TY - CONF A1 - Radnik, Jörg A1 - Ciornii, Dmitri A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Hodoroaba, Vasile-Dan T1 - Reliable, and reproducible physico-chemical data of nanomaterials for risk assessment N2 - Nanoforms with at least one dimension below 100 nm have an important part to play in more and more areas of our daily life. Therefore, risk assessment of these materials is becoming increasingly important. In this context, the European Chemical Agency (ECHA) considered eleven physico-chemical properties as relevant, of which the following six are essential for the registration: chemical composition, crystallinity, particle size, particle shape, surface chemistry and specific surface area. Four of these priority properties can be obtained with electron microscopy and surface analytics like XPS and ToF-SIMS. The reliability of this data must be ensured, especially for their use for grouping and read across approaches. On the other hand, the “reproducibility” crisis has revealed major shortcomings in the reliability of published data. In a case study, we show how the quality of the data can be ensured by using existing standards and protocols of each step in the workflow of sample characterization. As exemplary samples, two Al-coated TiO2 samples as nanopowders were selected from the JRC repository, capped either with a hydrophilic or a hydrophobic organic ultrathin shell. SEM results provided the size and shape of the nanoparticles, a first overview about the composition was obtained with EDS. XPS and ToF-SIMS supplied the surface chemistry, especially information about the shell and the coating of the particles. Standards and protocols of all steps of the analytical workflow including preparation and data reduction are discussed regarding reliable and reproducible data. Additionally, uncertainties for the different steps are specified. Only such a detailed description of all these factors allows a comprehensive physico-chemical characterization of the nanoparticles with understanding of their potential risk assessment. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Reference data KW - Risk assessment KW - Nanomaterials KW - Titania PY - 2022 AN - OPUS4-54961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hesse, R. A1 - Denecke, R. T1 - Improved estimation of the transmission function with UNIFIT 2022 N2 - The recent development of x-ray photoelectron spectroscopy using excitation sources different from the usual lab-source Mg Kα and Al Kα and spectrometers with more sophisticated lens systems requires flexible approaches for determining the transmission function. Therefore, the approach using quantified peak areas (QPA) was refined.1 A new algorithm allows a more precise estimation of the transmission function which could be shown by comparing the results obtained with the new version with former calculations. Furthermore, next to the established reference materials Cu, Ag and Au, ionic liquids can be used for estimating the transmission function at beamlines with variable excitation energies. Comparison between the measured and stoichiometric composition shows that a transmission function was determined which allows a reasonable quantification. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Synchrotron radiation KW - Iionic liquid PY - 2022 AN - OPUS4-54962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Kim, K.J. T1 - Elemental Composition and Thickness Determination of Thin Films by Electron Probe Microanalysis (EPMA) N2 - microscopy (AFM), or X-ray reflectometry. For the additional determination of thin film composition, techniques like X-ray photoelectron spectroscopy (XPS) or mass spectrometry-based techniques can be used. An alternative non-destructive technique is electron probe microanalysis (EPMA). This method assumes a sample of homogenous (bulk) chemical composition, so that it cannot be usually applied to thin film samples. However, in combination with the thin film software StrataGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). These samples were used for an international round robin test. In 2021, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BadgerFilm software package and compared the resulting composition and thickness with the results of the established StrataGEM software and other reference methods. With the current evaluation, the BadgerFilm software shows good agreement with the composition and thickness calculated by StrataGEM and as the reference values provided by the KRISS. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Thin films KW - Electron Probe Microanalysis KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Knigge, Xenia A1 - Guo, Z. A1 - Valsami-Jones, E. A1 - Radnik, Jörg T1 - Characterization of sterilized nanoparticles by lab-based XPS and HAXPES N2 - The novel lab-based HAXPES spectrometer (ULVAC-PHI Quantes) gives us the possibility to measure XPS at 1486.6 eV (monochromatic Al Kα source) and HAXPES at 5414.9 eV (monochromatic Cr Kα source) on a sample at the same position. The surface analysis with this spectrometer leads to an information depth of about 10 nm for XPS and in comparison, to an analysis of deeper regions of about 30 nm for HAXPES measurements. This method provides a nondestructive way to distinguish between the near-surface region of the nanoparticles and the whole nanoparticle. Additionally, HAXPES gives access to deeper core levels at higher energy. An application of this technique is presented using nanoparticles. The results shown were obtained with nanoparticles, that were treated differently by means of sterilization for nanosafety (i.e., before studying their toxicity it is important to establish whether nanomaterials are sterile and, if not, to be treated either via microwave or autoclave sterilisation). As a complementary method, the data is compared with SEM and EDX measurements. All methods demonstrate the influence of sterilization. More specifically, these results show that the sterilization step must be considered in the physical-chemical description of the particles for establishing reliable (quantitative structure-activity) relationships. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - XPS KW - HAXPES KW - Nanoparticles PY - 2022 AN - OPUS4-54968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Müller, Anja T1 - Determination of the actual morphology of core-shell nanoparticles by advanced X-ray analytical techniques: A necessity for targeted and safe nanotechnology N2 - Even though we often do not knowingly recognize them, nanoparticles are present these days in most areas of our daily life, including food and its packaging, medicine, pharmaceuticals, cosmetics, pigments as well as electronic products, such as computer screens. The majority of these particles exhibits a core-shell morphology either intendedly or unintendedly. For the purpose of practicability, this core-shell nanoparticle (CSNP) morphology is often assumed to be ideal, namely a spherical core fully encapsulated by a shell of homogeneous thickness with a sharp interface between core and shell material. It is furthermore widely presumed that all nanoparticles in the sample possess the same shell thickness. As a matter of fact, most real CSNPs deviate in several ways from this ideal model with quite often severe impact on how efficiently they perform in a specific application. The topic of this cumulative PhD thesis is the accurate characterization of the actual morphology of CSNPs by advanced X-ray analytical techniques, namely X-ray photoelectron spectroscopy (XPS) and scanning transmission X-ray microscopy (STXM). A special focus is on CSNPs which deviate from an ideal core-shell morphology. In the paper from 2019 nanoparticle shell thicknesses are extracted from the elastic-peak intensities in an XPS spectrum based on an ideal particle morphology. This happens for a series of CSNP samples comprising a poly(tetrafluoroethylene) (PTFE) core and either a poly(methyl methacrylate) (PMMA) or polystyrene (PS) shell. The same paper as well as the paper from 2020 demonstrate for the first time, that the analysis of the inelastic background in an XPS spectrum of CSNPs can identify and quantify the heterogeneity of the shell and the incomplete encapsulation of the core. The result from an XPS experiment is always an average across a large nanoparticle ensemble. Deviations from an ideal morphology within a single particle of the sample cannot be assessed separately. As opposed to that, a spatial resolution of 35 nm enables STXM to visualize the interior of single CSNPs which exhibit a sufficient X-ray absorption contrast between core and shell material. In the paper from 2018 a STXM analysis is demonstrated based on the example of the PTFE-PS CSNP samples already mentioned in the previous paragraph. In the publication from 2021 (Ca/Sr)F₂ core-shell like nanoparticle ensembles for the practical use in, among others, antireflective coatings are investigated. These nanoparticles do not possess a sharp interface between core and shell material, which is why a shell thickness determination as described in the second paragraph is inappropriate. Instead, in-depth profiles of the chemical composition are obtained by XPS experiments based on synchrotron radiation with variable X-ray photon energy to elucidate the internal morphology of the particles. Additionally, theoretical in-depth profiles of Ca and Sr XPS peak intensities are simulated, in order to facilitate the interpretation of the experiments. Thus, an enrichment of CaF₂ at the particle surface was determined, which could hardly have been assessed by any other analytical technique. Because this kind of non-destructive depth profiling by XPS is very demanding, more than usual effort is spent on gapless documentation of the experiments to ensure full reproducibility. Due to the vast diversity of nanoparticles differing in material, composition and shape, a measurement procedure cannot unalteredly be transferred from one sample to another. Nevertheless, because the papers in this thesis present a greater depth of reporting on the experiments than comparable publications, they constitute an important guidance for other scientists on how to obtain meaningful information about CSNPs from surface analysis. N2 - Obwohl wir sie oft nicht bewusst wahrnehmen, sind Nanopartikel heutzutage in den meisten Bereichen unseres Alltags präsent, unter anderem in Lebensmitteln und ihren Verpackungen, Medizin, Medikamenten, Kosmetik, Pigmenten und in elektronischen Geräten wie Computermonitoren. Ein Großteil dieser Partikel weist, beabsichtigt oder unbeabsichtigt, eine Kern-Schale Morphologie auf. Einfachheitshalber wird diese Morphologie eines Kern-Schale-Nanopartikels (CSNP) oft als ideal angenommen, d.h. als ein sphärischer Kern, der komplett von einer Schale homogener Dicke bedeckt ist, mit einer scharfen Grenzfläche zwischen Kern- und Schalenmaterial. Außerdem wird vielfach auch davon ausgegangen, alle Partikel der Probe hätten gleiche Schalendicken. Tatsächlich weichen die meisten realen CSNPs in verschiedenster Weise von diesem Idealmodell ab, mit oft drastischen Auswirkungen darauf, wie gut sie ihre Aufgabe in einer bestimmten Anwendung erfüllen. Das Thema dieser kumulativen Doktorarbeit ist die exakte Charakterisierung der wirklichen Morphologie von CSNPs mit modernen Röntgen-basierten Methoden, konkret Röntgen-Photoelektronen-Spektroskopie (XPS) und Raster-Transmissions-Röntgen-Mikroskopie (STXM). Der Fokus liegt insbesondere auf CSNPs, die von einer idealen Kern-Schale-Morphologie abweichen. Im Artikel von 2019 werden Schalendicken von Nanopartikeln aus den elastischen Peakintensitäten im XPS-Spektrum unter Annahme einer idealen Partikelmorphologie abgeleitet. Dies geschieht für eine Reihe von CSNP-Proben, welche aus einem Polytetrafluoroethylen- (PTFE) Kern und entweder einer Polymethylmethacrylat- (PMMA) oder Polystyrol- (PS) Schale bestehen. Sowohl dieser Artikel als auch der von 2020 zeigen erstmals, dass die Auswertung des inelastischen Untergrunds eines CSNP-XPS-Spektrums in der Lage ist, die Heterogenität der Schale und die unvollständige Ummantelung des Kerns zu identifizieren und zu quantifizieren. Das Ergebnis eines XPS-Experiments ist immer ein Mittelwert über ein großes Nanopartikelensemble. Inwiefern ein einzelner Partikel innerhalb der Probe von einer idealen Morphologie abweicht, kann nicht gesondert erfasst werden. Im Gegensatz dazu kann STXM mit einer räumlichen Auflösung von 35 nm das Innere einzelner CSNPs visualisieren, sofern sie genügend Röntgenabsorptionskontrast zwischen Kern- und Schalenmaterial aufweisen. Im Artikel von 2018 wird am Beispiel der bereits im vorherigen Abschnitt genannt PTFE-PS-CSNPProben eine solche STXM-Untersuchung demonstriert. In der Veröffentlichung von 2021 werden Kern-Schale-artige (Ca/Sr)F₂-Nanopartikel für den praktischen Einsatz in unter anderem entspiegelnden Beschichtungen untersucht. Da hier keine scharfe Grenzfläche zwischen Kern- und Schalenmaterial vorliegt, ist eine Schalendickenbestimmung, wie sie im zweiten Abschnitt diskutiert wird, nicht sinnvoll. Stattdessen werden mit Hilfe von XPS, angeregt mit Synchrotronstrahlung bei variabler Röntgenphotonenenergie, Tiefenprofile der chemischen Zusammensetzung generiert, um die innere Morphologie der Partikel aufzuklären. Zusätzlich werden theoretische Tiefenprofile der Ca- und Sr-XPS-Peakintensitäten simuliert, um die Interpretation der Experimente zu erleichtern. So wurde eine CaF₂-Anreicherung an der Oberfläche der Partikel festgestellt, die kaum mit einer anderen analytischen Methode hätte entdeckt werden können. Da diese zerstörungsfreie Bestimmung von XPS-Tiefenprofilen sehr anspruchsvoll ist, wird noch mehr als üblich auf die lückenlose Dokumentation des Experiments geachtet, um vollständige Reproduzierbarkeit zu gewährleisten. Aufgrund der enormen Vielfalt an CSNPs, die sich in Material, Zusammensetzung und Form unterscheiden, kann eine Messmethode nicht völlig unverändert von einer Probe auf eine andere übertragen werden. Nichtsdestotrotz, da die als Teil dieser Doktorarbeit präsentierten Artikel eine deutlich ausführlichere Beschreibung der Experimente enthalten als vergleichbare Publikationen, stellen sie eine wichtige Anleitung für andere Wissenschaftler dafür dar, wie aussagekräftige Informationen über CSNPs durch Oberflächenanalytik erhalten werden können. KW - Core-shell nanoparticle (CSNP) KW - X-ray photoelectron spectroscopy (XPS) KW - Scanning transmission X-ray microscopy (STXM) PY - 2022 U6 - https://doi.org/10.18452/24312 SP - i EP - 243 PB - Humboldt-Universität CY - Berlin AN - OPUS4-54991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Mezra, Marek A1 - Weise, Matthias A1 - Wasmuth, Karsten A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Hodoroaba, Vasile-Dan T1 - ToF-SIMS as a new tool for nano-scale investigation of ps-laser generated surface structures on Titanium substrates N2 - The fabrication of laser-generated surface structures on titanium and titanium alloys has recently gained remarkable interests, being technologically relevant for applications in optics, medicine, fluid transport, tribology, and wetting of surfaces. The morphology of these structures, and so their chemistry, is influenced by the different laser processing parameters such as the laser fluence, wavelength, pulse repetition rate, the effective number of laser pulses per beam spot area, etc. A simple way to characterize laser-generated surface structures is by means of optical microscopy (OM) or white light interference microscopy (WLIM). The latter can address the surface topography, while having a lateral resolution limit of ~(lambda)/2 (lambda = illumination wavelength). To resolve morphologies with spatial periods significantly smaller than (lambda)/2, scanning electron microscopy (SEM) is often used, taking benefit of the reduced de Broglie wavelength associated to the electrons of several keV energy. However, all the above-mentioned techniques lack the necessary depth-resolution to reveal and quantify sub-surface material modifications of these laser-generated structures. Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) represents a promising surface analytical technique for studying laser-induced chemical surface alterations since the method combines a high surface sensitivity with the capability to perform a depth-profiling of the laser-affected surface zone. In this study we combine WLIM and high-resolution SEM with ToF-SIMS to fully characterize the evolution of various types of laser-generated micro- and nanostructures formed on Ti-6Al-4V alloys upon irradiation by near infrared ultrashort laser pulses (1030 nm, 925 fs) at different laser fluence levels, effective number of pulses, and at different pulse repetition rates (1 – 400 kHz). We show how this combined surface analytical approach allows to evaluate alterations in the surface chemistry and topography of the laser-generated surface structures depending on the laser processing parameters T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Laser-induced periodic surface structures KW - Time of Flight - Secondary ion mass spectrometry KW - White light interferometric microscopy KW - Titanium alloy PY - 2022 AN - OPUS4-54992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz T1 - Trash to treasure: recovery of transition metal phosphates for (electro-)catalytical applications N2 - Wastewaters containing high concentrations of NH4+, PO43- and transition metals are environmentally harmful and toxic pollutants. At the same time phosphorous and transition metals constitute valuable resources. Here, we report the synthesis routes for Co- and Ni-struvites (NH4MPO4∙6H2O, M = Ni2+, Co2+) out of aqueous solutions resembling synthetic/industrial waste water compositions, and allowing for P, ammonia and metal co-precipitation. Furthermore, the as-obtained struvites were further up-cycled. When heated, these transition metal phosphates (TMPs) demonstrate significant changes in the degree of crystallinity/coordination environment involving a high amount of amorphous phases and importantly develop mesoporosity (Figure 1). In this regard, amorphous and mesoporous TMPs are known to be highly promising (electro-)catalysts. Amorphous phases do not represent a simple “disordered” crystal but more a complex system with a broad range of compositions and physicochemical properties, which remain mostly unknown. Consequently, we investigated the recrystallization and amorphization process during thermal treatment and a resolved the complex amorphous/crystalline structures (Figure 2). As a proof-of-principle for their applicational use, the as-obtained TMPs demonstrate significant proton conductivity properties similar to apatite-like structures from room to high temperatures (>800°C). Hence, we have developed a promising recycling route in which environmental harmful contaminants like PO43-, NH4+ and 3d metals would be extracted out of waste waters in the form of precursor raw materials. These raw materials can be then further up-cycled through a simple thermal treatment for their specific application in electrocatalysis. T2 - Goldschmidt Conference 2022 CY - Hawai'i, USA DA - 10.07.2022 KW - Mesoporosity KW - Amorphous phases KW - Transition metals KW - Struvite KW - Phosphates PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552852 UR - https://conf.goldschmidt.info/goldschmidt/2022/meetingapp.cgi/Paper/9501 AN - OPUS4-55285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Pellegrino, F. A1 - Maurino, V. T1 - Morpho-Chemical Characterisation of Me-TiO2 Nanoparticles for Enhanced Photocatalytical Activity N2 - The conversion of solar energy into electricity and solar fuels is of crucial importance for a green and sustainable future. Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen (H2) fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, etc) and metal concentrations will be discussed. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Titania nanoparticles KW - Photocatalysis KW - Scanning electron microscopy KW - Energy dispersive X-ray spectroscopy PY - 2022 AN - OPUS4-54977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Schwibbert, Karin A1 - Richter, Anja A1 - Bonse, Jörn T1 - BioCombs4Nanofibers: From nanofibers over spiders to bacteria N2 - This 6 minute long MP4-video presents some key results of the European research project "BioCombs4Nanofibers" to the broader public. Inspired by nature, some concepts of certain types of spiders are transferred to technology in order to develop bacteria-repellent surfaces through laser surface nanostructuring. Funding notice: This study was funded by the European Union's research and innovation program under the FET Open grant agreement No. 862016 (BioCombs4Nanofibers, http://biocombs4nanofibers.eu). KW - Antiadhesive surfaces KW - Laser-induced periodic surface structures (LIPSS) KW - Cribellate spiders KW - Bacterial adhesion tests KW - Bacteria-repellent surfaces PY - 2022 UR - https://download.jku.at/org/7kM/xyU/BioCombs4Nanofibers/D5.6_video%20for%20the%20broader%20public_23.03.2022.mp4 UR - https://www.jku.at/en/biocombs4nanofibers/dissemination/ U6 - https://doi.org/10.26272/opus4-54939 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wolf, Jako A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - SI Files for "Towards automation of the polyol process for the synthesis of silver nanoparticles" N2 - The graphml file: reaction_graph_AgNP.graphml is included. It contains topological information (Fig. 1 in the main text) about the reaction setup and metadata with reaction condtions. It used by the Python API used to control the Chemputer. SAXS reports. The complete report sheets generated by McSAS are included. They contain extended information characterising the size distributions and the fitting parameters. NP3_I: saxs_report_NP3_I.pdf NP3_II: saxs_report_NP3_II.pdf NP3_III: saxs_report_NP3_III.pdf NP3_IV: saxs_report_NP3_IV.pdf NP5_I: saxs_report_NP5_I.pdf NP5_II: saxs_report_NP5_II.pdf NP5_III: saxs_report_NP5_III.pdf KW - Automated synthesis KW - Silver KW - Nanoparticles PY - 2022 U6 - https://doi.org/10.5281/zenodo.5910614 PB - Zenodo CY - Geneva AN - OPUS4-55197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Wolf, Jakob A1 - Emmerling, Franziska T1 - Smart Machines, New Materials, Automated Future N2 - In pursuing the automated synthesis of metal nanoparticles (NPs), the capabilities of the “Chemputer” are deployed, for the first time, into the field of inorganic chemistry. Metal NPs have a substantial impact across different fields of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver NPs are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize Ag NPs often do not result in well-defined products, the main obstacles being high polydispersity or a lack of particle size tunability. The Chemputer is a modular, automated platform developed by the Cronin group for execution of multi-step, solution based organic synthesis. The machine has been further implemented at BAM, where we used this setup to perform automated organic syntheses, autonomously controlled by feedback derived from online NMR. In the Chemputer liquids can be transferred across a backbone, constructed from HPLC selection valves and syringe pumps. The Chemputer operates in a batch mode, common laboratory devices, such as heaters and glassware like round bottom flasks, are connected to the backbone, forming reaction modules. Solutions can be manipulated in these modules, and as all operations are controlled through a software script, reproducibility among individual syntheses is high. Likewise, any adjustments of the synthesis conditions, if required, are straightforward to implement and are documented in the reaction log file and a code versioning system. We characterised Chemputer-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties. The approach is an important first step towards the automation of nanoparticle syntheses in a modular, multipurpose platform. The modularity of the Chemputer opens many possibilities for the synthesis of a variety of different NP morphologies and sizes and potentially more complex structures. These advances and further work can help in the general investigations of silver nanoparticles by supplying a reliable and reproducible method of their synthesis and removing tacit knowledge by significantly reducing the experimental bias. T2 - Analytica 2022 CY - Munich, Germany DA - 21.06.2022 KW - Automated synthesis KW - Nanoparticles PY - 2022 AN - OPUS4-55198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - George, Janine T1 - DFT-based Phonon-computations for "Considering the Role of Ion Transport in Diffuson-Dominated Thermal Conductivity" N2 - These are the harmonic phonon and Grüneisen parameter computations for the publication "Considering the Role of Ion Transport in Diffuson-Dominated Thermal Conductivity" (https://doi.org/10.1002/aenm.202200717). VASP and Phonopy outputs are included in this data set. KW - Thermal conductivity KW - Phonons PY - 2021 U6 - https://doi.org/10.5281/zenodo.5116360 PB - Zenodo CY - Geneva AN - OPUS4-55168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - George, Janine A1 - Petretto, G. A1 - Naik, Aakash Ashok A1 - Esters, M. A1 - Jackson, A. J. A1 - Nelson, R. A1 - Dronskowski, R. A1 - Rignanese, G.-M. A1 - Hautier, G. T1 - Automated bonding analysis with crystal orbital Hamilton populations (program code LobsterPy) N2 - This is the code for the program LobsterPy that can be used to automatically analyze and plot outputs of the program Lobster. KW - Automation KW - High-throughput computations KW - Bonding analysis PY - 2022 UR - https://doi.org/10.5281/zenodo.6320074 UR - https://doi.org/10.5281/zenodo.6415169 UR - https://doi.org/10.5281/zenodo.6415336 UR - https://doi.org/10.5281/zenodo.6581118 U6 - https://doi.org/10.5281/zenodo.6320073 PB - Zenodo CY - Geneva AN - OPUS4-55174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - George, Janine T1 - Raw data for "Automated bonding analysis with crystal orbital Hamilton populations" N2 - Raw data corresponding to the following paper: 10.1002/cplu.202200123. KW - Automation KW - High-throughput computations KW - Bonding analysis PY - 2022 UR - https://doi.org/10.5281/zenodo.6373369 U6 - https://doi.org/10.5281/zenodo.6373368 PB - Zenodo CY - Geneva AN - OPUS4-55175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - George, Janine A1 - Naik, Aakash Ashok A1 - Jackson, A. J. A1 - Baird, S. T1 - Scripts to reproduce "Automated bonding analysis with crystal orbital Hamilton populations" N2 - This repo allows to recreate our publication: https://doi.org/10.1002/cplu.202200123 In contrast to 0.2.2, we fixed an issue with absolute path. KW - Automation KW - High-throughput computations KW - Bonding analysis PY - 2022 UR - https://github.com/JaGeo/LobsterAutomation UR - https://doi.org/10.5281/zenodo.6421928 UR - https://doi.org/10.5281/zenodo.6595062 UR - https://doi.org/10.5281/zenodo.6599556 UR - https://doi.org/10.5281/zenodo.6674670 UR - https://doi.org/10.5281/zenodo.6704163 U6 - https://doi.org/10.5281/zenodo.6421927 PB - Zenodo CY - Geneva AN - OPUS4-55177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-driven chemical understanding N2 - Chemical heuristics are essential to understanding molecules and materials in chemistry. The periodic table, atomic radii, and electronegativities are only a few examples. Initially, they have been developed by a combination of physical insight and a limited amount of data. It is now possible to test these heuristics and generate new ones using automation based on Materials Informatic tools like pymatgen and greater amounts of data from databases such as a Materials Project. In this session, I'll speak about heuristics and design rules based on coordination environments and the concept of chemical bonding. For example, we have tested the Pauling rules which describe the stability of materials based on coordination environments and their connections on 5000 oxides from the Materials Project. In addition, we have created automated processes for analyzing the chemical bonding situation in crystalline materials with Lobster (www.cohp.de) in order to discover new heuristics and design rules. T2 - Materials Project Seminar Series CY - Online meeting DA - 18.05.2022 KW - DFT KW - Chemical heuristics KW - Crystal Orbital Hamilton Populations KW - Machine learning KW - Phonons PY - 2022 UR - https://www.youtube.com/watch?v=e7zYrz6fgog UR - https://next-gen.materialsproject.org/community/seminar AN - OPUS4-55008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cifci, G. C. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Polydopamine micropatterning for selective substrate bio-functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA) exhibits strong adhesion to nearly any kind of organic or inorganic surface and shows high ability for surface post-modification and secondary reactions. As a result, PDA has been widely used as a base adlayer to enable versatile surface chemistry and functionalization. It has shown great potential in wide range of applications including biomedical field (e.g., drug delivery, adhesives, photothermal therapy, bone and tissue engineering, cell adhesion, biosensing). However, implementation of PDA in microdevices is still hindered by insufficient spatial and temporal control of excited deposition methods. In this work we present a novel approach to fabricate tunable micropatterned substrates where mussel-inspired chemistry provides base for various surface modification [2]. Current approach applies Multiphoton Lithography (MPL) to initiate local PDA formation, and, therefore, does not require use of microstamp or photomask. As a result, the microstructures of complex designs can be produced with the spatial resolution down to 0.8 μm (Figure 1). The desired design can be easily altered by adjusting the stl model or the fabrication code. Unlike the conventional deposition of PDA based on dopamine auto-oxidation, our method does not require presence of strong oxidants, metal ions or alkaline pH. Herein-demonstrated deposition approach will significantly facilitate applications of polydopamine and other mussel-inspired materials in microdevices and high-resolution active microcomponents (e.g., in MEMS and microfluidics). Adjustment of MPL parameters revealed that the morphology and thickness of resulted PDA microstructures can be controlled by altering the laser power and its scanning velocity. As a result, it also enables the production of micropatterns with structural gradient. Apart from the glass substrate, we performed PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. We tested different composition of dopamine solution for its ability of PDA buildup. Solutions containing Tris buffer, phosphate buffer or DI water only as well as different pH (6.0, 7.0 and 8.5) could be successfully applied for high-precision PDA micropatterning. Moreover, the effect of antioxidants and purging of the solution with oxygen and nitrogen was investigated. In all cases, no decrease of deposition efficiency was observed. The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. To ensure post-modification potential of MPL deposited PDA we demonstrated one-step deposition of micropatterns with trypsin. Obtained bio-functionalised surface can be further applied as a protein sensing active microelement. T2 - Laser Precision Microfabrication CY - Dresden, Germany DA - 07.06.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-55064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, M. B. A1 - Fahrenson, C. A1 - Givelet, L. A1 - Herrmann, T. A1 - Loescher, K. A1 - Böhmert, L. A1 - Thünemann, Andreas A1 - Braeuning, A. A1 - Sieg, H. T1 - Beyond microplastics ‑ investigation on health impacts of submicron and nanoplastic particles after oral uptake in vitro N2 - The continuously increasing use of plastics is supposed to result in a rising exposure of MNPs to humans. Available data on human health risks of microplastics after oral uptake increased immensely in the past years and indicates very likely only low risks after oral consumption. Concerning nanoplastics, uptake, transport and potential adverse effects after oral uptake are less well understood. This study aims to investigate differences between microplastic particles and particles in the submicron- and nanoscaled size derived from food-relevant polymers with a particle size range consistent with higher potential for cellular uptake, fate, and effects when applied to human intestinal and liver cells. This work includes the development of cellular and subcellular detection methods for synthetic polymeric particles in the micro- and nanometer-range, using Scanning Electron Microscopy, Small-Angle X-ray and Dynamic Light Scattering methods, Asymmetric Flow Field Flow Fractionation, octanol-water fractionation, fluorescence microscopy and flow cytometry. Polylactic acid (250 nm and 2 μm (polydisperse)), melamine formaldehyde (366 nm) and polymethylmethacrylate (25 nm) were thoroughly characterized. The submicro- and nanoplastic test particles showed an increased uptake and transport quantity through intestinal cells. Both types of particles resulted in observed differences of uptake behavior, most likely influenced by different lipophilicity, which varied between the polymeric test materials. Toxic effects were detected after 24 h only in overload situations for the particles in the submicrometer range. This study provides further evidence for gastrointestinal uptake of submicro- and nanoplastics and points towards differences regarding bioavailability between microplastics and smaller plastic particles that may result following the ingestion of contaminated food and beverages. Furthermore, the results reinforce the importance for studying nanoplastics of different materials of varying size, surface properties, polymer composition and hydrophobicity. KW - Small-angle X-ray scattering KW - SAXS KW - nanoparticle PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550741 VL - 2 SP - 1 EP - 19 PB - Springer Nature AN - OPUS4-55074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Mezera, Marek A1 - Wasmuth, Karsten A1 - Richter, Anja A1 - Schwibbert, Karin A1 - Krüger, Jörg A1 - Müller, F. A. A1 - Gräf, S. T1 - A brief survey on open questions about laser-induced periodic surface structures N2 - The processing of laser-induced periodic surface structures (LIPSS) represents a simple and robust way for the nanostructuring of solids that allows creating a wide range of surface functionalities featuring applications in optics, tribology, medicine, energy technologies, etc. While the currently available laser and scanner technology already allows surface processing rates at the m2/min level, industrial applications of LIPSS are sometimes hampered by the complex interplay between the nanoscale surface topography and the specific surface chemistry. This typically manifests in difficulties to control the processing of LIPSS and in limitations to ensure the long-term stability of the created surface functions. This presentation aims to identify some unsolved scientific problems related to LIPSS, discusses the pending technological limitations, and sketches the current state of theoretical modelling. Hereby, it is intended to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Industrial applications KW - Biofilm growth PY - 2022 AN - OPUS4-54929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja A1 - Buchberger, G. A1 - Stifter, D. A1 - Duchoslav, J. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Reducing Escherichia coli adhesion to PET by modulating spatial periods of laser-induced surface nanoripples N2 - Using nanofiber-like cell appendages, secreted proteins and sugars, bacteria can establish initial surface contact followed by irreversible adhesion and the formation of multicellular biofilms. Here, the stabilizing extracellular biofilm matrix together with physiological changes on the single cell level leads to an increased resilience towards harsh environmental conditions, antimicrobials, the host immune response and established cleaning procedures. Persistent microbial adhesion on e.g., medical implants, in water supply networks or food-processing industry is often associated with chronic inflammation, nosocomial and foodborne infections, enhanced biofouling and product contamination. To prevent persistent microbial colonization, antibacterial surface strategies often target the initial steps of biofilm formation and impede adhesion of single cells before a mature biofilm is being formed. While chemical coatings have been widely used, their restricted biocompatibility for eukaryotic cells and attenuated antibacterial-effects due to compound release limit their areas of application and alternative strategies focus on modified surfaces topographies to impede bacterial adhesion. In this work, we used ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns) to generate laser-induced periodic surface structures (LIPSS) with different submicrometric periods ranging from ~210 to ~610 nm on commercial poly(ethylene terephthalate) (PET) foils. Following structurally and chemically analyses, PET samples were subjected to bacterial colonization studies with Escherichia coli TG1, a bacterial test strain with a strong biofilm formation capacity due to the formation of nanofiber-like cell-appendages (pili). Bacterial adhesion tests revealed that E. coli repellence decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the importance of extracellular appendages in the bacterial repellence observed here, thus, pointing out new antibiotics-free strategies for antibacterial surfaces by impeding nanofiber-mediated bacterial adhesion. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Bacterial adhesion tests KW - Bacteria repellent surfaces KW - Polymer foils KW - E. coli PY - 2022 AN - OPUS4-54930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Mirabella, Francesca A1 - Mezera, Marek A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Chemical and structural changes at the surface of titanium materials upon irradiation with near-infrared ultrashort laser pulses N2 - Due to its large strength-to-weight ratio and excellent biocompatibility, titanium materials are of paramount importance for medical applications, e.g. as implant material for protheses. In this work, the evolution of various types of laser-induced micro- and nanostructures emerging on titanium or titanium alloys upon irradiation by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment is studied for various laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz). The morphologies of the processed surfaces were systematically characterized by optical and scanning electron microscopy (OM, SEM). Complementary white-light interference microscopy (WLIM) revealed the corresponding surface topographies. Chemical and structural changes were analysed through depth-profiling time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray diffraction (XRD) analyses. The results point towards a remarkable influence of the laser processing parameters on the surface topography, while simultaneously altering the near-surface chemistry via laser-induced oxidation effects. Consequences for medical applications are outlined. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - ToF-SIMS KW - Chemical analysis KW - Titanium PY - 2022 AN - OPUS4-54931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - Data for "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" N2 - Data for the publication "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" (https://doi.org/10.1038/s41529-022-00253-1). It includes: - The Summary of the EPS concentration, EPS sugar components and EPS linkages. - The Summary of the XPS analysis of freeze-dried biofilm samples of all strains. - The Summary of the pH, Mg, SI and Fe concentration, biomass and olivine dissolution rate for each time point of all dissolution experiments. KW - Biofilms PY - 2022 U6 - https://doi.org/10.26272/opus4-54901 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Röder, Bettina A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Controlling polymorphism in molecular cocrystals by variable temperature ball milling N2 - Mechanochemistry offers a unique opportunity to modify and manipulate crystal forms, often providing new products as compared with conventional solution methods. While promising, there is little known about how to control the solid form through mechanochemical means, demanding dedicated investigations. Using a model organic cocrystal system (isonicotinamide:glutaric acid), we here demonstrate that with mechanochemistry, polymorphism can be induced in molecular solids under conditions seemingly different to their conventional thermodynamic (thermal) transition point. Whereas Form II converts to Form I upon heating to 363 K, the same transition can be initiated under ball milling conditions at markedly lower temperatures (348 K). Our results indicate that mechanochemical techniques can help to reduce the energy barriers to solid form transitions, offering new insights into controlling polymorphic forms. Moreover, our results suggest that the nature of mechanochemical transformations could make it difficult to interpret mechanochemical solid form landscapes using conventional equilibrium-based tools. KW - Mechanochemistry KW - Polymorphism KW - TRIS PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-564728 SP - 1 EP - 16 PB - Royal Society of Chemistry AN - OPUS4-56472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linberg, Kevin A1 - Röder, Bettina A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Polymorphism in molecular cocrystals controlled by variable temperature ball milling N2 - Mechanochemistry offers a unique opportunity to modify or synthesize new crystal forms. Although the method is very promising, little is known about the mechanochemical means to control the synthesis of a solid form. Using an polymorphic organic cocrystal system, we show here that mechanochemistry can be used to obtain a polymorph transformation under the apparently conventional (thermal) transition point. T2 - Bessy User Meeting 2022 CY - Online meeting DA - 08.12.2022 KW - Mechanochemistry KW - Polymorphism KW - TRIS PY - 2022 AN - OPUS4-56473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Van Driessche, A. E. S. T1 - Particle-mediated origins of mesocrystalline disorder in calcium sulfate single crystals N2 - Calcium sulfate minerals are abundant in natural and engineered environments and they exist in the form of three hydrates: gypsum (CaSO4·2H2O), bassanite (CaSO4·0.5H2O), and anhydrite (CaSO4). Due to their relevance in natural and industrial processes, the formation pathways of these calcium sulfate phases from aqueous solution have been the subject of intensive research1. The state-of-the-art of the calcium sulfate formation mechanisms builds upon and goes beyond what we have come to appreciate in the astounding intricacy of other mineral formation processes from ions in aqueous solutions. The original, and rather naive, 'textbook' image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species2. These include solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc.. In this context, a number of studies have already revealed that nucleation in the CaSO4-H2O system is non-classical, where the formation of the different crystalline phases involves several steps including a common amorphous precursor1, 3, 4. In this contribution we show that the formation of the amorphous phase involves the aggregation of small primary particles into larger disordered aggregates exhibiting a "brick-in-the-wall" structure5, 6. The actual crystallization occurs by the restructuring and coalescence of the particles ("bricks") into a given calcium sulfate phase depending on the physicochemical conditions of the solution. Importantly, the rearrangement process does not continue until a (nearly-)perfect homogeneous single crystal is obtained. Instead it comes to a stop, or at least significantly slows down. Such a process thus yields a final imperfect mesocrystal, composed of smaller domains rather than a continuous crystal structure, within which the domains are separated by an amorphous (i.e. less ordered) calcium sulfate phase. Hence, the non-classical crystallization process of CaSO4 yields a final imperfect mesocrystal with an overall morphology resembling that of a single crystal, yet composed of smaller nano-domains. Importantly, these observations reveal that organic-free calcium sulfate mesocrystals grown by a particle mediated-pathway preserve in the final crystal structure a “memory” or “imprint” of their non-classical nucleation process, something that has been overlooked until now. Furthermore, the nano-scale misalignment of the structural sub-units within these crystals can propagate through the length-scales, and be expressed macroscopically as misaligned zones/domains in large single crystals (Fig. 1). Indeed, by considering large anhydrite crystals from the famous Naica Mine (“Cueva de los cristales”) we observed a suite of correlated self-similar void defects spanning multiple length-scales7 (Fig 2). These flaws, in the macroscopic crystal, stem from “seeds of imperfection” originating from a particle-mediated nucleation pathway. Hence, building a crystal could be viewed as Nature stacking blocks in a game of Tetris, whilst slowly forgetting the games core concept and failing to fill rows completely. T2 - Granada Münster Discussion Meeting (GMDM) CY - Granda, Spain DA - 30.11.2022 KW - Anhydrite KW - Mesocrystals KW - Calcium sulfate KW - Bassanite KW - Gypsum PY - 2022 AN - OPUS4-56476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, Thomas A1 - Hodoroaba, Vasile-Dan T1 - Correlative Analysis by Raman and other Micro & Nanospectroscopic Imaging Techniques N2 - In the present talk the basics of the Raman spectroscopy and particularly of Raman microscopy are explained. Advantages and disadvantages of the method are highlighted through selected case studies. In the second part of the lecture examples of correlative imaging with electron, X-ray, ion and optical microscopies from micro- to the nanoscale are highlighted. T2 - Charisma School on Raman Harmonisation CY - Turin, Italy DA - 19.10.2022 KW - Raman KW - Correlative Imaging KW - Microscopy KW - Hyperspectral imaging PY - 2022 UR - https://amdgroup.inrim.it/events/vamas-sc-meeting-47/program-sc47 AN - OPUS4-56094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Baloh, P. A1 - Bauer, L. A1 - Bendová, A. A1 - Čermák, P. A1 - Fellner, K. A1 - Ghanathe, M. A1 - Hernández Alvarez, O. E. A1 - Hricov, Š. A1 - Jochum, J. K. A1 - Kotvytska, L. A1 - Kumar, S. A1 - Labh, A. A1 - Machovec, P. A1 - Pauw, Brian Richard A1 - Ramszová, K. A1 - Walz, E. A1 - Wild, P. T1 - An Exercise in Open Data: Triple Axis Data on Si single crystal N2 - Efforts are rising in opening up science by making data more transparent and more easily available, including the data reduction and evaluation procedures and code. A strong foundation for this is the F.A.I.R. principle, building on Findability, Accessibility, Interoperability, and Reuse of digital assets, complemented by the letter T for trustworthyness of the data. Here, we have used data, which was made available by the Institute Laue-Langevin and can be identified using a DOI, to follow the F.A.I.R.+T. principle in extracting, evaluating and publishing triple axis data, recorded at IN3. KW - Open data KW - Neutron diffraction KW - Analysis KW - Open science PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-562257 SN - 2331-8422 SP - 1 EP - 4 PB - Cornell University CY - Ithaca, NY AN - OPUS4-56225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Cakir, Cafer Tufan T1 - Big to Small - Getting Smarter@BAMline N2 - In this talk an overview about artificial intelligence/machine learning applications @BAMline is given. In the first part, the use of neural networks for the quantification of XRF measurements and the decoding of coded-aperture measurements are shown. Then it is shown how Gaussian processes and Bayesian statistics can be used to achieve an optimal alignment of the set-up and in general for optimization of measurements. T2 - Forschungsseminar Institut für Optik und Atomare Physik TU Berlin CY - Berlin, Germany DA - 25.10.2022 KW - Artificial Inelligence KW - Machine Learning KW - Bayesian Statistics KW - Gaussian process KW - Neural network KW - BAMline KW - Synchrotron PY - 2022 AN - OPUS4-56249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen T1 - MALDI-ToF mass spectrometry for the characterization of biobased polymers suitable for depollution N2 - In this work, bio-based polymers were synthesized and designed as polymers phases for adsorption of a variety of pollutants from aqueous solutions. The obtained adsorption results showed that the integration of bio-sourced synthons generate attractive hydrophilicity, and wettability of the resulting adsorbent phase. Such polymers phases enable stronger interactions with the organic and inorganic pollutants in water. A wide variety of different bio-based polymers structures (e. g. poly(ethersulfones, poly(etherphosphines or poly(etherpyridines) with different functional groups were successfully designed in order to adapt chemical structure to different pollutants type and matrice nature. In order to characterize and to determine the correlation between polymer structures and nature of interaction with pollutants, different analytical technics (NMR, GPC, ATG, DSC, Mass spectrometry) were successfully used. Amongst them, MALDI TOF mass spectrometry plays a superior role since this technique enables the simultaneous determination of the polymer structure, polymer end groups and molecular weight. This work focusses on the characterization of synthesized polymers. The chemical structure of the repeating unit, the nature of the end groups, as well as the molecular weight, which are all important for the specific interactions of the polymer with the pollutants were clearly determined and suggestions to improve these interactions by changing the synthetic pathway could be given. T2 - 12. Journees maghreb-europe. Matériaux et Applications aux Dispositifs et Capteurs CY - Monastir, Tunisia DA - 08.11.2022 KW - MALDI TOF MS KW - Biobased polymers KW - Depollution PY - 2022 AN - OPUS4-56237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Van Driessche, A. T1 - Particle-mediated origins of mesocrystalline disorder in calcium sulfate single crystals N2 - Calcium sulfate minerals are abundant in natural and engineered environments and they exist in the form of three hydrates: gypsum (CaSO4·2H2O), bassanite (CaSO4·0.5H2O), and anhydrite (CaSO4). Due to their relevance in natural and industrial processes, the formation pathways of these calcium sulfate phases from aqueous solution have been the subject of intensive research1. The state-of-the-art of the calcium sulfate formation mechanisms builds upon and goes beyond what we have come to appreciate in the astounding intricacy of other mineral formation processes from ions in aqueous solutions. The original, and rather naive, 'textbook' image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species2. These include solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc.. In this context, a number of studies have already revealed that nucleation in the CaSO4-H2O system is non-classical, where the formation of the different crystalline phases involves several steps including a common amorphous precursor1, 3, 4. In this contribution we show that the formation of the amorphous phase involves the aggregation of small primary particles into larger disordered aggregates exhibiting a "brick-in-the-wall" structure5, 6. The actual crystallization occurs by the restructuring and coalescence of the particles ("bricks") into a given calcium sulfate phase depending on the physicochemical conditions of the solution. Importantly, the rearrangement process does not continue until a (nearly-)perfect homogeneous single crystal is obtained. Instead it comes to a stop, or at least significantly slows down. Such a process thus yields a final imperfect mesocrystal, composed of smaller domains rather than a continuous crystal structure, within which the domains are separated by an amorphous (i.e. less ordered) calcium sulfate phase. Hence, the non-classical crystallization process of CaSO4 yields a final imperfect mesocrystal with an overall morphology resembling that of a single crystal, yet composed of smaller nano-domains. Importantly, these observations reveal that organic-free calcium sulfate mesocrystals grown by a particle mediated-pathway preserve in the final crystal structure a “memory” or “imprint” of their non-classical nucleation process, something that has been overlooked until now. Furthermore, the nano-scale misalignment of the structural sub-units within these crystals can propagate through the length-scales, and be expressed macroscopically as misaligned zones/domains in large single crystals. Indeed, by considering large anhydrite crystals from the famous Naica Mine (“Cueva de los cristales”) we observed a suite of correlated self-similar void defects spanning multiple length-scales7. These flaws, in the macroscopic crystal, stem from “seeds of imperfection” originating from a particle-mediated nucleation pathway. Hence, building a crystal could be viewed as Nature stacking blocks in a game of Tetris, whilst slowly forgetting the games core concept and failing to fill rows completely. T2 - ECCG: European Conference on Crystal Growth 7 CY - Paris, France DA - 25.07.2022 KW - Anhydrite KW - SAXS KW - Single crystal KW - Mesocrystal PY - 2022 AN - OPUS4-56276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Van Dreissche, A. T1 - Particle-mediated origins of mesocrystallinity in calcium sulfate single crystals N2 - Calcium sulfate minerals are abundant in natural and engineered environments in the form of three phases: gypsum (CaSO4·2H2O), bassanite (CaSO4·0.5H2O), and anhydrite (CaSO4). Due to their relevance in natural and industrial processes, the formation pathways of these phases from aqueous solution have been the subject of intensive research, a number of studies have already revealed that nucleation in the CaSO4-H2O system is non-classical, The formation of the different crystalline phases involves several steps including a common amorphous precursor. In this contribution we show that the formation of the amorphous phase involves the aggregation of small primary particles into larger disordered aggregates exhibiting a "brick-in-the-wall" structure. The actual crystallization occurs by the restructuring and coalescence of the "bricks" into a given calcium sulfate phase depending on the physicochemical conditions of the solution. Such a process yields a final imperfect mesocrystal, composed of smaller domains rather than a continuous single crystal structure. These observations reveal that organic-free calcium sulfate mesocrystals grown by a particle mediated-pathway might preserve in the final crystal structure an “imprint” of their growth pathways. Indeed, by considering large anhydrite crystals from the famous Naica Mine we observed a suite of correlated self-similar void defects spanning multiple length-scales. These flaws, in the macroscopic crystal, stem from “seeds of imperfection” originating from an original particle-mediated growth. Hence, building a crystal could be viewed as Nature stacking blocks in a game of Tetris, whilst slowly forgetting the games core concept and failing to fill rows completely. T2 - GeoMinKöln 2022 CY - Cologne, Germany DA - 11.09.2022 KW - Anhydrite KW - Mesocrystals KW - Calcium sulfate PY - 2022 AN - OPUS4-56277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abderrazak, H. A1 - Marestin, C. A1 - Ibtissem, J. A1 - Mercier, R. A1 - Casablanca, H. A1 - Souissi, R. A1 - Weidner, Steffen A1 - Jaffrezic, N. A1 - Chatti, Saber T1 - Synthesis of new bio based adsorbent phases N2 - Over the years, industrial and human activities and agricultural practices have caused a serious threat to human health and the environment. Indeed, it has been demonstrated that these activities are responsible for the presence of pollutants in the soil, air and water. Water is one of the most strategic issues today, as it is associated with the living world. Therefore, water pollution is becoming a universal scourge that leads to environmental degradation, decrease of water quality and threatens public health. Water pollution is mainly due to the discharge of certain harmful chemical compounds that are not very or not at all biodegradable (phenolic compounds, heavy metals, hydrocarbons, dyes, pesticides, etc.) by various industries: chemical, pharmaceutical, textile, food processing, etc. The impact of these industrial effluents on fauna and flora is very harmful. A sensitization of the socio-economic actors and the public, accompanied by a severe regulation in relation to the discharges, would contribute to fight against this drift, but also, by the development of effective methods allowing to remove these pollutants, not only in an analytical purpose but also of depollution. Thus and within the framework of the preservation of an environment with regard to any anthropogenic activity, our research topic relates to the use of original biosourced polymeric phases for the extraction of the organic compounds and the heavy metals in aqueous mediums. Therefore, we have proceeded to the synthesis and characterization of a large variety of monomers, polymers and cross-linked materials. These products, partially derived from biomass, contain various functional groups with the ability to interact with chemical components without discriminating effect. The developed polymer phases have been successfully used for the adsorption of some organic pollutants and heavy metals in synthetic aqueous solutions. T2 - 12. Journees maghreb-europe. Matériaux et Applications aux Dispositifs et Capteurs CY - Monastir, Tunisia DA - 08.11.2022 KW - Organic-inorganic adsorbents KW - Semi-Interpenetrating Network KW - Poly(ether-sulfone) KW - Reversible adsorption. PY - 2022 AN - OPUS4-56286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brirmi, N. A1 - Mercier, R. A1 - Marestin, C. A1 - Weidner, Steffen A1 - Casablanca, H. A1 - Jaffrezic, N. A1 - Ben Romdahne, H. A1 - Chatti, Saber T1 - Effect of the pendant groups on the biobased polymers obtained by click chemistry suitable for the removal of phenolic compounds from water N2 - Phenolic compounds constitute a widespread and important class of water pollutants that should be efficiently removed from wastewater because of their toxicity even at low concentrations. They are indeed discharged in the liquid effluents from various factories: chemical, petrochemical, paper, wood, metallurgy and cocking plants 1. Phenols are also found in the waste waters of agroindustrial processes like the olive oil mills, tomato processing and wine distilleries 2,3. These contaminants cause several health problems for humans and aquatic organisms 4. Therefore, numerous studies on the removal of polyphenols from wastewaters have been conducted and many techniques have been used. Among them, adsorption is considered to be the best effective and low cost method. In this context, we have focused our efforts on optimizing adsorption process by development of novel, low-cost adsorbents derived from biobased byproducts with high adsorptive capacity. The main aim of this study is to synthesize triazole-based poly(ether-pyridine)s as new synthetic adsorbent phases for the extraction of phenolic compounds from aqueous solutions. For this purpose, new fluoromonomers containing 1,2,3-triazole units were prepared by the Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction and then used for the elaboration of novel poly(ether-pyridine-triazole)s (PEPTs) by direct polycondensation with isosorbide and bisphenol A. Chemical structure of fluorinated pyridinic monomers as well as resulting polymers was confirmed by 1H and 19F NMR spectroscopic methods. The thermal behaviour of the obtained PEPTs was characterized using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Their uptake performance to eliminate organic compounds was determined using High Performance Liquid Chromatography (HPLC). T2 - 12. Journees maghreb-europe. Matériaux et Applications aux Dispositifs et Capteurs CY - Monastir, Tunisia DA - 08.11.2022 KW - Biobased polymers KW - Phenolic compounds KW - 1,2,3-triazole PY - 2022 AN - OPUS4-56287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana T1 - Getting more efficient – The use of Bayesian optimization and Gaussian processes at the BAMline N2 - For more than 20 years, BAM is operating the BAMline at the synchrotron BESSY II in Berlin Adlershof. During this time, the complexity of the setup and the amount of data generated have multiplied. To increase the effectiveness and in preparation for BESSY III, algorithms from the field of machine learning are increasingly used. In this paper, several examples in the areas of beamline alignment and measurement time optimization based on Bayesian optimization (BO) with Gaussian processes (GP) are presented. BO is a method for finding the global optimum of a function using a probabilistic model represented by a GP. The advantage of this method is that it can handle high-dimensional problems, does not depend on the initial estimate, and also provides uncertainty estimates. After a short introduction to BO and GP, the first example is the automatic alignment of our double multilayer monochromator (DMM). To achieve optimal performance, up to three linear and two angular motor positions have to be optimized. To achieve this with a grid scan, at least 100^5 measurement points would be required. Assuming that all positions can be aligned independently, 100*5 points are still necessary. We show that with BO and GP less than 100 points are sufficient to achieve equal or better results. The second example is the optimization of measurement time in XRF scanning. Here we will show the advantage of the BO GP approach over point-by-point scanning. As can be seen in Fig. 1, the number of points required and thus the measurement time can be reduced by a factor of 50, while the loss in image quality is acceptable. The advantages and limitations of this approach will be discussed. T2 - European Conference on X-ray Spectrometry 2022 CY - Bruges, Belgium DA - 26.06.2022 KW - Artificial Inelligence KW - Machine Learning KW - Bayesian Statistics KW - Gaussian process KW - Neural network KW - BAMline KW - Synchrotron PY - 2022 AN - OPUS4-56251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - From Egypt to Hiddensee – Analysis of Gold with Synchrotron Radiation IV N2 - Gold is one of the seven metals already known in antiquity and was used from time immemorial as a medium of exchange and for the production of jewelry because of its luster and rarity. In addition, it is easy to work and largely resistant to chemical influences. Investigations of gold using synchrotron radiation excited X-ray fluorescence analysis are non-destructive and provide information about the chemical elements present in the sample under investigation. The investigations presented here at BAMline focus on questions such as the origin, manufacturing process, and association of gold findings. The different questions are explained by a number of examples ranging from the Viking treasure from Hiddensee to the Nebra Sky Disk and finds from Egypt. The find from Bernstorf is discussed in detail. A Bayesian treatment of the authenticity is shown. T2 - Ringvorlesung Einführung in die Archäometrie CY - Berlin, Germany DA - 04.11.2022 KW - Synchrotron KW - BAMline KW - Bayesian Statistics KW - Gold KW - Röntgenfluoreszenz PY - 2022 AN - OPUS4-56252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - News from the BAMline N2 - A presentation of recent measurements at the BAMline with focus on AI and ML applications T2 - Seminar: Strahlenphysikalische Anwendungen in Technik und Medizin CY - Vienna, Austria DA - 18.05.2022 KW - Synchrotron KW - BAMline KW - Bayesian Statistics KW - Gold KW - X-ray fluorescence PY - 2022 AN - OPUS4-56253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana T1 - Getting more efficient – The use of Bayesian optimization and Gaussian processes at the BAMline N2 - For more than 20 years, BAM is operating the BAMline at the synchrotron BESSY II in Berlin Adlershof. During this time, the complexity of the setup and the amount of data generated have multiplied. To increase the effectiveness and in preparation for BESSY III, algorithms from the field of machine learning are increasingly used. After a short introduction to BO and GP, the first example is the automatic alignment of our double multilayer monochromator (DMM). The second example is the optimization of measurement time in XRF scanning. T2 - SNI2022 conference CY - Berlin, Germany DA - 05.09.2022 KW - Artificial Inelligence KW - Machine Learning KW - Bayesian Statistics KW - Gaussian process KW - X-ray fluorescence KW - BAMline PY - 2022 AN - OPUS4-56255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana A1 - Michalchuk, Adam A1 - Cakir, Cafer Tufan A1 - Haider, M. B. A1 - Yusenko, Kirill A1 - Radtke, Martin A1 - Reinholz, U. A1 - Emmerling, Franziska T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - AfLS3 CY - Online meeting DA - 14.11.2021 KW - Dipsersive XAS KW - Mechanochemistry KW - Time-resolved KW - In situ PY - 2021 AN - OPUS4-56256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana A1 - Michalchuk, Adam A1 - Cakir, Cafer Tufan A1 - Yusenko, Kirill A1 - Radtke, Martin A1 - Reinholz, U. A1 - Emmerling, Franziska T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - Denver X-ray Conference: DXC 2021 CY - Online meeting DA - 02.08.2021 KW - Dispersive XAS KW - Mechanochemistry KW - Time resolved KW - In situ PY - 2021 AN - OPUS4-56257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray absorption spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - European Conference on X-ray Spectrometry 2022 CY - Bruges, Belgium DA - 27.06.2022 KW - XAS KW - Mechanochemictry KW - Time resolved KW - In situ PY - 2022 AN - OPUS4-56258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Time resolved in situ monitoring of mechanochemical transformations by X-ray absorption spectroscopy (XAS) N2 - Mechanochemical reactions promise a new direction for environmentally benign preparation of materials, and has been dubbed by IUPAC as one of the 10 chemical innovations that will change our world. Despite this significant promise, very little is known about the mechanisms that drive mechanochemical transformations, posing significant barriers to realizing their full potential. To this end, there is growing need to follow mechanochemical reactions in situ and in real time. We here describe advances in the development and application of XAS methods to monitor material synthesis in real time under mechanochemical conditions. We demonstrate the generality of our approaches by describing mechanochemical syntheses of materials by both vibratory ball milling and by Resonant Acoustic Mixing (RAM), where a time resolution of 1 second is for a whole XAS spectrum was achieved. Moreover, we describe how spectroscopic methods can be coupled to diffraction-based approaches, thereby providing new dimensions in understanding mechanochemical synthesis. T2 - Advances X ray Analytics Seminar at TU Berlin CY - Berlin, Germany DA - 14.06.2022 KW - XAS KW - Mechanochemistry KW - Time resolved KW - In situ PY - 2022 AN - OPUS4-56259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Heilmann, Maria T1 - Nanoparticle Populations N2 - Two new projects P15 Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension and P16 Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension have been started at VAMAS/TWA 34 under the lead of BAM. First results are presented and discussed. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 47th Steering Committee Meeting CY - Turin, Italy DA - 18.10.2022 KW - VAMAS KW - Nanoparticles KW - Inter-laboratory comparison KW - Particle size distribution KW - Nanoparticle concentration PY - 2022 AN - OPUS4-56196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Radtke, Martin T1 - High Speed for High Entropy Materials N2 - Time is the most valuable parameter in synchrotron experiments. This is costly and some of the experiments suffer from low efficiency due to low counting statistics. With today's high processing power long experiments are run in a shorter time and increase efficiency. With optimization algorithms time in "counting-hungry" experiments reduced by factor of 10. Our project is to develop a new method to analyze the chemical properties of complex materials non-destructively and efficiently, such as high entropy materials subjected to corrosion processes. A better understanding of the corrosion process will help to develop corrosion-resistant materials and reduce the cost of corrosion damage, which averages around 2.5 trillion USD annually. T2 - Berlin Science Week CY - Berlin, Germany DA - 01.11.2022 KW - GEXRF KW - High entropy alloys KW - XANES KW - High entropy materials KW - Grazing exit KW - XAS KW - Optimization PY - 2022 AN - OPUS4-56269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Radtke, Martin T1 - Optimization of Depth Resolved X-Ray Absorption Spectroscopy in Grazing Emission Mode for Characterizing Compositionally Complex Alloys N2 - The components that are used in structural and in high temperature applications generally face significant challenges with respect to oxidation behaviours and metalworking processes. In most of the cases, harsh environmental conditions lead materials to degrade due to corrosion. To thoroughly investigate the corrosion processes and to determine oxidation states of metal components within the reaction products, we need special analytical tools. Grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect this information in sub-micrometre depth range. In order to obtain structural information, such as regarding oxidation states or atomic/molecular geometric arrangement, the GEXRF approach can also be combined with the X-ray absorption spectroscopy (XAS) method. The position and energy sensitive detector, with 264x264 pixel detector area, provides information regarding the signal emitted from the sample as a function of the emission angle and thus allows depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which can be controlled with a resolution of 0.5 eV provides XANES data to determine oxidation states. We address the feasibility of our setup and provide a new optimization procedure (Bayesian Optimization and Gaussian Regression) to decrease measuring time. The results settle on a conceptual study on a reference sample (Cr-Oxide layer (300nm) on Cr layer (500nm) on Si wafer). T2 - XAFS 2022, The 19th International XAFS Conference CY - Sydney, Australia DA - 10.07.2022 KW - GEXRF KW - High entropy alloys KW - XANES KW - Grazing exit KW - High entropy materials KW - Optimization KW - XAS PY - 2022 AN - OPUS4-56270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Radtke, Martin T1 - Scanning-Free Grazing Exit XANES Analysis of Stratified Samples and the Optimization of the Data Collection Process N2 - The components that are used in structural and in high temperature applications generally face significant challenges with respect to oxidation behaviours and metalworking processes. In most of the cases, harsh environmental conditions lead materials to degrade due to corrosion. To thoroughly investigate the corrosion processes and to determine oxidation states of metal components within the reaction products, we need special analytical tools. Grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect this information in sub-micrometre depth range. In order to obtain structural information, such as regarding oxidation states or atomic/molecular geometric arrangement, the GEXRF approach can also be combined with the X-ray absorption spectroscopy (XAS) method. The position and energy sensitive detector, with 264x264 pixel detector area, provides information regarding the signal emitted from the sample as a function of the emission angle and thus allows depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which can be controlled with a resolution of 0.5 eV provides XANES data to determine oxidation states. We address the feasibility of our setup and provide a new optimization procedure (Bayesian Optimization and Gaussian Regression) to decrease measuring time. The results settle on a conceptual study on a reference sample (Cr-Oxide layer (300nm) on Cr layer (500nm) on Si wafer). T2 - Denver X-Ray Conference DXC 2022 CY - Washington D.C., USA DA - 07.08.2022 KW - GEXRF KW - High entropy alloys KW - High entropy materials KW - Optimization KW - XANES KW - Grazing exit KW - XAS PY - 2022 AN - OPUS4-56271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, C. A1 - Radtke, Martin T1 - Bayesian optimization for depth resolved analysis of complex alloys with grazing exit XANES N2 - Compositionally complex alloys (CCAs) are a new class of alloys containing at least 5 elements with concentrations between 5 and 35 atomic percent. Due to their adjustable composition, which enables modifications of mechanical properties (such as hardness, strength and ductility etc) and their stability at high temperatures, CCAs have been the focus of various studies [1,2]. Especially the corrosion behavior of CCAs has been a wide research interest. However, there are only few studies that deals with the degradation process on such materials, which is highly relevant for the safety aspect for future component design. To thoroughly investigate the corrosion processes and to determine oxidation states of metal components within the reaction products, we need special analytical tools. Since the grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect notable information regarding the high temperature oxidation, we consider it as a useful method to investigate how CCAs behave in corrosive environments. The main idea of grazing geometry is to enhance the fluorescence signal of the surface. This enables highly sensitive surface analyses of thin protective film on surface in sub-micrometer scale [3]. When compared to a conventional CCD-based camera, the advantage and most important feature of the detector system (Color X-Ray Camera (CXC)) is that each pixel is an energy sensitive detector. The position and area sensitive detector, with 264x264 pixel detector area, provides information regarding the signal emitted from the sample as a function of the emission angle and thus allows depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which can be controlled with a resolution of 0.5 eV provides XANES data to determine oxidation states. In this contribution, we address the feasibility of our setup and new optimization procedure (Bayesian Optimization and Gaussian Regression). The results of a conceptual study regarding layer properties of the reference sample (Cr-Oxide layer (300nm) on Cr layer (500nm) on Si wafer) and CrCoNi (Cr-Oxide (>1µm) layer on CrCoNi substrate) medium entropy alloy. T2 - European Conference on X-ray Spectrometry. EXRS 2022 CY - Bruges, Belgium DA - 26.06.2022 KW - GEXRF KW - High entropy alloys KW - XANES KW - Grazing exit KW - High entropy materials KW - XAS KW - Optimization PY - 2022 AN - OPUS4-56272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - What can we learn from polymer degradation by radiation? N2 - It is discussed what can be learned from polymer degradation, especially of biopolymers such as DNA and proteins. Synergetci effects of combining methods for structural and chemical analysis as well as Monte-Carlo simulations are presented. T2 - Material Strategy CY - Beelitz, Germany DA - 12.10.2022 KW - Polymer KW - Polymer degradation KW - DNA KW - Protein KW - XPS KW - ESEM KW - Raman KW - MCS KW - Monte-Carlo Simulations PY - 2022 AN - OPUS4-56123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - del Giorgio, Elena A1 - Kumari, P. A1 - Lymer, K. A1 - Connell, S. A1 - Zhang, S. A1 - Hodoroaba, Vasile-Dan A1 - Pikramenou, Z. T1 - Visible and NIR emissive lanthanide(III) surfaces for new luminescent materials N2 - Luminescent lanthanides(III) offer exceptional optical properties that can overcome issues often encountered with other fluorophores (e.g. organic dyes). Their long lifetimes up to milliseconds, low photobleaching and sharp and characteristic emission peaks make the lanthanides extremely valuable for the development of advanced luminescent materials. Previous work on Ru(II) and Ir(III) gold surfaces further highlights the potential of employing the luminescence of metal complexes for the fabrication of sensing platforms and devices. Here, we incorporate visible and NIR-emitting lanthanide(III) complexes Ln2L3 (Ln = Eu(III), Nd(III), Yb(III)) to gold and plasmonic surfaces, translating the unique optical properties of the lanthanides(III) to practical devices. The Ln2L3 complexes are deposited on the surfaces with different methods, ranging from polymer aided physisorption to the covalent attachment on the gold surface. Furthermore, we exploit the high sensitivity to the coordination environment of lanthanides(III) to design and prepare a sensing platform. T2 - 17th Conference on Methods and Applications in Fluorescence (MAF 2022) CY - Göteborg, Sweden DA - 11.09.2022 KW - Luminescent materials KW - Lanthanide(III) KW - Surface morphology KW - AFM KW - SEM/EDS PY - 2022 UR - https://maf2022.com/ AN - OPUS4-56126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Mit Hilfe künstlicher Intelligenz neue Materialien finden N2 - In diesem Vortrag für Schüler*innen, die an der nationalen Auswahl der internationalen Chemieolympiade teilnehmen, stellte ich meinen akademischen Werdegang und das Fach Materialinformatik und die Forschung in diesem Bereich vor. T2 - Landesseminar zur Internationalen Chemieolympiade in Berlin-Brandenburg CY - Berlin, Germany DA - 30.10.2022 KW - Materialinformatik KW - Automatisierung KW - Computerchemie PY - 2022 AN - OPUS4-56128 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habibimarkani, Heydar A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) for in situ investigation on FeNi nanoparticles N2 - The modern economy is dependent on catalysis, which is main efforts to create environmentally and energy-friendly technologies. The storage of excess electrical energy into chemical energy by splitting water into hydrogen and oxygen is a feasible solution to this energy demand. Due to their abundance on Earth and inherent stability in alkaline solution, transition-metal oxides have become one of several viable alternatives to noble-metal catalysts. Since NiFe oxide is one of the most active oxygen evolution reaction (OER) electrocatalysts for alkaline water electrolysis, it has been the subject of extensive research. In this work, NiFe2O4 nanoparticles (NPs) of various sizes, specific stoichiometric and non-stoichiometric Fe:Ni surface ratios are synthesized. we will use a combination of ultra-high vacuum surface analysis techniques, such as time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS), to obtain the detailed characterization of the OER electrocatalysts top-surface layer, which is required to identify the rate-limiting step intermediates, and surface morphological changes at the electrolyte/catalyst. T2 - SALSA Make&Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - ToF-SIMS KW - FeNi nanoparticles PY - 2022 AN - OPUS4-56157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -