NMR (at -82 to -87 ppm, -91 to -94 ppm, -96 to -102 ppm, and -105 to -108 ppm), as well as four distinct chemical shifts in the 89Y MAS-NMR spectrum (at -89, -142, -160, and -220 ppm). Adsorption and kinetic analyses indicated the potential of the new material for the removal of lead and cadmium from aqueous media. The adsorption results for lead indicated that dynamic equilibrium was reached after five hours, with total lead removal of around 94 %, while for cadmium it was reached in the first hour, with total Cadmium removal of around 74 %. The adsorptions of lead and cadmium were modeled using pseudo-first order (PFO) and pseudo-second order (PSO) kinetic models. Although both models provided high R2 values (0.9903 and 0.9980, respectively), the PSO model presented a much lower χ2 red value (4.41×10−4), compared to the PFO model (2.12×10−3), which indicated that the rate-limiting step was probably due to the chemisorption of lead from the solution onto the yttrium-based metallosilicate. KW - Yttrium silicates KW - 29Si KW - 89Y MAS-NMR KW - Adsorption KW - Chemisorption KW - Cadmium and lead remediation PY - 2020 DO - https://doi.org/10.1016/j.jece.2020.103922 VL - 8 SP - 103922 PB - Elsevier Ltd. AN - OPUS4-51292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Kulla, Hannes A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Marquardt, Julien A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Synthesis of Bimetallic Nickel Nanoparticles as Catalysts for the Sabatier Reaction N2 - Nanoparticles (NP) have become important materials for a variety of chemical technologies. The enhance surface-area-to-volume ratio of NPs is very high, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni nanoparticles were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the catalytically active sites are accessible. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - Joint Polish-German Crystallographic Meeting CY - Wroclaw, Poland DA - 24.02.2020 KW - Nanoparticles KW - Synthesis KW - Catalysis PY - 2020 AN - OPUS4-51663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baláž, M. A1 - Tešinský, M. A1 - Marquardt, Julien A1 - Škrobian, M. A1 - Daneu, N. A1 - Rajňák, M. A1 - Baláž, P. T1 - Synthesis of copper nanoparticles from refractory sulfides using a semi-industrial mechanochemical approach N2 - The large-scale mechanochemical reduction of binary sulfides chalcocite (Cu2S) and covellite (CuS) by elemental iron was investigated in this work. The reduction of Cu2S was almost complete after 360 min of milling, whereas in the case of CuS, a significant amount of non-reacted elemental iron could still be identified after 480 min. Upon application of more effective laboratory-scale planetary ball milling, it was possible to reach almost complete reduction of CuS. Longer milling leads to the formation of ternary sulfides and oxidation product, namely cuprospinel CuFe2O4. The rate constant calculated from the magnetometry measurements using a diffusion model for Cu2S and CuS reduction by iron in a large-scale mill is 0.056 min−0.5 and 0.037 min−0.5, respectively, whereas for the CuS reduction in a laboratory-scale mill, it is 0.1477 min−1. The nanocrystalline character of the samples was confirmed by TEM and XRD, as the produced Cu exhibited sizes up to 16 nm in all cases. The process can be easily scaled up and thus copper can be obtained much easier from refractory minerals than in traditional metallurgical approaches. KW - Mechanochemistry KW - Copper sulfides KW - Copper nanoparticles KW - Magnetometry KW - Oxidation PY - 2020 DO - https://doi.org/10.1016/j.apt.2019.11.032 VL - 31 IS - 2 SP - 782 EP - 791 PB - Elsevier B.V. AN - OPUS4-50665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Synthesis of cyclic polymers and flaws of the Jacobson–Stockmayer theory N2 - Cyclic poly(L-lactide)s were prepared by ring-opening polymerization combined with simultaneous polycondensation (ROPPOC) in bulk at 160 ° with dibutyltin bis(4-cyanophenoxide) as catalyst. It is demonstrated by MALDI TOF mass spectrometry and 1H NMR end group analyses that cycles are formed by endto-end cyclization in addition to “back-biting” transesterification. Formation of high molar mass cyclic poly L-lactide)s by means of several more reactive ROPPOC catalysts presented previously and in new experiments is discussed. These experimental results, together with theoretical arguments, prove that part of the Jacobson–Stockmayer theory is wrong. The critical monomer concentration, above which end-toend cyclization is seemingly impossible, does not exist and reversible like irreversible polycondensations can theoretically proceed up to 100% conversion, so that finally all reaction products will necessarily adopt a cyclic architecture. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506419 DO - https://doi.org/10.1039/d0py00226g VL - 11 IS - 14 SP - 2595 EP - 2604 PB - Royal Society for Chemistry AN - OPUS4-50641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -