TY - CONF A1 - Pauw, Brian Richard T1 - A brief history of scattering N2 - Recorded on the first day of the Better with Scattering workshop. In this video, I explore some of the highlights of the development of small-angle X-ray scattering over its long history. I discuss developments on the technical side, analytical methods, detectors, data quality and data management. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - History PY - 2020 UR - https://www.youtube.com/watch?v=mFH6P4tZbyM AN - OPUS4-51015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Hidde, Gundula A1 - Lange, Thorid A1 - Weise, Matthias A1 - Lerche, D. A1 - Rietz, U. T1 - Adhesion of Coatings vs. Strength of Composite Materials – A Review of Applications Evaluated by Centrifugal Adhesion Testing (CAT) N2 - Sufficient adhesion/tensile strength are basic requirements for any coating/composite material. For coatings, adhesive strength in N/mm2 is of Major interest for various applications such as decorative and water-repellent coatings on wood (paints and varnishes), optical coatings on glass and polymers (reflectors and filters), electrical coatings on semiconductors, glass and polymers (conducting and bondable layers), mechanical coatings on metals and polymers (wear-reduction, scratch-resistance) and adhesion-promoting layers. For composite materials, tensile strength in N/mm2 is also a key quantity for carbon fiber reinforced composites (CFC), laminates and adhesive-bonded joints. Centrifugal adhesion testing (CAT) transfers the single-sample tensile test from a tensile or universal testing machine into an analytical centrifuge as multiple-sample test of up to eight test pieces. The one-sided sample support instead of a two-sided sample clamping and the absence of mounting- and testing-correlated shear forces provides fast and reliable results both for adhesive strength and bonding strength by means of bonded test stamps. For bonding strength, the evaluation of failure pattern from microscopic inspection is required in order to determine the failure pattern according to ISO 10365 such as adhesive failure (AF), delamination failure (DF) and cohesive failure (CF). Hence, one test run by CAT-technology provides either statistics or ranking of up to eight samples at once. For adhesive strength of coatings, a variety of examples is discussed such as ALD-Al203 layers as adhesion promoters, evaporated Ag-layers on N-BK7 glass, sputtered Cr- and Al-layers on Borofloat 33 glass, evaporated Au-films on N-BK7 glass and sputtered SiO2 -layers on CR39 Polymer. Provided adhesive or bonding strength are high enough, the substrate or the joining part may also fail. T2 - Special PSE 2020 CY - Online meeting DA - 07.09.2020 KW - Centrifugal adhesion testing (CAT) KW - Adhesive strength KW - Pull-off test KW - Failure pattern KW - Compound strength PY - 2020 AN - OPUS4-51231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - AI/ML starts with data, …a practical example N2 - A brief introduction to the efforts we have done in our lab towards AI/ML analysis of SAXS data. For this, we need to extend the data with an extensive, structured hierarchy of metadata and associated data. A practical look into the information stored in our files, and the organization of the files in a data catalog is presented. T2 - Benchmarking for AI for Science at the Exascale A2 Workshop for Materials Science CY - Online meeting DA - 23.11.2020 KW - Small angle scattering KW - Machine learning KW - Data organization KW - Data curation KW - Metadata structuring PY - 2020 AN - OPUS4-51660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Aktuelle Ultrakurzpulslaser-Anwendungen an der BAM N2 - Der Vortrag fasst aktuelle Anwendungsgebiete ultrakurzer Laserimpulse in der Materialbearbeitung zusammen. Dabei wird auch die Gefährdung durch unerwünschte Emission von Röntgenstrahlung bei der Überschreitung bestimmter Laserparameter thematisiert. T2 - Anwendertreffen des Laserverbundes Berlin-Brandenburg e.V. CY - Brandenburg, Germany DA - 16.01.2020 KW - Ultrakurze Laserimpulse KW - Materialbearbeitung KW - Oberflächenstrukturierung PY - 2020 AN - OPUS4-50317 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Axel A1 - Vogler, M. A1 - Grathwohl, P. A1 - Kocher, B. A1 - Braun, Ulrike T1 - Analysis of tire wear particles in soil samples from roadside using TED-GC/MS N2 - Tire wear particles (TW) are generated by the abrasions of tires on the road surface through traffic. These particles can be transported by air and surface runoff and might also infiltrate the soil and consequently affect terrestrial ecosystems. The estimated tire wear (TW) emissions are immense, with 1.33 106 t a-1 in Europe. Despite this, only little is known about the environmental contents or the fate of TW. One reason for this knowledge gap is the challenging analysis of TW in environmental samples. Detection of TW with spectroscopic methods is problematic due to high fluorescence interferences caused by contained black carbon. One analytical approach is to use zinc (Zn), a typical additive in tires, as a specific marker for the quantification of tire wear. However, any Zn originating from the sample matrix must be separated beforehand and requires elaborate sample preparation. Car tires consist partly of synthetic rubbers, such as styrene-butadiene-rubber (SBR). This SBR could be identified and quantified via Thermal-Extraction-Desorption-Gas Chromatography-Mass Spectrometry (TED-GC-MS). This newly developed and fast screening method allows the simultaneous detection of microplastics and TW mass contents and requires minimal to no sample preparation. Firstly the sample is thermally extracted in a thermobalance under a nitrogen atmosphere. The resulting specific decomposition products are sorbed on a solid phase adsorber, which is then transferred to a GC-MS via an autosampler, where the products are desorbed, separated and identified. Cyclohexenylbenzene is used as a specific marker for SBR. Here we investigated top layer soil samples, collected at the roadside of highly frequented German highways. Samples were analyzed without sample preparation, and SBR was detected in all investigated samples in mass contents ranging from 67.2 to 2230 mg kg-1. A correlation between SBR and Zn content in the soil was confirmed, while the correlation between SBR and Corg was hardly pronounced. We successfully demonstrated the application of TED-GC-MS as a screening method for tire wear in soil samples. The present study will discuss these analytical results in detail as well as sampling parameters like sampling depth and distance to the roadside, and the effect of the particle size on the particle transport by water runoff and air. T2 - SETAC 2020 SciCon CY - Online meeting DA - 03.05.2020 KW - Microplastic KW - Analysis KW - Tire wear KW - Soil PY - 2020 AN - OPUS4-51086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Analytical & Characterisation Excellence in nanomaterial risk assessment: A tiered approach N2 - The work packages of the EU H2020 project ACEnano are presented and their activities in standardization and guidance for regulators and SMEs. T2 - ISO/TC 229 Strategy meeting CY - Online meeting DA - 10.11.2020 KW - Nanomaterials KW - Standardization KW - Risk assessment PY - 2020 AN - OPUS4-51611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Benettoni, P. A1 - Stryhanyuk, H. A1 - Wagner, S. A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Tentschert, J. T1 - Analytical and Characterisation Excellence in nanomaterial risk assessment: A tiered approach Task2.5 N2 - The final results of Task 2.5 "Optimization of sample preparation for characterization of ENPs using TOF-SIMS under real-life conditions (a.) UfZ: polymer template; b.) BAM: pressing of pellets)" were presented. T2 - ACEnano General Meeting CY - Amsterdam, The Netherlands DA - 05.03.2020 KW - Nanoparticles KW - ToF-SIMS KW - Preparation PY - 2020 AN - OPUS4-50572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Artificial intelligence for spectroscopy examples from BAMline N2 - Various applications for artificial intelligence in the context of spectroscopy will be presented. in particular, examples from bamline will be featured. After a short introduction to synchrotron radiation, artificial intelligence algorithms for the quantification of X-ray fluorescence measurement are discussed. In the second example, information retrieval by natural language processing is reviewed. As a last example the reconstruction of measurements with the X-ray color camera and coded apertures is presented. T2 - Seminar Strahlenphysikalische Anwendungen in Technik und Medizin CY - ATi Wien, Austria DA - 22.01.2020 KW - Machine learning KW - Natural language processing KW - Neural networks KW - Synchrotron KW - BAMline PY - 2020 AN - OPUS4-51891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Basics and applications of good SAXS: Quantifying the fine structure of lots of materials N2 - In contrast to the crisp, clear images you can get from electron microscopy, small-angle X-ray scattering (SAXS) patterns are rather featureless. These patterns, however, contain averaged structural information of all of the finest material structures that were illuminated by the X-ray beam. With careful and precise investigation, and supplementary information from complementary techniques, this bulk material structure can be quantified to reveal structural information spanning four or even five decades in size. Additionally, while the data correction and analysis is complex, sample preparation is very straightforward, also allowing for in-situ and operando measurements to be performed without breaking a sweat. In the right hands, then, this technique can be the most powerful tool in your analytical arsenal. T2 - OpTecBB webinar within the scope of the focus area Optical Analytics CY - Online meeting DA - 27.05.2020 KW - Small-angle scattering KW - Introduction KW - Application KW - Saxs KW - Nanomaterials KW - Nanostructure PY - 2020 UR - https://www.youtube.com/watch?v=mXkYL3dSsTY UR - https://optecbb.de/veranstaltungen/veranstaltung/webinar-basics-and-applications-of-good-saxs-1238/ AN - OPUS4-50879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marcoulaki, E. A1 - M López de Ipiña, J. A1 - Vercauteren, S. A1 - Witters, H. A1 - Lynch, I. A1 - van Duuren-Stuurman, B. A1 - Shandilya, N. A1 - Kunz, Valentin A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Bard, D. A1 - Evans, G. A1 - Viitanen, A.-K. A1 - Pilou, M. A1 - Bochon, A. A1 - Duschl, A. A1 - Himly, M. A1 - Geppert, M. A1 - Persson, K. A1 - Cotgreave, I. A1 - Niga, P. A1 - Scalbi, S. A1 - Caillard, B. A1 - Arevalillo, A. A1 - Jensen, K. A. A1 - Frejafon, E. A1 - Bouillard, J. A1 - Aguerre-Chariol, O. A1 - Dulio, V. T1 - Blueprint for a sustainable new European Centre to support safe innovation for nanotechnology N2 - This paper presents the blueprint for the operation of a sustainable and permanent European Centre of collaborating reference laboratories and research centres, to establish a one-stop shop for a wide variety of nanosafety related services, and to provide a central contact point for questions about nanosafety in Europe. The Centre aims to harmonise service provision, and bring novel risk assessment and management approaches closer to practice. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - EC4SafeNano KW - European Centre KW - Nanomaterials KW - Nanosafety KW - Catalogue of Services (CoS) PY - 2020 UR - https://www.nanosafe.org/cea-tech/pns/nanosafe/en AN - OPUS4-51694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Altmann, Korinna A1 - Herper, D. A1 - Knefel, M. A1 - Bednarz, M. A1 - Bannick, C. G. T1 - Detektion von Mikroplastik in Flaschenwasser mittels thermoanalytischer Verfahren N2 - Im Vortrag wird ein Messfiltertiegel als Zusatztool für die TED-GC/MS vorgestellt, welcher für die Probenaufbereitung von kleinen Partikelfrachten oder kleinen Partikelgrößen genutzt werden kann. Er ist Filtereinheit und Messtiegel in einem, wodurch Verluste bei der Überführung der Probe in das Messgefäß sowie Kontaminationen vermindert werden. Das beispiel ist hier die Filtration von Flaschenwasser mit anschließender Detektion mit der TED-GC/MS. T2 - BVL_Kick-off Meeting "Mikroplastik in Lebensmitteln" CY - Online meeting DA - 03.12.2020 KW - Mikroplastik KW - TED-GC/MS KW - Kleine Partikel KW - Geringe Partikelfrachten KW - Mikroplastik-Massengehalte PY - 2020 AN - OPUS4-51794 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Differences in MALDI Ionization of neat linear and cyclic poly(L-lactide)s N2 - In addition to molar mass distribution (MMD) synthetic polymers often exhibit an additional chemical heterogeneity distribution, expressed by different end groups and other structural variations (e.g. tacticity, copolymer composition etc.). Ionization in MALDI MS is always strongly affected by such chemical properties. For example, the abundance of cyclics in MALDI TOF mass spectra is frequently reported to greatly exceed that of linears. Thus, the MALDI ionization behavior of various neat end-capped linear poly(L-lactide)s and one cyclic poly(L-lactide) was investigated and compared with that of blends of both structures. Moreover, the influence of the cationizing salt was investigated too. Neat compounds and various blends of cyclic and linear species were prepared and studied using two MALDI TOF mass spectrometers under identical conditions with regard to sample preparation and instrumental conditions, except for the laser power and the salt used for cationization. Polymer samples were additionally characterized by NMR and SEC. The steady increase of the laser intensity caused an exponential increase of the peak intensities of both linear and cyclic polylactides.The response of linear polylactides (in the investigated molecular mass range), whether as neat polymer or in blends with other linear polylactides was almost similar. This clearly supports our assumption that ionization in MALDI is probably unaffected by the end group structure.The variation of the laser power shows only little effect on the intensity ratio of linear-to linear and cyclic-to-linear polylactides in blends. Whereas neat linear polylactides at all laser intensities have a significantly higher abundance than neat cyclics, in mixtures of both an overestimation of cyclic species in MALDI TOF mass spectra of polylactides was found. However, this is far less distinct than frequently reported for other polymers.Concluding, peak suppression of linear polymers in mixtures of both architectures can be excluded, which also means, that polylactides showing only peaks of cyclic compounds in their MALDI - TOF mass spectra do not contain a significant fraction of linear analogues. Our study is the first systematic comparison of the MALDI ionization of neat and blended cyclic and linear polylactides. T2 - ASMS 2020 Reboot CY - Online meeting DA - 01.06.2020 KW - MALDI KW - Ionization KW - Linear KW - Cyclic KW - Polylactide PY - 2020 AN - OPUS4-50852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - DNA basierte Dosimetrie N2 - We propose the development of a standardized DNA based dosimeter. This dosimeter will improve the comparability between the results of different laboratories in radiation research. Compared to conventional methods in dosimetry, this Approach provides direct access to the relation between radiation interaction and biological damage. Moreover, it enables the systematic investigation of the relation between the microscopic characteristics of radiation and DNA damage over a wide dose range. T2 - Zertkom CY - Online meeting DA - 13.05.2020 KW - DNA KW - Dosimetrie KW - Dosimetry KW - Effective dose KW - Energy dose KW - Energiedosis KW - Equivalent dose KW - Absorbed dose PY - 2020 AN - OPUS4-50779 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - Ejemplos de simulaciónes de Montecarlo La desintegración radioactiva N2 - A walkthrough how to setup radioactive sources in monte-carlo particle scattering simulations and perform different types of scorings. N2 - En esta presentación desarrollaremos un ejemplo de aplicación para la dispersión de partículas utilizando el método de simulación de Monte- Carlo. Se discutirá el caso de las nanopartículas de oro radiactivo y los diferentes tipos del scoring. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Columbia DA - 27.02.2020 KW - MCS KW - Geant4-DNA KW - Geant4 KW - Radioactive nanoparticle KW - Radioactive decay KW - Particle scattering simulations KW - Particle scattering simulation KW - Topas KW - Monte-Carlo simulations KW - Desintegracion radioactiva KW - Método de Montecarlo KW - Geant4 KW - nanoparticula PY - 2020 AN - OPUS4-50472 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fittschen, U. A1 - Lutz, C. A1 - Beuermann, S. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin T1 - Element Species Determination in Polymer Electrolyte Membranes N2 - Polymer electrolyte membranes (PEM) are polymers which act as separator in an electrochemical cell and allow ionic charge flow to close the circuit. Widely used membranes are perfluorinated sulfonic-acid (PFSA) ionomers (e.g. Nafion™), a class of ion-conducting polymers with remarkable ion conductivity and chemical-mechanical stability. A nanoscopic water system around the sulfonic acid capped side-chains of the otherwise hydrophobic polymer allows the ion transport. Only approx. 14 molecules of water per sulfonic group are present in the fully hydrated state. In vanadium redox flow batteries (VRFB) ideally only protons are transported. The weak ion selectivity of Nafion™ is the main cause for the transportation of vanadium, briefly vanadium crossover, in VRFBs a system we have investigated more closely, lately. The consequences of crossover are a concentration imbalance and a self-discharge of the battery, which leads to a decrease of the capacity. The development of efficient energy storage systems is crucial for the transformation towards a renewable energy based economy. The VRFB has a great potential as a commercial electrochemical energy storage system due to properties including, but not limited to, no cross-contamination, a long cycle-life and a theoretically unlimited capacity. VRFB consists of two half-cells, which are linked to electrolyte tanks and separated by a membrane. The membrane plays a major role in overall cell performance. So far, vanadium transportation models, which include diffusion, migration, electroosmotic convection and pressure gradients, are inconsistent. There is no agreement in the literature on the diffusion coefficients of vanadium species (e.g. published diffusion coefficients of V2+ are located between 3.13·10-12 m²s-1 and 9.44·10-12 m²s-1) indicate that thevanadium crossover is not well understood and there is a lack on a more fundamental level. Since the membrane transport is the rate-determining step of the crossover as well as of the proton exchange it is extremely important to understand these phenomena on a fundamental level. This will eventually allow us to design better membranes. Alternative materials need to show equivalent performance compared with Nafion™ and ideally be more selective regarding ion cross-membrane transport.There are several options to approach the chemistry i.e. the interaction of dissolved and bound ions inside the confined water body of ionomeric membranes. Vanadium ions are a versatile model as UV/VIS data can be used to distinguish between the 5 species V2+, V3+, VO2+, VO2+ and V2O33+ of the electrolyte. Infrared spectroscopy has been applied to study the interaction of sulfonic groups and the ions. Molecular dynamic modeling is another approach to study the distribution and distances of ions. We now introduce X-ray absorption near edge structure spectroscopy (XANES) to study species and species changes inside Nafion™ and a novel membrane based on poly(1,1-difluoroethylene) (PVDF). We evaluated the methods and investigated the influence of irradiation, temperature and hydration on the measurements. T2 - Denver X-Ray Conference CY - Online meeting DA - 03.08.2020 KW - Batteries KW - BAMline KW - XANES PY - 2020 AN - OPUS4-51910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement; nPSize offer after 2 Ys N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, VAMAS inter-laboratory comparisons) to be standardized and implemented in accredited analytical laboratories is discussed. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - Size KW - Shape KW - Traceability KW - EMPIR KW - Reference materials KW - VAMAS PY - 2020 AN - OPUS4-51477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement; What nPSize can offer after 2Ys? N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, inter-laboratory comparisons) as pertinent contributions to normative projects within CEN/TC 352 Nanotechnologies are discussed. T2 - 28th Meeting of CEN/TC 352 Nanotechnologies CY - Online meeting DA - 16.10.2020 KW - Nanoparticles KW - CEN/TC 352 Nanotechnologies KW - Particle size distribution KW - Traceability PY - 2020 AN - OPUS4-51437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize Improved Traceability Chain of Nanoparticle Size Measurement - Outcomes for the Strategy/Metrology Groups of ISO/TC 229 Nanotechnologies N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, VAMAS inter-laboratory comparisons) to be standardized and implemented in accredited analytical laboratories is discussed. Complementation and/or filling gaps of published and ongoing standardisation projects on size, shape and number concentration measurements under ISO/TC 229/JWG 2 are offered. T2 - Annual Meeting of ISO/TC 229 Nanotechnologies - Strategy and Metrology Groups CY - Online meeting DA - 06.11.2020 KW - Nanoparticles KW - Size KW - nPSize KW - Inter-laboratory comparison KW - ISO/TC 229 KW - VAMAS PY - 2020 AN - OPUS4-51544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Snow, T. T1 - Everything and the kitchen sink: correcting X-ray data for everything N2 - Recorded at the Better with Scattering workshop 2020, this talk highlights the complete set of data correction steps that we do for the MAUS, and how they can be used elsewhere too. This links well with the talk in this series by Dr. Tim Snow, and also highlights the details of the background subtraction that needs to be done. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Data corrections PY - 2020 UR - https://www.youtube.com/watch?v=Hp4qziOxZFk AN - OPUS4-51018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Solis, J. A1 - Siegel, J. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Femtosecond laser functionalized surfaces inspired by nature N2 - Nature has continuously inspired science when practical problems need to be solved in a functional and efficient way. The challenge for researchers usually consists in the transfer of such biological functionalities to diverse types of technical materials with the available processing technologies. In this regard, femtosecond laser-based approaches offer a large flexibility to modify virtually any material (metals, semiconductors and dielectrics), provide the ability to work under different environment conditions (air, vacuum or reactive atmospheres) and when combined with the proper optics, they offer exceptional spatial resolutions that could be used to mimic effectively very complex functionalities. In the particular case of surface processing, lasers have been proven feasible to functionalize materials by customizing its optical properties, chemical composition and surface morphology in a controllable way and in some cases at industrially relevant speeds. In this work, we present a selection of technical applications based on surface modifications in the form of laser-induced periodic surface structures (LIPSS) to tailor the material properties for utilization in optics, fluid transport, wetting control and tribology. T2 - SPIE Photonics West Conference, Symposium "Laser-Based Micro- and Nano-Processing XIV" CY - San Francisco, CA, USA DA - 01.02.2020 KW - Laser-induced periodic surface structures, LIPSS KW - Biomimetics KW - Surface functionalization KW - Laser ablation PY - 2020 AN - OPUS4-50400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Femtosecond laser nanostructuring of metal and semiconductor surfaces N2 - The irradiation of solids with high-intensity laser pulses can excite materials into extreme conditions, which then return to equilibrium via various structural and topographical relaxation mechanisms. Thus, ultrafast laser processing can manifest in various morphological surface transformations, ranging from direct contour shaping to large-area-surface functionalization through the generation of self-organized nano- and microstructures. The interaction mechanisms between semiconductors and metals with ultrashort laser pulses have been extensively studied using femtosecond laser sources, generating a general understanding of the main interaction mechanisms present during the processing of those materials. In the specific case of nanometer-scaled laser-induced periodic surface structures (LIPSS), however, the general explanation that fits all the experimental outcomes is still to be completed. The most accepted explanation consists in the interference of the incoming laser pulse with light scattered at the rough surface, e.g. via surface plasmon polaritons. Such scattering and interference effects generate a spatially modulated pattern of the absorbed optical energy featuring maxima and minima with periods very close to the laser irradiation wavelength, λ. One general criterion that allows to classify LIPSS in terms of their spatial periodicity (Λ) for normally incident radiation is the following: low spatial frequency for Λ≈λ, and high spatial frequency for Λ≪λ. In this way, the right combination of irradiation parameters (laser fluence, number of pulses per spot area unit and repetition rate) could be used to cover a wide size range that can ultimately be exploited for different applications in optics, biology, fluidics and tribology among others. T2 - SPIE Photonics West Conference, Symposium "Synthesis and Photonics of Nanoscale Materials XVII" CY - San Francisco, CA, USA DA - 01.02.2020 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Metal KW - Semiconductor PY - 2020 AN - OPUS4-50388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg A1 - Legall, Herbert A1 - Bonse, Jörn T1 - Gefährdung durch Röntgenstrahlung bei der UKP-Lasermaterialbearbeitung N2 - Der Vortrag beschreibt die Gefährdung durch die Erzeugung unerwünschter Röntgenstrahlung bei der Lasermaterialbearbeitung mit ultrakurzen Laserimpulsen. Die Einfluss der Laserparameter, der Prozessführung und die Materialabhängigkeit werden dargestellt. T2 - Bayerische Laserschutztage 2020 CY - Nuremberg, Germany DA - 21.01.2020 KW - Ultrakurze Laserimpulse KW - Materialbearbeitung KW - Röntgenstrahlung KW - Strahlenschutz PY - 2020 AN - OPUS4-50318 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Hands on: Particle scattering simulations A practical introduction N2 - A practical introduction is given for the necessary steps to start with particle scattering simulations based on Geant4/Topas. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Bogotá, Columbia DA - 04.02.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Monte-Carlo simulations KW - Simulations KW - Particle scattering simulation KW - Scattering KW - Topas PY - 2020 AN - OPUS4-50333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Feltin, N. T1 - Hybrid metrology for microscopy of nanoparticles N2 - This presentation is structured in two parts: i) Hybrid metrology by combining SEM with AFM (N. Feltin) and ii) hybridization and corelative microscopy by SEM, STEM-in-SEM, TEM, EDS, Auger Electron Microscopy, TKD and more (D. Hodoroaba). The first part is focused on the metrological part of the hybrid measurement SEM-AFM, the second part offers some further possibilities of correlative microscopy of nanoparticles based on practical examples. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - SEM KW - AFM KW - Metrology KW - Particle size distribution KW - Correlative imaging KW - STEM-in-SEM (TSEM) PY - 2020 AN - OPUS4-51476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Taché, O. A1 - Bartczak, D. A1 - Cuello Nuñez, S. A1 - Abad Álvaro, I. A1 - Goenaga Infante, H. A1 - Hodoroaba, Vasile-Dan T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - In this work, we present various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Bimodal KW - SiO2 KW - Gold PY - 2020 AN - OPUS4-51714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - Various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM are presented. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - Particle size distribution KW - Sample peparation KW - Electron microscopy PY - 2020 AN - OPUS4-51716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fittschen, U. A1 - Hampel, S. A1 - Till, H. A1 - Gross, A. A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Ingerle, D. A1 - Streli, C. A1 - Radtke, Martin T1 - Improving surface sensitive XRF using ink jet printing and information from the angle dependent signal N2 - Total Reflection X-ray Fluorescence (TXRF) is a small footprint, ressource efficient micro-analytical tool for trace elemental determination. However, depending on the matrix TXRF is also challenging in several ways: the preparation of a representative aliquot maybe difficult for slurries, shading effects and matrix effects may occur and the applicability of an IS maybe hampered by interferences (fitting may be impaired as well) or inhomogeneities. It is therefore crucial to understand and if applicable mitigate the influence of the before mentioned phenomena. We have used the small volume approach using pL droplets to study shading in TXRF previously.Using this approach thin specimens in a favorable geometry are prepared with a well defined morphology; this way minimizing matrix effects and shading. To be used as standard it is also necessary to determine the delivered elemental amounts. Here we will present on the performance of a commercial ink-jet printer cartridge to deliver defined volumes and elemental amounts. The microscopic specimens obtained have been successfully applied to determine relative sensitivities in TXRF and prepare references to study coded apertures in grazing incidence full field micro-XRF.The homogeneous lateral distribution of analyte and IS may be probed by micro-XRF, to obtain information on alikeness of analyte and IS. To study the alikeness of the in depth distribution (film-like or particle-like) angle scans can deliver valuable data. Here we present first results on angle scans using a prototype GIXRF set up and a commercial TXRF instrument. T2 - Denver X-Ray Conference CY - Online meeting DA - 03.08.2020 KW - TXRF KW - Coded Aperture PY - 2020 AN - OPUS4-51913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Zorn, R. A1 - Böhning, Martin T1 - Inelastic neutron scattering as a tool to investigate  polymers of intrinsic microporosity for green membrane processes and electronic applications N2 - Polymers with intrinsic microporosity are promising candidates for the active separation layer in green gas separation membranes and as active materials for electronic applicatons. Here, by means of inelastic neutron scattering, the vibrational density of states (VDOS) and the molecular mobility were investigated for PIM-1, the prototypical polymer with intrinsic microporosity. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to the VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. Elastic fixed window scans were measured on a neutron backscattering spectrometer to have an overview about the molecular dynamics at a time scale of ca. 1 ns. The temperature dependence of the estimated mean squared displacement shows a step-like increase in the temperature range from 100 K to 250 K indicating the onset of some molecular mobility. The nature of this motional process was analysed in detail by quasielastic neutron scattering combining Time-of-Flight and backscattering where the data are discussed with regard to both the q- and the temperature dependence. T2 - Symposium on Large Scale Facilities CY - Berlin, Germany DA - 09.03.2020 KW - Polymer membranen PY - 2020 AN - OPUS4-50546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - Introduction to SAXS N2 - A simplified introductions to small-angle scattering (SAXS), to put across the main concepts and not get bogged down in equations. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - SAXS KW - WAXS KW - MOFs KW - Data analysis KW - Nano PY - 2020 UR - https://www.youtube.com/watch?v=_YY9XtQfANk AN - OPUS4-51021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lutz, C. A1 - Beuermann, S. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Fittschen, U. T1 - Investigation on Vanadium Crossover in Nafion ™ and Novel PVDF Based Membranes for Vanadium Redox Flow Batteries N2 - Vanadium redoxflow batteries (VRFB)are currently one of the most promising candidates for stationary energys torage.For large scale applications the ion conducting membranes currently in use need to be improved. Ideally,they need to become more cost efficient and selective regarding the vanadium crossover.For a better understanding of the vanadium crossover, the development of reliable analytical methods and procedures, that elucidate uptake and transport of vanadium ions in the membrane, is necessary. First, we present the uptake of V2+,V3+,VO2+, VO2+ and V2O33+ in Nafion™ and in a novel membrane based onpoly(1,1-difluoroethylene)(PVDF). In preliminary discharge/charge experiments the ETFE-based membrane, the precursor of PVDF-based membrane, performed comparable to Nafion™. The methods of choice for speciation are UV/Vis and X-ray absorption near edge structure spectroscopy (XANES). According to the results, V2O33+, formed from VO2+ and VO2+, diffuses also into the membrane. In present models, the diffusion of V2O33+ is neglected. In addition,we study whether reactions could take place inside the membranes’ nanoscopic water body using XANES. Exposing Nafion™ from one site with V3+a nd from the other site with VO2+ realized the experiment. The results verified that VO2+ was formed inside the membrane. However,in present models reactions inside the membrane are neglected, too. T2 - Denver X-Ray Conference CY - Online meeting DA - 03.08.2020 KW - Batteries KW - BAMline KW - XANES KW - VRF PY - 2020 AN - OPUS4-51909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Local corrosion properties of high/medium entropy alloys in aqueous environments N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in three different electrolyte systems (NaCl, H2SO4 and NaClO4; c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize some of our results on the mechanistical aspects of the observed high corrosion resistance. T2 - EUROCORR 2020 CY - Online meeting DA - 07.09.2020 KW - High Entropy Alloys KW - Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization PY - 2020 AN - OPUS4-53787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Machine learning: examples from BAMline N2 - Various applications for artificial intelligence in the context of spectroscopy will be presented. in particular, examples from BAMline will be presented. After a short introduction to synchrotron radiation, artificial intelligence algorithms for the quantification of X-ray fluorescence measurement are discussed. In the second example, information retrieval by natural language processing is discussed. T2 - Analytical Academy CY - Online meeting DA - 02.06.2020 KW - Machine learning KW - BAMline KW - XRF KW - Synchrotron PY - 2020 AN - OPUS4-51898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Breßler, Ingo T1 - McSAS for SAS analysis: Usage, Benefits and Potential Pitfalls N2 - This talk introduces McSAS, code for analysis of scattering patterns to extract particle size distributions. It highlights how it works, how it should be used, and when it may (not) be applied T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Software KW - Analysis PY - 2020 AN - OPUS4-51019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Keserović, Amela A1 - Beck, Joana A1 - Sarmiento Klapper, Helmut A1 - Boduch, A. A1 - Dimper, Matthias A1 - Stoljarova, A. A1 - Faes, W. A1 - Zimmer, S. T1 - Metallic Materials for Geothermal Applications N2 - The aim of the work presented was the evaluation of corrosion resistance of various materials in geothermal Waters as a base to create a catalogue of suitable materials for applications in (not only) German geothermal power plants. Users shall be enabled to have a basis for designing such facilities. High alloyed corrosion resistant alloys are suitable and do not cause copper or lead deposition. They shall be chosen for future design of the piping system, either in massive or in cladded form, if crevices formation with non-metallic materials can be prevented! T2 - IFPEN-Workshop: Corrosion in Low-Carbon Energies CY - Online meeting DA - 03.11.2020 KW - Geothermal KW - Corrosion KW - Saline brine PY - 2020 AN - OPUS4-51511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Scheid, C. A1 - Steinmetz, H. A1 - Bannick, C.-G. A1 - Abusafia, A. A1 - Dittmer, U. A1 - Braun, Ulrike T1 - Microplastic occurrence in urban sewage systems: Identification of sources for pathways into the environment N2 - All over the world, microplastic (MP) particles (particle size: 1 - 1.000 µm) are found in water, soil, air, biota and even food products. But plenty of these discussed findings are based on a very low number of real datasets, which are extrapolated to general projections. Furthermore, most data are not comparable because the strategies for sampling, sample preparation and detection methods are not harmonised/ or standardised. This would require extensive proficiancy tests. Because of the ubiquity presence and the unclear risks, which might arise from those particles, various political and environmental organisations (i.e. OECD, UNEP, WHO) identify the reduction of plastic entry in the environment as a key challenge for now and the future. This challenge includes the identification of relevant entry pathways but also the demand of harmonised, meaningful and reliable analytical procedures. Regarding this task within the last few years, a fast practical solution for MP analysis has been developed, which includes the steps of representative sampling, adequate sample preparation and fast detection. Sampling is done by fractional filtration over sieves with mesh sizes of 500, 100, 50 and 5 µm [1]. The received samples are measured by ThermoExtraction/Desorption-Gas Chromatography-Mass Spectrometry (TED-GC-MS) [1,2]. for the most abundant polymers used in practice, which are polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), polyamide (PA) and acrylate as well as styrene-butadiene-rubber (SBR), a main component of tires. The present presentation will give first-time insight in a comprehensive dataset of microplastic analysis for an exemplary urban sewage system. MP mass contents of different waters at several days, such as greywater, stormwater retention tank, influent and effluent of a wastewater treatment plant (WWTP) within an urban sewage system in Germany are determined. Furthermore, the mass of the polymers found in dry weather and rain weather flow are compared. The use of these large datasets allows first expressive conclusions regarding the contribution of urban sewage system to the MP entry sources in the environments. We found PP and PS in all different waters. Furthermore, there is SBR in influent and also in effluent of the WWTP. Surprisingly, we could also detect hugh amounts of PE in the effluent of the WWTP. T2 - SETAC Europe 2020 CY - Online meeting DA - 03.05.2020 KW - Microplastic analysis KW - TED-GC/MS KW - Microplastic particles KW - Microplastic mass contents PY - 2020 AN - OPUS4-50795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bennet, Francesca A1 - Hodoroaba, Vasile-Dan A1 - Burr, L. A1 - Schmid, D. T1 - Microprinting and SEM analysis for quantitative evaluation of nanoparticles in solution N2 - Nanoparticle suspensions were microprinted onto TEM grids for subsequent analysis by SEM/TSEM and evaluation of particle numbers using Image J software. Various nanoparticle types, concentrations and printing conditions (temperature, rel. humidity) were evaluated in order to determine the optimal conditions for producing a uniform distribution of particles on the substrate and eliminating the coffee ring effect. T2 - H2020 ACEnano Project Meeting CY - Amsterdam, Netherlands DA - 04.03.2020 KW - Nanoparticle KW - Imaging KW - Microprinting KW - Homogeneous deposition PY - 2020 AN - OPUS4-50584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana A1 - Epping, Ruben T1 - Microstructure characterization of oligomers by analysis of UPLC / ESI-TOF-MS reconstructed ion chromatograms N2 - It is a well-known story that copolymers beside their molar mass distribution (MMD) can exhibit a functionality type distribution (FTD), a copolymer composition distribution (CCD), a monomer sequence distribution (MSD) and additionally different topologies within one sample. Small, often isobaric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector. Nowadays a wide range of different analytical separation techniques and multi-detection possibilities are available. The challenge consists in a clever combination of these techniques with a specific approach of data analysis. In this presentation different liquid chromatographic separation modes were combined with Electrospray Time-of-Flight mass spectrometry. The online coupling allows the analysis of reconstructed ion chromatograms (RIC) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities in microstructure or topology, that are otherwise inaccessible This method is suitable to detect small differences in e. g. branching, topology, monomer sequence or tacticity and could potentially be used in production control of oligomeric products or other routinely done analyses to quickly indicate deviations from set parameters. Based on a variety of examples e.g. the topology elucidation of branched EO-PO copolymers, the possibilities and limitations of this approach were demonstrated. T2 - Analyticon 2020 CY - Online meeting DA - 05.11.2020 KW - Microstructure KW - Copolymer KW - LC-MS PY - 2020 AN - OPUS4-51540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Minimale Anforderungen an Referenzdaten anhand von Beispielen aus der Elektronenmikroskopie und Oberflächenanalytik N2 - In dem Vortrag werden, anhand ausgewählten Beispielen aus der Elektronenmikroskopie und Oberflächenanalytik (EDX und XPS), die minimalen Anforderungen an Referenzdaten für zuverlässige und reproduzierbare Ergebnisse (z.B. Partikelgrößenverteilung, Elementzusammensetzung) vorgestellt und diskutiert. T2 - Workshop "Referenzdaten" CY - Berlin, Germany DA - 13.03.2020 KW - Referenzdaten KW - Nanopartikel KW - Elektronenmikroskopie KW - Oberflächenanalytik KW - Standardarbeitsanweisung KW - SOP KW - Standardisierung PY - 2020 AN - OPUS4-50571 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Bennet, Francesca A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan T1 - MinimUm Information Requirements for Electron Microscopy and Surface analysis Data For Risk Assessment of Nanoforms N2 - The European legislation has responded to the wide use of nanomaterials in our daily life and defined the term “nanoform” in the Annexes to the REACH (Registration, Evaluation, Authorization of Chemicals) Regulation. Now specific information of the nanomaterials is required from the companies when registering the appropriate materials in a dossier. In the context of REACH eleven physicochemical properties were considered as relevant, of which the following six are essential for registration of nanoforms (priority properties): chemical composition, crystallinity, particle size, particle shape, chemical nature of the surface (“surface chemistry”), and specific surface area (SSA). A key role is the reliable, reproduceable and traceable character of the data of these priority properties. In this context, we want to discuss which ‘analytical’ information is exactly required to fulfill these conditions. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) were chosen as the most popular surface analytical methods. Both methods allow a detailed understanding of the surface chemistry with an information depth below ten nanometers. As a rather bulk method for the analysis of nanoforms, Electron Probe Microanalysis (EPMA) in the version with energy dispersive X-ray spectroscopy (EDS) is considered for the quick identification of the main chemical elements present in the sample. Furthermore, Scanning Electron Microscopy (SEM) results are discussed which provide results on particle size and shape. Thus, four of the six priority properties can be obtained with these methods. T2 - Nanosafe 2020 CY - Online meeting DA - 17.11.2020 KW - Risk assessment KW - Nanomaterials KW - Standardization KW - Regulation PY - 2020 AN - OPUS4-51612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Minimum Requirements for Nanomaterial Data - Examples with Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy N2 - In dem Vortrag werden, anhand ausgewählten Beispielen aus der Elektronenmikroskopie und EDX-Elementanalyse, die minimalen Anforderungen an Referenzdaten für zuverlässige und reproduzierbare Ergebnisse (z.B. Partikelgrößenverteilung, Elementzusammensetzung) bei der Charakterisierung von Nanomaterialien vorgestellt und diskutiert. N2 - Based on practical examples of analysis with Electron Microscopy and Energy-Dispersive X-ray Spectroscopy, the minimum information requirements for reliable and reproducible nanomaterial characterization data such as particle size and shape distribution and elemental analysis are presented and discussed. T2 - nano@BAM-Workshop Digitalisierung in der Nanosicherheit CY - Online meeting DA - 04.12.2020 KW - Nanoparticles KW - Electron microscopy KW - EDX KW - Reference data KW - Reproducibility KW - Standardisation PY - 2020 AN - OPUS4-51775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Monodisperse iron oxide nanoparticles as reference material candidate for particle size measurements N2 - In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important, especially with respect to the assessment of their environmental or biological impact. Furthermore, the European Commission’s REACH Regulations require the registration of nanomaterials traded in quantities of at least 1 ton. Powders or dispersions where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as nanomaterials. This creates a need for industrial manufacturers and research or analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution and will also target other key parameters like shape, structure, porosity or functional properties. In this respect, materials like iron oxide or titanium dioxide are considered as candidates to complement the already available silica, Au, Ag, and polystyrene reference nanoparticles. The thermal decomposition of iron oleate precursors in high boiling organic solvents can provide large quantities of iron oxide nanoparticles that can be varied in size and shape.[1, 2] The presence of oleic acid or other hydrophobic ligands as capping agents ensures stable dispersion in nonpolar solvents. Such monodisperse, spherical particles were synthesized at BAM and pre-characterized by electron microscopy (TEM, SEM including the transmission mode STEM-in-SEM) and dynamic light scattering comparing cumulants analysis and frequency power spectrum. 1. REACH regulations and nanosafety concerns create a strong need for nano reference materials with diverse properties. 2. Iron oxide nanoparticles are under development as new candidate reference material at BAM. 3. Narrow particle size distribution confirmed by light scattering and electron microscopy. T2 - Nanosafety 2020 CY - Online meeting DA - 05.10.2020 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Electron microscopy KW - Nanoplattform PY - 2020 AN - OPUS4-52774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - More of the same, please! Standardizing a perfectionist X-ray Scattering methodology for labs and synchrotrons N2 - After a colleague sent me a more useful measurement from a laboratory instrument than what I could get from the beamline, I knew it was time to reassess my life's choices. Over the course of several subsequent post-doc and permanent positions around lab instruments, I managed to refine a flexible, comprehensive methodology for data collection, correction and analysis which can be applied to many X-ray scattering investigations at the lab and at the synchrotron. With the help of friends at round places, this methodology was implemented and put into production, and has been delivering high-quality data since then. Now, we have almost all possible data corrections (for X-ray scattering) implemented, and are improving the hardware to deliver higher-quality metadata to enable the corrections to be performed to a higher accuracy. Simultaneously, we have set up a mini-large facility at BAM with the MAUS, the Multi-scale Analyzer for Ultrafine Structures. The MAUS combines the freedom of a laboratory instrument, with the spectrum of users of a beamline: besides measuring our own samples, and performing our own machine and methodology developments, we have opened this instrument for collaboration with fellow scientists from within BAM and from external institutes and universities. Here, we provide a comprehensive support for these collaborations, guiding the user from concept to sample selection, to interpretation and analysis. In 2019, we have supported over 30 different projects this way, leading to seven co-authored publications involving the MAUS in that year alone. As the MAUS uses the latest iteration of our comprehensive measurement methodology, the data quality is unmatched by any other lab instrument, and fully traceable to boot. The freedom of the laboratory allows for more proof-of-principle experimentation than what is possible at the synchrotron. Therefore, the MAUS provides a good first (and sometimes final) step towards many experimental materials science investigations, nicely complementing the capabilities of the synchrotron. If and when more flux is needed, the step to the synchrotron is now smaller than ever, in particular with the same method T2 - Symposium on large scale facilities CY - BAM, Berlin, Germany DA - 09.03.2020 KW - Small angle scattering KW - Methodology KW - X-ray scattering PY - 2020 AN - OPUS4-51014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hielscher-Bofinger, Stefan A1 - Beck, Uwe A1 - Lerche, D. A1 - Rietz, U. T1 - Multiple-sample Testing: Adhesive Strength of Coatings and Bonding Strength of Adhesives evaluated by Centrifugal Adhesion Testing (CAT) N2 - The quantitative determination of adhesion and cohesion properties is a key requirement for adhesive-bonded joints and coated components in both R&D and Quality assurance. Because of the huge variety of layer/substrate Systems in terms of materials and large thickness range, adhesion tests display the same diversity as layer/substrate systems. There are only two tensile testing procedures available, that determine adhesive strength in terms of force per area (N/mm²), the single-sample pull-off test in a tensile testing machine and the multiple-sample-test using the Centrifugal Adhesion Testing (CAT) Technology. The CAT Technology is a testing method which uses centrifugal force as tensile testing force in a multiple-sample arrangement within a drum rotor of a Desktop centrifuge. Hence, the adhesive/bonding strength A/B can be determined on a statistical basis under identical testing conditions for up to eight samples. A variety of examples for bonding strength of adhesives, adhesive strength of coatings and compound strength of composite materials is discussed such as metalto-metal and glass-to-metal bonding, sputtered SiO2-layers on CR39 Polymer and carbon fiber reinforced polymer. T2 - Colloquium Department 6. CY - Berlin, BAM, Germany DA - 03.09.2020 KW - Centrifugal Adhesion Testing (CAT) KW - Adhesive strength KW - Bonding strength KW - Composite strength KW - Interlaboratory comparision PY - 2020 AN - OPUS4-51178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea A1 - Wander, Lukas A1 - Braun, Ulrike T1 - Multivariate approaches in the evaluation of (hyper)spectral data for microplastics analysis - options and limitations N2 - Die zunehmende Anreicherung von Gewässern und Böden mit Plastikmüll führt zur Anhäufung von mikroskopisch kleinen Plastikpartikeln, sogenannter Mikroplastik (MP). Es werden dringend analytische Methoden benötigt, die helfen MP zu identifizieren und zu quantifizieren. Gegenwärtig kommen dafür hauptsächlich thermoanalytische und mikro¬skopische Verfahren, wie Mikro-Infrarotspektroskopie oder Mikro-Raman zum Einsatz. Letztere sind in der Regel an zeitaufwendige Probenanreicherungen und -aufbereitungen gebunden, es können nur kleine Probenmengen (Mikrogramm) untersucht werden und die Auswertung der erzielten Spektren kann anspruchsvoll sein. Im Rahmen dieser Präsentation werden zwei Ansätze vorgestellt, die über die multi-variate Analyse spektroskopischer Daten i) einen neuen methodischen Ansatz zum Screening von MP in belasteten Böden sowie ii) eine alternative Auswertung großer (Mikro)-spektroskopischer Datensätze ermöglichen. Zunächst wird ein NIR-spektroskopisches Verfahrens vorgestellt, das es gestattet MP bestehend aus Polyethylen, Polyethylenterephthalat, Polypropylen und Polystyrol im Bereich bis zu 0,5 Massenprozent zu detektieren. Aufgrund kurzer Messzeiten und robuster Technik besitzt dieser Ansatz das Potenzial, im Gegensatz zu den thermoanalytischen und mikrospektroskopischen Methoden, größere Probenmengen mit minimaler Vor¬behandlung zu untersuchen. Der zweite Ansatz befasst sich mit der Auswertung großen Datensätze, wie sie typischerweise als Resultat der Mikro-FTIR unter Nutzung moderner FPA-Detektoren erhalten werden. Die Mikro-FTIR-Technik beruht auf der spektralen Aufnahme, Abbildung und an¬schließenden Identifizierung von Schwingungsbanden, die für synthetische Polymere typisch sind. Die Bilddatensätze sind groß und enthalten Spektren von unzähligen Partikeln natürlichen und synthetischen Ursprungs. Zur Ergänzung bestehender Ansätze, die z.B. auf Recherchen von Spektren¬bibliotheken basieren, wurde die explorative multivariate Datenanalyse getestet. Als Kernkonzept wurde hierbei die Dimensionalitäts¬reduktion verwendet. Die Ergebnisse stellen nicht nur eine orthogonale Methode zur Kontrolle der Ergebnisse dar, die auf Grundlage einer automatisierten Bibliothekssuche erzielt wurden, sondern ergaben darüber hinaus eine Gruppe von Spektren, die nicht in den vorhandenen Spektrenbibliotheken erfasst wurden. N2 - The increasing enrichment of water bodies and soils with plastic waste leads to the accumulation of microscopic plastic particles, so-called microplastics (MP). There is an urgent need for analytical methods that help to identify and quantify MP. At present, mainly thermo-analytical and microscopic methods such as micro-infrared spectroscopy or micro-Raman are used for this purpose. The latter are usually tied to time-consuming sample enrichment and preparation, only small sample quantities (micrograms) can be examined and the evaluation of the obtained spectra can be demanding. In the context of this presentation, two approaches are presented which, via the multi-variate analysis of spectroscopic data, allow i) a new methodological approach to screening MP in contaminated soils and ii) an alternative evaluation of large (micro)-spectroscopic data sets. First, a NIR spectroscopic method is presented which allows MP consisting of polyethylene, polyethylene terephthalate, polypropylene and polystyrene to be detected in the range of up to 0.5 mass percent. Due to short measurement times and robust technology, this approach has the potential, in contrast to thermo-analytical and micro-spectroscopic methods, to examine larger sample quantities with minimal pre-treatment. The second approach deals with the evaluation of large data sets, as typically obtained as a result of micro-FTIR using modern FPA detectors. The micro-FTIR technique is based on the spectral recording, imaging and subsequent identification of vibration bands typical of synthetic polymers. The image data sets are large and contain spectra of numerous particles of natural and synthetic origin. Exploratory multivariate data analysis has been tested to complement existing approaches based on e.g. spectrum library searches. The core concept used was dimensionality reduction. The results not only represent an orthogonal method for checking the results obtained by an automated library search, but also revealed a group of spectra that were not recorded in the existing spectrum libraries. T2 - analytica conference 2020 CY - Online meeting DA - 19.10.2020 KW - Microplastics KW - Multivariate Datenanalyse KW - NIR KW - Hyperspectral data PY - 2020 AN - OPUS4-51516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Particle Scattering Simulations with Geant4: An Overview N2 - A brief overview over the capabilities of Geant4 is provided together with some example applications T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Bogotá, Columbia DA - 03.02.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Simulation KW - Monte-Carlo simulation KW - Particle scattering simulation KW - Dosimetry KW - Xrays KW - Electrons KW - Radiation PY - 2020 AN - OPUS4-50332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Kricheldorf, H. T1 - Polymer mass spectrometry at BAM with special emphasis on MALDI and ESI N2 - Since its introduction mass spectrometric techniques like Matrix-assisted Laser Desorption/ionization (MALDI) and Electrospray Ionization (ESI) have become indispensable for synthetic polymer analyses. Ideally, various polymer properties (monomer structure, masses, mass distribution, end groups) can be determined simultaneously. However, in real life these experiments are always affected by important structural parameters and instrumental limitations. A short introduction focussing on latest findings with respect to ionisation principles and mechanisms will be given. Recent results from our group will be presented and efforts to avoid common drawbacks of polymer mass spectrometry will be discussed. In this regard, MALDI - Imaging mass spectrometry and the 2D hyphenation of MS with different chromatographic separation techniques were especially useful, since they can provide additional information and reduce the complexity of polymer analyses. T2 - 21. European Symposium on Polymer Spectroscopy CY - Linz, Austria DA - 13.01.2020 KW - Mass spectrometry KW - MALDI-TOF MS KW - ESI-TOF MS KW - Polymer PY - 2020 AN - OPUS4-50260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Preparation of Nanoparticulate Samples for Electron Microscopy N2 - This presentation addresses the importance of proper sample preparation to obtain suitable samples for electron microscopic measurements. The objective as well as the requirements are discussed. Further, different sample deposition methods for various types of nanoparticulate samples are shown. T2 - nPSize Web Conference CY - Online meeting DA - 23.07.2020 KW - Nanoparticles KW - Electron microscopy KW - Sample preparation KW - Particle size distribution KW - Particle number concentration PY - 2020 AN - OPUS4-51047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative Microstructural Analaysis under VAMAS/TWA 37 N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the possibility of identifying and launching related VAMAS projects. Need of more promotion for the engagement of more participants from industry and academia at national, European and international level is highlighted. Also, the competition with the other technical working areas (on 'nano' or materials-related) is critically discussed. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 45th Steering Committee Meeting CY - Online meeting DA - 30.09.2020 KW - VAMAS KW - Microbeam analysis KW - Inter-laboratory comparison KW - EBSD KW - FIB PY - 2020 UR - http://www.vamas.org/ AN - OPUS4-51360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Realitätsnahe Referenzmaterialien für die Mikroplastik-Analytik und Vergleichsuntersuchungen N2 - Zur Validierung und Harmonisierung von verschiedenen Methoden in der Mikroplastik-Analytik werden polymere Referenzmaterialien benötigt. In diesem Vortrag wird dargestellt, was bisher an der BAM zu Referenzmaterialien für die Mikroplastik-Analytik entwickelt wurde, wo es hingehen soll und ein Überblick über bisher gelaufene Vergleichsuntersuchungen gebracht. T2 - Kick-off Meeting "Mikroplastik in Lebensmitteln" CY - Online meeting DA - 03.12.2020 KW - Mikroplastik KW - Referenzmaterial KW - Vergleichsuntersuchungen KW - Ringversuche PY - 2020 AN - OPUS4-51743 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - Reference material for the determination of the field of view of small-area X-ray photoelectron spectrometers N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces. For evaluating the quality of such microstructures, it is crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. The aperture has a major influence on the signal-contribution from the outside. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize the FoV: The signal-contribution from the outside is reduceable down to lower than 50 %, when the aperture is 30 % of the structure dimension for our Kratos AXIS Ultra DLD system. T2 - Kratos User's Meeting 2020 CY - Online meeting DA - 21.09.2020 KW - Small-area XPS KW - Field of View KW - Imaging XPS KW - Reference Material PY - 2020 AN - OPUS4-51412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -