TY - CONF A1 - Emamverdi, Farnaz A1 - Yin, Huajie A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Molecular Mobility and Physical Aging of Polymers with Intrinsic Microporosity (PIM-1) Revisited: A Big Glassy World N2 - Polymeric membranes represent a cost- and energy-efficient solution for gas separation. Recently Polymers of Intrinsic Microporosity (PIMs) have been in a great interest because of their outstanding BET surface area larger than 700m2/g and pore size smaller than 1 nm. PIMs are a promising candidate in gas separation with high permeability and appealing selectivity due to their inefficient packing derived from a combination of ladder-like rigid segments with sites of contortion. However, it is recognized this class of polymers suffer from decrease in performance with time due to physical aging. The initial microporous structures approach a denser state via local chain rearrangements, leading to a dramatic reduction in permeability. As chain packing during film casting and physical aging are the key factors determine the performance in separation applications, characterization of the molecular mobility in these materials has been proved to provide valuable information. In recent research on PIM-1 the archetypal PIM, a molecular relaxation process with high activation energy together with a significant conductivity in the glassy state has been found and explained with the formation of local intermolecular agglomerates due to interaction of π-electrons in aromatic moieties of the polymer backbone. In this work, the dielectric behavior of the polymeric films and their response upon heating (aging) were measured by isothermal frequency scans during different heating/cooling cycles in a broad temperature range down to 133K for the first time. Multiple dielectric processes following Arrhenius behavior were observed. Local fluctuations, Maxwell-Wagner-Sillars (MWS) polarization and structural relaxations were discussed correlating to structural-properties of PIM-1. Up to now, no other work has studied the role of porosity and thermal history of PIM-1 film in dielectric processes. The goal is by eliminating thermal history and considering storing conditions provide better understanding on aging and plasticizing in high free volume glassy polymer PIM-1. T2 - IDS Online Meeting CY - Berlin, Germany DA - 06.09.2021 KW - Physical Aging KW - BDS KW - Microporous structure KW - Permeation PY - 2021 AN - OPUS4-55766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emamverdi, Farnaz A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Molecular mobility and gas transport properties of mixed matrix membranes based on PIM-1 and POF fillers N2 - Especially now in times of the energy revolution, the demand for energy-efficient separation processes promotes the advancement of new high-performance materials for use as highly selective separation membranes. Polymers with intrinsic microporosity (PIMs) are of high interest in the field of gas separation membranes. Currently the application of PIMs for membrane technology is still restrained by their strong tendency to physical aging involving a significant loss of their good gas separation properties. Physical aging phenomenon is related to the molecular mobility of PIMs which was investigated by broadband dielectric spectroscopy (BDS) previously [1]. In this work, covalent phosphinine-based framework (Eto-CPSF) was used as a nanofiller (0-10 wt %) in a PIM-1 matrix to potentially enhance the gas transport properties and prevent physical aging. Since molecular mobility is a fundamental parameter determining gas transport as well as physical aging in such a material, our study includes dielectric investigations by BDS of pure PIM-1 and PIM-1/Eto-CPSF mixed matrix membranes to establish a correlation between molecular mobility and gas transport properties. In addition, gas permeability was determined by the time-lag method (0-10 bar pressure) at 35 °C for N2, O2, CH4 and CO2 for all MMMs. The dielectric behavior of the polymeric films and their response upon heating were measured by isothermal frequency scans during different heating/cooling cycles in a broad temperature range up to 250 °C. Multiple dielectric processes following Arrhenius behavior were observed. Local fluctuations, Maxwell-Wagner-Sillars (MWS) polarization and structural relaxations were discussed correlating to structural-properties of PIM-1. As main result for MMMs, the permeability of PIM-1 for CH4 and CO2 gases were increased significantly with only 5 wt% of nanofiller within the polymer matrix. However, this is not observed for Eto-CPSF concentrations higher than ca. 7 wt% probably due to a microphase separated morphology of the nanocomposite system. Furthermore, the permselectivity of membranes for pair gases O2/N2 and CO2/N2 show enhancement up to a concentration of about 7 wt% Eto-CPSF filler. T2 - 11th BDS conference CY - San Sebastian, Spain DA - 04.09.2022 KW - Gas transport KW - BDS KW - Mixed Matrix Membrane KW - Nanocomposite PY - 2022 AN - OPUS4-55752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Yin, Huajie A1 - Konnerts, Nora A1 - Böhning, Martin T1 - Molecular mobility and physical aging of polymers with intrinsic microporosity as revealed by dielectric spectroscopy N2 - The dielectric properties of different polymers with intrinsic microporosity are investigated by braodband dielectric spectroscopy. The results are discussed with regard to the structure T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Polymers with intrinsic microporosity KW - Gas separation membranes KW - Dielectric spectroscopy PY - 2018 AN - OPUS4-44490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Kühne, Hans-Carsten T1 - One-part geopolymers and geopolymer-zeolite composites based on silica: factors influencing microstructure and engineering properties N2 - Mixing and curing of geopolymers and related alkali-activated materials without storage and handling of highly alkaline solutions possesses advantages regarding safety and economic viability; one possible approach is to produce these materials from solid silica feedstocks and solid sodium aluminate, and subsequent mixing with water. We present a comparison between geopolymers and geopolymer-zeolite composites synthesized by this route from different silica feedstocks (by-product silica from chlorosilane production, microsilica, rice husk ash) and with different SiO2/Al2O3 ratios, using results from XRD, NMR, SEM, thermal analysis, mechanical and acid resistance testing. The use of rice husk ash favors formation of a fully amorphous geopolymer with high strength. Utilization of the other silica feedstocks leads to formation of geopolymer-zeolite composites, the amount and kind of zeolites depending on the feedstock and the SiO2/Al2O3 ratio. These composites show beneficial dehydration behavior, viz. no distinct dehydration step of thermal strain, with the phase assemblage after heating to 1000 °C controlled by the starting composition. Mortars produced from both, the geopolymers as well as the compo¬sites, exhibit high resistance to sulfuric acid attack, making them promising materials for the construction and the repair of industrial and sewer structures. T2 - 42nd International Conference and Expo on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 21.01.2018 KW - Alkali-activated materials KW - Geopolymers KW - Acid resistance KW - High-temperature resistance PY - 2018 AN - OPUS4-44145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Zorn, R. A1 - Böhning, Martin T1 - Vibrational density of states and molecular mobility in a polymer with intrinsic microporosity PIM-1 as revealed by inelastic neutron scattering N2 - Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. Here, by means of inelastic neutron scattering, the vibrational density of states (VDOS) and the molecular mobility were investigated for PIM-1, the prototypical polymer with intrinsic microporosity. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to the VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. Elastic fixed window scans were measured on a neutron backscattering spectrometer to have an overview about the molecular dynamics at a time scale of ca. 1 ns. The temperature dependence of the estimated mean squared displacement shows a step-like increase in the temperature range from 100 K to 250 K indicating the onset of some molecular mobility. The nature of this motional process was analyzed in detail by quasielastic neutron scattering where the data are discussed with regard to both the q- and the temperature dependence. T2 - QENS/WINWS 2018 CY - Hong Kong, China DA - 17.07.2018 KW - Polymers with intrinic microporosity KW - Quasielastic neutron scattering PY - 2018 AN - OPUS4-45534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Lee, Jun-Seob A1 - Radnik, Jörg T1 - Electrochemical behavior of UNS N08031 in Green-Death-solution N2 - The electrochemical behavior of UNS N08031 was investigated as a function of electrode potential in Green-Death solution at 40 °C. The UNS N08031 surface is in a stable passive state during cyclic potentiodynamic polarization without an initiation and/or propagation of localized corrosion. In potentiostatic polarization of UNS N08031 for 3600 s, passive current density increases with an increase in the passivation potential from 0.7 to 1.0 VSSE (silver/silver chloride reference electrode in saturated potassium chloride) Electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis showed that a more defective n-type semiconductive passive film forms as the potential increases. X-ray photoelectron spectroscopy (XPS) revealed that passive film consists of mainly chromium and minor iron and nickel oxides. The mechanism of the defective passive film formation is discussed. The increase of the applied potential is considered to be a reason for the change in passive film stability. T2 - NACE International Annual Corrosion Conference CY - Phoenix, AZ, USA DA - 15.04.2018 KW - Steel KW - Passive film KW - X-ray photoelectron spectroscopy PY - 2018 AN - OPUS4-44920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - Structure, acid resistance and high-temperature behavior of silica-based one-part AAMs N2 - One-part geopolymers (OPGs) are a sort of alkali-activated materials (AAMs) which production avoids the use of highly-alkaline activator-solutions and contributes to a better acceptance of alternative mineral binders in terms of safety-related and economic aspects. In the present contribution OPGs were synthesized by blending silica sources (two industrial silicas and two biogenic silicas) with sodium aluminate and only water must be added to initiate the hardening, i.e. mixing is performed in the same way as for conventional Portland cements. The OPGs were characterized by XRD, and SEM and the degrees of reaction of the silicas were determined by a chemical dissolution method. The industrial silicas led to the formation of geopolymer-zeolite composites, that contained, besides geopolymeric gel, crystalline tectosilicates (e.g. zeolite A and hydrosodalite) and depending on the starting composition also unreacted silica. The biogenic silicas provided a higher reactivity and avoided the formation of crystallite by-products. The differences in the microstructures caused differences in the mechanical strength of the specimens. The treatment of the OPG composites at moderate elevated temperatures revealed promising behavior on thermal dehydration in terms of shrinkage and residual strength up to 700 °C. Above 700 °C sintering and partial melting occurred, and new phase formation commenced. After exposure to 1000 °C the specimens appeared virtually amorphous or formed stuffed silica structures of nepheline- or carnegieite-type type. The investigations of the OPG based mortars on their resistance against sulfuric acid in accordance with DIN 19573 (Appendix A) revealed very high residual strengths up to 78 % after treatment with H2SO4 (pH 1) for 70d. A mechanism of dissolution of the primary aluminosilicate reaction products of the pastes and the precipitation of a silica gel that protects the remaining aluminosilicates and decelerates further corrosion was found to be the main reason for the good performance under acidic conditions. The addition of CaO-containing feedstocks enhanced hardening, but at a certain content the resistance against sulfuric acid decreased, due to the formation of gypsum on exposure to sulfate. In addition, the mortars exhibited excellent shrinkage behavior as well as good bond to concrete substrates with pull-off strength up to > 3 MPa. The workability of the fresh mortars provided very good manual applicability; automatic applications such as sprayed and spun mortars will require further optimization regarding rheological properties. In summary, the studied OPG are promising materials for the construction and the repair of concrete structures, such as sewers, that are affected by biogenic sulfuric acid corrosion. T2 - Alkali Activated Materials and Geopolymers CY - Tomar, Portugal DA - 27.05.2018 KW - Alkali-activated materials KW - Geopolymers KW - Acid resistance KW - Solid state NMR PY - 2018 AN - OPUS4-45087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böhning, Martin A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Characterization of high-performance membrane polymers for gas separation using broadband dielectric spectroscopy N2 - In recent years superglassy polymers exhibiting intrinsic microporosity established a new perspective for a number of applications, especially for gas separation membranes as These polymers Combine extremely high permeabilities with attractive selectivities. The essential factor governing the structure Formation in the solid film or layer is either a contorted rigid Backbone (polymers of intrinsic microporosity - PIMs) or extremely bulky side groups (polynorbornenes and polytricyclonenenes). For a deeper understanding of both types of such high-Performance polymers for gas separation membranes and their further development broadband dielectric spectroscopy (BDS) can provide a substantial contribution. BDS addresses molecular relaxations characterizing the dynamics of the solid polymer as a major factor determining the gas transport properties but also the physical aging behavior which is an essential issue for such polymers. BDS is applied on PIMs where fluctuations of molecular dipoles connected to the backbone can be directly monitored. Furthermore, also polynorbornenes were investigated which carry no dipole moment in their repeat unit - the high resolution of modern equipment allows for the detailed analysis also for very small dielectric losses originating from partially oxidized moieties or marginal catalyst residues. Additionally, from interfacial polarization phenomena, such as Maxwell-Wagner-Sillars (MWS) polarization due to blocking of charge carriers at internal interfacial boundaries on a mesoscopic length scale, valuable information on the intrinsic microporosity and its changes induced by physical aging can be obtained. Finally, also conductivity can be characterized in detail in such polymeric systems revealing contributions of interactions of aromatic moieties (π-π-stacking) or the drift motion of charge carriers. These features also determine the structure formation in the solid state. T2 - 257th ACS National Meeting - Symposium "Transport in Polymer Membranes" CY - Orlando, FL, USA DA - 31.03.2019 KW - polymers KW - gas separation membranes KW - polynorbornenes KW - polymers of intrinsic microporosity KW - dielectric spectroscopy KW - molecular mobility PY - 2019 AN - OPUS4-48142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - One-part alkali-activated materials with high sulfuric acid resistance N2 - Materials with a high acid resistance are required in different important infrastructures. Examples include repair systems for sewer structures, where biogenic sulfuric acid corrosion is the major degradation mechanism. Low-calcium alkali-activated materials (AAMs) have been repeatedly observed to exhibit high acid resistance. However, the reasons for the high acid resistance of these materials were not fully under¬stood until recently, and the use of highly alkaline activator solutions to produce AAMs appears to hamper their commercial uptake. These issues have been tackled by characterising one-part AAMs and studying their alteration when exposed to sulfuric acid. One-part AAMs were synthesized by mixing blends of solid silica and sodium aluminate with water, and subsequent curing at 60–80 °C. Acid resistance testing was performed according to DIN 19573, i.e. exposure to sulfuric acid at pH = 1 for 70 days. Characterisation of the cured and the acid-exposed materials was done by XRD, ATR-FTIR, SEM as well as 29Si, 27Al and 1H MAS NMR spectroscopy, including cross-polarisation and double-resonance methods. Materials synthesized from industrial silicas were gel-zeolite composites, containing a substantial amount of unreacted ‘excess’ silica, while materials synthesized from rice husk ash were fully amorphous, containing ‘excess’ hydrous alumina. The sulfuric acid resistance of mortars based on these binders conformed to the requirements of DIN 19573 for sewer repair applications. The high acid resistance was caused by precipitation of silica gel at the mortar–solution interface, inhibiting further degradation. The presence of alumina gel may inhibit bacterial activity, potentially further improving performance in sewer environments. The phase assemblage of silica/sodium aluminate-based one-part AAMs can be adjusted via choice of the silica starting material. Properly designed materials exhibit excellent acid resistance, caused by precipi¬tation of silica gel which protects subjacent regions, and they may also inhibit bacterial activity. T2 - XVI ECerS Conference CY - Turin, Italy DA - 16.06.2019 KW - Alkali-activated materials KW - One-part mix KW - Acid resistance PY - 2019 AN - OPUS4-48236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Bertmer, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Dietzel, M. A1 - Ukrainczyk, N. A1 - Grengg, C. T1 - Sulfuric acid resistance of copper-doped and plain metakaolin-based alkali-activated materials studied by 29Si, 27Al and 1H MAS NMR, and Cu K-edge XANES spectroscopy N2 - Alkali-activated materials have been repeatedly reported to exhibit high acid resistance, but no generally accepted hypothesis regarding the underlying mechanisms has emerged yet. To contribute to this issue, K-waterglass-activated metakaolin specimens, with and without the addition of CuSO4·5H2O in the starting mix, were exposed to either a chemically aggressive sewer environment (mortars) or sulfuric acid (pastes). The mode of copper incorporation in the materials and the formation of copper phases in the corroded layers were studied by XANES at the Cu K-edge, and 29Si, 27Al and 1H MAS NMR was employed to understand the processes during acid attack. Copper was found as a spertiniite-like phase in the as-cured materials, while in the deterioration layers of the pastes it was present as copper sulfate. In the corroded regions of the mortars, unequivocal identification of Cu phases was not possible, but the results were reconcilable with the presence of copper carbonate hydroxide. The solid-state NMR results revealed virtually complete dissolution of the K-A-S-H gel and the formation of silica gel, interpreted to be a central mechanism determining the acid resistance. No significant differences between the microstructural alterations of the pastes with and without Cu addition on (chemical) sulfuric acid attack were observed. T2 - 74th RILEM Annual Week & 40th Cement and Concrete Science Conference CY - Online meeting DA - 31.08.2020 KW - Alkali-activated materials KW - Sulfuric acid resistance KW - Sewer structures PY - 2020 AN - OPUS4-51198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Eisentraut, Paul A1 - Kalbe, Ute A1 - Wachtendorf, Volker T1 - Elastomere und TPE – Gut für die Umwelt? – Kreislaufwirtschaft und Normung vereinen N2 - Der Vortrag fasst Projekte an der BAM mit Hinblick auf Elastomere und Umweltthemen zusammen. T2 - DIN Workshop: Elastomere und TPE – Gut für die Umwelt? – Kreislaufwirtschaft und Normung vereinen CY - Berlin, Germany DA - 08.08.2019 KW - Mikroplastik KW - Reifenabrieb KW - Sportböden PY - 2019 AN - OPUS4-49064 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - Einkomponentige alkaliaktivierte Bindemittel und Mörtel mit hohem Schwefelsäure-Widerstand N2 - Einkomponentige alkaliaktivierte Bindemittel (AAB), d. h. AAB, bei denen der Aktivator als Feststoff im Bindemittel vorliegt, weisen Vorteile hinsichtlich der praktischen Anwendung im Bauwesen gegenüber konventionellen AAB auf. Einkomponentige AAB lassen sich als Gemische aus reaktiver Silica und Natriumaluminat herstellen, wobei die Reaktionsprodukte von der eingesetzten Silica und den Verhältnissen Na2O/Al2O3/SiO2/H2O abhängen: Während Mikrosilica und ähnliche Reststoffe zu zeolithreichen Produkten führen, erhält man aus Reisschalenasche vollständig amorphe Gele (sog. «Geopolymere»). Mörtel auf Basis solcher Bindemittel entsprechen den Anforderungen von DIN 19573:2016-03 hinsichtlich des Widerstands gegen Schwefelsäureangriff (Prüfung bei pH = 1 für 70 d) und sind damit potentiell als Reparatursysteme für Abwasserinfrastruktur geeignet. Untersuchungen mittels 29Si-MAS-NMR und 1H-29Si-Kreuzpolarisations(CP)-MAS-NMR sowie REM-Aufnahmen von erhärteten und dem Schwefelsäureangriff ausgesetzten AAB zeigen, dass der hohe Säurewiderstand v. a. auf die Fällung von Silicagel an der Grenzfläche Mörtel/Säure zurückzuführen ist, wodurch der Korrosionsfortschritt in darunterliegenden Schichten verlangsamt wird. T2 - Tagung Bauchemie der GDCh-Fachgruppe Bauchemie CY - Aachen, Germany DA - 30.09.2019 KW - Alkaliaktivierte Bindemittel KW - Biogene Schwefelsäurekorrosion KW - Abwasserinfrastruktur KW - Reparatursysteme PY - 2019 AN - OPUS4-49269 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Zorn, R. A1 - Böhning, Martin T1 - Vibrational density of states and molecular mobility in a polymer with intrinsic microporosity PIM-1 as revealed by inelastic neutron scattering N2 - Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. Here, by means of inelastic neutron scattering, the vibrational density of states (VDOS) and the molecular mobility were investigated for PIM-1, the prototypical polymer with intrinsic microporosity. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to the VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. Elastic fixed window scans were measured on a neutron backscattering spectrometer to have an overview about the molecular dynamics at a time scale of ca. 1 ns. The temperature dependence of the estimated mean squared displacement shows a step-like increase in the temperature range from 100 K to 250 K indicating the onset of some molecular mobility. The nature of this motional process was analyzed in detail by quasielastic neutron scattering combining Time-of-Flight and backscattering where the data are discussed with regard to both the q- and the temperature dependence. T2 - JCNS Workshop for Neutron Scattering CY - Tutzing at Munich, Germany DA - 07.10.2019 KW - Polymers of Intrinsic Microporosity KW - Neutron Scattering PY - 2019 AN - OPUS4-49271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Zorn, R. A1 - Böhning, Martin T1 - Inelastic neutron scattering as a tool to investigate  polymers of intrinsic microporosity for green membrane processes and electronic applications N2 - Polymers with intrinsic microporosity are promising candidates for the active separation layer in green gas separation membranes and as active materials for electronic applicatons. Here, by means of inelastic neutron scattering, the vibrational density of states (VDOS) and the molecular mobility were investigated for PIM-1, the prototypical polymer with intrinsic microporosity. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to the VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. Elastic fixed window scans were measured on a neutron backscattering spectrometer to have an overview about the molecular dynamics at a time scale of ca. 1 ns. The temperature dependence of the estimated mean squared displacement shows a step-like increase in the temperature range from 100 K to 250 K indicating the onset of some molecular mobility. The nature of this motional process was analysed in detail by quasielastic neutron scattering combining Time-of-Flight and backscattering where the data are discussed with regard to both the q- and the temperature dependence. T2 - Symposium on Large Scale Facilities CY - Berlin, Germany DA - 09.03.2020 KW - Polymer membranen PY - 2020 AN - OPUS4-50546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Keserović, Amela A1 - Beck, Joana A1 - Sarmiento Klapper, Helmut A1 - Boduch, A. A1 - Dimper, Matthias A1 - Stoljarova, A. A1 - Faes, W. A1 - Zimmer, S. T1 - Metallic Materials for Geothermal Applications N2 - The aim of the work presented was the evaluation of corrosion resistance of various materials in geothermal Waters as a base to create a catalogue of suitable materials for applications in (not only) German geothermal power plants. Users shall be enabled to have a basis for designing such facilities. High alloyed corrosion resistant alloys are suitable and do not cause copper or lead deposition. They shall be chosen for future design of the piping system, either in massive or in cladded form, if crevices formation with non-metallic materials can be prevented! T2 - IFPEN-Workshop: Corrosion in Low-Carbon Energies CY - Online meeting DA - 03.11.2020 KW - Geothermal KW - Corrosion KW - Saline brine PY - 2020 AN - OPUS4-51511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Yin, Huajie A1 - Kolmangadi, Mohamed Aejaz A1 - Emamverdi, Farnaz A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Böhning, Martin T1 - Physical investigations on Super glassy Polymers having possible applications in gas Separation Membranes N2 - The properties of polymers of intrinsic microporosity were investigated by fast scanning calorimetry, dielectric spectroscopy and neutron scattering T2 - University of Pennsylvania CY - Online meeting DA - 25.01.2021 KW - Polymer of intrisic microporosity PY - 2021 AN - OPUS4-52065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böhning, Martin A1 - Yin, Huajie A1 - Chua, Yeong Zen A1 - Yang, Bin A1 - Schick, Christoph A1 - Schönhals, Andreas T1 - The glass transition temperature of Polymers of Intrinsic Microporosity (PIMs) as determined by fast scanning calorimetry N2 - Polymers of intrinsic microporosity (PIMs) have recently emerged as novel materials for a broad range of high-performance applications from gas separation to electronic devices. The very rigid, contorted polymer chains show only limited molecular mobility and therefore pack inefficiently giving rise to intrinsic microporosity with pore sizes generally smaller than 1 nm resulting in BET surface areas larger than 700 m2/g. Using conventional thermal analysis techniques, no glass transition temperature (Tg) of PIMs could be unambiguously detected up to now. Employing fast scanning calorimetry (FSC) based on a one chip sensor, decoupling the time scales responsible for the glass transition and the thermal decomposition is a reliable strategy to overcome this limitation. The FSC device is capable to heat and cool a small sample (ng-range) with ultrafast rates of several ten thousand K/s. Evidence of a glass transition is obtained for a series of PIMs with different chain rigidities. Local small-scale fluctuations are held responsible for the glass transition of highly rigid PIMs rather than segmental motions as in conventional polymers. T2 - International Polymer Processing Society (PPS) - Europe-Africa 2019 Regional Conference (PPS2019) CY - Pretoria, South Africa DA - 18.11.2019 KW - Polymers KW - Polymers of intrinsic microporosity KW - Glass transition KW - Fast scanning calorimetry PY - 2019 AN - OPUS4-49957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kunz, Valentin T1 - Surface chemical transformations of nanoparticles N2 - Nanomaterials are a relatively new class of materials for which a regulatory framework still has to be established and regulators require comprehensive datasets of well characterized nanomaterials for the implementation. Especially information about the surface chemistry of nanoparticles is crucial, since it largely determines their biological and environmental fate. How the surface chemistry changes under relevant ageing conditions is of particular interest, because exposure will normally occur not to the pristine material but to a nanoform that underwent some kind of transformation. In this talk, first a short overview about the contributions of division 6.1 to multiple European-funded projects will be presented, in which surface analytical techniques are used to improve the physical-chemical characterization of nanomaterials. Secondly, a study investigating the surface-chemical transformations of a representative set of titanium dioxide nanoparticles is discussed in more detail. The ageing has partly been performed at the BAM division 7.5, and the surface chemistry was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). By analyzing the complex mass spectra with principal component analysis (PCA), it was possible to identify even subtle changes that occur upon ageing. T2 - Abteilungsseminar CY - BAM, Berlin, Germany DA - 25.2.2019 KW - Nanoparticles KW - Surface Chemistry KW - Ageing KW - Titanium Dioxide KW - ToF-SIMS PY - 2019 AN - OPUS4-47444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Chua, Y. Z. A1 - Yang, B. A1 - Schick, C. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Probing the glass transition temperature of polymers of intrinsic microporosity (PIMs) by fast scanning calorimeter N2 - High performance polymers of intrinsic microporosity (PIMs) have emerged as novel materials with broad applications from gas separation to electronic devices. Sufficiently rigid, even contorted polymer chains show only limited molecular mobility, therefore undergo inefficient packing and give rise to intrinsic microporosity with pore size generally smaller than 1 nm and BET surface areas larger than 700 m2/g. Further performance optimization and long-term stability of devices incorporating PIMs rely on our understanding of structure-processing-property relationships and physical aging, in which glass transition plays a key role. Up to now no glass transition temperature (Tg) of PIMs could be detected with conventional thermal analysis techniques before degradation. Decoupling the time scales responsible for the glass transition and the thermal decomposition is a reliable strategy to overcome this. This was achieved by employing fast scanning calorimetry (FSC) based on a chip sensor, which is capable to heat and cool a small sample (ng-range) with ultrafast rates of several ten thousand K/s. FSC provides definitive evidence of glass transition of a series of PIMs with a special consideration on the chain rigidity. The determined glass transition temperature of these PIMs follows the order of the rigidity of their backbone structures. FSC provides the first clear-cut experimental evidence of the glass transition of PIM-EA-TB with a Tg of 663 K, PIM-1 of 644 K and PIM-DMDPH-TB of 630 K at a heating rate of 1Χ104 K/s. Local fluctuations are featured in glass transition of highly rigid PIMs. As conformational changes are prevented by the backbone rigidity, the glass transition must rather be assigned to local small scale fluctuations. T2 - American Chemical Society (ACS) National Meeting & Expo 2019 CY - Orlando, FL, USA DA - 31.03.2019 KW - Glass transition KW - Polymers of intrinsic microporosity KW - Fast scanning calorimeter PY - 2019 AN - OPUS4-47806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haacke, Nasrin A1 - Sahre, Mario A1 - Schlau, Sven A1 - Gersdorf, Sven A1 - Ebell, Gino T1 - Design and construction of a rainfall simulator to test metal runoff at atmospheric conditions N2 - A rainfall simulator was presented as an environmental assessment tool to quantify wash-off concentrations from metallic materials. It is part of the RUNOFF-project, which studies and re-assesses the durability of roofing and facade materials under current atmospheric conditions in Germany. Studying building materials is important as they have a significant impact on achieving a variety of goals and targets within the sustainable developments goals (SDGs). The durability of materials is essential to reach sustainability. However, the durability of metallic materials is strongly depended on climate conditions, which have changed as a result of technical measures in industry, climate change and increasing urbanisation. In Germany at least, the data base is not up-to-date leading to prediction models regarding corrosion resistance and durability of metallic materials which can no longer be trusted and therefore need to be re-assessed and updated. Also, not only the demand for sustainable but also environmentally friendly building materials has increased dramatically. A number of construction materials produce chemical hazards, and therefore have negative impacts on water quality, soils health and ecosystems. To limit these impacts, environmental assessment methods and tools are needed to measure and quantify the inputs and outputs of building materials throughout their lifetime. T2 - EUROCORR 2023 CY - Brussels, Belgium DA - 27.08.2023 KW - Rainfall simulator KW - Runoff KW - Atmospheric conditions KW - Laboratory experiments PY - 2023 AN - OPUS4-58152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -