TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Minimale Anforderungen an Referenzdaten anhand von Beispielen aus der Elektronenmikroskopie und Oberflächenanalytik N2 - In dem Vortrag werden, anhand ausgewählten Beispielen aus der Elektronenmikroskopie und Oberflächenanalytik (EDX und XPS), die minimalen Anforderungen an Referenzdaten für zuverlässige und reproduzierbare Ergebnisse (z.B. Partikelgrößenverteilung, Elementzusammensetzung) vorgestellt und diskutiert. T2 - Workshop "Referenzdaten" CY - Berlin, Germany DA - 13.03.2020 KW - Referenzdaten KW - Nanopartikel KW - Elektronenmikroskopie KW - Oberflächenanalytik KW - Standardarbeitsanweisung KW - SOP KW - Standardisierung PY - 2020 AN - OPUS4-50571 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, C. A1 - Hampel, S. A1 - Fittschen, U. A1 - Radtke, Martin T1 - Full field X-ray fluorescence imaging with coded apertures N2 - Our aim is to develop a simple and inexpensive method for full field X-ray fluorescence imaging.We combine an energy-dispersive array detector with a coded aperture to obtain high resolution images. To obtain the information from the recorded image a reconstruction step is necessary. The reconstruction methods we have developed, were tested on simulated data and then applied to experimental data. The first tests were carried out at the BAMline @ BESSY II. This method enables the simultaneous detection of multiple elements, which is important e.g. in the field of catalysis. T2 - CONEXS 2020 CY - Newcastle, UK DA - 18.02.2020 KW - X-ray fluorescence spectroscopy KW - Coded apertures KW - Imaging KW - Iterative reconstruction PY - 2020 AN - OPUS4-50461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Bertmer, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Dietzel, M. A1 - Ukrainczyk, N. A1 - Grengg, C. T1 - Sulfuric acid resistance of copper-doped and plain metakaolin-based alkali-activated materials studied by 29Si, 27Al and 1H MAS NMR, and Cu K-edge XANES spectroscopy N2 - Alkali-activated materials have been repeatedly reported to exhibit high acid resistance, but no generally accepted hypothesis regarding the underlying mechanisms has emerged yet. To contribute to this issue, K-waterglass-activated metakaolin specimens, with and without the addition of CuSO4·5H2O in the starting mix, were exposed to either a chemically aggressive sewer environment (mortars) or sulfuric acid (pastes). The mode of copper incorporation in the materials and the formation of copper phases in the corroded layers were studied by XANES at the Cu K-edge, and 29Si, 27Al and 1H MAS NMR was employed to understand the processes during acid attack. Copper was found as a spertiniite-like phase in the as-cured materials, while in the deterioration layers of the pastes it was present as copper sulfate. In the corroded regions of the mortars, unequivocal identification of Cu phases was not possible, but the results were reconcilable with the presence of copper carbonate hydroxide. The solid-state NMR results revealed virtually complete dissolution of the K-A-S-H gel and the formation of silica gel, interpreted to be a central mechanism determining the acid resistance. No significant differences between the microstructural alterations of the pastes with and without Cu addition on (chemical) sulfuric acid attack were observed. T2 - 74th RILEM Annual Week & 40th Cement and Concrete Science Conference CY - Online meeting DA - 31.08.2020 KW - Alkali-activated materials KW - Sulfuric acid resistance KW - Sewer structures PY - 2020 AN - OPUS4-51198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hunter, R. D. A1 - Rowlandson, J. L. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Ting, V. P. A1 - Kulak, A. A1 - Schnepp, Z. T1 - The effect of precursor structure on porous carbons produced by iron-catalyzed graphitization of biomass N2 - This paper reports a systematic study into the effect of different biomass-derived precursors on the structure and porosity of carbons prepared via catalytic graphitization. Glucose, starch and cellulose are combined with iron nitrate and heated under a nitrogen atmosphere to produce Fe3C nanoparticles, which catalyze the conversion of amorphous carbon to graphitic nanostructures. The choice of organic precursor provides a means of controlling the catalyst particle size, which has a direct effect on the porosity of the material. Cellulose and glucose produce mesoporous carbons, while starch produces a mixture of micro- and mesopores under the same conditions and proceeds via a much slower graphitization step, generating a mixture of graphitic nanostructures and turbostratic carbon. Porous carbons are critical to energy applications such as batteries and electrocatalytic processes. For These applications, a simple and sustainable route to those carbons is essential. Therefore, the ability to control the precise structure of a biomass-derived carbon simply through the choice of precursor will enable the production of a new generation of energy materials. KW - SAXS KW - Porous carbons KW - Graphitization KW - Iron nanoparticles KW - Catalysis KW - Gas sorption PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515531 DO - https://doi.org/10.1039/d0ma00692k VL - Royal Society of Chemistry SP - 1 EP - 11 AN - OPUS4-51553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Von Ägypten bis Hiddensee Analyse von Gold mit Synchrotronstrahlung III N2 - Gold ist eines der sieben schon im Altertum bekannten Metalle und wurde wg. seines Glanzes und seiner Seltenheit von alters her als Tauschmittel und zur Herstellung von Schmuck benutzt. Außerdem ist es einfach bearbeitbar und weitestgehend gegen chemische Einflüsse resistent. Die Untersuchungen von Gold mit synchrotronstrahlungsangeregter Röntgenfluoreszenzanalyse sind zerstörungsfrei und geben Auskunft über die in der untersuchten Probe vorhandenen chemischen Elemente. Bei den hier vorgestellten Untersuchungen an der BAMline stehen Fragestellungen wie Herkunft, Herstellungsverfahren und Zusammengehörigkeit von Goldfunden im Vordergrund. Die verschiedenen Fragestellungen werden an einer Reihe von Beispielen erläutert die vom Wikingerschatz aus Hiddensee über die Himmelsscheibe von Nebra bis hin zu Funden aus Ägypten langen. Der Fund von Bernstorf wird ausführlich diskutiert. T2 - Vorlesung FU Berlin Einführung in die Archäometrie CY - Berlin, Germany DA - 06.11.2020 KW - Synchrotron KW - BAMline KW - XRF KW - Gold KW - Archäometrie PY - 2020 AN - OPUS4-51893 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fittschen, U. A1 - Lutz, C. A1 - Beuermann, S. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin T1 - Element Species Determination in Polymer Electrolyte Membranes N2 - Polymer electrolyte membranes (PEM) are polymers which act as separator in an electrochemical cell and allow ionic charge flow to close the circuit. Widely used membranes are perfluorinated sulfonic-acid (PFSA) ionomers (e.g. Nafion™), a class of ion-conducting polymers with remarkable ion conductivity and chemical-mechanical stability. A nanoscopic water system around the sulfonic acid capped side-chains of the otherwise hydrophobic polymer allows the ion transport. Only approx. 14 molecules of water per sulfonic group are present in the fully hydrated state. In vanadium redox flow batteries (VRFB) ideally only protons are transported. The weak ion selectivity of Nafion™ is the main cause for the transportation of vanadium, briefly vanadium crossover, in VRFBs a system we have investigated more closely, lately. The consequences of crossover are a concentration imbalance and a self-discharge of the battery, which leads to a decrease of the capacity. The development of efficient energy storage systems is crucial for the transformation towards a renewable energy based economy. The VRFB has a great potential as a commercial electrochemical energy storage system due to properties including, but not limited to, no cross-contamination, a long cycle-life and a theoretically unlimited capacity. VRFB consists of two half-cells, which are linked to electrolyte tanks and separated by a membrane. The membrane plays a major role in overall cell performance. So far, vanadium transportation models, which include diffusion, migration, electroosmotic convection and pressure gradients, are inconsistent. There is no agreement in the literature on the diffusion coefficients of vanadium species (e.g. published diffusion coefficients of V2+ are located between 3.13·10-12 m²s-1 and 9.44·10-12 m²s-1) indicate that thevanadium crossover is not well understood and there is a lack on a more fundamental level. Since the membrane transport is the rate-determining step of the crossover as well as of the proton exchange it is extremely important to understand these phenomena on a fundamental level. This will eventually allow us to design better membranes. Alternative materials need to show equivalent performance compared with Nafion™ and ideally be more selective regarding ion cross-membrane transport.There are several options to approach the chemistry i.e. the interaction of dissolved and bound ions inside the confined water body of ionomeric membranes. Vanadium ions are a versatile model as UV/VIS data can be used to distinguish between the 5 species V2+, V3+, VO2+, VO2+ and V2O33+ of the electrolyte. Infrared spectroscopy has been applied to study the interaction of sulfonic groups and the ions. Molecular dynamic modeling is another approach to study the distribution and distances of ions. We now introduce X-ray absorption near edge structure spectroscopy (XANES) to study species and species changes inside Nafion™ and a novel membrane based on poly(1,1-difluoroethylene) (PVDF). We evaluated the methods and investigated the influence of irradiation, temperature and hydration on the measurements. T2 - Denver X-Ray Conference CY - Online meeting DA - 03.08.2020 KW - Batteries KW - BAMline KW - XANES PY - 2020 AN - OPUS4-51910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lutz, C. A1 - Beuermann, S. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Fittschen, U. T1 - Investigation on Vanadium Crossover in Nafion ™ and Novel PVDF Based Membranes for Vanadium Redox Flow Batteries N2 - Vanadium redoxflow batteries (VRFB)are currently one of the most promising candidates for stationary energys torage.For large scale applications the ion conducting membranes currently in use need to be improved. Ideally,they need to become more cost efficient and selective regarding the vanadium crossover.For a better understanding of the vanadium crossover, the development of reliable analytical methods and procedures, that elucidate uptake and transport of vanadium ions in the membrane, is necessary. First, we present the uptake of V2+,V3+,VO2+, VO2+ and V2O33+ in Nafion™ and in a novel membrane based onpoly(1,1-difluoroethylene)(PVDF). In preliminary discharge/charge experiments the ETFE-based membrane, the precursor of PVDF-based membrane, performed comparable to Nafion™. The methods of choice for speciation are UV/Vis and X-ray absorption near edge structure spectroscopy (XANES). According to the results, V2O33+, formed from VO2+ and VO2+, diffuses also into the membrane. In present models, the diffusion of V2O33+ is neglected. In addition,we study whether reactions could take place inside the membranes’ nanoscopic water body using XANES. Exposing Nafion™ from one site with V3+a nd from the other site with VO2+ realized the experiment. The results verified that VO2+ was formed inside the membrane. However,in present models reactions inside the membrane are neglected, too. T2 - Denver X-Ray Conference CY - Online meeting DA - 03.08.2020 KW - Batteries KW - BAMline KW - XANES KW - VRF PY - 2020 AN - OPUS4-51909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Artificial intelligence for spectroscopy examples from BAMline N2 - Various applications for artificial intelligence in the context of spectroscopy will be presented. in particular, examples from bamline will be featured. After a short introduction to synchrotron radiation, artificial intelligence algorithms for the quantification of X-ray fluorescence measurement are discussed. In the second example, information retrieval by natural language processing is reviewed. As a last example the reconstruction of measurements with the X-ray color camera and coded apertures is presented. T2 - Seminar Strahlenphysikalische Anwendungen in Technik und Medizin CY - ATi Wien, Austria DA - 22.01.2020 KW - Machine learning KW - Natural language processing KW - Neural networks KW - Synchrotron KW - BAMline PY - 2020 AN - OPUS4-51891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana T1 - SRXRF examples from the BAMline N2 - Synchrotron radiation sources with their unique properties in terms of intensity, polarization and adjustability offer a wide range of possibilities in materials research. A basic introduction about the creation and special properties of synchrotron radiation will be given. Examples of current work at BAMline, the high-energy measuring facility of the Federal Institute for Materials Research and Testing at the synchrotron BESSY, are used to illustrate the possibilities and limitations of existing measuring methods. T2 - Better with Scattering CY - Online meeting DA - 16.03.2020 KW - Synchrotron KW - BAMline KW - XRF PY - 2020 AN - OPUS4-51895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Snow, T. T1 - Everything and the kitchen sink: correcting X-ray data for everything N2 - Recorded at the Better with Scattering workshop 2020, this talk highlights the complete set of data correction steps that we do for the MAUS, and how they can be used elsewhere too. This links well with the talk in this series by Dr. Tim Snow, and also highlights the details of the background subtraction that needs to be done. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Data corrections PY - 2020 UR - https://www.youtube.com/watch?v=Hp4qziOxZFk AN - OPUS4-51018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Basics and applications of good SAXS: Quantifying the fine structure of lots of materials N2 - In contrast to the crisp, clear images you can get from electron microscopy, small-angle X-ray scattering (SAXS) patterns are rather featureless. These patterns, however, contain averaged structural information of all of the finest material structures that were illuminated by the X-ray beam. With careful and precise investigation, and supplementary information from complementary techniques, this bulk material structure can be quantified to reveal structural information spanning four or even five decades in size. Additionally, while the data correction and analysis is complex, sample preparation is very straightforward, also allowing for in-situ and operando measurements to be performed without breaking a sweat. In the right hands, then, this technique can be the most powerful tool in your analytical arsenal. T2 - OpTecBB webinar within the scope of the focus area Optical Analytics CY - Online meeting DA - 27.05.2020 KW - Small-angle scattering KW - Introduction KW - Application KW - Saxs KW - Nanomaterials KW - Nanostructure PY - 2020 UR - https://www.youtube.com/watch?v=mXkYL3dSsTY UR - https://optecbb.de/veranstaltungen/veranstaltung/webinar-basics-and-applications-of-good-saxs-1238/ AN - OPUS4-50879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The dark side of science N2 - This talk explores the various ways in which bad science can proliferate in the current academic environment, and what can be done to recognize and (maybe) correct it. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Scientific rigor KW - Academic fraud KW - Academic metrics PY - 2020 AN - OPUS4-51017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - A brief history of scattering N2 - Recorded on the first day of the Better with Scattering workshop. In this video, I explore some of the highlights of the development of small-angle X-ray scattering over its long history. I discuss developments on the technical side, analytical methods, detectors, data quality and data management. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - History PY - 2020 UR - https://www.youtube.com/watch?v=mFH6P4tZbyM AN - OPUS4-51015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - More of the same, please! Standardizing a perfectionist X-ray Scattering methodology for labs and synchrotrons N2 - After a colleague sent me a more useful measurement from a laboratory instrument than what I could get from the beamline, I knew it was time to reassess my life's choices. Over the course of several subsequent post-doc and permanent positions around lab instruments, I managed to refine a flexible, comprehensive methodology for data collection, correction and analysis which can be applied to many X-ray scattering investigations at the lab and at the synchrotron. With the help of friends at round places, this methodology was implemented and put into production, and has been delivering high-quality data since then. Now, we have almost all possible data corrections (for X-ray scattering) implemented, and are improving the hardware to deliver higher-quality metadata to enable the corrections to be performed to a higher accuracy. Simultaneously, we have set up a mini-large facility at BAM with the MAUS, the Multi-scale Analyzer for Ultrafine Structures. The MAUS combines the freedom of a laboratory instrument, with the spectrum of users of a beamline: besides measuring our own samples, and performing our own machine and methodology developments, we have opened this instrument for collaboration with fellow scientists from within BAM and from external institutes and universities. Here, we provide a comprehensive support for these collaborations, guiding the user from concept to sample selection, to interpretation and analysis. In 2019, we have supported over 30 different projects this way, leading to seven co-authored publications involving the MAUS in that year alone. As the MAUS uses the latest iteration of our comprehensive measurement methodology, the data quality is unmatched by any other lab instrument, and fully traceable to boot. The freedom of the laboratory allows for more proof-of-principle experimentation than what is possible at the synchrotron. Therefore, the MAUS provides a good first (and sometimes final) step towards many experimental materials science investigations, nicely complementing the capabilities of the synchrotron. If and when more flux is needed, the step to the synchrotron is now smaller than ever, in particular with the same method T2 - Symposium on large scale facilities CY - BAM, Berlin, Germany DA - 09.03.2020 KW - Small angle scattering KW - Methodology KW - X-ray scattering PY - 2020 AN - OPUS4-51014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Breßler, Ingo T1 - McSAS for SAS analysis: Usage, Benefits and Potential Pitfalls N2 - This talk introduces McSAS, code for analysis of scattering patterns to extract particle size distributions. It highlights how it works, how it should be used, and when it may (not) be applied T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Software KW - Analysis PY - 2020 AN - OPUS4-51019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - X-ray generation N2 - This talk was recorded during the 2020 Better with Scattering workshop held at BAM in Berlin. This educational talk explains the various ways in which X-rays can be generated in the lab as well as at the synchrotron, with benefits and drawbacks for all. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - X-ray instrumentation KW - X-ray generation PY - 2020 UR - https://www.youtube.com/watch?v=Hze3PvcK7es AN - OPUS4-51016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Breßler, Ingo T1 - The SPONGE N2 - This software tool is intended to calculate X-ray scattering patterns from 3D objects described by an STL file. The fundamentals and use example(s) are shown. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Software KW - Simulation PY - 2020 AN - OPUS4-51020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark Side of Science N2 - An overview of the dark side of science: what it is, how it occurs, and what you can do to understand it and fight for the light side. T2 - First training event of the ITN-Project GW4SHM CY - Online meeting DA - 23.11.2020 KW - Scientific rigor KW - Scientific misconduct KW - Data manipulation KW - Image manipulation PY - 2020 AN - OPUS4-51830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - Introduction to SAXS N2 - A simplified introductions to small-angle scattering (SAXS), to put across the main concepts and not get bogged down in equations. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - SAXS KW - WAXS KW - MOFs KW - Data analysis KW - Nano PY - 2020 UR - https://www.youtube.com/watch?v=_YY9XtQfANk AN - OPUS4-51021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Complete set of raw and processed datasets, as well as associated Jupyter notebooks for analysis, associated with manuscript entitled: "The MOUSE project: a practical approach for obtaining traceable, wide-range X-ray scattering information" N2 - This dataset is a complete set of raw, processed and analyzed data, complete with Jupiter notebooks, associated with the manuscript mentioned in the title. In the manuscript, we provide a "systems architecture"-like overview and detailed discussions of the methodological and instrumental components that, together, comprise the "MOUSE" project (Methodology Optimization for Ultrafine Structure Exploration). Through this project, we aim to provide a comprehensive methodology for obtaining the highest quality X-ray scattering information (at small and wide angles) from measurements on materials science samples. KW - X-ray scattering KW - Measurement methodology KW - Traceability derivation KW - Multi-scale measurements KW - Systems architecture KW - Nanomaterials PY - 2020 DO - https://doi.org/10.5281/zenodo.4312953 PB - Zenodo CY - Geneva AN - OPUS4-51825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -