TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine N2 - Small-angle X-ray scattering (SAXS) can be used for structural determination of biological macromolecules and polymers in their native states (e.g. liquid phase). This means that the structural changes of (bio-)polymers, such as proteins and DNA, can be monitored in situ to understand their sensitivity to changes in chemical environments. In an attempt to improve the reliability of such experiments, the reduction of radiation damage occurring from exposure to X-rays is required. One such method, is to use scavenger molecules to protect macromolecules against radicals produced during radiation exposure, such as reactive oxygen species (ROS). In this study we investigate the feasibility of applying the compatible solute, osmolyte and radiation protector Ectoine (THP(B)), as a scavenger molecule during SAXS measurements of the single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). In this case, we monitor the radiation induced changes of G5P during bio-SAXS measurments and the resulting microscopic energy-damage relation was determined from microdosimetric calculations by Monte-Carlo based particle scattering simulations with TOPAS/Geant4 and a custom target-model. This resulted in a median-lethal energy deposit of pure G5P at 4 mg mL−1 of E1/2 = 7 ± 5 eV, whereas a threefold increase of energy-deposit was needed under the presence of Ectoine to reach the same level of damage. This indicates that Ectoine increases the possible exposure time before radiation-damage to G5P is observed. Furthermore, the dominant type of damage shifted from aggregation in pure solutions towards a fragmentation for solutions containing Ectoine as a cosolute. These results are interpreted in terms of indirect radiation damage by reactive secondary species, as well as post-irradiation effects, related to preferential-exclusion of the cosolute from the protein surface. Hence, Ectoine is shown to provide a non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies. KW - BioSAXS KW - Bio-SAXS KW - Cosolute KW - Ectoine KW - G5P KW - GVP KW - Radiation damage KW - Radical Scavenger KW - Single-stranded DNA-binding proteins KW - X-ray scattering KW - DNA KW - ssDNA KW - Protein KW - SAXS KW - Small-angle xray scattering KW - McSAS3 KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - Geant4-DNA KW - Topas KW - Topas-MC KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Topas-nBio KW - OH Radical KW - OH radical scavenger KW - LEE KW - Ionizing radiation damage KW - Protein unfolding KW - Ectoin PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568909 DO - https://doi.org/10.1039/d2cp05053f SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5372 EP - 5382 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Axel A1 - Goedecke, Caroline A1 - Eisentraut, Paul A1 - Piechotta, Christian A1 - Braun, Ulrike T1 - Microplastic analysis using chemical extraction followed by LC‑UV analysis: a straightforward approach to determine PET content in environmental samples N2 - Background: The ubiquitous occurrence of microplastic particles in marine and aquatic ecosystems was intensively investigated in the past decade. However, we know less about the presence, fate, and input paths of microplastic in terrestrial ecosystems. A possible entry path for microplastic into terrestrial ecosystems is the agricultural application of sewage sludge and solid bio-waste as fertilizers. Microplastic contained in sewage sludge also includes Polyethylene terephthalate (PET), which could originate as fiber from textile products or as a fragment from packaging products (foils, bottles, etc.). Information about microplastic content in such environmental samples is limited yet, as most of the used analytical methods are very time-consuming, regarding sample preparation and detection, require sophisticated analytical tools and eventually need high user knowledge. Results: Here, we present a simple, specific tool for the analysis of PET microplastic particles based on alkaline extraction of PET from the environmental matrix and subsequent determination of the monomers, terephthalic acid, using liquid chromatography with UV detection (LC-UV). The applicability of the method is shown for different types of PET in several soil-related, terrestrial environmental samples, e.g., soil, sediment, compost, fermentation residues, but also sewage sludge, suspended particles from urban water management systems, and indoor dust. Recoveries for model samples are between 94.5 and 107.1%. Limit of determination and limit of quantification are absolute masses of 0.031 and 0.121 mg PET, respectively. In order to verify the measured mass contents of the environmental samples, a method comparison with thermal extraction-desorption-gas chromatography–mass spectrometry (TED-GC/MS) was conducted. Both methods deliver similar results and corroborated each other. PET mass contents in environmental samples range from values below LOQ in agriculture soil up to 57,000 mg kg−1 in dust samples. Conclusions: We demonstrate the potential of an integral method based on chemical extraction for the Determination of PET mass contents in solid environmental samples. The method was successfully applied to various matrices and may serve as an analytical tool for further investigations of PET-based microplastic in terrestrial ecosystems. KW - Soil KW - Analysis KW - Microplastic KW - PET KW - LC-UV PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509060 DO - https://doi.org/10.1186/s12302-020-00358-x IS - 32 SP - 85 PB - Springer Open CY - Berlin AN - OPUS4-50906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezera, Marek A1 - Alamri, S. A1 - Hendriks, W. A. P. M. A1 - Hertwig, Andreas A1 - Elert, Anna Maria A1 - Bonse, Jörn A1 - Kunze, T. A1 - Lasagni, A. F. A1 - Römer, G. R. B. E. T1 - Hierarchical micro-/nano-structures on polycarbonate via UV pulsed laser processing N2 - Hierarchical micro/-nanostructures were produced on polycarbonate polymer surfaces by employing a two-step UV-laser processing strategy based on the combination of Direct Laser Interference Patterning (DLIP) of gratings and pillars on the microscale (3 ns, 266 nm, 2 kHz) and subsequently superimposing Laser-induced Periodic Surface Structures (LIPSS; 7–10 ps, 350 nm, 100 kHz) which adds nanoscale surface features. Particular emphasis was laid on the influence of the direction of the laser beam polarization on the morphology of resulting hierarchical surfaces. Scanning electron and atomic force microscopy methods were used for the characterization of the hybrid surface structures. Finite-difference time-domain (FDTD) calculations of the laser intensity distribution on the DLIP structures allowed to address the specific polarization dependence of the LIPSS formation observed in the second processing step. Complementary chemical analyzes by micro-Raman spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy provided in-depth information on the chemical and structural material modifications and material degradation imposed by the laser processing. It was found that when the linear laser polarization was set perpendicular to the DLIP ridges, LIPSS could be formed on top of various DLIP structures. FDTD calculations showed enhanced optical intensity at the topographic maxima, which can explain the dependency of the morphology of LIPSS on the polarization with respect to the orientation of the DLIP structures. It was also found that the degradation of the polymer was enhanced for increasing accumulated fluence levels. KW - Direct laser interference patterning KW - Laser-induced periodic surface structures (LIPSS) KW - Polycarbonate KW - Hierarchical structures KW - Surface functionalization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509101 DO - https://doi.org/10.3390/nano10061184 SN - 2079-4991 VL - 10(6) IS - Special issue "Laser-generated periodic nanostructures" SP - 1184-1 EP - 1184-19 PB - MDPI CY - Basel AN - OPUS4-50910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roszak, I. A1 - Oswald, L. A1 - Ouahabi, A. A. A1 - Bertin, Annabelle A1 - Laurent, E. A1 - Felix, O. A1 - Carvin-Sergent, I. A1 - Charles, L. A1 - Lutz, J.-F. T1 - Synthesis and sequencing of informational poly(amino phosphodiester)s N2 - Sequence-defined poly(amino phosphodiester)s containing main-chain tertiary amines were synthesized by automated solid-phase phosphoramidite chemistry. These polymers were prepared using four monomers with different substituents. The formed polymers were characterized by HPLC and mass spectrometry. These methods evidenced preparation of molecularly-defined polymers. Furthermore, the presence of tertiary amines in the polymer backbones facilitates sequencing by tandem mass spectrometry. KW - Poly(amino phosphodiester) KW - Synthesis KW - HPLC KW - Mass spectrometry PY - 2021 DO - https://doi.org/10.1039/d1py01052b SN - 1759-9954 VL - 12 IS - 37 SP - 5279 EP - 5282 PB - Royal Society of Chemistry AN - OPUS4-53732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Topolniak, Ievgeniia A1 - Weise, Matthias A1 - Sturm, Heinz T1 - Shape deviations of DLW microstructures in dependency of fabrication parameters N2 - Deep understanding of the effects associated with fabrication parameters and their influence on the resulting structures shape is essential for the further development of direct laser writing (DLW). In particular, it is critical for development of reference materials, where structure parameters are precisely fabricated and should be reproduced with use of DLW technology. In this study we investigated the effect of various fabrication and preparation parameters on the structural precision of interest for reference materials. A well-studied photo-curable system, SZ2080 negative photo-resist with 1 wt.% Michler's ketone (Bis) photo-initiator, was investigated in this work. The correlation between applied laser power, laser velocity, fabrication direction on the deviations in the structure shape were observed by means of white light interferometry microscopy. Moreover, influence of slicing and hatching distances as well as prebake time were studied as function of sample shape. Deviations in the structure form between the theoretically expected and the one detected after DLW fabrication were observed in the range up to 15%. The observed shape discrepancies show the essential importance of fine-tuning the fabrication parameter for reference structure production. KW - Direct laser writing KW - Fabrication parameters KW - Structural precision KW - SZ2080 negative photo-resist KW - White light interferometry microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535906 DO - https://doi.org/10.1088/1361-6439/ac2a14 VL - 31 IS - 12 SP - 1 EP - 8 PB - IOP Science AN - OPUS4-53590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Malpass-Evans, R. A1 - McKeown, N. A1 - Tyagi, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Low frequency vibrations and diffusion in disordered polymers bearing an intrinsic microporosity as revealed by neutron scattering N2 - The microscopic diffusion and the low frequency density of states (VDOS) of PIM-EATB(CH3) are investigated by inelastic and quasi-elastic neutron scattering where also the demethylated counterpart of PIM-EA-TB(H2) is considered. These intrinsic microporous polymers are characterized by large BET surface area values of several hundred m2/g and pore sizes between 0.5 and 2 nm. Detailed comparison is made to the archetype of polymers of intrinsic microporosity, PIM-1, and polynorbornenes also bearing a microporosity. Due to the wavelength of neutrons, the diffusion and vibrations can be addressed on microscopic length and time scales. From the inelastic neutron scattering experiments the low frequency density of states (VDOS) is estimated which shows excess contributions to the Debye-type VDOS known as Boson peak. It was found that the maximum frequency of the Boson peak decreases with increasing microporosity characterized by the BET surface area. However, besides the BET surface area, additional factors such as the backbone stiffness govern the maximum frequency of the Boson peak. Further the mean squared displacement related to microscopic motions was estimated from elastic fixed window scans. At temperatures above 175 K, the mean squared displacement PIM-EA-TB(CH3) is higher than that for the demethylated counterpart PIM-EA-TB(H2). The additional contribution found for PIM-EATB(CH3) is ascribed to the rotation of the methyl group in this polymer because the only difference between the two structures is that PIM-EA-TB(CH3) has methyl groups where PIM-EA-TB(H2) has none. A detailed comparison of the molecular dynamics is also made to that of PIM-1 and the microporous polynorbornene PTCNSi1. The manuscript focuses on the importance of vibrations and the localized molecular mobility characterized by the microscopic diffusion on the gas Transport in polymeric separation membranes. In the frame of the random gate model localized fluctuations can open or close bottlenecks between pores to enable the diffusion of gas molecules. KW - Polymer of intrisic microporosity KW - Neutron scattering KW - Boson peak KW - Methyl group rotation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538490 DO - https://doi.org/10.3390/cryst11121482 VL - 11 IS - 12 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-53849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Szymoniak, Paulina A1 - Smales, Glen Jacob A1 - Sturm, Heinz A1 - Schönhals, Andreas T1 - Electrospun nanocomposites fibers of polycarbonate and taurine modified boehmite nanoparticles - What can be learned from structural and thermal investigations N2 - Though the reinforcing properties of inorganic particles in thermosetting nanocomposites, has been exploited, the integration of nanoparticles continues to be challenging in terms of their homogeneous distribution and their manipulation which can contribute to occupational hazards. Due to a second encapsulations of nanoparticles, electrospun nanocomposite fibers containing nanoparticles might be an alternative for overcoming these issues, as the fiber nonwovens contains the nanoparticles allowing for safer manipulation. Here, the morphology, and the thermal properties of electrospun polycarbonate fibers containing taurine modified boehmite nanoparticles (BNP) are investigated by means of small and wide-angle X-ray scattering as well as fast scanning and temperature modulated fast scanning calorimetry for the first time. The latter techniques allow the investigation of the thermal properties of single fibers at heating rates up to 10^4 K s^-1 keeping its structure intact. A quantitative analysis of the scattering data reveals a porous structure of the fibers. The porous structure is quantified regarding the pore volume and the pore size. A constant amount of aggregation is found even for the highly BNP loaded fibers. Thermal analysis on the fibers reveals a rigid amorphous fraction (RAF) where it is known that RAF determinates the properties of a nanocomposite to a large extent. For the fibers RAF amounts up to 40 wt%, which is essential higher compared to equally formulated PC/BNP composite cast films. The RAF in the case of the fibers, is not only due to the presence of particles in the polymer but also due to orientation effects induced by the electrospinning process. KW - Nanocomposite fibers KW - Electrospinning KW - X-ray scattering KW - Fast scanning calorimetry KW - Rigid amorphous fraction PY - 2021 DO - https://doi.org/10.1021/acsapm.1c01265 VL - 3 IS - 12 SP - 6572 EP - 6585 PB - ACS AN - OPUS4-53871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed Aejaz A1 - Yildirim, Arda A1 - Sentker, K. A1 - Butschies, M. A1 - Bühlmeyer, A. A1 - Huber, P. A1 - Lachat, S. A1 - Schönhals, Andreas T1 - Molecular dynamics and electrical conductivity of Guanidinium based Ionic liquid crystals: Influence of cation headgroup configuration N2 - Molecular mobility and conductivity of four bent shaped tetramethylated guanidinium based ionic liquid crystals (ILCs) with varying head group configuration (cyclic or acyclic) and alkyl chain length is investigated by a combination of broadband dielectric spectroscopy (BDS) and specific heat spectroscopy (SHS). Two dielectrically active processes observed in the plastic crystalline phase at low and high temperatures are denoted as γ and α1 relaxation. The former is assigned to localized fluctuations of methyl groups including nitrogen atoms in the guanidinium head groups. SHS investigations reveal one calorimetrically active process termed as α2 relaxation process. The temperature dependencies of the relaxation rates of α1 and α2 are similar for the cyclic ILC while for the acyclic counterpart they are different. Possible molecular assignments for the α1 and α2 relaxation are discussed in detail. Alongside relaxation processes, a significant conductivity contribution was observed for all ILCs, where the absolute value of DC conductivity increases by 4 orders of magnitude at the transition from the crystalline to the hexagonal columnar phase. The increase is traced to the change in the underlying conduction mechanism from the delocalized electrical conduction in the Cry phase to ionic conduction in the quasi 1D ion columns formed in the hexagonal columnar mesophase. KW - Ionic liquid crystal PY - 2021 DO - https://doi.org/10.1016/j.molliq.2021.115666 VL - 330 SP - 115666 PB - Elsevier B.V. AN - OPUS4-52284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zosef, M. A1 - Fahmy, Alaa A1 - El Hotaby, W. A1 - Hassan, A. A1 - Khalil, A. A1 - Anis, B. T1 - High performance graphene-based PVF foam for lead removal from water N2 - The synthesis and optimization of superior and eco-friendly sorbents for Pb(II) pose a great challenge in the field of water treatment. The sorbent was developed by introducing graphene oxide (GO) into the matrix of polyvinyl formaldehyde (PVF) foam. The immobilization of GO in PVF results in significant increase in the maximum adsorption capacity (Qt) of GO powder for Pb(II), from ≈800 to ≈1730 mg g−1 in the case of GO/PVF foam. As compared with GO powder in Pb(II) aqueous solutions, PVF matrix keeps GO sheets stable without any agglomeration. The large surface area of GO sheet allows the abundant oxygenated functional groups on its surface to participate effectively in the Pb(II) adsorption process, leading to the huge increase of the Qt. Adsorption isotherms and kinetic studies indicated that the sorption process of Pb(II) on GO/PVF was done on heterogenous surface by ion-exchange reaction. The GO/PVF foam showed an excellent reusability for more than 10 cycles with almost the same efficiency and without any significant change in its physical properties. KW - Water treatment KW - Graphene oxide KW - Lead ions KW - Polyvinyl formaldehyde foam KW - Superior sorbent PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523013 DO - https://doi.org/10.1016/j.jmrt.2020.08.011 VL - 9 IS - 5 SP - 11861 EP - 11875 PB - Elsevier B.V. AN - OPUS4-52301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - Abou-Saied, M. A1 - Helaly, H. A1 - El-Dessoki, F. A1 - Mohamed, T. T1 - Novel PVA/Methoxytrimethylsilane elastic composite membranes: preparation, characterization and DFT computation N2 - A modified composite membranes (PVA/SiOH/SiOC) were made via solution-casting process using different 1:1, 1:2, 1:3 and 1:4 volume ratios of polyvinyl alcohol (PVA):methoxytrimethylsilane (MTMS). Moreover, FT-infrared and energy-dispersive X-ray spectroscopy (EDX) were mesured to account for the network structural rearrangements involving silicon within PVA matrices. The addition of MTMS has improved the thermal and mechanical properties of the composite membranes as compared to pristine PVA. In addition, the crystallinity and the morphological changes of PVA/MTMS composites was studied using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. Three structures were suggested based on trimethyl silanol (I) wet out condensation (II and III) with the dopped PVA followed by and H-bonding interactions (IV). The outcomes of B3LYP/6-31G(d) frequency calculations favors a three-dimensional SiOC linked network (III). Nevertheless, EDX reveals, the 3D SiOC links are not observed on the surface of composite membranes, however, is found dominant in the bulk, [(CH3)3SiOCH2CH2CH2O]n. Moreover, the solubility, density, and refractive index of the synthesized composites were measured and found depended on the ratio of PVA in the composite membranes. The current results are compared with that published earlier including dimethoxydimethylsilane at the same conditions. KW - Polymer composites KW - DFT calculations KW - Elastic membrane KW - Methoxytrimethlsilane KW - Polyvinyl alcohol PY - 2021 DO - https://doi.org/10.1016/j.molstruc.2021.130173 VL - 1235 SP - 130173 PB - Elsevier B.V. AN - OPUS4-52302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - El Sabbagh, M. A1 - Bedair, M. A1 - Gangan, A. A1 - El-Sabbah, M. A1 - El-Bahy, S. A1 - Friedrich, J. T1 - One-step plasma deposited thin SiOxCy films for corrosion resistance of low carbon steel N2 - Tetraethyl orthosilicate (TEOS) was used as a chemical precursor to deposit ultra-thin SiO x C y plasma polymer films onto mild steel surfaces for preventing the corrosion process. The structure–property relationships of the coatings were evaluated by X-ray Photo Spectroscopy (XPS), X-Ray Diffraction (XRD), Fourier Transform InfraRed spectroscopy (ATR-FTIR) and Energy Dispersive X-ray spectroscopy (EDX) completed with Scanning Electron Microscopy (SEM). The SEM micrographs confirmed a pinhole-free surface morphology of the low-pressure deposited plasma polymer films. The TEOS molecules become fragmented in the plasma by numerous collisions with energy-rich electrons and heavier particles. Recombination of fragments and condensation onto the steel substrate is responsible for the formation of organic SiO containing plasma polymer layers. Such thin layers consist of predominantly SiO x structures. Their properties are determined largely by the gap distance between the two samples used as electrodes in the plasma. The efficiency of the corrosion-protecting coating was compared with uncoated samples. The corrosion protection was determined by exposure of samples to 3.5% NaCl aqueous solutions. For this purpose, polarization and Electrochemical Impedance Spectroscopy (EIS) were used to monitor the corrosion. The optimal gap distance between the electrodes was determined for corrosion protection. The best protective efficiency reached more than 97% of the total protection as measured at room temperature. KW - Thin films KW - Corrosion resistance KW - Mild steel KW - Plasma treatments KW - Tetraethyl orthosilicate PY - 2020 DO - https://doi.org/10.1080/01694243.2020.1856539 VL - 35 IS - 16 SP - 1734 EP - 1751 PB - Taylor & Francis AN - OPUS4-52303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Ghasem Zadeh Khorasani, Media A1 - Cano Murillo, Natalia A1 - Elert, Anna Maria A1 - Sturm, Heinz ED - Glatzel, T. T1 - Bulk chemical composition contrast from attractive forces in AFM force spectroscopy N2 - A key application of atomic force microscopy (AFM) is the measurement of physical properties at sub-micrometer resolution. Methods such as force–distance curves (FDCs) or dynamic variants (such as intermodulation AFM (ImAFM)) are able to measure mechanical properties (such as the local stiffness, kr) of nanoscopic heterogeneous materials. For a complete structure–property correlation, these mechanical measurements are considered to lack the ability to identify the chemical structure of the materials. In this study, the measured attractive force, Fattr, acting between the AFM tip and the sample is shown to be an independent measurement for the local chemical composition and hence a complete structure–property correlation can be obtained. A proof of concept is provided by two model samples comprised of (1) epoxy/polycarbonate and (2) epoxy/boehmite. The preparation of the model samples allowed for the assignment of material phases based on AFM topography. Additional chemical characterization on the nanoscale is performed by an AFM/infrared-spectroscopy hybrid method. Mechanical properties (kr) and attractive forces (Fattr) are calculated and a structure–property correlation is obtained by a manual principle component analysis (mPCA) from a kr/Fattr diagram. A third sample comprised of (3) epoxy/polycarbonate/boehmite is measured by ImAFM. The measurement of a 2 × 2 µm cross section yields 128 × 128 force curves which are successfully evaluated by a kr/Fattr diagram and the nanoscopic heterogeneity of the sample is determined. KW - AFM force spectroscopy KW - Composites KW - Principle component analysis KW - Structure–property correlation KW - Van der Waals forces PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520175 DO - https://doi.org/10.3762/bjnano.12.5 SN - 2190-4286 VL - 12 IS - 5 SP - 58 EP - 71 PB - Beilstein Institute CY - Frankfurt am Main AN - OPUS4-52017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zarinwall, A. A1 - Waniek, Tassilo A1 - Saadat, R. A1 - Braun, U. A1 - Sturm, Heinz A1 - Garnweitner, G. T1 - Comprehensive Characterization of APTES Surface Modifications of Hydrous Boehmite Nanoparticles N2 - Hydrous boehmite (γ-AlOOH) nanoparticles (BNP) show great potential as nanoscale filler for the fabrication of fiber reinforced nanocomposite materials. Notably, the particle−matrix interaction has been demonstrated to be decisive for improving the matrix-dominant mechanical properties in the past years. Tailoring the surface properties of the nanofiller enables to selectively design the interaction and thus to exploit the benefits of the nanocomposite in an optimal way. Here, an extensive study is presented on the binding of (3-aminopropyl)triethoxysilane (APTES), a common silane surface modifier, on BNP in correlation to different process parameters (concentration, time, temperature, and pH). Furthermore, a comprehensive characterization of the modified BNP was performed by using elemental analysis (EA), thermogravimetric analysis (TGA) coupled with mass spectrometry (TGA-MS), and Kaiser’s test (KT). The results show an increasing monolayer formation up to a complete surface coverage with rising APTES concentration, time, and temperature, resulting in a maximal grafting density of 1.3 molecules/nm². Unspecific multilayer formation was solely observed under acidic conditions. Comparison of TGA-MS results with data recorded from EA, TGA, and KT verified that TGA-MS is a convenient and highly suitable method to elucidate the ligand binding in detail. KW - Boehmite KW - Nanoparticle KW - Surface KW - APTES KW - Functionalization KW - BET KW - TGA KW - Grafting KW - Nanocomposite KW - Silane PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.0c02682 VL - 37 IS - 1 SP - 171 EP - 179 PB - ACS Publications AN - OPUS4-51954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A1 - Garwek, Marcel A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Do Interfacial Layers in Thin Films Act as an Independent Layer Within Thin Films? N2 - The thermodynamic behavior of thin PVME films including the irreversible adsorbed layer on the substrate is investigated. In a first step, the growth kinetics of the adsorbed layer was studied combining a leaching technique and atomic force microscopy. Further, it was shown that there is a critical initial film thickness for the formation of a surface-filling adsorbed layer. Additionally, spectroscopic ellipsometry measurements were carried out to investigate the influence of the adsorbed layer on the glass transition temperature of the thin films. For 30 nm films and below, the influence of the adsorbed layer percolates strongly to the bulk-like layer of the film. Finally, the molecular dynamics of the adsorbed layer was studied by broadband dielectric spectroscopy, employing nanostructured-electrode systems. One process was revealed, which was assigned either to molecular fluctuations taking place in a loosely-bounded the part of the adsorbed layer, or to the desorption/adsorption of segments at the substrate. KW - Thin polymer films PY - 2021 DO - https://doi.org/10.1021/acs.macromol.0c02149 VL - 54 IS - 1 SP - 509 EP - 519 PB - ACS Publications AN - OPUS4-52037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Qu, Xintong A1 - Abbasi, M. A1 - Pauw, Brian Richard A1 - Henning, S. A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schick, C. A1 - Saalwächter, K. A1 - Schönhals, Andreas T1 - Spatial inhomogeneity, Interfaces and Complex Vitrification Kinetics in a Network Forming Nanocomposite N2 - A detailed calorimetric study on an epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) as the polymer matrix and taurine-modified MgAL layered double hydroxide (T-LDH) as nanofiller. The -NH2 group of taurine can react with DGEBA improving the interaction of the polymer with the filler. The combined X-ray scattering, and electron microscopy data showed that the nanocomposite has a partially exfoliated morphology. Calorimetric studies were performed with conventional DSC, temperature modulated DSC (TMDSC) and fast scanning calorimetry (FSC) in the temperature modulated approach (TMFSC) to investigate the vitrification and molecular mobility in dependence of the filler concentration. First, TMDSC and NMR were used to estimate the amount of the rigid amorphous fraction which consists of immobilized polymer segments at the nanoparticle surface. It was found to be 40 wt% for the highest filler concentration, indicating that the interface dominates the overall macroscopic properties and behavior of the material to a great extent. Second, the relaxation rates of the α-relaxation obtained by TMDSC and TMFSC were compared with the thermal and dielectric relaxation rates measured by static FSC. The investigation revealed that the system shows two distinct α-relaxation processes. Furthermore, also two separate vitrification mechanisms were found for a bulk network-former without geometrical confinement as also confirmed by NMR. This was discussed in terms of the intrinsic spatial heterogeneity on a molecular scale, which becomes more pronounced with increasing nanofiller content. KW - Polymer based Nanocomposites PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523199 DO - https://doi.org/10.1039/d0sm01992e SN - 1744-6848 VL - 17 IS - 10 SP - 2775 EP - 2790 PB - Royal Society of Chemistry AN - OPUS4-52319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Braun, U. A1 - Herper, D. A1 - Knefel, M. A1 - Bednarz, M. A1 - Bannick, C.-G. T1 - Smart filters for the analysis of microplastic in beverages filled in plastic bottles N2 - The occurrence of microplastic (MP) in food products, such as beverages in plastic bottles, is of high public concern. Existing analytical methods focus on the determination of particle numbers, requiring elaborate sampling tools, laboratory infrastructure and generally time-consuming imaging detection methods. A comprehensive routine analysis of MP in food products is still not possible. In the present work, we present the development of a smart filter crucible as sampling and detection tool. After filtration and drying of the filtered-off solids, a direct determination of the MP mass content from the crucible sample can be done by thermal extraction desorption gas chromatography mass spectroscopy (TED-GC/MS). The new filter crucible allows a filtration of MP down to particle sizes of 5 µm. We determined MP contents below 0.01 µg/L up to 2 µg/L, depending on beverages bottle type. This may be directly related to the bottle type, especially the quality of the plastic material of the screw cap. Dependent on the plastic material, particle formation increases due to opening and closing operations during the use phase. However, we have also found that some individual determinations of samples were subjected to high errors due to random events. A conclusive quantitative evaluation of the products is therefore not possible at present. KW - Microplastic KW - TED-GC/MS KW - Plastic bottles KW - Bbeverages KW - Filter crucible PY - 2021 DO - https://doi.org/10.1080/19440049.2021.1889042 SN - 1944-0057 VL - 38 IS - 4 SP - 691 EP - 700 PB - Taylor & Francis AN - OPUS4-52323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. ED - Zutta Villate, J. M. T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of Radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for future experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - Ectoine KW - OH radicals KW - Radiation damage KW - Radiationtherapy KW - Radioactive decay KW - Simulation KW - Beta particle KW - Clustered nanoparticles KW - Gamma ray KW - Low energy electrons KW - Particle scattering KW - Radiolysis KW - Livermore model KW - Penelope model KW - TOPAS KW - TOPAS-nbio PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523276 DO - https://doi.org/10.1038/s41598-021-85964-2 SN - 2045-2322 VL - 11 IS - 1 SP - 6721 PB - Springer Nature AN - OPUS4-52327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Bannick, C.G. A1 - Szewzyk, R. A1 - Ricking, M. A1 - Schniegler, S. A1 - Obermaier, N. A1 - Barthel, A. K. A1 - Altmann, Korinna A1 - Eisentraut, Paul T1 - Development and testing of a fractionated filtration for sampling of microplastics in water N2 - A harmonization of sampling, sample preparation and detection is pivotal in order to obtain comparable data on microplastics (MP) in the environment. This paper develops and proposes a suitable sampling concept for waterbodies that considers different plastic specific properties and influencing factors in the environment. Both artificial water including defined MP fractions and the discharge of a wastewater treatment plant were used to verify the derived sampling procedure, sample preparation and the subsequent analysis of MP using thermal extraction-desorption gas chromatography - mass spectrometry (TED-GC-MS). A major finding of this paper is that an application of various particle size classes greatly improves the practical handling of the sampling equipment. Size classes also enable the TED-GC-MS to provide any data on the MP size distribution, a substantial sampling property affecting both the necessary sampling volume and the optimal sampling depth. In the artificial water with defined MP fractions, the recovery rates ranged from 80 to 110%, depending on the different MP types and MP size classes. In the treated wastewater, we found both Polyethylene and polystyrene in different size classes and quantities. KW - Microplastics KW - Sampling KW - Sampling techniques KW - Water PY - 2019 DO - https://doi.org/10.1016/j.watres.2018.10.045 SN - 0043-1354 VL - 149 SP - 650 EP - 658 PB - Elsevier AN - OPUS4-47200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Bühlmeyer, A. A1 - Hayash, S A1 - Haenle, J. C. A1 - Sentker, K. A1 - Krause, Christina A1 - Huber, Patrick A1 - Laschat, Sabine A1 - Schönhals, Andreas T1 - Multiple glassy dynamics in dipole functionalized triphenylene-based discotic liquid crystals revealed by broadband dielectric spectroscopy and advanced calorimetry – assessment of the molecular origin N2 - A selected series of dipole functionalized triphenylene-based discotic liquid crystals (DLCs) was synthesized and investigated in a systematic way to reveal the phase behavior and molecular dynamics. The later point is of particular importance to understand the charge transport in such systems which is the key property for their applications such as organic field-effect transistors, solar cells or as nanowires in molecular electronics, and also to tune the properties of DLCs. The mesomorphic properties were studied by polarizing optical microscopy, X-ray diffraction, and differential scanning calorimetry, which were compared to the corresponding unfunctionalized DLC. The molecular dynamics were investigated by a combination of state-of-the-art broadband dielectric spectroscopy (BDS) and advanced calorimetry such as fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). Besides localized fluctuations, surprisingly multiple glassy dynamics were detected for all materials for the first time. Glassy dynamics were proven for both processes unambiguously due to the extraordinary broad frequency range covered. The a1-process is attributed to fluctuations of the alky chains in the intercolumnar space because a polyethylene-like glassy dynamics is observed. This corresponds to a glass transition in a confined three-dimensional space. The a2-process found at temperatures lower than a1-process, is assigned to small scale rotational and/or translational in plane fluctuations of the triphenylene core inside distorted columns. This can be considered as a glass transition in a one-dimensional fluid. Therefore, obtained results are of general importance to understand the glass transition, which is an unsolved problem of condensed matter science. KW - Discotic Liquid Crystals KW - Broadband dielectric spectroscopy KW - Flash DSC KW - Specific heat spectroscopy PY - 2019 DO - https://doi.org/10.1039/c9cp03499d SN - 1463-9076 VL - 21 IS - 33 SP - 18265 EP - 18277 PB - RSC AN - OPUS4-48739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Gawek, Marcel A1 - Madkour, S. A1 - Schönhals, Andreas T1 - Confinement and localization effects revealed for thin films of the miscible blend Poly(vinyl methyl ether) / Polystyrene with a composition of 25/75 wt% N2 - Thin films (200-7nm) of the asymmetric polymer blend poly(vinyl methyl ether) (PVME)/polystyrene (PS) (25/75wt%) were investigated by broadband dielectric spectroscopy (BDS). Thicker samples ([Formula: see text]37 nm) were measured by crossed electrode capacitors (CEC), where the film is capped between Al-electrodes. For thinner films ([Formula: see text]37 nm) nanostructured capacitors (NSC) were employed, allowing one free surface in the film. The dielectric spectra of the thick films showed three relaxation processes ( [Formula: see text] -, [Formula: see text] - and [Formula: see text] -relaxation), like the bulk, related to PVME fluctuations in local spatial regions with different PS concentrations. The thickness dependence of the [Formula: see text] -process for films measured by CECs proved a spatially heterogeneous structure across the film with a PS-adsorption at the Al-electrodes. On the contrary, for the films measured by NSCs a PVME segregation at the free surface was found, resulting in faster dynamics, compared to the CECs. Moreover, for the thinnest films ([Formula: see text]26 nm) an additional relaxation process was detected. It was assigned to restricted fluctuations of PVME segments within the loosely bounded part of the adsorbed layer, proving that for NSCs a PVME enrichment takes place also at the polymer/substrate interface. KW - Thin polymer films KW - Broadband dielectric spectroscopy PY - 2019 DO - https://doi.org/10.1140/epje/i2019-11870-3 SN - 1292-895X VL - 42 IS - 8 SP - 101, 1 EP - 11 PB - Springer AN - OPUS4-48651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Zutta Villate, Julian Mateo T1 - Radioactive gold nanoparticles for cancer treatment: Size and cluster dependent damage studied by Geant4 Monte-Carlo simulations N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive ¹⁹⁸Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply ¹⁹⁸AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. KW - Gold Nanoparticles KW - AuNP KW - Radioactive decay KW - Beta decay KW - DNA KW - DNA damage KW - Radiation damage KW - MCS KW - Monte-Carlo simulation KW - Geant4 KW - Dosimetry KW - Microdosimetry KW - Cancer treatment KW - Radiationtherapy KW - Brachytherapy KW - OH radicals KW - LEE KW - low energy electrons KW - gamma ray KW - beta particle KW - radiolysis KW - clustered nanoparticles KW - NP KW - Simulation KW - particle scattering KW - Geant4-DNA KW - Energy deposit PY - 2019 DO - https://doi.org/10.1140/epjd/e2019-90707-x SN - 1434-6060 SN - 1434-6079 VL - 73 IS - 5 SP - 95, 1 EP - 7 PB - Springer CY - Berlin Heidelberg AN - OPUS4-47952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dietmar A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Boehmite Nanofillers in Epoxy Oligosiloxane Resins: Influencing the Curing Process by Complex Physical and Chemical Interactions N2 - In this work, a novel boehmite (BA)-embedded organic/inorganic nanocomposite coating based on cycloaliphatic epoxy oligosiloxane (CEOS) resin was fabricated applying UV-induced cationic polymerization. The main changes of the material behavior caused by the nanofiller were investigated with regard to its photocuring kinetics, thermal stability, and glass transition. The role of the particle surface was of particular interest, thus, unmodified nanoparticles (HP14) and particles modified with p-toluenesulfonic acid (OS1) were incorporated into a CEOS matrix in the concentration range of 1–10 wt.%. Resulting nanocomposites exhibited improved thermal properties, with the glass transition temperature (Tg) being shifted from 30 °C for unfilled CEOS to 54 °C (2 wt.% HP14) and 73 °C (2 wt.% OS1) for filled CEOS. Additionally, TGA analysis showed increased thermal stability of samples filled with nanoparticles. An attractive interaction between boehmite and CEOS matrix influenced the curing. Real-time infrared spectroscopy (RT-IR) experiments demonstrated that the epoxide conversion rate of nanocomposites was slightly increased compared to neat resin. The beneficial role of the BA can be explained by the participation of hydroxyl groups at the particle surface in photopolymerization processes and by the complementary contribution of p-toluenesulfonic acid surface modifier and water molecules introduced into the system with nanoparticles. KW - Real-time infrared spectroscopy KW - Boehmite KW - Nanocomposite KW - Cationic photocuring KW - Cycloaliphatic epoxy oligosiloxane KW - Epoxy conversion degree PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479628 DO - https://doi.org/10.3390/ma12091513 VL - 12 IS - 9 SP - 1513 PB - MDPI AN - OPUS4-47962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Falkenhagen, Jana A1 - Becker, Roland A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tschiche, Harald A1 - Reinsch, Stefan A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions N2 - Polyether and -ester urethanes (PU) were exposed to artificial weathering at 40 °C and artificial UV radiation in a weathering chamber. In 3 parallel exposures, humidity was varied between dry, humid, and wet conditions. Material alteration was investigated by various analytical techniques like size exclusion chromatography (SEC), liquid chromatography-infrared spectroscopy (LC-FTIR), thermal-desorption gas chromatography-mass spectrometry (TD-GC-MS), fluorescence mapping and dynamic mechanical analysis (DMA). Our results show that depending on the weathering conditions, different degradation effects can be observed. By means of SEC an initial strong decrease of the molar masses and a broadening of the mass distributions was found. After a material dependent time span this was followed by a plateau where molar mass changes were less significant. A minor moisture-dependent degradation effect was only found for polyester PU. Fluorescence measurements on two materials revealed an increase in the luminescence intensity upon weathering process reaching a saturation level after about 500 h. The changes in the optical properties observed after different exposure conditions and times were very similar. The TD-GC-MS data showed the fate of the stabilizers and antioxidant in the course of weathering. LC-FTIR measurements revealed a change in peak intensities and the ratio of urethane and carbonyl bands. KW - Polyurethane KW - Artificial weathering KW - Moisture KW - Crosslinking KW - Degradation PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819303708 DO - https://doi.org/10.1016/j.polymertesting.2019.105996 SN - 0142-9418 VL - 78 SP - 105996, 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-48625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - B, Yang A1 - Chua, Y. Z. A1 - Szymoniak, Paulina A1 - Carta, M A1 - Malpass-Evans, R A1 - McKeown, N A1 - Harrison, W A1 - Budd, P A1 - Schick, C A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Effect of backbone rigidity on the glass transition of polymers of in-trinsic microporosity probed by fast scanning calorimetry N2 - Polymers of Intrinsic Microporosity (PIMs) of high performance have developed as materials with a wide application range in gas separation and other energy-related fields. Further optimization and long-term behavior of devices with PIMs require an understanding of the structure-property relationships including physical aging. In this context the glass transi-tion plays a central role, but with conventional thermal analysis a glass transition is usually not detectable for PIMs be-fore their thermal decomposition. Fast scanning calorimetry provides evidence of the glass transition for a series of PIMs, as the time scales responsible for thermal degradation and for the glass transition are decoupled by employing ultrafast heating rates of tens of thousands K s-1. The investigated PIMs were chosen considering the chain rigidity. The estimated glass transition temperatures follow the order of the rigidity of the backbone of the PIMs. KW - Polymers of intrinsic microporosity KW - Fast scanning calormetry PY - 2019 DO - https://doi.org/10.1021/acsmacrolett.9b00482 SN - 2161-1653 VL - 8 IS - 8 SP - 1022 EP - 1028 PB - ACS Publications AN - OPUS4-48617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Celina, M. A1 - Braun, Ulrike T1 - Automated thermal extraction-desorption gas chromatography mass spectrometry: A multifunctional tool for comprehensive characterization of polymers and their degradation products N2 - The TED-GC-MS analysis is a two-step method. A sample is first decomposed in a thermogravimetric analyzer (TGA) and the gaseous decomposition products are then trapped on a solid-phase adsorber. Subsequently, the solid-phase adsorber is analyzed with thermal desorption gas chromatography mass spectrometry (TDU-GC-MS). This method is ideally suited for the analysis of polymers and their degradation processes. Here, a new entirely automated System is introduced which enables high sample throughput and reproducible automated fractioned collection of decomposition products. Strengths and limitations of the system configuration are elaborated via three examples focused on practical challenges in materials analysis and identification: i) separate analysis of the components of a wood-plastic-composite material, ii) quantitative determination of weight concentration of the constituents of a polymer blend and iii) quantitative analysis of model samples of microplastics in suspended particulate matter. KW - Thermal extraction-desorption gas chromatography mass spectrometry KW - Analysis KW - Polymers KW - Microplastics KW - Automation PY - 2019 DO - https://doi.org/10.1016/j.chroma.2019.01.033 VL - 1592 SP - 133 EP - 142 PB - Elsevier CY - Amsterdam AN - OPUS4-48287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schoenhals, Andreas T1 - Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller N2 - Nanocomposites based on MgAL layered double hydroxides (LDH) and an epoxy resin were prepared and investigated by a combination of complementary methods. As epoxy resin Bisphenol A diglycidyl ether (DGEBA) was used with Diethylenetriamine as curing agent. The LDH was modified with taurine, which acts as an additional crosslinking agent due to its amine groups. The epoxy resin was cured in a presence of the nanofiller, which was added to the system in various concentrations. X-ray scattering, by combination of SAXS and WAXS was used to characterize the morphology of the obtained nanocomposites. These investigations show that the filler is distributed in the matrix as small stacks of ca. 10 layers. The molecular dynamics of the system, as probe for structure, was investigated by broadband dielectric spectroscopy. In addition to the - and -relaxation (dynamic glass transition), characteristic for the unfilled materials, a further process was found which was assigned to localized fluctuations of segments physically adsorbed or chemically bonded to the nanoparticles. The dielectric -relaxation is shifted to higher temperatures for the nanocomposites in comparison to the pure material but depends weakly on the content of nanoparticles. Further, for the first time Flash DSC was employed to a thermosetting system to investigate the glass transition behavior of the nanocomposites. The heating rates were converted in to relaxation rates. For low concentrations of the nanofiller the thermal data overlap more or less with that of the pure epoxy. For higher concentrations the thermal data are shifted significantly to higher temperatures. This is discussed in terms the cooperativity approach to the glass transition. KW - Nanocomposites KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2019 DO - https://doi.org/10.1016/j.tca.2019.01.010 SN - 0040-6031 VL - 677 SP - 151 EP - 161 PB - Elsevier AN - OPUS4-48218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elert, Anna Maria A1 - Kanerva, M A1 - Puolakka, A A1 - Takala, T.M. A1 - Mylläri, V A1 - Jönkkäri, I A1 - Sarlin, E A1 - Seitsonen, J A1 - Ruokolainen, J A1 - Saris, P A1 - Vuorinen, J T1 - Antibacterial polymer fibres by rosin compounding and melt-spinning N2 - The antibacterial features of natural pine/spruce rosin are well established, yet the functionality in various thermoplastics has not been surveyed. This work focuses on the processing of industrial grade purified rosin mixed with polyethylene (PE), polypropylene (PP), polylactic acid (PLA), polyamide (PA) and corn starch based biopolymer (CS). Homopolymer masterbatches were extrusion-compounded and melt-spun to form fibres for a wide range of products, such as filters, reinforcements, clothing and medical textiles. Due to the versatile chemical structure of rosin, it was observed compatible with all the selected polymers. In general, the rosin-blended systems were shear-thinning in a molten condition. The doped fibres spun of PE and PP indicated adequate melt-spinning capability and proper mechanical properties in terms of ultimate strength and Young's modulus. The antibacterial response was found dependent on the selected polymer. Especially PE with a 10 wt% rosin content showed significant antibacterial effects against Escherichia coli DH5α and Staphylococcus aureus ATCC 12598 when analysed in the Ringer's solution for 24 h. KW - Rosin KW - Antibacterial KW - Thermoplastics PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481785 DO - https://doi.org/10.1016/j.mtcomm.2019.05.003 SN - 2352-4928 VL - 20 SP - 527 EP - 527 PB - Elsevier AN - OPUS4-48178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zietzschmann, F. A1 - Dittmar, S. A1 - Splettstößer, L. A1 - Hunsicker, J. A1 - Dittmann, Daniel A1 - Meinel, F. A1 - Rößler, A. A1 - Metzger, S. A1 - Jekel, M. A1 - Ruhl, A. S. T1 - Fast empirical lab method for performance projections of large-scale powdered activated carbon re-circulation plants N2 - Powdered activated carbon (PAC) for organic micro-pollutant (OMP) removal can be applied effectively on wastewater treatment plant (WWTP) effluents by using re-circulation schemes, accumulating the PAC in the system. This technique is complex because several factors are unknown: (i) the PAC concentration in the system, (ii) specific and average contact times of PAC particles, and (iii) PAC particle loadings with target compounds/competing water constituents. Thus, performance projections (e.g. in the lab) are very challenging. We sampled large-scale PAC plants with PAC sludge re-circulation on eight different WWTPs. The PAC plant-induced OMP removals were notably different, even when considering PAC concentrations in proportion to background organic sum parameters. The variability is likely caused by differing PAC products, varying water composition, differently effective plant/re-circulation operation, and variable biodegradation. Plant PAC samples and parts of the PAC plant influent samples were used in laboratory tests, applying multiples (0.5, 1, 2, 4) of the respective large-scale “fresh” PAC doses, and several fixed contact times (0.5, 1, 2, 4, 48 h). The aimwas to empirically identify suitable combinations of lab PAC dose (as multiples of the plant PAC dose) and contact time, which represent the PAC plant performances in removing OMPs (for specific OMPs at single locations, and for averages of different OMPs at all locations). E.g., for five well adsorbing, little biodegradable OMPs, plant performances can be projected by using a lab PAC dose of twice the respective full-scale PAC dose and 4 h lab contact time (standard deviation of 13 %-points). KW - Adsorption KW - Powdered activated carbon KW - Organic micro-pollutant KW - Trace organic contaminant PY - 2019 DO - https://doi.org/10.1016/j.chemosphere.2018.10.055 VL - 215 SP - 563 EP - 573 PB - Elsevier Ltd. AN - OPUS4-46957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, R. A1 - Braun, Ulrike A1 - Fankhänel, J. A1 - Daum, B. A1 - Arash, B. A1 - Rolfes, R. T1 - Molecular modelling of epoxy resin crosslinking experimentally validated by near-infrared spectroscopy N2 - Reliable simulation of polymers on an atomistic length scale requires a realistic representation of the cured material. A molecular modelling method for the curing of epoxy systems is presented, which is developed with respect to efficiency while maintaining a well equilibrated system. The main criterion for bond formation is the distance between reactive groups and no specific reaction probability is prescribed. The molecular modelling is studied for three different mixing ratios with respect to the curing evolution of reactive Groups and the final curing stage. For the first time, the evolution of reactive groups during the curing process predicted by the molecular modelling is validated with near-infrared spectroscopy data, showing a good agreement between simulation results and experimental measurements. With the proposed method, deeper insights into the curing mechanism of epoxy systems can be gained and it allows us to provide reliable input data for molecular Dynamics simulations of material properties. KW - Epoxy KW - NIR spectroscopy KW - Modelling PY - 2019 DO - https://doi.org/10.1016/j.commatsci.2019.01.054 SN - 0927-0256 VL - 161 SP - 223 EP - 235 PB - Elsevier AN - OPUS4-47431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klöckner, P. A1 - Reemtsma, T. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Ruhl, A. S. A1 - Wagner, S. T1 - Tire and road wear particles in road environment e Quantification and assessment of particle dynamics by Zn determination after density separation N2 - In this study, a method for the determination of tire and road wear particle (TRWP) contents in particulate samples from road Environment was developed. Zn was identified as the most suitable elemental marker for TRWP, due to its high concentration in tire tread and the possibility of separation from other Zn sources. The mean concentration of 21 tire samples was 8.7 ± 2.0 mg Zn/g. Before quantification in samples from road environment, TRWP were separated from the particulate matrix by density separation. Method development was conducted using shredded tread particles (TP) as a surrogate for TRWP. Recovery of TP from spiked sediment was 95 ± 17% in a concentration range of 2 - 200 mg TP/g. TP determination was not affected by other Zn containing solids or spiked Zn-salts. By adjusting the density of the separation solution to 1.9 g/cm3, more than 90% of total TRWP were separated from the sample matrix. TRWP concentrations in particulate matter collected in two road runoff treatment Systems ranged from 0.38 to 150 mg TRWP/g. Differences in quantified TRWP contents of the two Systems indicate changes in particle dynamics due to ageing and aggregation processes. The developed method allows TRWP determination in road runoff and in environments that are influenced by road traffic. The validated separation procedure can also be applied for TRWP characterization in future studies. KW - Zinc analysis KW - Microplastics KW - Tire particles PY - 2019 VL - 222 SP - 714 EP - 721 PB - Elsevier AN - OPUS4-47433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm DO - https://doi.org/10.3390/nano9060853 SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. KW - Micromagnetism KW - LLG KW - LL equation KW - Landau Lifshitz equation KW - Landau Lifshitz Gilbert equation KW - Stochastic Landau Lifshitz equation KW - Stochastic Landau Lifshitz Gilbert equation KW - Curie temperature KW - Magnetic Nanoparticles KW - Thin film systems KW - Temeprature scaling KW - Phase transition KW - Magnet coupling KW - Ferromagnetism KW - Superparamagnetism KW - Paramagnetism KW - Ni KW - Co KW - Fe KW - Steel KW - Nickel KW - Cobalt KW - Iron KW - Temperature effects KW - Cell size KW - Damping factor KW - Gamma KW - Alpha KW - Spin KW - Magnetic moment KW - Magnetic interacion KW - Magnetization dynamics KW - Domain wall KW - Exchange length KW - temeprature dependent exchange length KW - Bloch wall KW - Neel wall KW - Exchange interaction KW - Magnetic anisotropy KW - Simulation KW - OOMMF KW - Object oriented micromagnetic framework PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484610 DO - https://doi.org/10.1088/2399-6528/ab31e6 VL - 3 IS - 7 SP - 075009-1 EP - 075009-8 PB - IOPscience CY - England AN - OPUS4-48461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -