TY - JOUR A1 - Stawski, Tomasz A1 - Besselink, R. A1 - Chatzipanagis, K. A1 - Hövelmann, J. A1 - Benning, L. G. A1 - Van Driessche, E. S. T1 - Nucleation Pathway of Calcium Sulfate Hemihydrate (Bassanite) from Solution: Implications for Calcium Sulfates on Mars N2 - CaSO4 minerals (i.e., gypsum, anhydrite, and bassanite) are widespread in natural and industrial environments. During the last several years, a number of studies have revealed that nucleation in the CaSO4–H2O system is nonclassical, where the formation of crystalline phases involves several steps. Based on these recent insights, we have formulated a tentative general model for calcium sulfate precipitation from solution. This model involves primary species that are formed through the assembly of multiple Ca2+ and SO42– ions into nanoclusters. These nanoclusters assemble into poorly ordered (i.e., amorphous) hydrated aggregates, which in turn undergo ordering into coherent crystalline units. The thermodynamic (meta)stability of any of the three CaSO4 phases is regulated by temperature, pressure, and ionic strength, with gypsum being the stable form at low temperatures and low-to-medium ionic strengths and anhydrite being the stable phase at high temperatures and at lower temperature for high salinities. Bassanite is metastable across the entire phase diagram but readily forms as the primary phase at high ionic strengths across a wide range of temperatures and can persist up to several months. Although the physicochemical conditions leading to bassanite formation in aqueous systems are relatively well established, nanoscale insights into the nucleation mechanisms and pathways are still lacking. To fill this gap and to further improve our general model for calcium sulfate precipitation, we conducted in situ scattering measurements at small-angle X-ray scattering and wide-angle X-ray scattering and complemented these with in situ Raman spectroscopic characterization. Based on these experiments, we show that the process of formation of bassanite from aqueous solutions is very similar to the formation of gypsum: it involves the aggregation of small primary species into larger disordered aggregates, only from which the crystalline phase develops. These data thus confirm our general model of CaSO4 nucleation and provide clues to explain the abundant occurrence of bassanite on the surface of Mars (and not on the surface of Earth). KW - Gypsum' SAXS KW - Calcium sulfate KW - Bassanite KW - Nucleation PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c01041 VL - 124 IS - 15 SP - 8411 EP - 8422 PB - American Chemical Society AN - OPUS4-50849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Pimentel, Carlos A1 - Montes-Hernández, German A1 - Kochovski, Zdravko A1 - Bienert, Ralf A1 - Weimann, Karin A1 - Emmerling, Franziska A1 - Scoppola, Ernesto A1 - Van Driessche, Alexander E.S. T1 - Solution-driven processing of calcium sulfate: The mechanism of the reversible transformation of gypsum to bassanite in brines N2 - Here, we show that calcium sulfate dihydrate (gypsum) can be directly, rapidly and reversibly converted to calcium sulfate hemihydrate (bassanite) in high salinity solutions (brines). The optimum conditions for the efficient production of bassanite in a short time (<5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the better-known behaviour of the bassanite phase in low-salt environments. In low-salinity aqueous solutions, bassanite is considered to be metastable with respect to gypsum and anhydrite, and therefore gypsum-to-bassanite conversion does not occur in pure water. Interestingly, the high-salinity transformation of gypsum-to-bassanite has been reported by many authors and used in practice for several decades, although its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures was inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline phase for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. KW - Industrial and Manufacturing Engineering KW - Strategy and Management KW - General Environmental Science KW - Renewable Energy, Sustainability and the Environment KW - Building and Construction KW - Calcium sulfate KW - Gypsum KW - Bassanite KW - Scattering KW - Raman KW - In situ KW - Synchrotron KW - BESSY KW - MySpot PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594698 UR - https://www.sciencedirect.com/science/article/pii/S0959652624004591#appsec1 DO - https://doi.org/10.1016/j.jclepro.2024.141012 SN - 0959-6526 VL - 440 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-59469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals N2 - In recent years, we have come to appreciate the astounding intricacies associated with the formation of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that the nucleation of calcium sulfate systems occurs nonclassically, involving the aggregation and reorganization of nanosized prenucleation species. In recent work, we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant micrometer-sized CaSO4 crystals. This property of CaSO4 minerals provides us with the unique opportunity to search for evidence of nonclassical nucleation pathways in geological environments. In particular, we focused on large anhydrite Crystals extracted from the Naica Mine in Mexico. We were able to shed light on this mineral's growth history by mapping defects at different length scales. Based on this, we argue that the nanoscale misalignment of the structural subunits, observed in the initial calcium sulfate crystal seeds, propagates through different length scales both in morphological, as well as in strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nonclassical nucleation mechanism introduces a “seed of imperfection,” which leads to a macroscopic “single” crystal whose fragments do not fit together at different length scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very welldefined walls/edges. However, at the same time, the material retains in part its single crystal nature. KW - Calcium sulfate KW - Anhydrite KW - Mesocrystal KW - Nucleation KW - Naica PY - 2021 DO - https://doi.org/10.1073/pnas.2111213118 SN - 0027-8424 VL - 118 IS - 48 SP - 1 EP - 11 PB - National Academy of Sciences (USA) CY - Washington AN - OPUS4-53820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Supplementary data set for "Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals" N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that nucleation in the calcium sulfate system is non-classical, involving the aggregation and reorganization of nanosized prenucleation particles. In a recent work we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant single micron-sized CaSO4 crystals. This property of CaSO4 minerals provides us with an unique opportunity to search for evidence of non-classical nucleation pathways in geological environments. In particular, we focused on the quintessential single crystals of anhydrite extracted from the Naica mine in Mexico. We elucidated the growth history from this mineral sample by mapping growth defects at different length scales. Based on these data we argue that the nano-scale misalignment of the structural sub-units observed in the initial calcium sulfate crystal seed propagate through different length-scales both in morphological, as well as strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nanoparticle mediated nucleation mechanism introduces a 'seed of imperfection', which leads to a macroscopic single crystal, in which its fragments do not fit together at different length-scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very well-defined walls/edges. But, at the same time the material retains its essential single crystal nature. These findings shed new light on the longstanding concept of crystal structure. KW - Calcium sulfate KW - Mesocrystal KW - Anhydrite PY - 2021 DO - https://doi.org/10.5281/zenodo.4943234 PB - Zenodo CY - Geneva AN - OPUS4-53765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Van Driessche, A. E. S. T1 - Editorial for special issue "Formation of sulfate minerals in natural and industrial environments" N2 - Sulfate is abundant in the environment and, as a result, sulfate-containing minerals constitute a large and important focus of research. These minerals play an important role in many geochemical and industrial processes, including the sulfur cycle, the construction industry (e.g., plaster of Paris), fault tectonics, acid mine drainage, and even rare biominerals. Important to note are the abundant amounts of sulfate (minerals) located on the surface of Mars, and in meteorites, extending the relevance of this mineral group beyond the realm of our planet. In geological systems, sulfate minerals such as barite are also important for indicating certain sedimentation environments. In this regard, sulfate deposits can be used to evaluate the redox state of ancient oceans during early Earth time periods. KW - Calcium sulfate KW - Sulfates PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546794 DO - https://doi.org/10.3390/min12030299 SN - 2075-163X VL - 12(3) IS - Special issue "Formation of sulfate minerals in natural and industrial environments" SP - 1 EP - 3 PB - MDPI CY - Basel AN - OPUS4-54679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steiner, S. A1 - Heldt, J. A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Frömeling, T. T1 - Influence of oxygen vacancies on core-shell formation in solid solutions of (Na,Bi)TiO3 and SrTiO3 N2 - Solid solutions of (Na,Bi)TiO3 (NBT) and SrTiO3 (ST) are materials of interest for high-strain or high-energy density capacitor applications. Often, they exhibit chemical heterogeneity and develop core-shell structures during regular solid-state synthesis with an NBT-rich core. In this case, the NBT forms first so that the strontium needs to diffuse into the material to reach chemical homogeneity. Depending on the presence of core-shell structures, the electrical properties can vary drastically. In this work, we rationalize the effect of variations in oxygen vacancy concentration by Fe-acceptor and Nb-donor doping. It can be shown that a diffusion couple of strontium and oxygen is responsible for chemical homogenization and that the oxygen vacancy content can control the formation of a core-shell structure. KW - Lead-free ceramics KW - Bismuth titanates KW - Core-shell structures KW - Diffusion/diffusivity KW - Ferroelectricity/ferroelectric materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525988 DO - https://doi.org/10.1111/jace.17845 SP - 1 EP - 10 PB - Wiley Periodicals LLC, John Wiley & Sons, Inc. AN - OPUS4-52598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steinhoff, U. A1 - Hodoroaba, Vasile-Dan T1 - EMPIR Erläuterung der Fördermaßnahme und Beispiele aus der Nanotechnologie N2 - Das EMPIR-Förderprogramm wird kurz erläutert und laufende Projekte aus der Nanotechnologie werden vorgestellt. Der Schwerpunkt liegt auf Standardisierungsprojekten, die gemeinsam mit ISO/TC 229 'Nanotechnologies' und CEN/TC 352 'Nanotechnologies' zu neuen Normen führen sollten. Als Beispiel für laufende Nanotechnologie-Projekte mit Koordination aus Deutschland werden MagNaStand (PTB) und nPSize (BAM) gegeben. T2 - Treffen des Normungsausschusses NA 062-08-17 AA Nanotechnologien CY - KIT, Karlsruhe, Germany DA - 07.03.2019 KW - EMPIR KW - Nanoparticles KW - Reference materials KW - Particle size distribution KW - Traceability KW - Standardisation PY - 2019 AN - OPUS4-47859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Nützmann, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Menneken, Martina A1 - Falk, Florian T1 - High temperature oxidation/sulfidation meets X-ray absorption near edge structure spectroscopy (XANES) N2 - Ferritic-martensitic alloys with 12-16 % Cr in weight are subject to devices for various energy systems, such as coal power plants and waste incineration plants. These materials are exposed to a highly corrosive environment which lead to a degradation of the material. Especially the simultaneous oxidation and sulfidation is thereby of special interest. Proper spatially resolved measurements that determine not only chemical compositions but phases are rare. However, precise phase identification and quantification of corrosion products within the multi-phase corrosion scales is a key aspect to understand diffusion paths of metal ions and gas ions/molecules. This study investigated Fe-Cr model alloys with Cr contents from 0 to 13 % in weight in 0.5 % SO2 and 99.5 % Ar atmosphere to aim in a fundamental and systematic analysis. Samples were aged at 650 °C for time scales from 12 h to 250 h. The results presented here correspond to depth dependent phase identification of oxide and sulphide phases in the corrosion scales by using X-ray absorption near edge spectroscopy (XANES). Per sample a series of ca. 20 spots (1-5 µm spot size) from scale-gas to scale-metal interface were measured. XANES spectroscopy was performed at the Fe-K edge (7.11 keV) on polished cross sections. The collected spectra were fitted to a combination of reference materials to quantify the present phases at different positions within the scale.The phase distribution differs with Cr content and the Cr diffusion through pure Fe-oxide and mixed Fe-Cr-oxide phases is discussed. T2 - EFC Workshop "High Temperature Corrosion" CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - High temperature corrosion KW - XANES PY - 2018 AN - OPUS4-47277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Nützmann, Kathrin A1 - Falk, Florian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Witte, Steffen A1 - Radtke, Martin T1 - Early stages of high temperature oxidation/sulfidation studied by synchrotron x-ray diffraction and spectroscopy N2 - Ferritic high temperature alloys are widely used as boiler tube and heat exchanger materials in coal, biomass and co-fired power plants. All technologies have in common that the applied materials are exposed to different temperatures, process pressures and reactive atmospheres that lead to a change of the material properties and a further degradation of the material. Material changes caused by aging in highly corrosive and toxic gases such as SO2 are mainly studied ex situ after the reaction is finished. The solid material is deposited in the atmosphere for a certain period of time, and material changes are then examined by various microscopic techniques such as optical microscopy (OM), electron microprobe analysis (EMPA), scanning electron microscopy (SEM and TEM) and X-ray diffraction (XRD). Nevertheless, extensive efforts were made to study material changes of high temperature alloys under oxidizing and reducing atmospheres by environmental scanning electron microscopy or in situ TEM techniques However, the possibilities of microscopic in situ techniques are very limited for the use of highly corrosive and toxic gases such as SO2. Since Sulfur induced corrosion at temperatures relevant for coal and biomass fired power plants, which is causing breakaway oxidation and sulfide precipitation at grain boundaries, is still of scientific interest, the current work focuses on the effect of SO2 in an initial stage of corrosion of ferritic alloys. For the analysis of early stages of combined oxidation and sulphidation processes of Fe-Cr model alloys the usage of a light furnace to conduct a rapid reactive annealing experiment is feasible. Previous studies presented distinct results of the influence of chromium on early high temperature corrosion by SO2 by this technique and subsequent classical metallographic analyses. However, it is still not possible to trace the corrosion mechanism in real time by conducting single aging experiments. The current work introduces two different approaches to study the initial stages of high temperature oxidation processes by applying above state of the art X-ray diffraction and spectroscopy methods. One part focuses on the real time observation of the formation of corrosion products such as oxides and sulfides by energy dispersive X-ray diffraction (EDXRD). The potential of this technique to study crystallization and growth processes of thin films in a reactive environment in real time was previously shown for different compound semiconductors. This approach was now applied to follow oxidation and sulphidation processes of ferritic model alloys in SO2 and SO2/H2O environments. The diffraction signals of the X-rays were detected during the corrosion process and the peak area and positions were analyzed as a function of time. This procedure enables monitoring external oxide growth and material loss in real time in an early stage of corrosion. The other part of the current work presents the possibilities of X-ray absorption near edge structure spectroscopy (XANES) to characterize oxide scales and their growth mechanisms. Precise phase identification and quantification of corrosion products in a multi-phase oxide/sulfide scale is a pre-requisite to understand diffusion paths of metal ions and gas components. It is a challenging task to distinguish structurally similar reaction products such as Fe3O4 and FeCr2O4 especially in thin films with texture effects by diffraction. To illustrate for example Cr-out diffusion of an alloy throughout an inner and external oxide scale the differentiation of Fe3O4 and FeCr2O4 is indispensable. XANES uses the photoionization effect at the metal absorption edge in an aging product and accesses by this structural and chemical information. The current work uses XANES at the Fe-K and Cr-K absorption edge to identify various aging products grown as thin layers on alloys after short time aging experiments. A reaction chamber for combining high temperature oxidation experiments with surface sensitive X-ray absorption near edge structure spectroscopy will be introduced and first results of XANES on scales at high temperatures will be presented. T2 - ISHOC 2018 CY - Matsue, Japan DA - 22.10.2018 KW - Corrosion KW - Sulfidation KW - In situ KW - Diffraction KW - XANES PY - 2018 AN - OPUS4-47278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stock, V. A1 - Fahrenson, C. A1 - Voss, L. A1 - Thünemann, Andreas A1 - Boehmert, L. A1 - Sieg, S. A1 - Lampen, A. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles N2 - The environmental pollution with plastic debris is one of the great challenges scientists are facing in recent times Due to degradation by UV radiation and other environmental factors, larger pieces of plastic can decompose into microscale fragments which can enter human foodstuff through the food chain or by environmental entry Recent publications show a contamination of various food products with microplastic particles suggesting a widespread exposure Thus, orally ingested plastic particles pose a potential health risk to humans In this study, we investigated the impact of artificial digestive juices on the size and shape of the three environmentally relevant microplastic particles polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC). T2 - 12th International Particle Toxicology CY - Salzburg , Austria DA - 11.09.2019 KW - Microplastic KW - Particle PY - 2019 AN - OPUS4-48847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, V. A1 - Fahrenson, C. A1 - Thünemann, Andreas A1 - Donmez, M. H. A1 - Voss, L. A1 - Bohmert, L. A1 - Braeuning, A. A1 - Lampen, A. A1 - Sieg, H. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles N2 - Current analyses show a widespread occurrence of microplastic particles in food products and raise the question of potential risks to human health. Plastic particles are widely considered to be inert due to their low chemical reactivity and therefore supposed to pose, if at all only minor hazards. However, variable physicochemical conditions during the passage of the gastrointestinal tract gain strong importance, as they may affect particle characteristics. This study aims to analyze the impact of the gastrointestinal passage on the physicochemical particle characteristics of the five most produced and thus environmentally relevant plastic materials polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate and polystyrene. Scanning electron microscopy (SEM) and subsequent image analysis were employed to characterize microplastic particles. Our results demonstrate a high resistance of all plastic particles to the artificial digestive juices. The present results underline that the main stages of the human gastrointestinal tract do not decompose the particles. This allows a direct correlation between the physicochemical particle characteristics before and after digestion. Special attention must be paid to the adsorption of organic compounds like proteins, mucins and lipids on plastic particles since it could lead to misinterpretations of particle sizes and shapes. KW - Artificial digestion KW - Gastrointestinal barrier KW - Microplastic KW - Oral uptake KW - Particle size PY - 2020 DO - https://doi.org/10.1016/j.fct.2019.111010 VL - 135 SP - 111010 PB - Elsevier Ltd. AN - OPUS4-49999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - Reference material for the determination of the field of view of small-area X-ray photoelectron spectrometers N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces. For evaluating the quality of such microstructures, it is crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. The aperture has a major influence on the signal-contribution from the outside. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize the FoV: The signal-contribution from the outside is reduceable down to lower than 50 %, when the aperture is 30 % of the structure dimension for our Kratos AXIS Ultra DLD system. T2 - Kratos User's Meeting 2020 CY - Online meeting DA - 21.09.2020 KW - Small-area XPS KW - Field of View KW - Imaging XPS KW - Reference Material PY - 2020 AN - OPUS4-51412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - New Test Specimen for the Determination of the Field of View of Small-Area XPS N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces. For evaluating the quality of such microstructures, it is crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. The aperture has a major influence on the signal-contribution from the outside. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize the FoV: The signal-contribution from the outside is reduceable down to lower than 50 %, when the aperture is 30 % of the structure dimension for our Kratos AXIS Ultra DLD system. T2 - Kratos User's Meeting 2020 CY - Online meeting DA - 21.09.2020 KW - Small Area XPS KW - Reference Material KW - Imaging XPS KW - Field of View PY - 2020 AN - OPUS4-51413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - A new reference material for the determination of the Field of View of Small Area XPS N2 - Small Area Photoelectron Spectroscopy (XPS) is a powerful tool for investigating small surface features. It is often unclear, if the signal in the spectrum is an unwanted contamination of the Field of View (FoV) or is it originated from outside. The reason is, that XPS-spectra are affected by beam shapes. Scheithauer proposed to measure Pt apertures of different diameters and normalize the Pt4f count rate by a second measurement on the Pt metal. New reference materials were developed and tested in the VAMAS TWA2 A22 Project. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Reference material KW - Small Area XPS KW - Selected Area XPS KW - Small Spot XPS KW - Field of Analysis PY - 2019 AN - OPUS4-49236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Weimann, T. A1 - Bütefisch, S. T1 - A new XPS test material for more reliable surface analysis of microstructures N2 - Small-area XPS analysis is one of the most popular and powerful methods for analysing the surface of features in the micro-range. When measuring microstructures, the ques-tion arises whether the measuring point is really located at the point intended to be ana-lysed. Information in a measured spectrum might originate within the field of view (FoV) on the surface of the sample, from outside the FoV, or even from inherent contamination. To ensure that small structures can be measured correctly regardless of user and instru-ment, certain instrument and sample settings must be known and selected correctly: beam and aperture size as well as the aperture settings and the approximate dimensions of the structure to be analysed. This is the only way to ensure that the information in the spectrum originates only from the FoV on the analysed structure. To test the performance of the XPS instruments, a dedicated test material was developed that consists of a gold surface on which 8 circles and 8 squares of chrome are incorpo-rated using a masking process, so that the Au substrate and the Cr structure surfaces are in the same surface plane. In order to be able to test as many as possible instruments from different manufacturers, the structures have been designed with a size ranging from 300 µm down to 7 µm. The layout of the test material has been optimised in regard of the handling. The structures are arranged along lines instead of a circumference, marking arrows around the smaller structures (≤50 µm) are added, and the lithography mask is optimised regarding edge and diffraction effects. Furthermore, the manufacturing process was changed from electron-beam deposition to mask lithography due to costs reasons. The structures on the test material were measured with a metrological SEM to determine their accurate dimensions and check the repeatability of the manufacturing process. XPS investigations with a Kratos AXIS Ultra DLD and an ULVAC-Phi Quantes demonstrates the suitability of this new test material for measuring the analysed area. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Small-area XPS KW - Test material KW - Field of view KW - Imaging PY - 2024 AN - OPUS4-60539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - A new test specimen for the determination of the field of view of small-area X-ray photoelectron spectrometers N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces, and so forth. For evaluating the quality of such microstructures, it is often crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. To address this issue, the d80/20 parameter of a line scan across a chemical edge is often used. However, the typical d80/20 parameter does not give information on contributions from the long tails of the X-ray beam intensity distribution or the electron-optical system as defined by apertures. In the VAMAS TWA2 A22 project “Applying planar, patterned, multi-metallic samples to assess the impact of analysis area in surface-chemical analysis,” new test specimen was developed and tested. The here presented testing material consists of a silicon wafer substrate with an Au-film and embedded Cr circular and square spots with decreasing dimensions from 200 μm down to 5 μm. The spot sizes are traceable to the length unit due to size measurements with a metrological SEM. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize, as an example, the FoV of a Kratos AXIS Ultra DLD XPS instrument. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Field of view KW - Reference material KW - Selected area XPS KW - Small-area XPS KW - Small-spot XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509902 DO - https://doi.org/10.1002/sia.6831 SN - 1096-9918 VL - 52 IS - 12 SP - 890 EP - 894 PB - John Wiley & Sons Ltd AN - OPUS4-50990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Stoian, R. A1 - Bonse, Jörn T1 - Ultrafast Laser Nanostructuring — The Pursuit of Extreme Scales N2 - Long seen as “a solution seeking a problem,” laser pulses are nowadays – more than 60 years after their first practical demonstration – paramount in shaping and structuring matter. Harnessing their capabilities to direct intense beams of light, the number of scientific and technological developments and daily-life applications is continuously increasing. Today, the presence of lasers is ubiquitous in all sites of scientific and technological interest, from the most advanced research laboratories to industrial factories and medical hospitals. The directionality of the laser beam determines equally a local character on lightmatter interaction and as such a local modification to a material target. Furthermore, the coherence of laser radiation enables near-field or far-field scattering and interference effects that widen significantly the capabilities of controlling and tracking laser-matter interactions in space and time. Already with the advent of lasers, powerful beams of light have been directed at solid materials for a variety of purposes, making this application as old as the laser itself. The roots of the major applications for laser structuring were developed already in the 1960s, setting the base of both theoretical and experimental studies on laser ablation, with the number of publications expanding explosively during the next decades. Within this dynamic context, laser processing of materials experienced an impressive development over the years. Laser processing means specifically the capability to structure and tailor a material on its surface or even within its volume, rendering new functions and properties that are impacting the mechanical, electrical, or optical characteristics of the material. These properties are scaledependent, generating thus over the years an equally impressive quest for spatial or temporal resolution. Therefore, the developments in laser engineering with major breakthroughs, notably in pulse duration and power, always closely accompanied the efforts in material structuring with two milestones in sight: (1) yield and (2) resolution. Every step in shrinking the laser pulse duration led to a subsequent strong-impact development in process precision – particularly when the ultrashort pulse durations surpassed the fundamental electron-phonon relaxation times. Thus, minimizing heat diffusion, the advent of pulses with duration smaller than molecular or lattice vibration times has managed to confine the spatial resolution to the optical diffraction limit and sometimes even beyond. The nanoscale was already in sight at the turn of the millennium. An important question may be raised now; is there any fundamental limit in the processing resolution, a barrier defined by the intrinsic properties of light and matter? The answer has an inherently multidisciplinary nature, following the conversion of free-propagating electromagnetic radiation into material-confined energy potentially usable to drive or transform matter, and will be the focus of the present book. Relying on the experience and expertise of the leading researchers in the field, the present book intends to explore the current efforts in achieving laser processing resolution beyond the diffraction limit, laying down a perspective towards extreme laser nanostructuring. Following the most recent advances and developments, it puts forward a concept of extreme processing scales enabled by optical pulses that are able to bypass diffraction limits and achieve structuring characteristic scales beyond 100 nm. This objective can be achieved by a comprehensive understanding on how light can change matter and how, in turn, matter can change light, allowing jointly for actively controlling light and material processes. In order to give an extended perspective on the current state-of-the-art in the field of precision laser structuring, the book is divided into three main parts. The first part of the book (Part I: Fundamental Processes) offers a perspective into the fundamentals of laser-matter interaction on extreme spatial scales, with a description of the most advanced modeling efforts in understanding energy deposition in matter, a plethora of material-relaxation pathways, as well as advanced concepts for probing and observing matter in motion. Roadmaps for energy localization will be developed, and the atomistic perspective of laser ablation visualized. Theoretical modelling enables in-depth insights on ultrafast quantum processes at the nanoscale. Laser-driven self-organization at surfaces will be dissected regarding the question of how light drives material periodic patterns down to the nanoscale, explored and transmitted to its ultimate limits of an atomic printer, and immediately complemented by the unprecedented capabilities of ultrafast in-situ observation approaches for tracking the laser-induced material response with extreme spatial and temporal resolution. In the second part of the book (Part II: Concepts of Extreme Nanostructuring), distinct concepts will be developed and explored that allow confinement of light and harnessing of a material response restricted to nano- or mesoscopic scales at surfaces or in the volume of irradiated materials. A special focus will be on optical near-field related approaches for localizing light on scales even below the optical diffraction limit and plasmonic printing. Spatial and temporal beam-shaping and tailored interference techniques are discussed in the context of ultrashort laser pulses, and insights into some extreme states of matter realized by the tight confinement of laser energy are presented. The ultimate limits of writing waveguides in the bulk of dielectrics and for manifesting 3D-nanolithography are elucidated. Plasma-based surface treatments can significantly enhance the vertical precision of surface processing through etching processes. Finally, the third part of the book (Part III: Applications) leads us to a number of resuming applications, unveiling the tremendous capabilities of surface functionalization through laser micro- and nanostructuring, assessing the 3D-writing of waveguides in the bulk of dielectrics or semiconductors for enabling new branches of integrated photonics, and summarizing related applications ranging from nanophotonics to nanofluidics and from optical sensing to biomedical applications, including the latest capabilities of refractive eye surgery. This part will analyze the applications’ compatibility in yield and reproducibility with current industrial requirements, costs, and intellectual property aspects. It expands the involved spatial scales by more than eight orders of magnitude, when extending extremely small structures featuring sizes of few tens of nanometers to larger dimensions in the meter range. Thus, from surfaces to the bulk, from subtractive to additive manufacturing approaches, from advanced theoretical frames to practical technological processes – we invite the readers here to an exciting journey into the varicolored landscape of extreme laser nanostructuring. The idea of this book project was seeded in early 2020. We were delighted about the numerous and extremely positive responses from the laser-processing community, quickly receiving commitments for more than 30 individual book chapters. About 2500 communications later, the book is published. We would like to thank all authors of this book project for their insightful and detailed chapters, reviewing and reporting on this fascinating topic of the pursuit of extreme scales in ultrafast laser nanostructuring. Moreover, we would like to acknowledge the professional help and guidance of the staff of Springer Nature. Finally, we hope you will enjoy reading this book as much as we have enjoyed putting it together. Saint Etienne, France Razvan Stoian Berlin, Germany Jörn Bonse December 2022 KW - Laser nanostructuring KW - Surface engineering KW - Nonlinear lithography KW - Self-organization KW - Laser-induced periodic surface structures, LIPSS PY - 2023 SN - 978-3-031-14751-7 (Hardcover) SN - 978-3-031-14752-4 (eBook) DO - https://doi.org/10.1007/978-3-031-14752-4 SN - 0342-4111 VL - 239 SP - 1 EP - 1245 PB - Springer Nature Switzerland AG CY - Cham ET - 1 AN - OPUS4-57294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stolzenberg, U. A1 - Schmitt Rahner, M. A1 - Pullner, B. A1 - Legall, Herbert A1 - Bonse, Jörn A1 - Kluge, M. A1 - Ortner, A. A1 - Hoppe, B. A1 - Krüger, Jörg T1 - X-ray emission hazards from ultrashort pulsed laser material processing in an industrial setting N2 - Interactions between ultrashort laser pulses with intensities larger than 10^13 W/cm^2 and solids during material processing can lead to the emission of X-rays with photon energies above 5 keV, causing radiation hazards to operators. A framework for inspecting X-ray emission hazards during laser material processing has yet to be developed. One requirement for conducting radiation protection inspections is using a reference scenario, i.e., laser settings and process parameters that will lead to an almost constant and high level of X-ray emissions. To study the feasibility of setting up a reference scenario in practice, ambient dose rates and photon energies were measured using traceable measurement equipment in an industrial setting at SCHOTT AG. Ultrashort pulsed (USP) lasers with a maximum average power of 220 W provided the opportunity to measure X-ray emissions at laser peak intensities of up to 3.3 × 10^15 W/cm^2 at pulse durations of ~1 ps. The results indicate that increasing the laser peak intensity is insufficient to generate high dose rates. The investigations were affected by various constraints which prevented measuring high ambient dose rates. In this work, a list of issues which may be encountered when performing measurements at USP-laser machines in industrial settings is identified. KW - X-ray emission hazards KW - Ultrashort pulsed laser KW - Radiation protection KW - Industrial applications KW - Protection housing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538632 DO - https://doi.org/10.3390/ma14237163 SN - 1996-1944 VL - 14 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-53863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stratakis, E. A1 - Bonse, Jörn A1 - Heitz, J. A1 - Siegel, J. A1 - Tsibidis, G.D. A1 - Skoulas, E. A1 - Papadopoulos, A. A1 - Mimidis, A. A1 - Joel, A.-C. A1 - Comanns, P. A1 - Krüger, Jörg A1 - Florian, C. A1 - Fuentes-Edfuf, Y. A1 - Solis, J. A1 - Baumgartner, W. T1 - Laser engineering of biomimetic surfaces N2 - The exciting properties of micro- and nano-patterned surfaces found in natural species hide a virtually endless potential of technological ideas, opening new opportunities for innovation and exploitation in materials science and engineering. Due to the diversity of biomimetic surface functionalities, inspirations from natural surfaces are interesting for a broad range of applications in engineering, including phenomena of adhesion, friction, wear, lubrication, wetting phenomena, self-cleaning, antifouling, antibacterial phenomena, thermoregulation and optics. Lasers are increasingly proving to be promising tools for the precise and controlled structuring of materials at micro- and nano-scales. When ultrashort-pulsed lasers are used, the optimal interplay between laser and material parameters enables structuring down to the nanometer scale. Besides this, a unique aspect of laser processing technology is the possibility for material modifications at multiple (hierarchical) length scales, leading to the complex biomimetic micro- and nano-scale patterns, while adding a new dimension to structure optimization. This article reviews the current state of the art of laser processing methodologies, which are being used for the fabrication of bioinspired artificial surfaces to realize extraordinary wetting, optical, mechanical, and biological-active properties for numerous applications. The innovative aspect of laser functionalized biomimetic surfaces for a wide variety of current and future applications is particularly demonstrated and discussed. The article concludes with illustrating the wealth of arising possibilities and the number of new laser micro/nano fabrication approaches for obtaining complex high-resolution features, which prescribe a future where control of structures and subsequent functionalities are beyond our current imagination. KW - Biomimetic surfaces KW - Laser processing KW - Surface functionalization KW - Bioinspiration KW - Bionic materials PY - 2020 DO - https://doi.org/10.1016/j.mser.2020.100562 SN - 0927-796X VL - 141 SP - 100562-1 EP - 100562-47 PB - Elsevier B.V. AN - OPUS4-50927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Streeck, C. A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Beckhoff, B. T1 - Qualifying calibration samples for advanced thin film materials characterisation N2 - In this article the question of the certification of calibration samples for the characterisation of advanced thin film materials is addressed within the framework of reliable process control or quality management purposes. Reference measurement techniques can be used in order to address the gap in appropriate certified reference materials (CRMs) for thin film analyses. They allow for qualifying out-of-production samples originating from an operating production line as calibration samples. As a template for this procedure, CIGS [Cu(In,Ga)Se2] layers, that are absorber layers for high efficiency thin-film solar cells, have been used for establishing and validating reference-free X-ray fluorescence (XRF) analysis and Auger-electron spectroscopy (AES) as reference measurement techniques. The focus was on determining the average mole fractions in the CIGS layers obtaining results traceable to the SI unit system. Reference-free XRF is physically traceable and is based upon radiometrically calibrated instrumentation and knowledge of atomic fundamental data. Sputter-assisted AES can be established as a chemically traceable method after careful calibration using a certified reference material (CRM) based on a total number counting method. KW - CIGS KW - X-ray fluorescence (XRF) KW - Auger-electron spectroscopy (AES) PY - 2018 UR - https://www.spectroscopyeurope.com/article/qualifying-calibration-samples-advanced-thin-film-materials-characterisation VL - 30 IS - 1 SP - 11 EP - 14 PB - John Wiley & Sons Ltd CY - Chichester, West Sussex PO19 8SQ, UK AN - OPUS4-44260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stroh, Julia A1 - Emmerling, Franziska T1 - In situ full phase analysis of the early cement hydration N2 - Fresh cement paste is a suspension consisting of a hydraulic binder (cement), water, and numerous minor components – admixtures. Addition of admixtures aims at specific modification of properties of the fresh cement paste or hardened cementitious building material. Specific admixtures, so-called superplasticizers (SP), are used to improve the flowability of the fresh cement paste with reduced water content. The latter is the starting material for the high-strength concrete. Thus, SPs are essential for the ambitious construction projects. However, uncontrollable retardation of the setting time in presence of SPs is occasionally observed. Obviously, SPs influence early products of the cement hydration leading to changes in the microstructure development. The hardening is thus delayed, and the quality of the resulting building material suffers. The mechanisms of the admixture action during the hydration process are still intensively investigated [1-7]. A detailed understanding of the admixture effects during the early hydration stage is the key to control and individual adjustment of the cement-based construction materials. We use the unique combination of the wall-free sample holder and the time-resolved X-ray scattering analysis to achieve the full information about the hydrate phases formed under the influence of admixtures. We use ultrasonic levitator to start the cement hydration in levitated cement pellets [8, 9]. The sample levitation allows collection of the unimpaired information about cement hydrate phases. The most beneficial is the avoiding of the contributions of the sample holder material to the data signal. We induce the cement hydration by adding water to unhydrated Portland cement during the data acquisition. The full phase composition of the hydrating cementitious system can be gathered in situ using wide angle X-ray scattering (WAXS). During the hydration of cement both crystalline and amorphous hydrate phases are formed. WAXS data contain the information about crystalline phases behind the Bragg reflections, whereas the amorphous hydrates influence the appearance of the background. Application of the data analysis specific for crystalline or amorphous phases is needed. The data quantification by the Rietveld method allows to conclude about the changes of the phase amounts due to the presence of admixture. The calculation of the pair distribution functions allows analysis of the amorphous hydrates. Based on this information, the SP effects and the extent of their involvement into the ongoing reactions can be concluded. A detailed understanding of the complex cement hydration process is envisioned. T2 - Anakon 2019 CY - Münster, Germany DA - 25.03.2019 KW - Cement KW - Admixtures KW - Pair Distribution Functions KW - X-ray diffraction KW - Total scattering analysis PY - 2019 AN - OPUS4-47664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Ali, Naveed Zafar A1 - Maierhofer, Christiane A1 - Emmerling, Franziska T1 - Ettringite via Mechanochemistry: A Green and Rapid Approach for Industrial Application N2 - Here, we report on a first mechanochemical synthesis of ettringite, an important cement hydrate phase. The mineral compound ettringite ([Ca3Al(OH)6]2·(SO4)3·26H2O) occurs rarely in nature, but is common for cement-based materials. Ettringite has wide technical application in the ceramic and paper industry. However, its typical wet-chemical synthesis is cumbersome and produces waste water and CO2 emissions. Here, we investigate the first mechanochemical synthesis of ettringite for developing an easy and sustainable alternative for industrial application. The mechanosynthesis was monitored in situ by coupled synchrotron X-ray diffraction (XRD) and infrared thermography (IRT). The consumption of the reactants and the formation of the reaction product were monitored with time-resolved XRD. IRT showed the temperature increase based on the exothermic reaction. The reaction conversion was significantly improved changing the strategy of the mechanosynthesis from a one- to a two-step process. The latter included neat pregrinding of solid reactants followed by a delayed addition of the stoichiometric amount of water. Thus, an increase of reaction conversion from 34 to 94% of ettringite could be achieved. KW - XRD KW - Mechanochemistry KW - Ettringite KW - In situ PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479016 DO - https://doi.org/10.1021/acsomega.9b00560 SN - 2470-1343 VL - 4 IS - 4 SP - 7734 EP - 7737 PB - ACS Publications CY - Washington, DC AN - OPUS4-47901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Feiler, Torvid A1 - Ali, N. Z. A1 - Minas da Piedade, M. E. A1 - Emmerling, Franziska T1 - Mechanistic Insights into a Sustainable Mechanochemical Synthesis of Ettringite N2 - Mechanochemistry offers an environmentally benign and facile synthesis method for a variety of cement paste constituents. In addition, these methods can be used to selectively tune the properties of cement components. The mineral ettringite is an important component of cementitious materials and has additional technological potential due to its ion exchange properties. Synthesis of ettringite via mechanochemistry is an environmentally friendly alternative to conventional wet-chemical synthesis established in industry. This contribution explores the mechanism of a two-step mechanochemical synthesis of ettringite, which was previously found to greatly improve the reaction conversion as compared with one-pot synthesis. The crystallinity of Al(OH)3 was found to decrease during the first stage of this mechanochemical synthesis. This was correlated to a significant decrease in the particle size of Al(OH)3 in this stage. No other significant changes were found for the other components, suggesting that mechanochemical activation of Al(OH)3 is responsible for the enhanced formation of ettringite by the two-step approach. The environmentally friendly approach developed for ettringite synthesis offers a versatile synthetic strategy, which can be applied to synthesise further cementitious materials. KW - Ettringite KW - Mechanochemistry KW - Sustainability KW - X-ray diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489172 DO - https://doi.org/10.1002/open.201900215 VL - 8 IS - 7 SP - 1012 EP - 1019 PB - ChemPubSoc AN - OPUS4-48917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stuff, Maria A1 - Rübner, Katrin A1 - Prinz, Carsten A1 - Rische, N. A1 - Chronz, M. A1 - Kühne, Hans-Carsten ED - Siegesmund, S. ED - Middendorf, B. T1 - Towards a better understanding of tuff stone deterioration N2 - Stone deterioration is the result of a complex interaction of external physical, chemical and biological forces with the mineralogical-petrophysical properties of the stone. With a better understanding of how these properties are linked to material behavior and durability, more effective measures for stone conservation can be developed. Studying these interactions in tuff is particularly complex due to the naturally high heterogeneity of tuff rocks. The first aim of a current research project is to combine the results of recent and older studies on tuff deterioration. Furthermore, the literature overview is complemented by our own investigation of Weibern and Ettringen tuff, with a focus on pore structure characteristics. T2 - STONE - 14th international congress on the deterioration and conservation of stone CY - Meeting was canceled DA - 07.09.2020 KW - Pore structure KW - Weathering KW - Weibern tuff KW - Ettringen tuff PY - 2020 SN - 978-3-96311-172-3 SP - 805 EP - 810 PB - Mitteldeutscher Verlag CY - Halle (Saale) AN - OPUS4-51549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee T1 - Grenzflächen als Material: Konzepte und Beispiele zu nanoverstärkten Duroplasten N2 - Nachdem Jahrzehnte die Grenzfläche zwischen Kohlefaser und Duroplastmatrix optimiert wurde liegt das Augenmerk heute auf der Polymermatrix selbst. Diese lässt sich hinsichtlich ihres Elastizitätsmoduls und ihrer Bruchfestigkeit verbessern, indem Nanopartikel aus Böhmit (AlOOH) eindispergiert werden. Der Vortrag geht auf integrale und hochauflösend-bildgebende Methoden ein die ein Verständnis der komplexen Zusammenhänge ermöglichen. Nach einer chemischen in-situ Analyse des Aushärtvorgangs, aus welchem sich die Bedeutung der externer Parameter ablesen lässt, werden diverse hochauflösende, neue Methoden der Rasterkraftmikroskopie (AFM) eingeführt. Der lokalen Bestimmung des E-Moduls der Nanopartikel folgen Ausführungen zum temperaturabhängigen Chemismus des Böhmits, der während der Aushärtung Wasser freisetzt. Die hochauflösende Bestimmung der Oberflächenpotentiale, der Steifigkeit, der attraktiven Kräfte zwischen Spitze und Probe sowie der Energiedissipation im Kontakt stellen auf der Nanoskala eine komplexe Datenquelle dar, die auf der Makroskala einer Ergänzung bedarf: Durch Kombination von dynamisch-mechanisch-thermischer Analyse einerseits und Kartierung physikalischer Eigenschaften auf der Nanoskala andererseits kann der Zusammenhang zwischen chemischer Steuerung der Netzwerkbildung und den mechanischen Eigenschaften des Nanokomposits geklärt werden. Überraschend ist, dass bei geeigneter Steuerung der lokale E-Modul der Polymermatrix den des Füllstoffs übersteigt. Die Rissfortschrittsenergie wird in Böhmit-modifiziertem Epoxy verbessert absorbiert, die These dazu ist, dass die (010)-Gleitebenen, die nur durch Wasserstoffbrücken zusammen gehalten werden, einigermaßen schadlos geschert werden können. Daraus folgt, dass das System auf der Nanoskala über einen, wenn auch begrenzten, Selbstheilmechanismus verfügt. Zudem wird durch die hohe Heterogenität der Steifigkeit und Energiedissipation des Nanokomposits eine Risstrajektorie vielfach umgelenkt und somit früher gestoppt. Ergebnisse dieses Vortrags stammen aus einer Zusammenarbeit innerhalb des DFG-Forscherverbundes FOR2021 „Wirkprinzipien nanoskaliger Matrixadditive für den Faserverbundleichtbau“. T2 - Niedersächsisches Symposium Materialtechnik - NSM 2019 CY - Clausthal, Germany DA - 14.02.1019 KW - Nanokomposit KW - Böhmit KW - Risstrajektorie KW - Oberflächenpotential KW - Energiedissipation im Kontakt KW - Oberflächensteifigkeit KW - attraktive Wechelwirkung KW - Epoxy-Anhydrid Duroplast KW - Leichtbau PY - 2019 AN - OPUS4-47636 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Altmann, Korinna A1 - Braun, Ulrike T1 - Notwendigkeit von (Realistischen) Referenzmaterialien N2 - Die Herstellung von Mikroplastik Referenzmaterialien wird vorgestellt. T2 - Statusfonferenz der BMBF Fördermassnahme "Plastik in der Umwelt" CY - Berlin, Germany DA - 09.04.2019 KW - Ringversuch KW - Mikroplastik KW - Referenzmaterialien PY - 2019 AN - OPUS4-47798 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Braun, Ulrike T1 - Kunststoffe und deren Recycling – Materialwissenschaftliche Erkenntnisse, um mehr Recyclat einzusetzen N2 - Nach einer Übersicht zu den immer schneller aktualisierenden Rahmenbedingungen von Politik und Gesellschaft folgt eine Übersicht zu materialwissenschaftlichen Problemen des Recyclings von Kunststoffen. Lösungsansätze aus der Forschung reichen von einfacher Optimierung bis hin zur radikalen Neukonstruktion der polymeren Werkstoffe. Aus dem bereits möglichen Ansatz "performance-by-design" wird ein neuer Weg des "recycling-by-design" adressiert. Dies inkludiert methodisch eine skalenübergreifende Modellierung und die Depolarisation bis zum Monomer. T2 - Gefahrgut-Technik-Tage CY - Berlin, Germany DA - 07.11.2019 KW - Recycling KW - Kunststoff KW - Additiv KW - Polymer KW - Normung KW - Plastikstrategie KW - Grenzfläche als Material KW - Recycling-by-design PY - 2019 AN - OPUS4-49561 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Jäger, Christian A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - Sulfuric acid resistance of one-part alkali-activated mortars N2 - One-part alkali-activated (geopolymer) mortars based on three different silica-rich starting materials and sodium aluminate, with and without ground granulated blast furnace slag (GGBFS) addition, were tested regarding sulfuric acid resistance according to DIN 19573:2016-03 (70 days at pH = 1). Corresponding pastes were characterized by XRD, SEM, chemical analysis, 29Si MAS NMR and 1H-29Si CPMAS NMR after water storage and after acid exposure. The mortars exhibited a high resistance against sulfuric acid attack, with the best ones conforming to the requirements of DIN 19573:2016-03. The analytical results showed that this was due to precipitation of silica gel at the acid-mortar interface, which formed a mechanically stable layer that protected the subjacent mortar and thus inhibited further degradation. The addition of GGBFS decreased the acid resistance via formation of expansive calcium sulfate phases. KW - Alkali activated materials KW - Acid resistance KW - Nuclear magnetic resonance KW - One-part geopolymers PY - 2018 DO - https://doi.org/10.1016/j.cemconres.2018.04.009 SN - 0008-8846 VL - 109 SP - 54 EP - 63 PB - Elsevier Ltd. AN - OPUS4-44722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Surov, A. A1 - Vasilev, N. A1 - Voronin, A. A1 - Churakov, A. A1 - Emmerling, Franziska A1 - Perlovich, G. T1 - Ciprofloxacin salts with benzoic acid derivatives: structural aspects, solid-state properties and solubility performance N2 - n this work, three new pharmaceutical hydrated salts of ciprofloxacin with selected derivatives of benzoic acid, namely 4-hydroxybenzoic acid, 4-aminobenzoic acid and gallic acid, were obtained and systematically investigated by several solid-state analytical techniques. In situ Raman spectroscopy was applied to elucidate the alternative pathways of the solid forms' formation under mechanochemical conditions. Crystal structure analysis and a CSD survey allowed us to establish a distinct supramolecular motif formed by infinite columnar stacks of ciprofloxacin dimers arranged in the “head-to-tail” manner. An alternative “head-to-head” packing arrangement was only observed in the crystal of the hydrated ciprofloxacin salt with 4-aminobenzoic acid. In addition, the pH-solubility behavior of the solid forms was thoroughly investigated. Furthermore, a distinct structure–property relationship between the specific features of the supramolecular organization of the hydrated salts and their solubility was observed and discussed. KW - Mechanochemistry KW - XRD PY - 2020 DO - https://doi.org/10.1039/D0CE00514B VL - 22 IS - 25 SP - 4238 EP - 4249 AN - OPUS4-51818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Surov, Artem O. A1 - Vasilev, Nikita A. A1 - Churakov, Andrei V. A1 - Stroh, Julia A1 - Emmerling, Franziska A1 - Perlovich, German L. T1 - Solid Forms of Ciprofloxacin Salicylate: Polymorphism, Formation Pathways, and Thermodynamic Stability N2 - The crystallization of ciprofloxacin - an antibacterial fluoroquinolone compound - with salicylic acid resulted in the isolation of five distinct solid forms of the drug, namely, an anhydrous salt, two polymorphic forms of the salt monohydrate, methanol and acetonitrile solvates, and the salt-cocrystal hydrate. The salicylate salts were investigated by different analytical techniques ranging from powder and single crystal X-ray diffractometry, differential scanning calorimetry, thermogravimetric analysis, variable temperature powder X-ray diffraction, dynamic vapor sorption analysis, dissolution, and solubility investigations. Real-time in situ Raman spectroscopy was used to investigate the mechanochemical formation pathways of the different solid polymorphs of ciprofloxacin salicylate. The mechanism of the phase transformation between the crystalline forms was evaluated under mechanochemical conditions. It was found that the formation pathway and kinetics of the grinding process depend on the form of the starting material and reaction conditions. The analysis of the solid-state thermal evolution of the hydrated salts revealed the two-step mechanism of dehydration process, which proceeds through a formation of the distinct intermediate crystalline products. KW - Cocrystal KW - Polymorphism KW - Ciprofloxacin KW - XRD KW - DSC PY - 2019 DO - https://doi.org/10.1021/acs.cgd.9b00185 SN - 1528-7483 VL - 19 IS - 5 SP - 2979 EP - 2990 PB - American Chemical Society AN - OPUS4-47903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Swaraj, Sufal A1 - Müller, Anja A1 - Sparnacci, Katia A1 - Unger, Wolfgang T1 - Core-shell nanoparticles investigated with scanning transmission X-ray microscopy N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a sharp interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, investigated at the HERMES beamline is presented for demonstration. This STXM based methodology yields particle dimensions in good agreement with the scanning electron microscopy (SEM) results (deviation equal or less than 10%). Extension of this methodology to core-shell nanoparticles with inorganic core and organic shell will also be presented and the challenges encountered will be highlighted. T2 - 13th SOLEIL Users' Meeting CY - Saint-Aubin, France DA - 18.01.2018 KW - STXM KW - SEM KW - PTFE KW - PS KW - Core-shell nanoparticles KW - Polymers PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Schönhals, Andreas T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy-based Materials N2 - This work deals with an in-depth comparative investigation of the structure, molecular mobility and vitrification kinetics of three bisphenol A diglycidyl ether (DGEBA)-based materials with different nanofillers: taurine-modified layered double hydroxide (T-LDH) and halloysite nanotubes (HNTs). The chosen methodology comprises I) small – and wide – angle X-ray scattering (SAXS/WAXS) II) calorimetry in the forms of a) conventional DSC and b) static fast scanning calorimetry (FSC), III) broadband dielectric spectroscopy (BDS), as well as IV) specific heat spectroscopy in the forms of a) temperature modulated DSC, and b) temperature modulated FSC. T2 - Abteilungsseminar 6. - FB 6.6 CY - Online meeting DA - 06.05.2021 KW - Broadband dielectric spectroscopy KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Rigid amorphous fraction KW - Flash DSC PY - 2021 AN - OPUS4-52697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A1 - Schönhals, Andreas T1 - Molecular Dynamics of nNanophase-Separated Janus Polynorbornenes for gas separation N2 - Janus polytricyclononenes (PTCN) with rigid backbones and flexible n-alkyl (n = propyl, butyl, hexyl, octyl, decyl) are novel, innovative materials that show potential in separating hydrocarbons. These superglassy polymers were designed to show an enhanced and controllable gas permeability via flexible alkyl side chains that promote mass transport, as opposed to conventional microporous polymers, where permeability is a function of the free-volume entities. PTCNs, investigated by small angle X-ray scattering (SAXS), show nanophase separation between the n-alkyl side chains and the backbones. The size of the nanodomains increases with the length of the n-alkyl side groups. In addition, for the alkyl chain-rich nanodomains a distinct α-relaxation was found by means of broadband dielectric spectroscopy (BDS) and temperature modulated DSC (TMDSC). The glass transition of the backbone-rich domains, which is beyond or near to the degradation of the materials, was evidenced by fast scanning calorimetry (FSC) by decoupling it from decomposition, employing high heating rates up to 104 K/s. Further, Janus PTCNs were studied by quasielastic neutron scattering (QENS) employing the backscattering IN16B (ILL, Grenoble) and time of flight FOCUS (PSI, Villigen) instruments. For an overview of dynamic processes setting in at different temperatures inelastic (IFWS) and elastic fixed window scans (EFWS) were conducted. IFWS showed that the segmental motions of alkyl-rich nanodomains shift to higher temperatures with increasing alkyl chain length, which agrees with SAXS and BDS findings. For the lowest side chain lengths an additional low temperature relaxation process was found, assigned to methyl group rotations. T2 - IDS 2022 CY - San Sebastian, Spain DA - 03.09.2022 KW - Gas separation KW - Membranes PY - 2022 AN - OPUS4-55899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Dynamics of nanoscopically confined PVME in thin films of an asymmetric PVME/PS blend N2 - In recent years, substantial efforts have been devoted to investigating nanoscopic confinement of polymers, and its effect on glassy dynamics. Broadband Dielectric Spectroscopy (BDS) was used to study the dynamics of ultra-thin films of PVME/PS 50/50 wt% blend, employing a novel nano-structured capacitor sample arrangement. The investigated system shows a complex dynamic behavior. First, an α-relaxation, related to a bulk-like layer was found. Second, an α’-relaxation was observed, characteristic for dynamically asymmetric blends, where the out of equilibrium dynamics is attributed to weakly-cooperative PVME segments relaxing within a frozen environment of PS segments. Thirdly, for thinnest films, an Arrhenius-like process was dominant in the dielectric spectra, indicating localized fluctuations of the segments. Relaxation rates of this process resembled that of the degenerated α-relaxation of the adsorbed layer, found for pure PVME, thus it was assigned accordingly. For thinnest films, this process undergoes a further confinement, due to the topological constraints, introduced by PS. Such multiple confinement effect has not been reported for ultra-thin films of polymer blends, before this study. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Thin polymeric films PY - 2018 AN - OPUS4-44502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Unexpected behavior of thin PVME/PS blend films investigated by specific heat spectroscopy N2 - The structure and molecular dynamics of thin polymer films are of topical interest of soft matter-physics. Commonly, spatial structural heterogeneities of 1D confined thin films (surface, bulk-like and adsorbed layer), are expected to alter the glassy dynamics, compared to the bulk. Here, Specific Heat Spectroscopy (SHS) was used, to investigate the glassy dynamics of thin films of an asymmetric miscible PVME/PS 25/75 wt% blend. SHS measurements showed a non-monotonous thickness dependence of the dynamic Tg, on the contrary to the previously investigated PVME/PS 50/50 wt%. For PVME/PS 25/75 wt% thin films (> 30 nm), due to the presence of PVME-rich adsorbed and surface layers, the bulk-like layer experienced a thickness dependent increase of PS concentration. This led to a systematic increase of dynamic Tg. Further decrease of the film thickness (< 30 nm), resulted in a decrease of dynamic Tg, ascribed to the influence of the surface layer, which has a high molecular mobility. This is the first study, which shows deviations of dynamic Tg of thin films, compared to the bulk, resulting from the counterbalance of the free surface and adsorbed layer. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Thin polymeric films PY - 2018 AN - OPUS4-44494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Rigid amorphous fraction (RAF) in epoxy/Boehmite and epoxy/LDH nanocomposites N2 - The interphase between the inorganic filler and the polymer matrix is considered as one of the most important characteristics of inorganic/polymer nanocomposites. The segmental dynamics of this interphase is expected to be altered as compared to the pure matrix, which might percolate into the entire system. For instance, it was found that a so-called Rigid Amorphous Phase (RAF) is formed by adsorption of segments onto the nanoparticles yielding to its immobilization. The RAF is available from the decrease of the specific heat capacity Δcp in the glass transition region of the nanocomposites. Here, precise Temperature Modulated DSC (TMDSC) was employed to study Δcp of epoxy/Boehmite nanocomposites with different nanofiller concentrations. Surprisingly, the investigated system showed an increase of Δcp with increasing filler concentration up to 10 wt%. This implies an increased fraction of mobile segments, and is in accordance with the found decreased value of the glass transition temperature Tg. Although for higher filler contents Tg further slightly decreases, Δcp decreases in contrary, indicating a formation of RAF. This behavior was discussed as a competition of mobilization effects, due to an incomplete crosslinking reaction, and the formation of RAF. T2 - 15thLähnwitzseminar on Calorimetry 2018 CY - Rostock, Germany DA - 04.06.2018 KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - Boehmite PY - 2018 AN - OPUS4-45148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Qu, Xintong A1 - Schönhals, Andreas T1 - Competition of mobilization and Immobilization Effects in Epox-Based Nanocomposites N2 - Two epoxy-based nanocomposites with different nanofillers (layered double hydroxide and boehmite) were investigated employing temperature modulated DSC, flash DSC and broadband dielectric spectroscopy. Detailed investigation on the molecular mobility of the two systems showed the effect of the fillers on the structure of the bulk epoxy matrix and the interface formed at the polymer/particle interface T2 - FOR 2021: Acting principles of Nano-Scaled Matrix Additives for Composite Structures CY - Berlin, Germany DA - 11.10.2019 KW - TMDSC KW - Nanocomposites KW - Rigid amorphous fraction KW - Boehmite KW - BDS PY - 2019 AN - OPUS4-49287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Flash DSC investigations on nanocomposites and electrospun fibers containing nanoparticles N2 - It was found for inorganic/polymer nanocomposites that a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate into the entire system, affecting the overall nanocomposite properties. Here, the structure and molecular mobility of epoxy-based PNCs with different nanofillers (layered double hydroxide and boehmite) was studied by a combination of calorimetric and X-Ray scattering techniques. Temperature modulated DSC (TMDSC) showed that depending on the nanofiller, RAF can reach up to 40 wt % of the system or, on the contrary, the overall mobility of the matrix might increase due to the presence of particles. Such contrasting results, including the high amount of RAF, which was never shown before for epoxy-based PNCs, emphasize the importance of interfaces. Additionally, glass transition and glassy dynamics were investigated by a novel technique, Flash DSC (heating rates up to 10 kK/s) employed for the first time to a thermosetting system and electrospun fibers, which did not result in their degradation. It was used to study both the vitrification kinetics and glassy dynamics of the PNCs, for instance further confirming the presence of RAF and its impact on the overall material properties. T2 - 4th Mettler Toledo Flash DSC conference CY - Zurich, Switzerland DA - 25.11.2019 KW - Flash DSC KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - BDS KW - Boehmite KW - Electrospun fibers PY - 2019 AN - OPUS4-50067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Qu, Xintong A1 - Schönhals, Andreas T1 - Resolving the mystery of the molecular dynamics of epoxy-based materials using broadband dielectric spectroscopy and hypheneated calorimetry N2 - A detailed calorimetric and dielectric study on two epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) and methyl tetrahydrophtalic acid anhydride (MTHPA) aas the polymer matrix and taurine-modified MgAL layered double hydroxide (T-LDH) and boehmite as nanofiller. The molecular dynamics investigation revealed an intrinsic structural heterogeneity of the epoxy materials. Moreover the polymer/particle interphase was qualitatively and quantitavely investigated. T2 - Online International Dielectric Society 2020 Workshop CY - Online meeting DA - 28.09.2020 KW - Interfaces KW - Nanocomposites KW - Rigid amorphous fraction KW - BDS KW - TMDSC PY - 2020 AN - OPUS4-51492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy and Corresponding Nanocomposites by Broadband Dielectric Spectroscopy and Hyphenated Calorimetry N2 - Polymer nanocomposites (PNCs) with inorganic nanofillers dispersed in a polymer matrix have been widely studied from the 1990s, since the pioneering work by Toyota Central Research. The possibility of producing advanced tailor-made, light weight and low-cost materials, inspired academic and commercial research towards numerous potential applications, facilitating PNCs to become a billion-dollar global industry. The introduction of nanoparticles (NPs) to a polymer matrix is expected to result in improved properties. The outstanding performance of PNCs is determined not only by the characteristics of the used components but also by their phase morphology, including the dispersion of NPs and interfacial properties. Understanding of structure-property relationships is particularly important for polymer nanocomposites with high industrial significance, such as epoxy-based materials reinforced with inorganic nanofillers. These PNCs have been successfully adopted by the marine, automotive and aerospace industries, although they are still rarely studied on a fundamental level. Therefore, this thesis aims for a detailed understanding of the structure, molecular mobility and vitrification kinetics first, of two epoxy-based materials with different network structures and second, of the corresponding nanocomposites with different alumina-based nanofillers. The first system considered (EP/T-LDH) was based on bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) and taurine-modified layered double hydroxide (T-LDH) NPs. The taurine molecule bears additional functionalities that could enhance the interactions between the matrix and the nanofiller, improving the interphase formation. The seconds system (EP/BNP) was based on DGEBA and methyl tetrahydrophtalic acid anhydride (MTHPA) as a hardener, reinforced with boehmite nanoparticles (BNPs). The comparison of the two systems enables for a comparative study on the effect of different hardeners and the morphology and modification of the alumina-based nanofillers on the material behavior. The materials were investigated employing complementary techniques with different sensitivities and frequency windows. The following methodology was used: transmission electron microscopy (TEM), small – and wide – angle X-ray scattering (SAXS/WAXS), broadband dielectric spectroscopy (BDS), calorimetry in a form of conventional DSC and fast scanning calorimetry (FSC), as well as specific heat spectroscopy (SHS) in a form of temperature modulated DSC, temperature modulated FSC and static FSC by calculating the thermal relaxation rates from the cooperativity approach. The FSC method (based on adiabatic chip calorimetry to probe micrometer-sized samples) was successfully employed in this work, exploiting all its possibilities for the first time in literature for a PNC. Moreover, a systematic analysis technique was established to overcome the problem of vague glass transition regions observed for highly loaded PNCs in the heat flow and heat capacity curves. First, TEM, SAXS/WAXS and indirectly BDS and SHS were employed to obtain the information about the approximate morphology of the PNCs. It was found that epoxy-based materials exhibit a structural heterogeneity in a form of regions with different average crosslinking density. This was indicated by multiple-peak scattering pattern of the polymer matrix and two distinct α-processes (dynamic glass transition) related to the cooperative fluctuation of the epoxy network found by BDS and SHS. This was described for the first time for epoxy-based materials. The two α-relaxations were evidenced differently for the two systems, which is related to different network structures and dipole moments due to the employed hardeners. Nevertheless, structural heterogeneity is an intrinsic feature of these materials, independent of the type of hardener used for the network formation and nanofiller. In addition, matrix inhomogeneities were more pronounced with increasing nanoparticle content. Furthermore, a powerful new technique was applied for X-ray scattering data, using Monte Carlo fits, to describe the NPs dispersion throughout the whole sample volume (as opposed to the local investigations performed by most researches). Additional structural information of the two systems was extracted by BDS and SHS, such as qualitative and quantitative estimation of polymer segments physically adsorbed and/or chemically bonded onto the nanoparticles. Due to the immobilized character of this interphase with respect to the cooperative segmental motions, it is denoted as a rigid amorphous fraction (RAF). For instance, on the contrary to EP/BNP, for EP/T-LDH a dielectrically active process was found, related to the localized fluctuations within RAF. Moreover, the amount of RAF in EP/T-LDH was reaching up to 40 wt % of the system, whereas in EP/BNP it ranged between 1-7 wt %. In the latter case the presence of NPs was found to simultaneously increase and decrease the number of mobile segments, due to the interphase formation and changes in crosslinking density. The difference between the two systems was ascribed to the presence of additional amine functionalities in the T-LDH nanofiller. Second, employing BDS and SHS, a systematic study on the effect of NPs on the segmental dynamics was performed. For example, depending on the nanofiller, the α-processes related to regions with higher crosslinking density was found to shift to higher and lower temperatures with increasing T-LDH and BNPs concentration, respectively. The observed difference is due to the different synergism of the polymer matrix with the nanofiller. Third, a detailed investigation of the vitrification kinetics was performed with DSC and FSC. The concentration dependence of the glass transition temperature was found, similar to the behavior of the α-processes. It was shown that, in parallel to the detected main glass transition, epoxy-based materials can exhibit an additional low temperature vitrification mechanism. As expected from the two distinct α-processes, this behavior was however not discussed in prior studies for an unfilled network former. This finding was correlated to the structural heterogeneity evidenced by other techniques. This thesis, dealing with an in-depth research on the epoxy-based materials that are already successfully employed in numerous applications underlines the necessity of more fundamental research in this field. It shines light on the complexity of these systems and contributes to defining how the structure-property relationships can be determined by combining multiple experimental techniques and analytical methodology. T2 - PhD defense CY - Online meeting DA - 18.12.2020 KW - Interfaces KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - BDS PY - 2020 AN - OPUS4-52035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Schönhals, Andreas A1 - Qu, Xintong T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy-based Materials by Broadband Dielectric Spectroscopy and Calorimetry N2 - Although in the last decades epoxy-based nanocomposites have been successfully adopted by the marine, automotive and aerospace industries they are still rarely studied on a fundamental level. This work deals with an in-depth comparative investigation of the structure, molecular mobility and vitrification kinetics of three bisphenol A diglycidyl ether (DGEBA)-based materials with different nanofillers: I) taurine-modified layered double hydroxide (T-LDH), II) boehmite (BNPs) and III) halloysite nanotubes (HNTs). Moreover, the effect of different hardeners (diethylene triamine and methyl tetrahydrophtalic acid anhydride) on the unfilled epoxy matrix is addressed as well. The chosen methodology comprises I) small – and wide – angle X-ray scattering (SAXS/WAXS) II) calorimetry in the forms of a) conventional DSC and b) static fast scanning calorimetry (FSC), III) broadband dielectric spectroscopy (BDS), as well as IV) specific heat spectroscopy in the forms of a) temperature modulated DSC, and b) temperature modulated FSC. The combination of these techniques proved an intrinsic spatial heterogeneity of epoxy-based materials, evidenced by two separate segmental relaxation processes. Although, depending on the hardener the response of the systems to calorimetric and dielectric investigations was different, in a broader sense similar conclusions can be extracted on the structural heterogeneity. As expected from the two distinct α-processes, it was shown that, in parallel to the main glass transition, epoxy-based materials can exhibit an additional low temperature vitrification mechanism, which was not discussed in prior studies for an unfilled network former. Furthermore, the interfacial region (so-called rigid amorphous fraction) was qualitatively and quantitatively addressed, in dependence of the employed nanofiller structure. T2 - Webinar University of Southern Denmark CY - Online meeting DA - 20.01.2021 KW - BDS KW - Nanocomposites KW - Epoxy KW - Rigid amorphous fraction KW - TMDSC KW - Flash DSC PY - 2021 AN - OPUS4-52036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Molecular dynamics of an asymmetric PVME/PS Blend investigated by broadband dielectric and specific heat spectroscopy N2 - Over the past decades research on the molecular dynamics of miscible polymer blends are of topical interest in the literature, in an attempt to understand the segmental mobilty of individual components, as it is affected by blending. In general, miscible polymer blends exhibit a complex behavior of the molecular mobility. For an A/B blend the relaxation times of component A and component B are affected by the spatial local compositional heterogeneity, present in binary systems on a microscopic level, regardless of the macroscopic homogeneity. Here, a combination of broadband dielectric and specific heat spectroscopy was employed to study the dynamically asymmetric PVME/PS blend with seven different compositions, focusing on samples with high PS contents. Considering that PS is dielectrically invisible, BDS is a powerful technique to study the response of PVME, as it is affected by PS segments. In this work the well-known binary relaxation times distribution of PVME in a blend, originating from the spatial local heterogeneity, was studied over ten decades in frequency, for the first time in literature. Secondly, one of the detected processes, α’-relaxation, shows a crossover from high-temperature behavior (system in equilibrium) towards a low temperature regime, where PS undergoes the thermal glass transition, resulting in confined segmental dynamics of PVME within a frozen network of PS. Here, we introduce a precise mathematical tool to distinguish between the temperature dependency regimes of the process, and examine the composition dependence of the crossover temperature, detected by dielectric spectroscopy. Moreover, the dielectric data was compared in detail with results obtained by specific heat spectroscopy. This comparison provides new insights in the dynamics and dynamic heterogeneity of the PVME/PS blend system. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Polymer blends KW - Dielectric spectroscopy KW - Specific heat spectroscopy PY - 2018 AN - OPUS4-45917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Dynamics of nanoscopically confined PVME in thin films of an asymmetric miscible PVME/PS blend N2 - In recent years, substantial efforts have been devoted to investigating nanoscopic confinement of polymers, and its effect on glassy dynamics. Broadband Dielectric Spectroscopy (BDS) was used to study the dynamics of ultra-thin films of PVME/PS 50/50 wt% blend, employing a novel nano-structured capacitor sample arrangement. The investigated system shows a complex dynamic behavior. First, an α-relaxation, related to a bulk-like layer was found. Second, an α’-relaxation was observed, characteristic for dynamically asymmetric blends, where the out of equilibrium dynamics is attributed to weakly-cooperative PVME segments relaxing within a frozen environment of PS segments. Third, for thinnest films, an Arrhenius-like process was dominant in the dielectric spectra, indicating localized fluctuations of the segments. Relaxation rates of this process resembled that of the degenerated α-relaxation of the adsorbed layer, found for pure PVME [1], thus it was assigned accordingly. For thinnest films, this process undergoes a further confinement, due to the topological constraints, introduced by PS. Such multiple confinement effect has not been reported for ultra-thin films of polymer blends, before this study [2]. [1] Madkour, S. et al. ACS Appl. Mater. Interfaces 2017, 9, 7535. [2] Madkour, S. et al. ACS Appl. Mater. Interfaces 2017, 9, 37289. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Polymer blends KW - Thin polymer films KW - Dielectric spectroscopy KW - Specific heat spectroscopy PY - 2018 AN - OPUS4-45919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Rigid Amorphous Phase in Polymer Nanocomposites as Revealed by Relaxation Spectroscopy N2 - In inorganic/polymer nanocomposites the polymer matrix region near a filler surface, termed as the interphase, is of topical interest due to its possible influence on the macroscopic properties of the material. The segmental dynamics of this interphase is expected to be altered, as compared to the pure matrix, which might percolate into the entire system. It was found that a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of the polymer segments onto the nanoparticles, yielding in their immobilization. Here, we employed a combination of two relaxation spectroscopy techniques (Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) in a form of Temperature Modulated DSC (TMDSC)) to investigate the structure and molecular mobility of Epoxy/Inorganic nanofiller composites with different nanoparticles geometries and contents. The two techniques show different perspectives on the glassy dynamics; BDS is sensitive to dipole fluctuations, whereas SHS senses entropy fluctuations. First, our dielectric relaxation investigations proved an existence of an additional process in nanocomposites, which is not present in the pure material. Due to the increasing intensity of the process with increasing filler content it was assigned as the α-process related to the segmental dynamics of polymer chains adsorbed onto the nanoparticles. Considering the expected high conductivity effects of the material, the dielectric data were analyzed by fitting a derivative of the HN function to a “conduction-free” loss spectra: ε''deriv=-(∂ε'/∂logω). Second, TMDSC measurements were used to study the specific heat capacity of nanocomposites in its nanofiller content dependence. Assuming that RAF is proportional to the decrease of the specific heat capacity step (Δcp) in the glass transition region of the nanocomposites, comparing to the pure material, the inorganic/polymer interphase was quantitatively analyzed and the amount of RAF estimated. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Boehmite KW - Nanocomposites KW - Rigid amorphous fraction KW - BDS KW - TMDSC PY - 2018 AN - OPUS4-45915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Rigid amorphous phase in polymer nanocomposites as revealed by dielectric relaxation spectroscopy and fast scanning calorimetry N2 - For inorganic/polymer nanocomposites a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate into the entire system, affecting the overall nanocomposite properties. A combination of two relaxation spectroscopy techniques (Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) in a form of Temperature Modulated DSC (TMDSC)) as well as Fast Scanning Calorimetry (FSC) was employed to investigate the structure and molecular mobility of nanocomposites based on Epoxy and Layered Doubled Hydroxides with different nanoparticle content. First, BDS investigations proved the existence of a process, which is present only for nanocomposites, assigned to the dynamics of polymer segments within RAF. Second, the amount of RAF was quantified by analyzing the change of specific heat capacity step of nanocomposites, comparing to the pure material. Thirdly, the glass transition of nanocomposites was studied with FSC, applying high heating rates (500-10 000 K/s). Considering that all techniques probe essentially the same molecular process, an activation plot was constructed, delivering a complete picture of the molecular mobility and structure of the polymer nanocomposites including RAF. T2 - American Physical Society (APS) March Meeting 2019 CY - Boston, MA, USA DA - 04.03.2019 KW - Nanocomposites KW - Rigid amorphous fraction PY - 2019 AN - OPUS4-47564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Glass transition and glassy dynamics of thin polymer films and polymer nanocomposites N2 - Polymers at interfaces play a major role in a broad variety of applications ranging from engineering purposes (for instance polymer based nanocomposites) to high tech implications (for instance light emitting diodes). Here the glass transition and glassy dynamics is considered for epoxy-based nanocomposite with Layered Double Hydroxide nanofiller and for thin films of a misicble polymer blend of PVME/PS with thicknesses down to 7 nm. The materials are investigated by spectroscopic techniques (broadband and specific heat spectroscopy), as well as by fast scanning calorimetry and small- and wide-angle X-ray scattering. T2 - Seminarvortrag Columbia University CY - New York, USA DA - 11.03.2019 KW - Nanocomposites KW - Rigid amorphous fraction KW - Thin films KW - Interfaces PY - 2019 AN - OPUS4-47565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Rigid Amorphous Phase in Epoxy-based Nanocomposites as Revealed by Dielectric Spectroscopy and Fast Scanning Calorimetry N2 - For inorganic/polymer nanocomposites a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate to the entire system, affecting the overall nanocomposite properties. A combination of two relaxation spectroscopy techniques (Broadband Dielectric Spectroscopy (BDS) and Temperature Modulated DSC (TMDSC)) as well as Fast Scanning Calorimetry (FSC) was employed to investigate the structure and molecular mobility of nanocomposites based on Epoxy and Layered Doubled Hydroxides with different nanoparticle content. First, BDS investigations proved the existence of a process, which is present only for nanocomposites, assigned to the dynamics of polymer segments within RAF. Second, the amount of RAF was quantified by analyzing the change of specific heat capacity step of nanocomposites, comparing to the pure material. Thirdly, the glass transition of nanocomposites was studied with FSC, applying high heating rates (0.5-10 kK/s). Considering that all techniques probe essentially the same molecular process, an activation plot was constructed, delivering a complete picture of the molecular mobility and structure of the polymer nanocomposites including RAF. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 01.04.2019 KW - Rigid amorphous fraction KW - Nanocomposites PY - 2019 AN - OPUS4-47762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Madkour, Sherif T1 - Multiple Glassy Dynamics of an Asymmetric PVME/PS Blend Investigated by Broadband Dielectric and Specific Heat Spectroscopy N2 - Over the past decades research on the molecular dynamics of miscible polymer blends is of topical interest in the literature, to understand the segmental mobility of individual components, as it is affected by blending. In general, miscible polymer blends exhibit a complex dynamic behavior. For an A/B blend the relaxation times of component A and component B are affected by the spatial local compositional heterogeneity, present in binary systems on a microscopic level, regardless of the macroscopic homogeneity. Here, a combination of broadband dielectric and specific heat spectroscopy was employed to study the dynamically asymmetric PVME/PS blend with seven different compositions, focusing on samples with high PS contents. Considering that PS is dielectrically invisible, BDS is a powerful technique to study the response of PVME, as it is affected by PS segments. Here, three separate relaxation processes were found by dielectric investigations, related to confined or constrained PVME segments due to the spatial local compositional heterogeneities, which is in contrary to the previous literature findings [1]. Moreover, the dielectric data was compared with results obtained by specific heat spectroscopy, where a fourth relaxation process was found, due to the cooperative fluctuations of PVME and PS. [1] Colmenero, J., Arbe, A. Soft Matter, 2007, 3, 1474. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 01.04.2019 KW - Specific heat spectroscopy KW - Polymer blends KW - Dielectric spectroscopy PY - 2019 AN - OPUS4-47764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Ghasem Zadeh Khorasani, Media A1 - Schönhals, Andreas T1 - Competition of mobilization and immobilization effects of segmental dynamics in epoxy/Boehmite nanocomposites N2 - The polymer matrix region near a filler surface, termed as the interface, witnessed increasing interest, due to its possible influence on the macroscopic properties of the nanocomposite. The interphase is expecting to have different segmental dynamic, as compared to the pure matrix, which can percolate into the entire system. Here, the segmental dynamics of epoxy/Boehmite nanocomposite was studied by Broadband Dielectric Spectroscopy. It was found that an artificial relaxation process is present in the nanocomposite, on the contrary to the pure epoxy system. It was assigned to constrained fluctuations of polymer chains in the interfacial region, due to the nanofiller. However, the overall dynamic Tg of the system decreased with increasing filler concentration, indicating higher segmental mobility. This was in accordance with Temperature Modulated DSC investigations of specific heat capacity of the system, which was found to increase with increasing filler concentration, up to 10 wt%, indicating increasing mobility of the polymer matrix segments. Surprisingly, for the highest filler content, the heat capacity decreases, implying a formation of an immobilized rigid amorphous phase in the interfacial region. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Nanocomposites PY - 2018 AN - OPUS4-44503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Böhning, Martin A1 - Zorn, Reiner A1 - Schönhals, Andreas T1 - Inelastic and quasielastic neutron scattering experiments on microporous membranes fro green separation processes N2 - Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. These polymers are characterized by a high permeability and reasonable permselectivity. The latter point is somehow surprising because for microporous systems a more Knudson-like diffusion is expected then a size dependent temperature activated sieving process. It was argued in the framework of a random gate model that molecular fluctuations on a time scale from ps to ns are responsible for the permselectivity. Here series of polymers of intrinsic microporosity (PIMs) as well as microporous polynorbornenes with bulky Si side groups and a rigid backbone are considered. The polymers have different microporosity characterized by high BET surface area values. First inelastic time-of-flight neutron scattering measurements were carried out to investigate the low frequency density of state (VDOS). The measured data show the characteristic low frequency excess contribution to the VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. It was found that the frequency of the maximum position of the Boson peak correlates with the BET surface area value. Secondly elastic scans as well as quasielastic neutron scattering measurements by a combination of neutron time-of-flight and backscattering have been out. A low temperature relaxation process was found for both polymers. This process was assigned to the methyl group rotation. It was analysed in terms of a jump diffusion in a three-fold potential. The analysis of the dependence of the elastic incoherent structure factor on the scattering vector yields the number of methyl groups which might be immobilized. The neutron scattering experiments were accompanied by fast scanning calorimetry and broadband dielectric investigations as well as atomistic molecular dynamic simulations. T2 - Kolloquiumsvortrag an der Technischen Universität München CY - Garching, Germany DA - 20.11.2023 KW - Polymers with intrinsic microporosity PY - 2023 AN - OPUS4-59036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -