TY - JOUR A1 - Cordsmeier, Leo A1 - Hahn, Marc Benjamin T1 - DNA Stability in Biodosimetry, Pharmacy and DNA Based Data-Storage: Optimal Storage and Handling Conditions N2 - DNA long-term stability and integrity is of importance for applications in DNA based bio-dosimetry, data-storage, pharmaceutical quality-control, donor insemination and DNA based functional nanomaterials. Standard protocols for these applications involve repeated freeze-thaw cycles of the DNA, which can cause detrimental damage to the nucleobases, as well as the sugar-phosphate backbone and therefore the whole molecule. Throughout the literature three hypotheses can be found about the underlying mechanisms occurring during freeze-thaw cycles. It is hypothesized that DNA single-strand breaks during freezing can be induced by mechanical stress leading to shearing of the DNA molecule, by acidic pH causing damage through depurination and beta elimination or by the presence of metal ions catalyzing oxidative damage via reactive oxygen species (ROS). Here we test these hypotheses under well defined conditions with plasmid DNA pUC19 in high-purity buffer (1xPBS) at physiological salt and pH 7.4 conditions, under pH 6 and in the presence of metal ions in combination with the radical scavengers DMSO and Ectoine. The results show for the 2686 bp long plasmid DNA, that neither mechanical stress, nor pH 6 lead to degradation during repeated freeze-thaw cycles. In contrast, the presence of metal ions (Fe2+) leads to degradation of DNA via the production of radical species. KW - DNA KW - DNA stability KW - Pharmacy KW - Reference material KW - pUC19 KW - Strand break KW - SSB KW - Dosimetry KW - Biodosimetry KW - Biologisches Dosimeter KW - DNA Dosimeter KW - Quality control KW - Plasmid DNA KW - DNA data storage KW - Nucleobase KW - Base damage KW - Base loss KW - DNA degradation KW - Metal ions KW - ROS KW - OH radical KW - Fenton Reaction KW - H2O2 KW - DNA based data storage KW - Freezing KW - Thawing KW - Mechanical stress KW - pH KW - Beta elimination KW - Ectoine KW - Ectoin KW - THP(B) KW - Radical scavenger KW - DMSO KW - Buffer KW - lN2 KW - DNA vortexing KW - AGE KW - SYBR Gold KW - Gel electrophoresis KW - DNA long term storage KW - DNA reference material PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557148 DO - https://doi.org/10.1002/cbic.202200391 SP - 1 EP - 9 PB - Wiley-VCH GmbH AN - OPUS4-55714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schoenhals, Andreas T1 - Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller N2 - Nanocomposites based on MgAL layered double hydroxides (LDH) and an epoxy resin were prepared and investigated by a combination of complementary methods. As epoxy resin Bisphenol A diglycidyl ether (DGEBA) was used with Diethylenetriamine as curing agent. The LDH was modified with taurine, which acts as an additional crosslinking agent due to its amine groups. The epoxy resin was cured in a presence of the nanofiller, which was added to the system in various concentrations. X-ray scattering, by combination of SAXS and WAXS was used to characterize the morphology of the obtained nanocomposites. These investigations show that the filler is distributed in the matrix as small stacks of ca. 10 layers. The molecular dynamics of the system, as probe for structure, was investigated by broadband dielectric spectroscopy. In addition to the - and -relaxation (dynamic glass transition), characteristic for the unfilled materials, a further process was found which was assigned to localized fluctuations of segments physically adsorbed or chemically bonded to the nanoparticles. The dielectric -relaxation is shifted to higher temperatures for the nanocomposites in comparison to the pure material but depends weakly on the content of nanoparticles. Further, for the first time Flash DSC was employed to a thermosetting system to investigate the glass transition behavior of the nanocomposites. The heating rates were converted in to relaxation rates. For low concentrations of the nanofiller the thermal data overlap more or less with that of the pure epoxy. For higher concentrations the thermal data are shifted significantly to higher temperatures. This is discussed in terms the cooperativity approach to the glass transition. KW - Nanocomposites KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2019 DO - https://doi.org/10.1016/j.tca.2019.01.010 SN - 0040-6031 VL - 677 SP - 151 EP - 161 PB - Elsevier AN - OPUS4-48218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Bannick, C.G. A1 - Szewzyk, R. A1 - Ricking, M. A1 - Schniegler, S. A1 - Obermaier, N. A1 - Barthel, A. K. A1 - Altmann, Korinna A1 - Eisentraut, Paul T1 - Development and testing of a fractionated filtration for sampling of microplastics in water N2 - A harmonization of sampling, sample preparation and detection is pivotal in order to obtain comparable data on microplastics (MP) in the environment. This paper develops and proposes a suitable sampling concept for waterbodies that considers different plastic specific properties and influencing factors in the environment. Both artificial water including defined MP fractions and the discharge of a wastewater treatment plant were used to verify the derived sampling procedure, sample preparation and the subsequent analysis of MP using thermal extraction-desorption gas chromatography - mass spectrometry (TED-GC-MS). A major finding of this paper is that an application of various particle size classes greatly improves the practical handling of the sampling equipment. Size classes also enable the TED-GC-MS to provide any data on the MP size distribution, a substantial sampling property affecting both the necessary sampling volume and the optimal sampling depth. In the artificial water with defined MP fractions, the recovery rates ranged from 80 to 110%, depending on the different MP types and MP size classes. In the treated wastewater, we found both Polyethylene and polystyrene in different size classes and quantities. KW - Microplastics KW - Sampling KW - Sampling techniques KW - Water PY - 2019 DO - https://doi.org/10.1016/j.watres.2018.10.045 SN - 0043-1354 VL - 149 SP - 650 EP - 658 PB - Elsevier AN - OPUS4-47200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Axel A1 - Altmann, Korinna A1 - Kocher, B. A1 - Braun, U. T1 - Determination of tire wear markers in soil samples and their distribution in a roadside soil N2 - Tire wear (TW) constitutes a significant source of microplastic in terrestrial ecosystems. It is known that particles emitted by roads can have an effect up to 100 m into adjacent areas. Here, we apply for the first-time thermal extraction desorption gas chromatography-mass spectrometry (TED-GC/MS) to determine TW in soil samples by detection of thermal decomposition products of styrene-butadiene rubber (SBR), without additional enrichment. Additionally, zinc contents were determined as an elemental marker for TW. Mixed soil samples were taken along three transects along a German motorway in 0.3, 2.0, and 5.0 m distance from the road. Sampling depths were 0–2, 2–5, 5–10, and 10–20 cm. Four fine fractions, 1 000–500, 500–100, 100–50, and <50 μm, were analyzed. TW contents based on SBR ranged from 155 to 15 898 mg kg−1. TW contents based on zinc were between 413 and 44 812 mg kg−1. Comparison of individual values of SBR and zinc reveals SBR as a more specific marker. Results confirm that most TW ends up in the topsoil within a 2 m distance. The sampling strategy resulted in representative data for a larger area. Standard deviations of quadruple TED-GC/MS determination of SBR were <10% for all grain size fractions. TED-GC/MS is a suitable analytical tool for determining TW in soil samples without the use of toxic chemicals, enrichment, or special sample preparation. KW - Microplastic KW - TED-GC/MS KW - Tire wear PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543344 DO - https://doi.org/10.1016/j.chemosphere.2022.133653 VL - 294 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-54334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frunza, S. A1 - Frunza, L. A1 - Ganea, C. P. A1 - Zgura, I. A1 - Schönhals, Andreas T1 - Density of adsorbed surface species for cyanophemyl benzoates confined to Aerosil 380: Development of the evaluating algorithm for Attachment by two types of bonds N2 - We found previously how to estimate the density of the adsorbed surface species in the case of the molecules interacting to the oxide support surface by one type of bond. Here this algorithm is developed for the case of the molecules which can be bonded to the support surface by two types of bonds. The adsorption assumptions are similar to those considered in the case of only one type of bond. The calculation is exemplified for some composites of cyanophenyl alkylbenzoates (CPnBs) (n is the number of carbon atoms in the alkyl chain) interacting with Aerosil A380. The interaction takes place by hydrogen bonding between the –OH groups or the support and the functional groups of the CPnB molecules. The estimated values of the total surface density of CPnBs agree well with those found for the composites containing related but simpler molecules. KW - Surface species PY - 2019 SN - 1223-7027 VL - 81 IS - 4 SP - 232 EP - 236 PB - University Politehnica of Bucharest CY - Bucharest AN - OPUS4-49615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, W. A. A. A1 - Famy, Alaa A1 - Helal, A. A1 - Ahmed, E. A. E. A1 - Elsayed, B. A. A1 - Kamoun, E. A. A1 - Gad, E. A. M. T1 - Degradation of local Brilliant Blue R dye in presence of polyvinylidene fluoride/MWCNs/TiO2 as photocatalysts and plasma discharge N2 - The need of clean water and the water-poor are increasing daily in the world. In addition, we are facing a dramatic increase in the industrial pollutions of rivers and groundwater, which led us to find a new way to treat industrial pollutants. The plasma discharge technique is one of the important, safe, and applicable for industrial wastewater decontamination. Decolorization of Brilliant Blue R (BBR) dye as a hazard material was noticed when the contaminated solution was exposed to the plasma discharge technique. The combination between the nonthermal plasma and catalysts was evaluated in this work to optimize the degradation efficiency. The PVDF/(MWCNTs/TiO2) as three system composites was employed to enhance the nonthermal plasma performance. The surface area, phase purity, shape, and photonic efficiency were characterized employing XRD, FTIR, SEM, DSC, and UV–Vis. techniques. The obtained results of degradation using NTP technique in presence of the PVDF/MWCNTs catalyst have been enhanced the BBR dye degradation by 19% than only plasma treatment for 20 min. The durability processes of prepared PVDF/(MWCNTs/TiO2) was investigated and evaluated until 8 solar photocatalytic process repeating times. KW - Brilliant Blue R KW - MWCNT KW - PVDF PY - 2022 DO - https://doi.org/10.1016/j.jece.2021.106854 VL - 10 IS - 1 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-54386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nikitin, D. A1 - Madkour, Sherif A1 - Pleskunov, P A1 - Tafiichuk, R A1 - Shelemin, A A1 - Hanus, J A1 - Gordeev, I A1 - Sysolyatina, E A1 - Ermolaeva, S A1 - Titov, V A1 - Schönhals, Andreas A1 - Choukourov, A T1 - Cu nanoparticles constrain segmental dynamics of crosslinked polyethers: a trade -off between non-fouling and antibacterial properties N2 - Copper has a strong bactericidal effect against multi-drug resistant pathogens and polyethers are known for their resistance to biofilm formation. Herein, we combined Cu nanoparticles (NPs) and a polyether Plasma polymer in the form of nanocomposite thin films and studied whether both effects can be coupled. Cu NPs were produced by magnetron sputtering via the aggregation in a cool buffer gas whereasolyether layers were synthesized by Plasma-Assisted Vapor Phase Deposition with poly(ethylene oxide) (PEO) used as a precursor. In situ specific heat spectroscopy and XPS analysis revealed the formation of a modified polymer layer around the NPs which propagates on the scale of a few nanometers from the Cu NP/polymer interface and then transforms into a bulk polymer phase. The chemical composition of the modified layer is found to be ether-deficient due to the catalytic influence of copper whereas the bulk polymer Phase exhibits the chemical composition close to the original PEO. Two cooperative glass transition phenomena are revealed that belong to the modified polymer layer and the bulk phase. The former is characterized by constrained mobility of polymer segments which manifests itself via a 30 K increase of dynamic glass transition temperature. Furthermore, the modified layer is characterized by the heterogeneous structure which results in higher fragility of this layer as compared to the bulk phase. The Cu NPs/polyether thin films exhibit reduced Protein adsorption; however, the constrained segmental dynamics leads to the Deterioration of the non-fouling properties for ultra-thin polyether coatings. The films are found to have a bactericidal effect against multi-drug resistant Gram-positive Methicillin-Resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. KW - Nanocomposites KW - Specific heat spectroscopy PY - 2019 DO - https://doi.org/10.1039/c8sm02413h VL - 15 IS - 13 SP - 2884 EP - 2896 PB - RSC AN - OPUS4-47765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed A. A1 - Zhuoqing, L. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Wuckert, E. A1 - Raab, A. A1 - Laschat, S. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Confinement-suppressed phase transition and dynamic self-assembly of ionic superdiscs in ordered nanochannels: Implication for nanoscale applications N2 - Ionic Liquid Crystals are ionic liquids that exhibit liquid crystalline mesomorphism together with ionic conductivity. As known confined liquid crystal mesophases can show an anomalous dynamics and phase behavior. Investigations considering the factors controlling the macroscopic properties of ILCs in confinement are scare in the literature. This study reports the molecular mobility, and the phase transition behavior of a guanidinium based columnar ILC confined in the nanopores of self-ordered anodic aluminum oxide membranes of various pore diameters (25 – 180 nm) using Broadband Dielectric Spectroscopy (BDS), calorimetry and X-ray scattering. It is aimed to reveal in which way the pore size as well as the pore surface wettability (hydrophobic or hydrophilic) alters the molecular dynamics, and phase transition behavior for this system. These properties are crucial for applications. The DSC investigations reveal: (i) the phase transition temperature for the transition from the plastic crystalline to the crystalline-liquid state has non-monotonic dependence versus the inverse pore diameter and (ii) the transition from the liquid crystalline to the isotropic phase is suppressed for all nanoconfined samples. This transition suppressed in the thermal signal was evidenced by BDS and X-ray scattering. It is discussed as a continuous phase transition taking place in the pores instead of a discontinuous first order transition as observed for the bulk. BDS investigations show different relaxation processes for the bulk and the nanoconfined ILC. Molecular origins for various relaxation processes are discussed and suggested. It is further shown that the self-assembly of this ILC is dynamic in nature which might apply for other ILCs too. The obtained results will have implications for the nanoscale applications of ionic liquid crystals. KW - Ionic Liquid Crystals PY - 2023 DO - https://doi.org/10.1021/acsanm.3c02473 VL - 6 IS - 17 SP - 15673 EP - 15684 PB - ACS AN - OPUS4-58210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Gawek, Marcel A1 - Madkour, S. A1 - Schönhals, Andreas T1 - Confinement and localization effects revealed for thin films of the miscible blend Poly(vinyl methyl ether) / Polystyrene with a composition of 25/75 wt% N2 - Thin films (200-7nm) of the asymmetric polymer blend poly(vinyl methyl ether) (PVME)/polystyrene (PS) (25/75wt%) were investigated by broadband dielectric spectroscopy (BDS). Thicker samples ([Formula: see text]37 nm) were measured by crossed electrode capacitors (CEC), where the film is capped between Al-electrodes. For thinner films ([Formula: see text]37 nm) nanostructured capacitors (NSC) were employed, allowing one free surface in the film. The dielectric spectra of the thick films showed three relaxation processes ( [Formula: see text] -, [Formula: see text] - and [Formula: see text] -relaxation), like the bulk, related to PVME fluctuations in local spatial regions with different PS concentrations. The thickness dependence of the [Formula: see text] -process for films measured by CECs proved a spatially heterogeneous structure across the film with a PS-adsorption at the Al-electrodes. On the contrary, for the films measured by NSCs a PVME segregation at the free surface was found, resulting in faster dynamics, compared to the CECs. Moreover, for the thinnest films ([Formula: see text]26 nm) an additional relaxation process was detected. It was assigned to restricted fluctuations of PVME segments within the loosely bounded part of the adsorbed layer, proving that for NSCs a PVME enrichment takes place also at the polymer/substrate interface. KW - Thin polymer films KW - Broadband dielectric spectroscopy PY - 2019 DO - https://doi.org/10.1140/epje/i2019-11870-3 SN - 1292-895X VL - 42 IS - 8 SP - 101, 1 EP - 11 PB - Springer AN - OPUS4-48651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zarinwall, A. A1 - Waniek, Tassilo A1 - Saadat, R. A1 - Braun, U. A1 - Sturm, Heinz A1 - Garnweitner, G. T1 - Comprehensive Characterization of APTES Surface Modifications of Hydrous Boehmite Nanoparticles N2 - Hydrous boehmite (γ-AlOOH) nanoparticles (BNP) show great potential as nanoscale filler for the fabrication of fiber reinforced nanocomposite materials. Notably, the particle−matrix interaction has been demonstrated to be decisive for improving the matrix-dominant mechanical properties in the past years. Tailoring the surface properties of the nanofiller enables to selectively design the interaction and thus to exploit the benefits of the nanocomposite in an optimal way. Here, an extensive study is presented on the binding of (3-aminopropyl)triethoxysilane (APTES), a common silane surface modifier, on BNP in correlation to different process parameters (concentration, time, temperature, and pH). Furthermore, a comprehensive characterization of the modified BNP was performed by using elemental analysis (EA), thermogravimetric analysis (TGA) coupled with mass spectrometry (TGA-MS), and Kaiser’s test (KT). The results show an increasing monolayer formation up to a complete surface coverage with rising APTES concentration, time, and temperature, resulting in a maximal grafting density of 1.3 molecules/nm². Unspecific multilayer formation was solely observed under acidic conditions. Comparison of TGA-MS results with data recorded from EA, TGA, and KT verified that TGA-MS is a convenient and highly suitable method to elucidate the ligand binding in detail. KW - Boehmite KW - Nanoparticle KW - Surface KW - APTES KW - Functionalization KW - BET KW - TGA KW - Grafting KW - Nanocomposite KW - Silane PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.0c02682 VL - 37 IS - 1 SP - 171 EP - 179 PB - ACS Publications AN - OPUS4-51954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Krause, Christina A1 - Zorn, R. A1 - Lohstroh, W. A1 - Schneider, G. J. A1 - Zamponi, M. A1 - Holerer, O. A1 - Frick, B. A1 - Schönhals, Andreas T1 - Complex molecular dynamics of a symmetric model discotic liquid crystal revealed by broadband dielectric, thermal and neutron spectroscopy N2 - The molecular dynamics of the triphenylene-based discotic liquid crystal HAT6 is investigated by broadband dielectric spectroscopy, advanced dynamical calorimetry and neutron scattering. Differential scanning calorimetry in combination with X-ray scattering reveals that HAT6 has a plastic crystalline phase at low temperatures, a hexagonally ordered liquid crystalline phase at higher temperatures and undergoes a clearing transition at even higher temperatures. The dielectric spectra show several relaxation processes: a localized gamma-relaxation a lower temperature and a so called alpha-2-relaxation at higher temperatures. The relaxation rates of the alpha-2-relaxation have a complex temperature dependence and bear similarities to a dynamic glass transition. The relaxation rates estimated by hyper DSC, Fast Scanning calorimetry and AC Chip calorimetry have a different temperature dependence than the dielectric alpha-2-relaxation and follows the VFT-behavior characteristic for glassy dynamics. Therefore, this process is called alpha-1-relaxation. Its relaxation rates show a similarity with that of polyethylene. For this reason, the alpha-1-relaxation is assigned to the dynamic glass transition of the alkyl chains in the intercolumnar space. Moreover, this process is not observed by dielectric spectroscopy which supports its assignment. The alpha-2-relaxation was assigned to small scale translatorial and/or small angle fluctuations of the cores. The neutron scattering data reveal two relaxation processes. The process observed at shorter relaxation times is assigned to the methyl group rotation. The second relaxation process at longer time scales agree in the temperature dependence of its relaxation rates with that of the dielectric gamma-relaxation. KW - Discotic Liquid Crystals PY - 2020 DO - https://doi.org/10.1039/c9sm02487e VL - 16 IS - 8 SP - 2005 EP - 2016 PB - Royal Chemical Society AN - OPUS4-50466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Pauw, Brian Richard A1 - Qu, Xintong A1 - Schönhals, Andreas T1 - Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite N2 - The complex effects of nanoparticles on a thermosetting material based on an anhydride cured DGEBA/Boehmite nanocomposite with different particle concentrations is considered. A combination of X-ray scattering, calorimetry, including fast scanning calorimetry as well as temperature modulated calorimetry and dielectric spectroscopy, was employed to study the structure, the vitrification kinetics and the molecular dynamics of the nanocomposites. For the first time in the literature for an epoxy-based composite a detailed analysis of the X-ray data was carried out. Moreover, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking density, indicated by two separate dynamic glass transitions. The glass transition temperature decreases with increasing nanoparticle concentration, resulting from a change in the crosslinking density. Moreover, on the one hand, for nanocomposites the incorporation of nanofiller increased the number of mobile segments for low nanoparticle concentrations, due to the altered crosslinking density. On the other hand, for higher loading degrees the number of mobile segments decreased, resulting from the formation of an immobilized interphase (RAF). The simultaneous mobilization and immobilization of the segmental dynamics cannot be separated unambiguously. Taking the sample with highest number of mobile segments as reference state it was possible to estimate the amount of RAF. KW - Nanocomposite PY - 2020 DO - https://doi.org/10.1039/d0sm00744g SN - 1744-683X VL - 16 IS - 23 SP - 5406 EP - 5421 PB - Royal Chemical Society AN - OPUS4-50883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kanerva, M. A1 - Matrenichev, V. A1 - Layer, R. A1 - Takala, T. M. A1 - Laurikainen, P. A1 - Sarlin, E. A1 - Elert, Anna Maria A1 - Yuding, V. A1 - Seitsonen, J. A1 - Ruokolainen, J. A1 - Saris, P. T1 - Comparison of Rosin and Propolis Antimicrobials in Cellulose Acetate Fibers Against Staphylococcus aureus N2 - The quantitative difference in the antibacterial response was measured for pine rosin and propolis against Staphylococcus aureus ATCC 12598. The activity was studied for fibrous networks that form entirely bio-based cellulose-acetate (CA) materials. The analysis considers the effects of bacterial input, additive dosage, solvent type, variation in preparation, as well as the effect of storage time. Based on the results, the electrospun network structure is dependent on the solvent and the concentration of rosin and propolis. Both rosin and propolis improved the cellulose acetate solution processability, yet they formed beads at high concentrations. Rosin and propolis created strong antibacterial properties when these material systems were immersed in the liquid for 24 h at room temperature. The response remained visible for a minimum of two months. The electrospun networks of water and DMAc solvent systems with 1 to 5 wt% rosin content were clearly more efficient (i.e., decrease of 4 to 6 logs in colony forming units per mL) than the propolis networks, even after two months. This efficiency is likely due to the high content of abietic acids present in the rosin, which is based on the Fourier transform infrared spectra. The results of the additional analysis and cell cultivation with dermal fibroblast cells indicated an impairing effect on skin tissue by the rosin at a 1 wt% concentration compared to the pure CA fibers. KW - Electrospinning KW - Rosin KW - Propolis KW - Antibacterial KW - Cellulose acetate PY - 2020 SN - 1930-2126 VL - 15 IS - 2 SP - 3756 EP - 3773 AN - OPUS4-50635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. ED - Zutta Villate, J. M. T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of Radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for future experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - Ectoine KW - OH radicals KW - Radiation damage KW - Radiationtherapy KW - Radioactive decay KW - Simulation KW - Beta particle KW - Clustered nanoparticles KW - Gamma ray KW - Low energy electrons KW - Particle scattering KW - Radiolysis KW - Livermore model KW - Penelope model KW - TOPAS KW - TOPAS-nbio PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523276 DO - https://doi.org/10.1038/s41598-021-85964-2 SN - 2045-2322 VL - 11 IS - 1 SP - 6721 PB - Springer Nature AN - OPUS4-52327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Sentker, K. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Huber, P. A1 - Schönhals, Andreas T1 - Collective orientational order and phase behavior of a discotic liquid crystal under nanoscale confinement N2 - The phase behavior and molecular ordering of hexakishexyloxy triphenylene (HAT6) DLC under cylindrical nanoconfinement is studied utilizing differential scanning calorimetry (DSC) and dielectric spectroscopy (DS), where cylindrical nanoconfinement is established through embedding HAT6 into the nanopores of anodic aluminum oxide membranes (AAO), and a silica membrane with pore diameters ranging from 161 nm down to 12 nm. Both unmodified and modified pore walls were considered, and in the latter case the pore walls of AAO membranes were chemical treated with n octadecylphosphonic acid (ODPA) resulting in the formation of a 2.2 nm thick layer of grafted alkyl chains. Phase transition enthalpies decrease with decreasing pore size, indicating that a large proportion of the HAT6 molecules within the pores has a disordered structure, which increases with decreasing pore size for both pore walls. In the case of the ODPA modification the amount of ordered HAT6 is increased compared to the unmodified case. The pore size dependencies of the phase transition temperatures were approximated using the Gibbs Thomson equation, where the estimated surface tension is dependent on the molecular ordering of HAT6 molecules within the pores and upon their surface. DS was employed to investigate the molecular ordering of HAT6 within the nanopores. These investigations revealed that with a pore size of around 38 nm, for the samples with the unmodified pore walls, the molecular ordering changes from planar axial to homeotropic radial. However, the planar axial configuration, which is suitable for electronic applications, can be successfully preserved through ODPA modification for most of the pore sizes. KW - Discotic Liquid Crystals KW - Nanoconfinement PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475222 DO - https://doi.org/10.1039/c8na00308d SN - 2516-0230 VL - 1 IS - 3 SP - 1104 EP - 1116 PB - RSC AN - OPUS4-47522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klöckner, P. A1 - Seiwert, B. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Reemtsma, T. A1 - Wagner, S. T1 - Characterization of tire and road wear particles from road runoffindicates highly dynamic particle properties N2 - Tire and road wear particles (TRWPs) are heteroagglomerates of tire rubber and other particles deposited on the road surface and one of the main contributors to non-exhaust emissions of automobile traffic. In this study, samples from road environments were analyzed for their TRWP contents and concentra- tions of eight organic tire constituents. TRWP concentrations were determined by quantifying Zn in the density fraction < 1.9 g/cm ³and by thermal extraction desorption-gas chromatography-mass spectrometry (TED-GC/MS) and the concentrations ranged from 3.7 to 480 mg TRWP/g. Strong and statistically signif- icant correlations with TRWPs were found for 2-hydroxybenzothiazole and 2-aminobenzothiazole, indi- cating that these substances may be suitable markers of TRWPs. The mass distribution of TRWPs in road dust suggests that the main mass fraction formed on roads consists of coarse particles ( > 100 μm). Data for a sedimentation basin indicate that the fine fraction ( < 50 μm) is preferentially transported by road runoffinto receiving waters. The size distribution and density data of TRWP gathered by three different quantitation approaches also suggest that aging of TRWPs leads to changes in their particle density. An improved understanding of the dynamics of TRWP properties is essential to assess the distribution and dissipation of this contaminant of emerging concern in the environment. KW - Tire Wear KW - Density separation KW - Microplastic KW - Urban PY - 2020 DO - https://doi.org/10.1016/j.watres.2020.116262 VL - 185 SP - 116262 PB - Elsevier Ltd. AN - OPUS4-51256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Emamverdi, Farnaz A1 - Cacua, K. A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Carrier Fibers for the Safe Dosage of Nanoparticles in Nanocomposites: Nanomechanical and Thermomechanical Study on Polycarbonate/Boehmite Electrospun Fibers Embedded in Epoxy Resin N2 - The reinforcing effect of boehmite nanoparticles (BNP) in epoxy resins for fiber composite lightweight construction is related to the formation of a soft but bound interphase between filler and polymer. The interphase is able to dissipate crack propagation energy and consequently increases the fracture toughness of the epoxy resin. Usually, the nanoparticles are dispersed in the resin and then mixed with the hardener to form an applicable mixture to impregnate the fibers. If one wishes to locally increase the fracture toughness at particularly stressed positions of the fiber-reinforced polymer composites (FRPC), this could be done by spraying nanoparticles from a suspension. However, this would entail high costs for removing the nanoparticles from the ambient air. We propose that a fiber fleece containing bound nanoparticles be inserted at exposed locations. For the present proof-of-concept study, an electrospun polycarbonate nonwoven and taurine modified BNP are proposed. After fabrication of suitable PC/EP/BNP composites, the thermomechanical properties were tested by dynamic mechanical analysis (DMA). Comparatively, the local nanomechanical properties such as stiffness and elastic modulus were determined by atomic force microscopy (AFM). An additional investigation of the distribution of the nanoparticles in the epoxy matrix, which is a prerequisite for an effective nanocomposite, is carried out by scanning electron microscopy in transmission mode (TSEM). From the results it can be concluded that the concept of carrier fibers for nanoparticles is viable. KW - Advanced materials KW - Electrospun nanocomposite fiber KW - Nanomechanical charecteisation KW - Nanosafety KW - Epoxy nanocomposites PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528265 DO - https://doi.org/10.3390/nano11061591 VL - 11 IS - 6 SP - 1591 PB - MDPI CY - CH - 4020 Basel, Switzerland AN - OPUS4-52826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A. A1 - Gawek, Marcel A1 - Penner, P. A1 - Paneff, F. A1 - Zhang, X. A1 - Gölzhäuser, A. A1 - Schönhals, Andreas T1 - Can Polymers be Irreversibly Adsorbed on Carbon Nanomembranes? A Combined XPS, AFM, and Broadband Dielectric Spectroscopy Study N2 - Carbon nanomembranes are synthetic two-dimensional sheets with nanometer thickness, macroscopic lateral dimensions, and high structural homogeneity. They have great application potential in various branches of nanotechnology. Because of their full carbon structure, it is not clear whether macromolecules like poly(methyl methacrylate) (PMMA) can be irreversibly adsorbed on their surface. Here, irreversible adsorption means that the polymer chains cannot be removed by a leaching process, which is assumed in technological transfer processes. However, if polar defects are present on the carbon nanomembranes (CNMs), it may occur that polymers can be irreversibly adsorbed. To address this question, PMMA was spin-coated on top of CNMs, annealed for a specific time at different temperatures, and then tried to be removed by a acetone treatment in a leaching approach. The samples were investigated in detail by atomic force microscopy, X-ray photoelectron spectroscopy, and broadband dielectric spectroscopy, where the latter method has been applied to CNMs for the first time. Unambiguously, it was shown that PMMA can be adsorbed on the surface of CNMs after annealing the sample above the glasstransition temperature of PMMA. The general occurrence of polar defects on the surface of CNMs and the adsorption of polymers open opportunities for advanced innovative hybrid materials combining the properties of the CNM with those of the polymer. KW - Carbon Nanomembranes KW - Irreversible adsorption KW - Broadband dielectric spectroscopy KW - XPS spctroscopy KW - Atomic force microscopy PY - 2022 DO - https://doi.org/10.1021/acsapm.2c01320 SN - 2637-6105 VL - 4 IS - 11 SP - 8377 EP - 8385 PB - ACS AN - OPUS4-56067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Smales, Glen Jacob A1 - Henning, S. A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Calorimetric and Dielectric Investigations of Epoxy-Based Nanocomposites with Halloysite Nanotubes as Nanofillers N2 - Epoxy nanocomposites are promising materials for industrial applications (i.e., aerospace, marine and automotive industry) due to their extraordinary mechanical and thermal properties. Here, the effect of hollow halloysite nanotubes (HNT) on an epoxy matrix (Ep) was the focus of the study. The structure and molecular mobility of the nanocomposites were investigated using a combination of X-ray scattering, calorimetry (differential (DSC) and fast scanning calorimetry (FSC)) and dielectric spectroscopy. Additionally, the effect of surface modification of HNT (polydopamine (PDA) and Fe(OH)3 nanodots) was considered. For Ep/HNT, the glass transition temperature (Tg) is was de-creased due to a nanoparticle-related decrease of the crosslinking density. For the modified system, Ep/m-HNT, the surface modification resulted in enhanced filler–matrix interactions leading to higher Tg values than the pure epoxy in some cases. For Ep/m-HNT, the amount of interface formed between the nanoparticles and the matrix ranged from 5% to 15%. Through BDS measurements, localized fluctuations were detected as a β- and γ-relaxation, related to rotational fluctuations of phenyl rings and local reorientations of unreacted components. A combination of calorimetry and BDS dielectric spectroscopy revealed a dynamic and structural heterogeneity of the matrix, as confirmed by two glassy dynamics in both systems, related to regions with different crosslinking densities. KW - Rigid amorphous fraction KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526668 DO - https://doi.org/10.3390/polym13101634 VL - 13 IS - 10 SP - 1634 PB - MDPI AN - OPUS4-52666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Ghasem Zadeh Khorasani, Media A1 - Cano Murillo, Natalia A1 - Elert, Anna Maria A1 - Sturm, Heinz ED - Glatzel, T. T1 - Bulk chemical composition contrast from attractive forces in AFM force spectroscopy N2 - A key application of atomic force microscopy (AFM) is the measurement of physical properties at sub-micrometer resolution. Methods such as force–distance curves (FDCs) or dynamic variants (such as intermodulation AFM (ImAFM)) are able to measure mechanical properties (such as the local stiffness, kr) of nanoscopic heterogeneous materials. For a complete structure–property correlation, these mechanical measurements are considered to lack the ability to identify the chemical structure of the materials. In this study, the measured attractive force, Fattr, acting between the AFM tip and the sample is shown to be an independent measurement for the local chemical composition and hence a complete structure–property correlation can be obtained. A proof of concept is provided by two model samples comprised of (1) epoxy/polycarbonate and (2) epoxy/boehmite. The preparation of the model samples allowed for the assignment of material phases based on AFM topography. Additional chemical characterization on the nanoscale is performed by an AFM/infrared-spectroscopy hybrid method. Mechanical properties (kr) and attractive forces (Fattr) are calculated and a structure–property correlation is obtained by a manual principle component analysis (mPCA) from a kr/Fattr diagram. A third sample comprised of (3) epoxy/polycarbonate/boehmite is measured by ImAFM. The measurement of a 2 × 2 µm cross section yields 128 × 128 force curves which are successfully evaluated by a kr/Fattr diagram and the nanoscopic heterogeneity of the sample is determined. KW - AFM force spectroscopy KW - Composites KW - Principle component analysis KW - Structure–property correlation KW - Van der Waals forces PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520175 DO - https://doi.org/10.3762/bjnano.12.5 SN - 2190-4286 VL - 12 IS - 5 SP - 58 EP - 71 PB - Beilstein Institute CY - Frankfurt am Main AN - OPUS4-52017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -