TY - CONF A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Emmerling, Franziska T1 - Chemists have solutions and know how to get rid of them N2 - Metal-organic framework-based biocomposites (MOF-biocomposites) are promising materials for biosensing, biocatalysis, and delivery of biopharmaceuticals. One of the most studied MOFs for bioapplications is ZIF-8 (zeolitic imidazolate framework 8) due to its high surface area, high thermal and chemical stability, and low cytotoxicity. The conventional synthesis of ZIF-8-biocomposites called biomimetic mineralization includes mixing selected biomolecules 2-methylimidazole, and soluble Zn2+ source in water.[3] Despite the high efficiency of the method, it does not allow for large-scale production and is restricted to hydrophilic biomolecules. Aimed at developing a scalable and versatile approach, we adapted our recently-reported ZIF-8 reactive extrusion for biocomposite production. We selected bovine serum albumin (BSA) as an inexpensive model biomacromolecule for the preparation of biocomposites. The synthesis of BSA@ZIF-8 was performed using a twin-screw extruder ZE 12 HMI (Three-Tec Gmbh) at a mild temperature of 40 °C. Automatic volumetric feeder ZD 12B (Three-Tec GmbH) was used to supply the reagent mixture consisting of 2-methylimidazole, zinc source, and BSA. To initiate the reaction, a catalytic amount of EtOH was added using a peristaltic pump BT-L (Lead Fluid, China). Powder X-Ray diffraction (PXRD), thermogravimetric analysis (TGA), FTIR, and N2 adsorption were used to characterize the extrudates. Highly crystalline and pure BSA@ZIF-8 with different BSA loadings was isolated after washing the extrudate with EtOH and sodium dodecyl sulfate. The EtOH feeding rate was optimized by following the protein encapsulation efficiency at a BSA mass fraction of 10%. A continuous extruder operation under optimized conditions showed good reproducibility and capability of producing biocomposites on the kilograms scale. These results provide highly valuable information for cheap and large-scale production of ZIF-8-based biocomposites. Due to the lack of restrictions on molecule size and solubility, our proof-of-concept study may significantly expand the selection of biomolecules for immobilization in ZIF-8, making the method applicable to various functional applications T2 - SALSA Make and Measure conference CY - Berlin, Germany DA - 13.09.2023 KW - In situ Raman KW - Large-scale processing KW - Reactive extrusion KW - Large-scale production KW - Mechanochemistry PY - 2023 AN - OPUS4-58953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Investigating the mechanism and kinetics of the mechanochemical synthesis of multi-component systems N2 - Mechanochemistry is a promising and environmentally friendly approach for synthesizing (novel) multicomponent crystal systems. Various milling parameters, such as milling frequency, milling time, and ball diameter have been shown to influence the mechanisms and rates of product formation. Despite increasing interest in mechanochemistry, there is still limited understanding of the underlying reactivity and selectivity mechanisms. Various analytical techniques have been developed to gain insight into the mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy and thermography. Using these techniques, we have studied the formation of (polymorphic) cocrystals, organometallic compounds and salts, and elucidated the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For example, our study of the mechanochemical chlorination reaction of hydantoin revealed that normalisation of the kinetic profiles to the volume of the grinding ball clearly showed that physical kinetics dominate the reaction rates in a ball-milling transformation. Attempts to interpret such kinetics in purely chemical terms risk misinterpretation of the results. Our results suggest that time-resolved in situ investigation of milling reactions is a promising way to fine-tune and optimise mechanochemical processes. T2 - ISIC 2023 CY - Glasgow, Scotland DA - 05.09.2023 KW - Mechanochemistry KW - Polymorphy KW - In situ PY - 2023 AN - OPUS4-59023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry emerges as a potent, environmentally friendly, and straightforward approach for crafting novel multicomponent crystal systems. Various milling parameters, including milling frequency, time, filling degree of the milling jar, ball diameter, vessel size, degree of milling ball filling, and material of jars, are recognized influencers on the mechanisms and rates of product formation. Despite the growing interest in mechanochemistry, there exists a gap in understanding the mechanistic aspects of mechanochemical reactivity and selectivity. To address this, diverse analytical methods and their combinations, such as powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography, have been developed for real-time, in situ monitoring of mechanochemical transformations. This discussion centers on our recent findings, specifically investigating the formation of (polymorphic) cocrystals and metal-organic frameworks. Through these studies, we aim to unravel the impact of milling parameters and reaction sequences on the formation mechanism and kinetics. Notably, in the mechanochemical chlorination reaction of hydantoin, normalizing kinetic profiles to the volume of the milling ball unequivocally demonstrates the conservation of milling reaction kinetics. In this ball-milling transformation, physical kinetics outweigh chemical factors in determining reaction rates. Attempting to interpret such kinetics solely through chemical terms poses a risk of misinterpretation. Our results highlight that time-resolved in situ investigations of milling reactions provide a novel avenue for fine-tuning and optimizing mechanochemical processes. T2 - Brimingham Green chemsistry CY - Birmingham, England DA - 08.09.2023 KW - Mechanochemistry KW - Green Chemistry PY - 2023 AN - OPUS4-59024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Combination of complementary methods For in situ studies N2 - This talk explores the synergistic application of complementary synchrotron methods for in situ investigations, providing a comprehensive approach to enhance analytical capabilities in materials research and characterization. T2 - INSYNX - DEUTSCH-BRASILIANISCHER WORKSHOP ON BREAKING BOUNDARIES OF IN SITU SYNCHROTRON X-RAY METHODS CY - Sao Paulo, Brazil DA - 06.03.2023 KW - In situ KW - Synchrotron PY - 2023 AN - OPUS4-59025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry has become a compelling method for producing (new) molecule s and mate-rials, but the inner workings of the milling jars remain a fascinating mystery. Advances in this field include tailor-made chemical systems and real-time revelations using techniques such as XRD and Raman spectroscopy. This talk will discuss our recent progress in using X-ray diffraction and sophisticated spectros-copy to observe reactions in various material systems during ball milling and extrusion in real-time. The complexity of mechanochemical reactions spans multiple scales and requires a holistic ap-proach. The categorisation of reactions by investigative methods precedes the exploration of real-time analysis that reveals macroscopic processes using synchrotron techniques. During this exploration, one resounding realisation remains: We are on the threshold of under-standing. The complexity of mechanochemistry requires a collective effort, drawing on the ex-pertise of a diverse community. As we unravel the web of mechanochemical phenomena, we acknowledge the collaborative nature of this ongoing journey. T2 - CMCC Mechanochemistry Discussions CY - Online meeting DA - 21.09.2023 KW - Mechanochemistry KW - In situ PY - 2023 AN - OPUS4-59026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Pimentel, C. A1 - Montes Hernandez, G A1 - Kochovski, Z A1 - Bienert, Ralf A1 - Weimann, Karin A1 - Emmerling, Franziska A1 - Scoppola, E A1 - Van Driessche, A T1 - Solution-driven processing of calcium sulfate: the mechanism of the reversible transformation of gypsum to bassanite in brines N2 - Calcium sulfate hemihydrate (CaSO4ᐧ0.5H2O), also known as bassanite, has been used as a precursor to produce gypsum (dihydrate, CaSO4ᐧ2H2O) for various construction and decorative purposes since prehistoric times. The main route to obtain hemihydrate is a thermal treatment of gypsum at temperatures typically between 150 °C and 200 °C to remove some of the structural water. In this contribution, we introduce (Fig. 1) a more efficient and sustainable method (T < 100 °C) that enables the direct, rapid, and reversibly conversion of gypsum to bassanite using reusable high salinity aqueous solutions (brines with c[NaCl] > 4 M). The optimum conditions for the efficientproduction of bassanite in a short time (< 5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the typical behaviour of the bassanite phase in low salt environments. Traditionally, hemihydrate is obtained through a solid state thermal treatment because bassanite is considered to be metastable with respect to gypsum and anhydrite in aqueous solutions, and therefore gypsum-to-bassanite conversion should not occur in water. Its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures is inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline structure for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. T2 - Granada Münster Discussion Meeting GMDM 10 CY - Münster, Germany DA - 29.11.2023 KW - Gypsum KW - Bassanite KW - Calcium sulfate KW - Recycling KW - Scattering PY - 2024 AN - OPUS4-59162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Why shaken, not stirred, makes the difference: insights into mechanochemical reactions from in situ investigations N2 - Mechanochemistry is an effective, environmentally benign, and facile method for the synthesis of new multicomponent crystal systems. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. The increasing interest in mechanochemistry is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Different analytical methods and their combinations have been developed for the time resolved in situ monitoring of mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy, and thermography. Here we will discuss our recent results investigating the formation of (poly-morphic) cocrystals[1,3], metal-organic compounds, and salts, thereby elucidating the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For the mechanochemical chlorination reaction of hydantoin normalizing the kinetic profiles to the volume of the milling ball showed clearly that milling reaction kinetics are conserved. Here physical kinetics dominate reaction rates in a ball-milling transformation. Attempting to interpret such kinetics in purely chemical terms risk misinterpreting the results. Our results indicate that time-resolved in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemical processes. T2 - GdCh Vortrag Universität Potsdam CY - Potsdam, Germany DA - 05.06.2023 KW - Mechanochemistry KW - In Situ PY - 2023 AN - OPUS4-58982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chatti, Saber A1 - Marestin, C. A1 - Jaffrezic, N. A1 - Falkenhagen, Jana A1 - Meyer, Klas A1 - Weidner, Steffen T1 - Chemical modification of lignin by functional polymers: towards specific green phases for the adsorption of organic pollutants in water N2 - Lignin is a highly aromatic low value biomass residue, which can be utilized for chemicals, fuels and materials production. In recent years, significant attention has focused on adsorber materials based on lignin. However, only 5% of the available lignin is exploited worldwide, thus significant opportunities for materials development still exist. Lignin has been vastly utilized as a feedstock for the synthesis of adsorbers for the removal of dyes and toxic organic molecules . To improve adsorption capacity, lignin can be chemically modified with oxygen-, nitrogen-, or sulfur-containing functional groups. Most frequently the phenolic groups of lignin were modified. In order to extend the application of lignin as adsorbers, we are especially interested in the chemical modification of this natural resource with a bio-based linear difluoro oligomers LOx (di- or monofunctional) or a heterocyclic monomer (Figure). T2 - 12. Journees maghreb-europe. Matériaux et Applications aux Dispositifs et Capteurs CY - Monastir, Tunisia DA - 08.11.2022 KW - Lignin KW - Biobased polymers KW - Modification PY - 2022 AN - OPUS4-56238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Karafiludis, Stephanos A1 - Schneider, M. A1 - Haas, S. A1 - Hagen, S. A1 - Glatzel, U. A1 - Laplanche, G. A1 - Stephan-Scherb, C. T1 - Corrosion in the Co-Cr-Fe-Ni high entropy alloy family N2 - While a lage amount of research on high entropy alloys is oriented towards mechanical properties and the microstructural improvement it is also necessary to keep an eye on the environment that potential application materials will be submitted to. The Co-Cr-Fe-Ni based high entropy family has shown great potential over the years of high entropy research and some candidate alloys are chosen for an insight into their corrosion behaviour. Several atmospheres are studied, i.e. O2, H2O, SO2 and a mix thereof in argon as well as synthetic air. Just as for classic alloys, the chromium is the most important element in terms of protection agains further corrosion. The addition of manganese, as in case of the “Cantor alloy” CrMnFeCoNi, overpasses Cr when it comes to oxygen affinity and thus counteracts the layer formation of Cr2O3. Even without Mn, a temperature chosen too high will also affect the formation of the chromium oxide layer and spall it off, annulling its protective potential. We can also observe how trace elements influence the layer formation. These effects and their mechanisms will be discussed for the alloys CrFeNi, CoCrNi, CrMnFeCoNi and variations of Al10Co25Cr8Fe15Ni36Ti6 using a combination of electron microscopy, thermodynamic calculations and x-ray diffraction. T2 - MRS-T International Conference CY - Hsinchu, Taiwan DA - 17.11.2023 KW - Corrosion KW - Scanning electron microscopy KW - Mixed gas atmosphere PY - 2023 AN - OPUS4-58980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Emmerling, Franziska A1 - Villajos Collado, José Antonio A1 - Maierhofer, Christiane A1 - Thiel, Erik A1 - Altenburg, Simon T1 - Already producing or still assembling? – Perspectives towards modular production and quality control in a digitized process industry N2 - The CLEAN ENERGY Flagship is an initiative designed to utilize recent game changing developments in digital, materials and manufacturing technologies to catalyze a radical paradigm shift towards clean, reliable, efficient and cost-optimal energy. Unifying and drastically accelerating radically new energy material design, processing and integration across the entire value chain addressing energy production, conversion, storage and systems. CLEAN ENERGY participants are all distinguished research organisations that each benefit from their own industry networks and contacts with regions and state-level activities and have a long history of collaborating with each other (for 10 years now under the umbrella of EERA) within a European collaborative framework. Through EERA, CLEAN ENERGY aims to become a crucial partner in the SET-Plan, supporting long-lasting approaches through its established networks and internal collaborations. T2 - Clean Energy Workshop on Autonomous Materials Development Platforms CY - Brussels, Belgium DA - 02.10.2018 KW - Digitization KW - Energy production KW - Energy storage KW - Energy systems KW - Clean energy technology PY - 2018 AN - OPUS4-46135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chapartegui, Ander A1 - Emmerling, Franziska A1 - Schneider, Rudolf T1 - Metal-Organic Frameworks as turn on fluorescent optical sensors against endocrine disrupting phthalate plasticizers N2 - The development of quick and simple optical sensing technologies for Endocrine Disrupting Chemicals (EDCs) is needed to facilitate monitoring of these substances to ensure consumer safety. Optical sensing was achieved against phthalates acting as EDC that have host guest interaction with an intercalated Metal-organic framework (MOF), resulting in a fluorescence emission upon excitation. The fluorescent turn-on signal was generated by using a fluorophore with a structural component that has little fluorescence unless excimers are formed. Strategies to engineer functional MOF structures suitable for sensing EDC phthalates were developed, and the characterization of the MOFs with and without present phthalates was done by single crystal XRD, PXRD, RAMAN and Thermogravimetry. Extensive photo-physical characterization of host-guest complexes of different phthalates and the MOF as well as the resulting exciplex fluorescence was performed. Photo physical characterization revealed an analyte specific fluorescence fingerprint that allows discerning even minute changes in chemical structures of the analyte and therefore paving the way for sensing tools in real world analytical applications. The presented capability of MOFs to sense EDCs is envisioned to complement established methods from analytical chemistry such as mass spectrometry based methods which can’t be used on site and are often associated with infrastructural capacity constraints T2 - EURoptrode CY - Naples, Italy DA - 25.03.2018 KW - MOF KW - Short chained Phthalates PY - 2018 AN - OPUS4-46890 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Weidner, Steffen A1 - Rurack, Knut A1 - Thünemann, Andreas A1 - Sturm, Heinz T1 - Polymerwissenschaften@BAM - Sicherheit macht Märkte N2 - Die Bundesanstalt für Materialforschung und -prüfung (BAM) ist eine Ressortforschungseinrichtung, die zum Schutz von Mensch, Umwelt und Sachgüter, forscht, prüft und berät. Im Fokus aller Tätigkeiten in der Materialwissenschaft, der Werkstofftechnik und der Chemie steht dabei die technische Sicherheit von Produkten und Prozessen. Dazu werden Substanzen, Werkstoffe, Bauteile, Komponenten und Anlagen sowie natürliche und technische Systeme erforscht und auf sicheren Umgang oder Betrieb geprüft und bewertet. Schwerpunkt des Vortrages sind multimodale Polymeranalytik, nanoskalige Sensormaterialien und die Charakterisierung von technischen Eigenschaften von Polymeren sowie ihre Alterung und Umweltrelevanz. T2 - Institutsvortrag CY - Fraunhofer IAP, Potsdam, Germany DA - 18.05.2018 KW - Polymerwissenschaften PY - 2018 AN - OPUS4-45243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Andresen, Elina A1 - Saleh, Maysoon I. A1 - Würth, Christian A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Prinz, Carsten T1 - Influence of Surface Chemistry and Size on the Stability of β-NaYF4:Yb,Er Nanocrystals in Various Environments N2 - The use of inorganic lanthanide-doped upconversion nanoparticles (UCNP) in bioimaging and cellular studies requires biocompatible particles. One possible cause of UCNP toxicity is the release of potentially harmful fluoride and lanthanide ions as revealed by dilution studies in aqueous environments, particularly under high dilution conditions. To address this issue, suitable surface coatings preventing such effects in combination with fast screening methods suited for online monitoring and in situ analyses are desired. Here we present systematic studies of differently sized β-NaYF4:Yb,Er UCNP stabilized with different surface coatings and hydrophilic ligands varying in binding strength to the particle surface in various aqueous environments at different temperatures and UCNP concentrations. The concentration of the fluoride and lanthanide ions released upon particle dissolution was quantified electrochemically with a fluoride ion-sensitive electrode and inductively coupled plasma optical emission spectrometry (ICP-OES) and monitored fluorometrically, thereby exploiting the sensitivity of the upconversion luminescence to changes in size and surface chemistry. Moreover, changes in surface chemistry were determined with X-Ray photoelectron spectroscopy (XPS). Based upon our results, we could derive optimum screening parameters for UCNP stability studies and determine conditions and coating procedures and ligands for enhancing UCNP stability in aqueous environments. T2 - UPCON2021 CY - Online meeting DA - 06.04.2021 KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2021 AN - OPUS4-52411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Separation of polystyrene nanoparticles with different coatings using 2D off-line coupling of asymmetrical flow field flow fractionation (AF4) and capillary electrophoresis (CE) N2 - Nowadays, different nanoparticles have been developed for commercial applications. However, since data on toxicity are barely available, their increasing application in cosmetic products, food and their release in the environment might cause severe problems. An accurate separation, identification and characterization of nanoparticles becomes increasingly important1,2. In this presentation, a two-dimensional separation approach based on AF4 and CE was showed and used to separate NPs with similar sizes but different coatings. Standard reference polystyrene NPs having comparable core sizes but different coatings were investigated. Different migration time and profiles were compared. Separation in either method resulted in non-baseline resolved or non-separated peaks. In contrast, two-dimensional coupling of AF4 and CE resulted in clearly separated regions in their 2 D plots in case of 20 and 50 nm particle mixtures, whereas the 100 nm NP mixture could not be separated. Various factors affecting the separation like hydrodynamic diameter or SDS concentration were discussed. Future investigations will be focussed on inorganic NPs with differently charged coatings. There, AF4-CE coupling can be coupled with inductively coupled plasma mass spectrometry (ICP-MS) to enhance the sensitivity of this method. T2 - 6th FFF-MS Tagung CY - Berlin, Germany DA - 22.11.2018 KW - Nanoparticles separation capillary electrophoresis asymmetrcial flow field flow fractionation PY - 2018 AN - OPUS4-47191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Meermann, Björn A1 - Panne, Ulrich T1 - Nanoparticles separation using capillary electrophoresis N2 - Nowadays, different nanoparticles have been developed for commercial applications. However, since data on toxicity are barely available, their increasing application in cosmetic products, food and their release in the environment might cause severe problems. An accurate separation, identification and characterization of nanoparticles becomes increasingly important. A common method for nanoparticle separation, which was introduced in 1976 by Giddings, represents asymmetrical field-flow fractionation (AF4). It is a flow based separation method, which can be theoretically used to separate particles range from 1 nm to 50 µm. However, when the particles are smaller than 10 nm, separation with AF4 will become difficult to perform. Because in this case strong separation force, which induces aggregation of particles, should be applied. This will decrease recoveries of analytes and limit its application in accurate quantitative analysis. Capillary electrophoresis (CE) is another well-developed separation technique, in which samples will be separated in relation to their electrophoretic mobility. In recent years, CE has been used to separate different kinds of nanoparticles like, gold colloids or CdSe Quantum dots. However, till now only separation of particles smaller than 50 nm was reported. Because large size distribution of bigger particles will result in strong peak broadening and long separation time. A two-dimensional coupling of AF4 and CE might provide us a new separation method, which can extend the separation ranges of both methods and be a way to characterise particles with large size distributions. T2 - ESAS-CANAS Konferenz CY - Berlin, Germany DA - 21.03.2018 KW - Nanoparticles separation capillary electrophoresis asymmetrcial flow field flow fractionation PY - 2018 AN - OPUS4-47188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Nanoparticles separation using capillary electrophoresis (CE) and asymmerical flow-field flow fractionation (AF4) N2 - Nowadays, different nanoparticles have been developed for commercial applications. However, since data on toxicity are barely available, their increasing application in cosmetic products, food and their release in the environment might cause severe problems. An accurate separation, identification and characterization of nanoparticles becomes increasingly important. A common method for nanoparticle separation, which was introduced in 1976 by Giddings, represents asymmetrical field-flow fractionation (AF4). It is a flow based separation method, which can be theoretically used to separate particles range from 1 nm to 50 µm. However, when the particles are smaller than 10 nm, separation with AF4 will become difficult to perform. Because in this case strong separation force, which induces aggregation of particles, should be applied. This will decrease recoveries of analytes and limit its application in accurate quantitative analysis. Capillary electrophoresis (CE) is another well-developed separation technique, in which samples will be separated in relation to their electrophoretic mobility. In recent years, CE has been used to separate different kinds of nanoparticles like, gold colloids or CdSe Quantum dots. However, till now only separation of particles smaller than 50 nm was reported. Because large size distribution of bigger particles will result in strong peak broadening and long separation time. A two-dimensional coupling of AF4 and CE might provide us a new separation method, which can extend the separation ranges of both methods and be a way to characterise particles with large size distributions. T2 - BAM PhD seminar CY - PhD seminar, Berlin, Germany DA - 22.06.2018 KW - Nanoparticles separation capillary electrophoresis asymmetrcial flow field flow fractionation PY - 2018 AN - OPUS4-47187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dieter A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Influence of Boehmite nanofiller on the properties of cycloaliphatic-epoxy oligosiloxane resin coatings N2 - Organic-inorganic nanostructured materials have drawn much attention over the past decade, particularly due to their versatile and outstanding properties. Possessing the properties between those of polymers and those of glasses, siloxane-based resins are non-toxic, easy to synthesize and process hybrid materials, that hold a promising potential in the field of advanced coatings. Photocurable resins are nowadays widely used as coatings due to their unique advantages. In particular, cationic ring-opening curing is not inhibited by oxygen, leads to low degree of shrinkage and superior adhesion. The most important, it enables production of high-quality coatings within short exposure times without applying temperature, thus, minimizing the presence of the thermal stress in the substrate. Photocured Cycloaliphatic-Epoxy Oligosiloxane (CEO) resin was reported to be used as encapsulation material for organic electronics. However, further reinforcement of CEO properties is desired to achieve requested device lifetime. One of the common approaches to improve material characteristics is by embedding inorganic nanoparticles into polymer matrix. It has been shown that the resulted nanocomposites exhibit enhanced functional properties included but not limited by optical, mechanical, thermal and barrier ones. In this work we focused on the incorporation of Boehmite nanoparticles (BA) into CEO matrix as a tool to strengthen the film properties and to study the main changes occurred in the material behavior with regard to its photocuring kinetics, thermal stability and glass transition. Particular interest was focused on the role of particle surface in nanocomposite properties. Hence, BA particles without (HP14) and with organic surface modifier (OS1) at different loadings (up to 10 wt%) were applied in this study. Morphology investigation with SEM operated in transmission mode showed good BA dispersion forming network-like structure. At the same time, distribution of particles differed for HP14 and OS1 as a result of different interaction in CEO-solvent-particles system. CEO structure obtained via non-hydrolytic sol-gel reaction was verified by 13C and 29Si NMR. In situ monitoring of film curing was performed using RT-IR spectroscopy. A slight increase of final convention degree with particle incorporation was observed in contrast to the considerable decrease of curing efficiency reported previously for similar system. Further, the cured hybrid nanocomposite films were analyzed by TGA and DSC, which revealed impact of surface modifier on thermal stability and glass transition temperature. T2 - Kyiv Conference on Analytical Chemistry: Modern Trends CY - Kyiv, Ukraine DA - 17.09.2018 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - Photocuring PY - 2018 AN - OPUS4-47642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dieter A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Impact of Boehmite nanoparticles on the curing behaviour and thermal properties of cycloaliphatic-epoxy oligosiloxane hybrid N2 - UV-curing coatings are nowadays widely used due to their unique advantages. High-quality coatings can be obtained at short curing times and low temperatures so that thermal stress to the substrate is minimised. Photocured Cycloaliphatic-Epoxy Oligosiloxane (CEO) resin was reported to be used as encapsulation material for organic electronics. However, further reinforcement of CEO film properties is desired to achieve requested device lifetime. In this work we introduced Boehmite nanoparticles (BA) into CEO matrix in order to modify the film properties and study the main changes of the material behaviour with regard to its photocuring kinetics, thermal stability and glass transition. Particular interest was focused on the role of particle surface in nanocomposite properties. Hence, BA particles without (HP14) and with organic surface modifier (OS1) at different loadings (up to 10 wt%) were applied in this study. Morphology investigation with SEM operated in transmission mode showed good BA dispersion forming network-like structure. At the same time, distribution of particles differed for HP14 and OS1 as a result of different interaction in CEO-solvent-particles system. CEO structure obtained via non-hydrolytic sol-gel reaction was verified by 13C and 29Si NMR. In situ monitoring of film curing was performed using RT-IR spectroscopy. No significant modification of final convention degree with particle incorporation was observed in contrast to considerable decrease of curing efficiency reported previously for similar system by Esposito et al.,2008. Further, cured hybrid nanocomposite films were analysed by TGA and DSC, which revealed impact of surface modifier on film thermal properties. T2 - E-MRS CY - Warsaw, Poland DA - 15.09.2018 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - DSC KW - TGA KW - UV-curing PY - 2018 AN - OPUS4-47643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Von Ägypten bis Hiddensee – Analyse von Gold mit Synchrotronstrahlung - Update 2018 N2 - Gold ist eines der sieben schon im Altertum bekannten Metalle und wurde wg. seines Glanzes und seiner Seltenheit von alters her als Tauschmittel und zur Herstellung von Schmuck benutzt. Außerdem ist es einfach bearbeitbar und weitestgehend gegen chemische Einflüsse resistent. Die Untersuchungen von Gold mit synchrotronstrahlungsangeregter Röntgenfluoreszenzanalyse sind zerstörungsfrei und geben Auskunft über die in der untersuchten Probe vorhandenen chemischen Elemente. Bei den hier vorgestellten Untersuchungen an der BAMline stehen Fragestellungen wie Herkunft, Herstellungsverfahren und Zusammengehörigkeit von Goldfunden im Vordergrund. Die verschiedenen Fragestellungen werden an einer Reihe von Beispielen erläutert die vom Wikingerschatz aus Hiddensee über die Himmelsscheibe von Nebra bis hin zu Funden aus Ägypten langen. Zusätzlich werden die modernen Messmethoden vorgestellt, die am Synchrotron heutzutage zur Verfügung stehen. T2 - Vorlesung FU Berlin Einführung in die Archäometrie CY - Berlin, Germany DA - 01.11.2018 KW - Gold KW - Synchrotron KW - XRF KW - BAMline PY - 2018 AN - OPUS4-46451 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Agudo Jácome, Leonardo A1 - Feldmann, Ines A1 - Deubener, J. T1 - Silver diffusion in low-melting alkali zinc borate model glasses studied by means of SNMS, TEM and XAS N2 - In many late-breaking research fields as in photovoltaics, microelectronics, nuclear waste glasses or at least mirror glasses silver diffusion in glasses is relevant to the issues of high-level functionality and recycling. The present study is focused on silver diffusion in innovative, low-melting alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb) potentially usable for silver metallization-pastes in solar cells. The glasses were coated with a thin metallic silver layer and heat treatments in air and nitrogen close to Tg at 470 °C for 2 h were performed. After heat treatment under air and nitrogen atmospheres the coating thickness, measured by a white light interferometer, was about 1.8 µm thick. Silver depth profiles determined by means of secondary neutral mass spectrometry (SNMS) indicate the fastest silver diffusion to a depth of 3.5 µm for Li2O-ZnO-B2O3 (LZB) glass. Nevertheless, the influence of the different alkali ions on the silver diffusion is small. The oxygen availability determines the silver diffusion into the glasses. The oxygen promotes the oxidation of the silver layer enabling Ag+ to diffuse into the glass and to precipitate as Ag0. Both species were detected by x-ray absorption spectroscopy (XAS). The precipitated metallic silver particles in Na2O-ZnO-B2O3 (NZB) glass have a mean size of 5.9 nm ± 1.2 nm diameter, which was determined using transmission electron microscopy (TEM). Phase separation in zinc-rich and zinc-poor phases with a mean diameter of 75 nm ± 20 nm occurred in NZB glass after heat treatment. Ion diffusion of the glasses into the silver layer was suggested by EDX-line scans. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Silver diffusion KW - Alkali zinc borate glass KW - Metallic silver precipitates KW - Phase separation PY - 2021 AN - OPUS4-52861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Cakir, Cafer Tufan T1 - Big to Small - Getting Smarter@BAMline N2 - In this talk an overview about artificial intelligence/machine learning applications @BAMline is given. In the first part, the use of neural networks for the quantification of XRF measurements and the decoding of coded-aperture measurements are shown. Then it is shown how Gaussian processes and Bayesian statistics can be used to achieve an optimal alignment of the set-up and in general for optimization of measurements. T2 - Forschungsseminar Institut für Optik und Atomare Physik TU Berlin CY - Berlin, Germany DA - 25.10.2022 KW - Artificial Inelligence KW - Machine Learning KW - Bayesian Statistics KW - Gaussian process KW - Neural network KW - BAMline KW - Synchrotron PY - 2022 AN - OPUS4-56249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska T1 - BAMline 2.0 – further technical developments for a broader multipurpose hard X-ray beamline at BESSY II N2 - We show further development of our beamline in the contexst of further itermational collaboration. T2 - PACC and AfSC CY - Accra, Ghana DA - 28.01.2019 KW - Synchrotron radiation PY - 2019 AN - OPUS4-47317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana A1 - Michalchuk, Adam A1 - Cakir, Cafer Tufan A1 - Yusenko, Kirill A1 - Radtke, Martin A1 - Reinholz, U. A1 - Emmerling, Franziska T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - Denver X-ray Conference: DXC 2021 CY - Online meeting DA - 02.08.2021 KW - Dispersive XAS KW - Mechanochemistry KW - Time resolved KW - In situ PY - 2021 AN - OPUS4-56257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana A1 - Michalchuk, Adam A1 - Cakir, Cafer Tufan A1 - Haider, M. B. A1 - Yusenko, Kirill A1 - Radtke, Martin A1 - Reinholz, U. A1 - Emmerling, Franziska T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - AfLS3 CY - Online meeting DA - 14.11.2021 KW - Dipsersive XAS KW - Mechanochemistry KW - Time-resolved KW - In situ PY - 2021 AN - OPUS4-56256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin T1 - Studies of high-entropy alloys using x-ray absorption fine structure at the bamline N2 - BAM line is multipurpose high-energy beamline. To extend studies of multicomponent alloys using EXAFS we perform own research and user experiments requiring multiedge spectroscopy, high-temperature and chemically aggressive sample environments. Our study of multicomponent alloys and high-entropy alloys open new perspectives in understanding their reactivity, corrosion, phase transformations and local ordering. T2 - SPP2006: large scale facilities CY - Online meeting DA - 02.11.2021 KW - Synchrotron studies KW - High-entropy alloys KW - EXAFS PY - 2021 AN - OPUS4-54016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Bertmer, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Dietzel, M. A1 - Ukrainczyk, N. A1 - Grengg, C. T1 - Sulfuric acid resistance of copper-doped and plain metakaolin-based alkali-activated materials studied by 29Si, 27Al and 1H MAS NMR, and Cu K-edge XANES spectroscopy N2 - Alkali-activated materials have been repeatedly reported to exhibit high acid resistance, but no generally accepted hypothesis regarding the underlying mechanisms has emerged yet. To contribute to this issue, K-waterglass-activated metakaolin specimens, with and without the addition of CuSO4·5H2O in the starting mix, were exposed to either a chemically aggressive sewer environment (mortars) or sulfuric acid (pastes). The mode of copper incorporation in the materials and the formation of copper phases in the corroded layers were studied by XANES at the Cu K-edge, and 29Si, 27Al and 1H MAS NMR was employed to understand the processes during acid attack. Copper was found as a spertiniite-like phase in the as-cured materials, while in the deterioration layers of the pastes it was present as copper sulfate. In the corroded regions of the mortars, unequivocal identification of Cu phases was not possible, but the results were reconcilable with the presence of copper carbonate hydroxide. The solid-state NMR results revealed virtually complete dissolution of the K-A-S-H gel and the formation of silica gel, interpreted to be a central mechanism determining the acid resistance. No significant differences between the microstructural alterations of the pastes with and without Cu addition on (chemical) sulfuric acid attack were observed. T2 - 74th RILEM Annual Week & 40th Cement and Concrete Science Conference CY - Online meeting DA - 31.08.2020 KW - Alkali-activated materials KW - Sulfuric acid resistance KW - Sewer structures PY - 2020 AN - OPUS4-51198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Berger, Achim T1 - Tragbare RFA an Gläsern: Ergebnisse und Grenzen N2 - Vorstellung der Ergebnisse der Messungen an Gläsern von Goethes Prismen. T2 - 3. Goethe/Ritter-Workshop CY - Berlin, Germany DA - 25.05.2018 KW - Goethe KW - Farbenlehre KW - Prisma KW - Handheld KW - XRF PY - 2018 AN - OPUS4-46369 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Steffen A1 - Kulow, Anicó A1 - Seeberg, D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Grunewald, Christian A1 - Riesemeier, Heinrich A1 - Wohlrab, S. T1 - S2XAFS@work: Customization for the Characterization of VOx based Catalysts N2 - X-ray absorption fine structure spectroscopy (XAFS) is a frequently employed technique in order to investigate structural composition and change of chemical compounds such as catalytic species. These structural properties are essential (i) to understand underlying reaction mechanism and (ii) to further improve the design of efficient catalysts. This investigation is based on a newly developed XAFS setup comprising both time- and lateral-resolved XAFS information simultaneously in a single-shot (S2XAFS). The primary broadband beam is generated by a filter/X-ray-mirror combination (bandpass). The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by an area sensitive detector with a theta to 2 theta geometry. This facile, stable and scanningless setup was tested at the BAMline @ BESSY-II (Berlin, Germany). This contribution focuses on further experimental optimizations allowing the characterization of supported vanadium oxide (VOx) based catalysts at the lower hard X-ray regime (5 to 6 keV). First S2XAFS measurements of these catalysts are presented herein. Supported VOx catalysts show promising results in the oxidation of methane to formaldehyde. S2XAFS allows determining the structural composition of the metal (i.e. vanadium) based on a fast and smart setup. It is therefore an ideal tool to identify crucial roles of chemical compounds in catalytic reactions. T2 - XAFS 2018 CY - Cracow, Poland DA - 22.07.2018 KW - XANES KW - XAFS KW - BAMline KW - Synchrotron PY - 2018 AN - OPUS4-46362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - From Egypt to Hiddensee – Analysis of Gold with Synchrotron Radiation IV N2 - Gold is one of the seven metals already known in antiquity and was used from time immemorial as a medium of exchange and for the production of jewelry because of its luster and rarity. In addition, it is easy to work and largely resistant to chemical influences. Investigations of gold using synchrotron radiation excited X-ray fluorescence analysis are non-destructive and provide information about the chemical elements present in the sample under investigation. The investigations presented here at BAMline focus on questions such as the origin, manufacturing process, and association of gold findings. The different questions are explained by a number of examples ranging from the Viking treasure from Hiddensee to the Nebra Sky Disk and finds from Egypt. The find from Bernstorf is discussed in detail. A Bayesian treatment of the authenticity is shown. T2 - Ringvorlesung Einführung in die Archäometrie CY - Berlin, Germany DA - 04.11.2022 KW - Synchrotron KW - BAMline KW - Bayesian Statistics KW - Gold KW - Röntgenfluoreszenz PY - 2022 AN - OPUS4-56252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - News from the BAMline N2 - A presentation of recent measurements at the BAMline with focus on AI and ML applications T2 - Seminar: Strahlenphysikalische Anwendungen in Technik und Medizin CY - Vienna, Austria DA - 18.05.2022 KW - Synchrotron KW - BAMline KW - Bayesian Statistics KW - Gold KW - X-ray fluorescence PY - 2022 AN - OPUS4-56253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana T1 - Getting more efficient – The use of Bayesian optimization and Gaussian processes at the BAMline N2 - For more than 20 years, BAM is operating the BAMline at the synchrotron BESSY II in Berlin Adlershof. During this time, the complexity of the setup and the amount of data generated have multiplied. To increase the effectiveness and in preparation for BESSY III, algorithms from the field of machine learning are increasingly used. In this paper, several examples in the areas of beamline alignment and measurement time optimization based on Bayesian optimization (BO) with Gaussian processes (GP) are presented. BO is a method for finding the global optimum of a function using a probabilistic model represented by a GP. The advantage of this method is that it can handle high-dimensional problems, does not depend on the initial estimate, and also provides uncertainty estimates. After a short introduction to BO and GP, the first example is the automatic alignment of our double multilayer monochromator (DMM). To achieve optimal performance, up to three linear and two angular motor positions have to be optimized. To achieve this with a grid scan, at least 100^5 measurement points would be required. Assuming that all positions can be aligned independently, 100*5 points are still necessary. We show that with BO and GP less than 100 points are sufficient to achieve equal or better results. The second example is the optimization of measurement time in XRF scanning. Here we will show the advantage of the BO GP approach over point-by-point scanning. As can be seen in Fig. 1, the number of points required and thus the measurement time can be reduced by a factor of 50, while the loss in image quality is acceptable. The advantages and limitations of this approach will be discussed. T2 - European Conference on X-ray Spectrometry 2022 CY - Bruges, Belgium DA - 26.06.2022 KW - Artificial Inelligence KW - Machine Learning KW - Bayesian Statistics KW - Gaussian process KW - Neural network KW - BAMline KW - Synchrotron PY - 2022 AN - OPUS4-56251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Buzanich, Ana A1 - Cakir, C.T. T1 - Enhancing efficiency at bamline: employing data science and machine learning for x-ray research N2 - This talk discusses how data science and machine learning techniques are being applied at the BAM Federal Institute for Materials Research and Testing to enhance efficiency and automation at the BAMLine synchrotron facility. The methods presented include Gaussian processes and Bayesian optimization for beamline adjustment and optimization of X-ray measurements. These statistical techniques allow automated alignment of beamline components and active learning scanning to reduce measurement time. Additional machine learning methods covered are neural networks for quantification of X-ray fluorescence (XRF) data and decoding coded apertures. T2 - 17th International Work-Conference on Artificial Neural Networks (IWANN2023) CY - Ponta Delgada, Portugal DA - 19.06.2023 KW - Bayesian Optimization KW - Gaussian Process KW - BAMline PY - 2023 AN - OPUS4-58605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Guilherme Buzanich, Ana A1 - Cakir, C.T. A1 - Yusenko, Kirill A1 - Emmerling, Franziska T1 - Insights into materials with hard x-rays: capabilities of the bamline N2 - This contribution provides an overview of the BAMline synchrotron radiation beamline, which specializes in hard X-ray spectroscopy techniques for materials research. The BAMline offers X-ray absorption spectroscopy (XAS), x-ray fluorescence spectroscopy (XRF), and tomography to study materials' electronic structure, chemical composition, and structure. Key capabilities include standard and dispersive XAS for electronic structure, micro-XRF for elemental mapping, coded aperture imaging, and depth-resolved grazing exit XAS. The BAMline enables in situ characterization during materials synthesis and functions for energy, catalysis, corrosion, biology, and cultural heritage applications. Ongoing developments like the implementation of machine learning techniques for experiment optimization and data analysis will be discussed. For instance, Bayesian optimization is being used to improve beamline alignment and scanning. An outlook to the future, where the BAMline will continue pioneering dynamic and multi-scale characterization, aided by advanced data science methods, to provide unique insights into materials research, will be given. T2 - μ-XRF at Elettra 2.0: challenges and opportunities CY - Trieste, Italy DA - 11.09.2023 KW - Synchrotron KW - XRF KW - XANES KW - Bayes PY - 2023 AN - OPUS4-58607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Von Ägypten bis Hiddensee Analyse von Gold mit Synchrotronstrahlung III N2 - Gold ist eines der sieben schon im Altertum bekannten Metalle und wurde wg. seines Glanzes und seiner Seltenheit von alters her als Tauschmittel und zur Herstellung von Schmuck benutzt. Außerdem ist es einfach bearbeitbar und weitestgehend gegen chemische Einflüsse resistent. Die Untersuchungen von Gold mit synchrotronstrahlungsangeregter Röntgenfluoreszenzanalyse sind zerstörungsfrei und geben Auskunft über die in der untersuchten Probe vorhandenen chemischen Elemente. Bei den hier vorgestellten Untersuchungen an der BAMline stehen Fragestellungen wie Herkunft, Herstellungsverfahren und Zusammengehörigkeit von Goldfunden im Vordergrund. Die verschiedenen Fragestellungen werden an einer Reihe von Beispielen erläutert die vom Wikingerschatz aus Hiddensee über die Himmelsscheibe von Nebra bis hin zu Funden aus Ägypten langen. Der Fund von Bernstorf wird ausführlich diskutiert. T2 - Vorlesung FU Berlin Einführung in die Archäometrie CY - Berlin, Germany DA - 06.11.2020 KW - Synchrotron KW - BAMline KW - XRF KW - Gold KW - Archäometrie PY - 2020 AN - OPUS4-51893 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fittschen, U. A1 - Lutz, C. A1 - Beuermann, S. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin T1 - Element Species Determination in Polymer Electrolyte Membranes N2 - Polymer electrolyte membranes (PEM) are polymers which act as separator in an electrochemical cell and allow ionic charge flow to close the circuit. Widely used membranes are perfluorinated sulfonic-acid (PFSA) ionomers (e.g. Nafion™), a class of ion-conducting polymers with remarkable ion conductivity and chemical-mechanical stability. A nanoscopic water system around the sulfonic acid capped side-chains of the otherwise hydrophobic polymer allows the ion transport. Only approx. 14 molecules of water per sulfonic group are present in the fully hydrated state. In vanadium redox flow batteries (VRFB) ideally only protons are transported. The weak ion selectivity of Nafion™ is the main cause for the transportation of vanadium, briefly vanadium crossover, in VRFBs a system we have investigated more closely, lately. The consequences of crossover are a concentration imbalance and a self-discharge of the battery, which leads to a decrease of the capacity. The development of efficient energy storage systems is crucial for the transformation towards a renewable energy based economy. The VRFB has a great potential as a commercial electrochemical energy storage system due to properties including, but not limited to, no cross-contamination, a long cycle-life and a theoretically unlimited capacity. VRFB consists of two half-cells, which are linked to electrolyte tanks and separated by a membrane. The membrane plays a major role in overall cell performance. So far, vanadium transportation models, which include diffusion, migration, electroosmotic convection and pressure gradients, are inconsistent. There is no agreement in the literature on the diffusion coefficients of vanadium species (e.g. published diffusion coefficients of V2+ are located between 3.13·10-12 m²s-1 and 9.44·10-12 m²s-1) indicate that thevanadium crossover is not well understood and there is a lack on a more fundamental level. Since the membrane transport is the rate-determining step of the crossover as well as of the proton exchange it is extremely important to understand these phenomena on a fundamental level. This will eventually allow us to design better membranes. Alternative materials need to show equivalent performance compared with Nafion™ and ideally be more selective regarding ion cross-membrane transport.There are several options to approach the chemistry i.e. the interaction of dissolved and bound ions inside the confined water body of ionomeric membranes. Vanadium ions are a versatile model as UV/VIS data can be used to distinguish between the 5 species V2+, V3+, VO2+, VO2+ and V2O33+ of the electrolyte. Infrared spectroscopy has been applied to study the interaction of sulfonic groups and the ions. Molecular dynamic modeling is another approach to study the distribution and distances of ions. We now introduce X-ray absorption near edge structure spectroscopy (XANES) to study species and species changes inside Nafion™ and a novel membrane based on poly(1,1-difluoroethylene) (PVDF). We evaluated the methods and investigated the influence of irradiation, temperature and hydration on the measurements. T2 - Denver X-Ray Conference CY - Online meeting DA - 03.08.2020 KW - Batteries KW - BAMline KW - XANES PY - 2020 AN - OPUS4-51910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lutz, C. A1 - Beuermann, S. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Fittschen, U. T1 - Investigation on Vanadium Crossover in Nafion ™ and Novel PVDF Based Membranes for Vanadium Redox Flow Batteries N2 - Vanadium redoxflow batteries (VRFB)are currently one of the most promising candidates for stationary energys torage.For large scale applications the ion conducting membranes currently in use need to be improved. Ideally,they need to become more cost efficient and selective regarding the vanadium crossover.For a better understanding of the vanadium crossover, the development of reliable analytical methods and procedures, that elucidate uptake and transport of vanadium ions in the membrane, is necessary. First, we present the uptake of V2+,V3+,VO2+, VO2+ and V2O33+ in Nafion™ and in a novel membrane based onpoly(1,1-difluoroethylene)(PVDF). In preliminary discharge/charge experiments the ETFE-based membrane, the precursor of PVDF-based membrane, performed comparable to Nafion™. The methods of choice for speciation are UV/Vis and X-ray absorption near edge structure spectroscopy (XANES). According to the results, V2O33+, formed from VO2+ and VO2+, diffuses also into the membrane. In present models, the diffusion of V2O33+ is neglected. In addition,we study whether reactions could take place inside the membranes’ nanoscopic water body using XANES. Exposing Nafion™ from one site with V3+a nd from the other site with VO2+ realized the experiment. The results verified that VO2+ was formed inside the membrane. However,in present models reactions inside the membrane are neglected, too. T2 - Denver X-Ray Conference CY - Online meeting DA - 03.08.2020 KW - Batteries KW - BAMline KW - XANES KW - VRF PY - 2020 AN - OPUS4-51909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Radtke, Martin T1 - Scanning-Free Grazing Exit XANES Analysis of Stratified Samples and the Optimization of the Data Collection Process N2 - The components that are used in structural and in high temperature applications generally face significant challenges with respect to oxidation behaviours and metalworking processes. In most of the cases, harsh environmental conditions lead materials to degrade due to corrosion. To thoroughly investigate the corrosion processes and to determine oxidation states of metal components within the reaction products, we need special analytical tools. Grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect this information in sub-micrometre depth range. In order to obtain structural information, such as regarding oxidation states or atomic/molecular geometric arrangement, the GEXRF approach can also be combined with the X-ray absorption spectroscopy (XAS) method. The position and energy sensitive detector, with 264x264 pixel detector area, provides information regarding the signal emitted from the sample as a function of the emission angle and thus allows depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which can be controlled with a resolution of 0.5 eV provides XANES data to determine oxidation states. We address the feasibility of our setup and provide a new optimization procedure (Bayesian Optimization and Gaussian Regression) to decrease measuring time. The results settle on a conceptual study on a reference sample (Cr-Oxide layer (300nm) on Cr layer (500nm) on Si wafer). T2 - Denver X-Ray Conference DXC 2022 CY - Washington D.C., USA DA - 07.08.2022 KW - GEXRF KW - High entropy alloys KW - High entropy materials KW - Optimization KW - XANES KW - Grazing exit KW - XAS PY - 2022 AN - OPUS4-56271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Radtke, Martin T1 - High Speed for High Entropy Materials N2 - Time is the most valuable parameter in synchrotron experiments. This is costly and some of the experiments suffer from low efficiency due to low counting statistics. With today's high processing power long experiments are run in a shorter time and increase efficiency. With optimization algorithms time in "counting-hungry" experiments reduced by factor of 10. Our project is to develop a new method to analyze the chemical properties of complex materials non-destructively and efficiently, such as high entropy materials subjected to corrosion processes. A better understanding of the corrosion process will help to develop corrosion-resistant materials and reduce the cost of corrosion damage, which averages around 2.5 trillion USD annually. T2 - Berlin Science Week CY - Berlin, Germany DA - 01.11.2022 KW - GEXRF KW - High entropy alloys KW - XANES KW - High entropy materials KW - Grazing exit KW - XAS KW - Optimization PY - 2022 AN - OPUS4-56269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Nützmann, Kathrin A1 - Falk, Florian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Witte, Steffen A1 - Radtke, Martin T1 - Early stages of high temperature oxidation/sulfidation studied by synchrotron x-ray diffraction and spectroscopy N2 - Ferritic high temperature alloys are widely used as boiler tube and heat exchanger materials in coal, biomass and co-fired power plants. All technologies have in common that the applied materials are exposed to different temperatures, process pressures and reactive atmospheres that lead to a change of the material properties and a further degradation of the material. Material changes caused by aging in highly corrosive and toxic gases such as SO2 are mainly studied ex situ after the reaction is finished. The solid material is deposited in the atmosphere for a certain period of time, and material changes are then examined by various microscopic techniques such as optical microscopy (OM), electron microprobe analysis (EMPA), scanning electron microscopy (SEM and TEM) and X-ray diffraction (XRD). Nevertheless, extensive efforts were made to study material changes of high temperature alloys under oxidizing and reducing atmospheres by environmental scanning electron microscopy or in situ TEM techniques However, the possibilities of microscopic in situ techniques are very limited for the use of highly corrosive and toxic gases such as SO2. Since Sulfur induced corrosion at temperatures relevant for coal and biomass fired power plants, which is causing breakaway oxidation and sulfide precipitation at grain boundaries, is still of scientific interest, the current work focuses on the effect of SO2 in an initial stage of corrosion of ferritic alloys. For the analysis of early stages of combined oxidation and sulphidation processes of Fe-Cr model alloys the usage of a light furnace to conduct a rapid reactive annealing experiment is feasible. Previous studies presented distinct results of the influence of chromium on early high temperature corrosion by SO2 by this technique and subsequent classical metallographic analyses. However, it is still not possible to trace the corrosion mechanism in real time by conducting single aging experiments. The current work introduces two different approaches to study the initial stages of high temperature oxidation processes by applying above state of the art X-ray diffraction and spectroscopy methods. One part focuses on the real time observation of the formation of corrosion products such as oxides and sulfides by energy dispersive X-ray diffraction (EDXRD). The potential of this technique to study crystallization and growth processes of thin films in a reactive environment in real time was previously shown for different compound semiconductors. This approach was now applied to follow oxidation and sulphidation processes of ferritic model alloys in SO2 and SO2/H2O environments. The diffraction signals of the X-rays were detected during the corrosion process and the peak area and positions were analyzed as a function of time. This procedure enables monitoring external oxide growth and material loss in real time in an early stage of corrosion. The other part of the current work presents the possibilities of X-ray absorption near edge structure spectroscopy (XANES) to characterize oxide scales and their growth mechanisms. Precise phase identification and quantification of corrosion products in a multi-phase oxide/sulfide scale is a pre-requisite to understand diffusion paths of metal ions and gas components. It is a challenging task to distinguish structurally similar reaction products such as Fe3O4 and FeCr2O4 especially in thin films with texture effects by diffraction. To illustrate for example Cr-out diffusion of an alloy throughout an inner and external oxide scale the differentiation of Fe3O4 and FeCr2O4 is indispensable. XANES uses the photoionization effect at the metal absorption edge in an aging product and accesses by this structural and chemical information. The current work uses XANES at the Fe-K and Cr-K absorption edge to identify various aging products grown as thin layers on alloys after short time aging experiments. A reaction chamber for combining high temperature oxidation experiments with surface sensitive X-ray absorption near edge structure spectroscopy will be introduced and first results of XANES on scales at high temperatures will be presented. T2 - ISHOC 2018 CY - Matsue, Japan DA - 22.10.2018 KW - Corrosion KW - Sulfidation KW - In situ KW - Diffraction KW - XANES PY - 2018 AN - OPUS4-47278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Artificial intelligence for spectroscopy examples from BAMline N2 - Various applications for artificial intelligence in the context of spectroscopy will be presented. in particular, examples from bamline will be featured. After a short introduction to synchrotron radiation, artificial intelligence algorithms for the quantification of X-ray fluorescence measurement are discussed. In the second example, information retrieval by natural language processing is reviewed. As a last example the reconstruction of measurements with the X-ray color camera and coded apertures is presented. T2 - Seminar Strahlenphysikalische Anwendungen in Technik und Medizin CY - ATi Wien, Austria DA - 22.01.2020 KW - Machine learning KW - Natural language processing KW - Neural networks KW - Synchrotron KW - BAMline PY - 2020 AN - OPUS4-51891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana T1 - SRXRF examples from the BAMline N2 - Synchrotron radiation sources with their unique properties in terms of intensity, polarization and adjustability offer a wide range of possibilities in materials research. A basic introduction about the creation and special properties of synchrotron radiation will be given. Examples of current work at BAMline, the high-energy measuring facility of the Federal Institute for Materials Research and Testing at the synchrotron BESSY, are used to illustrate the possibilities and limitations of existing measuring methods. T2 - Better with Scattering CY - Online meeting DA - 16.03.2020 KW - Synchrotron KW - BAMline KW - XRF PY - 2020 AN - OPUS4-51895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich A1 - Gornushkin, Igor B. A1 - Riedel, Jens A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - "Keine Dienstmagd" - Analytical Sciences in Action N2 - Analytical Sciences has developed from Ostwald’s “unentbehrlichen Dienstmagd” to a chemical discipline at the core of many of today’s fundamental and applied scientific problems and innovations. An atomic or molecular understanding of basic processes in chemistry, soft matter physics, materials and life science is enabled only through new analytical methods and instrumentation. Similar observations can be found for pressing sociopolitical conflicts of the future: A rational discussion of global climate change or new energy sources is only possible with reliable analytical results. Progress in Analytical Sciences is only possible if the underlying interdisciplinary character is acknowledged and valued. The talk will illustrate the scope of modern Analytical Science through examples from process analysis relevant to modern process intensification and industry 4.0 to bioanalysis and the use of synchrotron radiation to elucidate fundamental reactions materials. T2 - MChG Talk CY - Technische Universität München, Germany DA - 27.11.2018 KW - Analytical Sciences PY - 2018 AN - OPUS4-46940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, Alexander T1 - Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that nucleation in the calcium sulfate system is non-classical, involving the aggregation and reorganization of nanosized prenucleation particles. In a recent work we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant single micron-sized CaSO4 crystals. This property of CaSO4 minerals provides us with an unique opportunity to search for evidence of non-classical nucleation pathways in geological environments. In particular, we focused on the quintessential single crystals of anhydrite extracted from the Naica mine in Mexico. We elucidated the growth history from this mineral sample by mapping growth defects at different length scales. Based on these data we argue that the nano-scale misalignment of the structural sub-units observed in the initial calcium sulfate crystal seed propagate through different length-scales both in morphological, as well as strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nanoparticle mediated nucleation mechanism introduces a 'seed of imperfection', which leads to a macroscopic single crystal, in which its fragments do not fit together at different length-scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very well-defined walls/edges. But, at the same time the material retains its essential single crystal nature. These findings shed new light on the longstanding concept of crystal structure. T2 - S4SAS Conference 2021 CY - Online meeting DA - 01.09.2021 KW - SAXS KW - Calcium sulfate KW - Anhydrite KW - Mesocrystals PY - 2021 AN - OPUS4-53630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scholz, Philipp A1 - Panne, Ulrich A1 - Wachtendorf, Volker A1 - Weidner, Steffen T1 - Degradation of polyurethanes in various environments – Effects on molecular mass and crosslinking N2 - The increasing application of polyurethanes (PU) in safety relevant sectors (fire protection, insulation, medicine technique) requires detailed knowledge of the stability and reliability of these materials. Different climate factors are supposed to induce diverse and overlapping degradation reactions. The knowledge of these degradation mechanisms is necessary for an estimation of the period of application depending on usage of the material. An essential property of a polymeric system is represented by the molecular weight. Since a change of the molecular weight is a measure for the chemical stability of a polymer, size-exclusion chromatography (SEC) was used to monitor changes of the molecular weight of thermoplastic polyether- and polyester urethane (TPU) exposed to thermal, hydrolytic and photo-oxidative (UV) degradation conditions for several days. Thermal treatments were performed at elevated temperatures (100 - 200 °C) under oxidative (air) as well as non-oxidative (nitrogen) conditions to evaluate the specific influence of oxygen on the degradation. At higher temperatures (≥ 175 °C) a fast decrease of the molecular masses of both PU accompanied by a high degree of crosslinking was found. At lower temperatures (≤ 150 °C) the polymers remained widely unaffected by thermal degradation within the investigated degradation interval of up to two weeks, which was already known from FTIR spectroscopy[1]. In contrast to that, UV treatment at 25 °C at less than 10 % rel. humidity (RH) resulted in a fast crosslinking, whereas the molecular masses of both PU decreased slower than during the thermal treatments. The depth of penetration of the UV radiation was determined using 3D printed PU samples with different thicknesses. Hydrolysis based degradation effects were less significant. Only slight molecular mass changes were detected at temperatures ≤ 80 °C within a time span of 14 days, while no crosslinking could be measured. Considering the degradation results at the investigated exposure parameters, it could be shown that ester-based PU in general exhibits a significant higher stability compared to ether-based materials. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Polyurethane KW - Thermal degradation KW - UV degradation KW - Molecular masses KW - Crosslinking PY - 2019 AN - OPUS4-47957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe T1 - Das goldene Zeitalter war damals Analyse von Gold mit Synchrotronstrahlung N2 - Gold ist eines der sieben bereits in der Antike bekannten Metalle und wurde wegen seines Glanzes und seiner Seltenheit seit jeher als Tauschmittel und zur Herstellung von Schmuck verwendet. Außerdem ist es leicht zu bearbeiten und weitgehend resistent gegen chemische Einflüsse. Die Analyse von Gold mit der durch Synchrotronstrahlung angeregten Röntgenfluoreszenzanalyse ist zerstörungsfrei und liefert Informationen über die in der untersuchten Probe vorhandenen chemischen Elemente. Im Mittelpunkt der hier vorgestellten Untersuchungen an der BAMline stehen Fragen nach der Herkunft, dem Herstellungsprozess und der Zugehörigkeit von Goldfunden. Die verschiedenen Fragestellungen werden anhand einer Reihe von Beispielen erläutert, die vom Wikingerschatz von Hiddensee über die Himmelsscheibe von Nebra bis hin zu Funden aus Ägypten reichen. Darüber hinaus werden die heute am Synchrotron verfügbaren modernen Messmethoden vorgestellt. T2 - WISSENSCHAFT MIT WIRKUNG: Workshop Kulturguterhaltung – vom Dampfkessel zu Nanomaterialien CY - Berlin, Germany DA - 17.11.2021 KW - Gold KW - Synchrotron KW - Bernstorf KW - Nebra KW - XRF PY - 2021 AN - OPUS4-54139 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana T1 - Trace element analysis with synchrotron radiation N2 - Trace elements are chemical elements whose concentration in a material is very low. The exact definition depends on the application and varies for example between 100 micrograms per gram in analytical chemistry and 1000 micrograms per gram in geology. The ability to detect trace elements fast and quantitatively is of great importance in many areas of science and technology. With its high brilliance and flexibility in the excitation conditions, synchrotron radiation is an ideal tool for detecting traces even in small sample quantities. In this contribution I will report about the use of X-ray fluorescence(XRF)for qualitative and quantitative element sensitiveanalysis. In addition to the fundamentals of XRF and its quantification methods, the advantages and problems of different geometries like e.g. microXRF, Total Reflection X-ray Fluorescence (TXRF)or Double Dispersive XRF (D²XRF) will be discussed. Practical examples from BAMline from the research fields of medicine, geology and archaeometry will complete the lecture. T2 - Denver X-Ray Conference CY - Online meeting DA - 03.08.2020 KW - Synchrotron KW - BAMline KW - XRF PY - 2020 AN - OPUS4-51890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Machine learning: examples from BAMline N2 - Various applications for artificial intelligence in the context of spectroscopy will be presented. in particular, examples from BAMline will be presented. After a short introduction to synchrotron radiation, artificial intelligence algorithms for the quantification of X-ray fluorescence measurement are discussed. In the second example, information retrieval by natural language processing is discussed. T2 - Analytical Academy CY - Online meeting DA - 02.06.2020 KW - Machine learning KW - BAMline KW - XRF KW - Synchrotron PY - 2020 AN - OPUS4-51898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - George, Janine A1 - Mieller, Björn A1 - Stawski, Tomasz T1 - ZrV2O7 negative thermal expansion (NTE) material N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material that exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). Therefore, it can be used to create composites with controllable expansion coefficients and prevent thermal stress, fatigue, cracking, and deformation at interfaces. We implement interdisciplinary research to analyze such material. We study the influence of the synthesis methods and their parameters on the sample's purity, crystallinity, and homogeneity. Moreover, we implement ab initio-based vibrational computations with partially treated anharmonicity in combination with experimental methods to follow temperature-induced structural changes and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder. T2 - SALSA Make and Measure Conference CY - Berlin, Germany DA - 13.09.2023 KW - NTE KW - Composites KW - TEM PY - 2023 AN - OPUS4-58367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - X-Ray fluorescence with synchrotron radiation basics and applications N2 - In this talk, the features of X-ray fluorescence analysis with synchrotron radiation will be presented. First, the basics of the origin of synchrotron radiation and X-ray fluorescence analysis and the experimental setup will be discussed. Then, examples of trace element detection, micrometer resolution, and application of the X-ray color camera will be shown. T2 - HZB Photon school 2020 CY - Berlin, Germany DA - 09.03.2020 KW - Synchrotron KW - BAMline KW - XRF KW - Machine learning PY - 2020 AN - OPUS4-51894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Machine learning for direct quantification of XRF measurements N2 - In X-ray fluorescence (XRF), a sample is excited with X-rays, and the resulting characteristic radiation is detected to detect elements quantitatively and qualitatively. Quantification is traditionally done in several steps: 1. Normalization of the data 2. Determination of the existing elements 3. Fit of the measured spectrum 4. Calculation of concentrations with fundamental parameters / MC simulations / standard based The problem with standard based procedures is the availability of corresponding standards. The problem with the calculations is that the measured intensities for XRF measurements are matrix-dependent. Calculations must, therefore, be performed iteratively (= time consuming) in order to determine the chemical composition. First experiments with gold samples have shown the feasibility of machine learning based quantification in principle. A large number of compositions were simulated (> 10000) and analyzed with a deep learning network. For first experiments, an ANN (Artificial Neural Network) with 3 hidden layers and 33x33x33 neurons was used. This network learned the mapping of spectra to concentrations using supervised learning by multidimensional regression. The input layer was formed by the normalized spectrum, and the output layer directly yielded the searched values. The applicability for real samples was shown by measurements on certified reference materials. T2 - Denver X-ray Conference CY - Lombard, IL, USA DA - 05.08.2019 KW - Machine learning KW - Artificial intelligence KW - Neural network KW - XRF KW - Synchrotron PY - 2019 AN - OPUS4-48903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -