TY - CONF A1 - Kunz, Valentin T1 - Surface chemical transformations of nanoparticles N2 - Nanomaterials are a relatively new class of materials for which a regulatory framework still has to be established and regulators require comprehensive datasets of well characterized nanomaterials for the implementation. Especially information about the surface chemistry of nanoparticles is crucial, since it largely determines their biological and environmental fate. How the surface chemistry changes under relevant ageing conditions is of particular interest, because exposure will normally occur not to the pristine material but to a nanoform that underwent some kind of transformation. In this talk, first a short overview about the contributions of division 6.1 to multiple European-funded projects will be presented, in which surface analytical techniques are used to improve the physical-chemical characterization of nanomaterials. Secondly, a study investigating the surface-chemical transformations of a representative set of titanium dioxide nanoparticles is discussed in more detail. The ageing has partly been performed at the BAM division 7.5, and the surface chemistry was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). By analyzing the complex mass spectra with principal component analysis (PCA), it was possible to identify even subtle changes that occur upon ageing. T2 - Abteilungsseminar CY - BAM, Berlin, Germany DA - 25.2.2019 KW - Nanoparticles KW - Surface Chemistry KW - Ageing KW - Titanium Dioxide KW - ToF-SIMS PY - 2019 AN - OPUS4-47444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria A1 - Eisentraut, Paul A1 - Dittmann, Daniel A1 - Ruhl, A.S. A1 - Eitzen, L. A1 - Jekel, M. A1 - Braun, Ulrike T1 - Thermoanalytical methods for the optimisation of microplastic analysis in freshwater sediment samples N2 - Results of various thermoanalytical techniques are presented for the analysis of microplastics in sediment samples. The homogeneity and the representativness of samples war controlled, as well as steps of separation and microplastic detection by these techniques. T2 - MICRO CY - Lanzarote, Spain DA - 19.11.2018 KW - Water KW - Microplastics KW - Sampling KW - Sampling techniques PY - 2018 AN - OPUS4-47322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit T1 - Quantitative biocide profile measurements by calibrated XPS N2 - This presentation provides an update on recent results from quantitative XPS-measurements of real and artificial biofilms. NAP-XPS, lab-based XPS and synchrotron-based XPS was used to obtain a vertical concentration profile of iodine in agarose-films with information depth ranging from 1 to 18 nm. T2 - Project meeting MetVBadBugs CY - Turin, Italy DA - 05.02.2019 KW - Biofilms KW - NAP-XPS KW - XPS KW - Iodine KW - Agarose PY - 2019 AN - OPUS4-47332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duwe, M. A1 - Fischer, Daniel A1 - Quast, J.-H. A1 - Schneider, S. A1 - Beck, Uwe T1 - Curved-surface metrology by imaging Mueller-matrix ellipsometry N2 - Outline - maging ellipsometry: oncept and setup - Basic theory: ellipsometry on tilted/curved surfaces - Geometric considerations - Tilt-induced cross-polarization - Application: coating analysis on microlensarray - Mueller-Matrix Imaging - Conversion to Delta-Psi Image - Layer-thickness of ITO coating T2 - 8th International conference on spectroscopic CY - Barcelona, Spain DA - 26.05.2019 KW - Spectroscopic Imaging KW - Mueller-Matrix Ellipsometry KW - Curved surfaces PY - 2019 AN - OPUS4-48366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm DO - https://doi.org/10.3390/nano9060853 SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goedecke, Caroline A1 - Altmann, Korinna A1 - Eisentraut, Paul A1 - Paul, Andrea A1 - Barthel, A. K. A1 - Bannick, C. G. A1 - Lau, P. A1 - Venghaus, D. A1 - Barjenbruch, M. A1 - Braun, Ulrike T1 - Detection of microplastic and tire wear particles in road run-off samples using TED-GC-MS N2 - Plastics and rubber are used in many applications, such as packaging, building, construction and mobility. Due to their favourable properties like light weight, flexible processing and low costs their production and consequently their input into the environment has increased significantly over the last decades. In the environment, oxidation processes and mechanical abrasion lead to the decomposition of these plastics into small fragments, called microplastic (< 5 mm). By definition, microplastics only involve thermoplastics and duroplastics but elastomers made out of synthetic polymers (e. g. styrene butadiene rubber), modified natural polymers (e. g. natural rubber) and products of synthetic polymers (e. g. tires) are also part of the current microplastic discussion. The main entry pathway of rubber into the environment is the wear of used tire treads in road traffic. Lassen et al. showed that 60 % of the microplastic emissions in Denmark into the environment come from secondary microplastics generated by tires. Rain events can cause microplastic and rubber to get from the street into the street inlets. Depending on the sewage system, these waters are sometimes not cleaned in the sewage treatment plants and reach the surface waters untreated. To analyse microplastic particles in samples, mainly FTIR or Raman spectroscopic methods are applied at present. Rubber or tire particles in environmental samples cannot be analysed by these methods, because the added carbon black leads to annoying absorption and fluorescent effects. We developed a thermoanalytical method, the so-called TED-GC-MS (thermal extraction desorption gas chromatography mass spectrometry), which allows the simultaneous detection of microplastic and tire wear with almost no sample preparation in about 2.5 h. The TED-GC-MS is a two-step analytical method which consists of a thermobalance and a GC-MS system. Up to 50 mg of an environmental sample is heated up to 600 °C in a nitrogen atmosphere. During pyrolysis, between 300 and 600 °C polymer-specific decomposition products are produced and collected on a solid phase. Afterwards the substances are desorbed, separated and analysed using the GC-MS. The aim of the present work is to present the TED-GC-MS as a time efficient screening method to quantify the industrial most relevant polymers in street run-off samples. Analytical challenges in the determination of polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and polyamide (PA), polymethyl methacrylate (PMMA) and styrene-butadiene-rubber (SBR) as a component of tire wear are honestly discussed. The study area is a 200 m long section of the Clayallee in Berlin, a representative typical urban catchment area. The road run-off in this section flows through the gullies directly into a sample chamber, which directs the runoff in an open channel to the rainwater sewer of this area. The sample chamber allows a sample to be taken directly from the road run-off without mixing with the run-off from other areas. The sample chamber is equipped with an automatic sampler. The automatic sampler is controlled by a conductivity sensor to detect the storm event at an early stage. The sensor gives the sampler a signal to start the sampling program when it gets in contact with water and reaches a certain conductivity threshold. The capacity of the sample container is 100 l and the maximum delivery of the automatic sampler is 2.8 l/min. Afterwards, the water was pumped through various stainless-steel sieves with a diameter of approximately 20 cm and mesh widths of 500, 100, 50 μm. The obtained solids were steam sterilized, freeze-dried and measured with the TED-GC-MS. The results of the TED-GC-MS-measurements are summarized in Figure 1. It shows the polymers which were detected in 1 mg of the dry masses of various street run off samples obtained during a period of 1.5 years. We detected PMMA, PS, PP, PE and SBR, as a component of tire wear in the samples. The quantification of the polymers leads to amounts of PS, PP, PE and SBR between 0 µg and 10 µg. PMMA was only detected in traces. T2 - ICCE 2019 CY - Thessaloniki, Greece DA - 16.06.2019 KW - Microplastics KW - TED-GC-MS KW - Road run-off KW - Chromatography PY - 2019 AN - OPUS4-48301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Lange, Thorid A1 - Stockmann, Jörg M. A1 - Weise, Matthias A1 - Rietz, U. A1 - Lerche, D. T1 - Centrifugal force meets materials testing – analytical centrifuge as multipurpose tool for tensile and compressive stress testing N2 - Up until several years ago, tensile and compressive tests have been exclusively carried out as single-sample tests within a tensile, hardness or universal testing machine. The availability of centrifuge technology changed this situation in 2013 in several ways because centrifugal force is used as testing force within a rotational reference frame. Firstly, multiple-sample strength testing became feasible for both tensile load condi-tions, e.g. determination of composite, bonding or adhesive strength, and compressive load conditions, e.g. hardness, compressibility and compactibility. Secondly, there is no need for a two-sided sample clamping and double-cardanic suspensions as samples are simply inserted using a one-sided sample support. Thirdly, shear forces can be avoided by means of guiding sleeves which steer test stamps acting as mass bodies for either tensile or compressive testing. Fourthly, up to eight samples can be tested under identical conditions within a very short period of time, typically within 15 minutes including sample loading and unloading. Hence, either a reliable statistics (of identical samples) or a ranking (of different samples) can be derived from one test run. The bench-top test system is described in detail and demonstrated that centrifugal force acts as testing force in an appropriate way because Euler and Coriolis force do not affect the testing results. Examples for both tensile strength testing, i.e. bonding strength of adhesives-bonded joints and adhesive strength of coatings, and compres-sive strength testing, i.e. Vickers-, Brinell- and ball indentation hardness and deter-mination of spring constants, are presented, discussed and compared with conven-tional tests within tensile, hardness or universal testing machines. At present, a maximum testing force of 6.5 kN can be realized which results at test stamp diameters of 5 mm, 7 mm, and 10 mm in tensile or compressive stress values of 80 MPa, 160 MPa, and 320 MPa. For tensile strength, this is already beyond bonding strength of cold- and warm-curing adhesives. Moreover, centrifuge technology is compliant to standards such as EN 15870, EN ISO 4624, EN ISO 6506/6507 and VDI/VDE 2616. Programmable test cycles allow both short-term stress and log-term fatigue tests. Based on a variety of examples of surface and bonding technology, applications in both fields R&D and QC are presented. Meanwhile, centrifuge technology is also accredited according to DIN EN ISO/IEC 17025. T2 - Intermationa Conference Dispersion Analysis & Materials Testing CY - Berlin, Germany DA - 22.05.2019 KW - Centrifugal Force KW - Compressive Stress KW - Tensile Stress PY - 2019 AN - OPUS4-48310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, J. A1 - Tarábek, J. A1 - Kulkarni, R. A1 - Wang, Cui A1 - Dračínský, M. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Resch-Genger, Ute A1 - Bojdys, M. J. T1 - A π-conjugated, covalent phosphinine framework N2 - Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si and S have found their way into their building blocks so far. Here, we expand the toolbox available to polymer and materials chemists by one additional nonmetal, phosphorus. Starting with a building block that contains a λ⁵‐phosphinine (C₅P) moiety, we evaluate a number of polymerisation protocols, finally obtaining a π‐conjugated, covalent phosphinine‐based framework (CPF‐1) via Suzuki‐Miyaura coupling. CPF‐1 is a weakly porous polymer glass (72.4 m2 g‐1 N2 BET at 77 K) with green fluorescence (λmax 546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co‐catalyst at a rate of 33.3 μmol h‐¹ g‐¹. Our results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine‐based frameworks show promising electronic and optical properties that might spark future interest in their applications in light‐emitting devices and heterogeneous catalysis. KW - Phosphinine KW - Fully aromatic frameworks KW - Suzuki-Miyaura coupling KW - Polymers KW - Fluorescence KW - Small-angle scattering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485330 DO - https://doi.org/10.1002/chem.201900281 SP - 2 EP - 10 PB - Wiley VCH-Verlag CY - Weinheim AN - OPUS4-48533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Michalchuk, Adam A1 - Lampronti, G A1 - Sanders, J T1 - Understanding the unexpected effect of frequency on the kinetics of a covalent reaction under ball-milling conditions N2 - We here explore how ball-mill-grinding frequency affects the kinetics of a disulfide exchange reaction. Our kinetic data show that the reaction progress is similar at all the frequencies studied (15–30 Hz), including a significant induction time before the nucleation and growth process starts. This indicates that to start the reaction an initial energy accumulation is necessary. Other than mixing, the energy supplied by the mechanical treatment has two effects: (i) reducing the crystal size and (ii) creating defects in the structure. The crystal-breaking process is likely to be dominant at first becoming less important later in the process when the energy supplied is stored at the molecular level as local crystal defects. This accumulation is taken here to be the rate-determining step. We suggest that the local defects accumulate preferentially at or near the crystal surface. Since the total area increases exponentially when the crystal size is reduced by the crystal-breaking process, this can further explain the exponential dependence of the onset time on the milling frequency. KW - Mechanochemistry KW - Kinetics KW - Diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483361 DO - https://doi.org/10.3762/bjoc.15.120 SN - 2195-951X VL - 15 SP - 1226 EP - 1235 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-48336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. KW - Micromagnetism KW - LLG KW - LL equation KW - Landau Lifshitz equation KW - Landau Lifshitz Gilbert equation KW - Stochastic Landau Lifshitz equation KW - Stochastic Landau Lifshitz Gilbert equation KW - Curie temperature KW - Magnetic Nanoparticles KW - Thin film systems KW - Temeprature scaling KW - Phase transition KW - Magnet coupling KW - Ferromagnetism KW - Superparamagnetism KW - Paramagnetism KW - Ni KW - Co KW - Fe KW - Steel KW - Nickel KW - Cobalt KW - Iron KW - Temperature effects KW - Cell size KW - Damping factor KW - Gamma KW - Alpha KW - Spin KW - Magnetic moment KW - Magnetic interacion KW - Magnetization dynamics KW - Domain wall KW - Exchange length KW - temeprature dependent exchange length KW - Bloch wall KW - Neel wall KW - Exchange interaction KW - Magnetic anisotropy KW - Simulation KW - OOMMF KW - Object oriented micromagnetic framework PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484610 DO - https://doi.org/10.1088/2399-6528/ab31e6 VL - 3 IS - 7 SP - 075009-1 EP - 075009-8 PB - IOPscience CY - England AN - OPUS4-48461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - Size-selective microwave-assisted synthesis of pure zinc oxide nanoparticles for precise band gap engineering N2 - Zinc oxide (ZnO) nanoparticles find manifold applications, most prominently in photovoltaics, where their unique optical properties are exploited. Particularly important are their band gap energy of 3.37 eV, which can be widely tuned through doping, and a large exciton binding energy of 60 mV. As a wide-bandgap II-VI semiconductor, the optical band gap energy and fluorescence energy become size-dependent when moving to particle radii of a few nanometers. To gain a deeper insight into this issue, we report on a microwave-assisted, size-selective synthesis of pure ZnO nanoparticles. By hydrolysis of the metal precursor in presence of a strong base at temperatures exceeding the solvent’s boiling point, the reaction is dramatically accelerated, and narrowly dispersed, spherical particles are yielded within seconds – instead of hours at lower temperatures. The determination of their size distributions in high resolution using small-angle x-ray scattering (SAXS) allows for a precise mapping of the optical properties (UV/Vis absorption and fluorescence) to particle size. We observed that the mean particle radii increase from 2.6 ± 0.1 nm with increasing synthesis temperature from 125 °C to 200 °C. This is accompanied by a red shift of the optical band gap and the fluorescence energies, the latter of which can be seen in Figure 1. Thus, undoped ZnO nanoparticles with narrow size distributions and pre-defined size as well as optical properties can be obtained through a microwave-assisted synthesis. T2 - 6th Nano Today Conference CY - Lisbon, Portugal DA - 16.06.2019 KW - SAXS KW - Zinc oxide nanoparticles KW - Microwave synthesis PY - 2019 AN - OPUS4-48340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - What’s for eats? – Zinc phosphate nanoparticle mass fractals form during the artificial digestion of zinc chloride N2 - Zinc is an essential trace element and is ingested daily by humans, partly in dissolved form. The first contact is with saliva, in which many ions are dissolved whose solubility product with zinc can be low. This could result in compounds forming, possibly in nanoparticular form, which could have different effects on the organism than pure zinc ions. In this study, we report on the saliva stage of the artificial digestion of zinc chloride as a model substance for zinc ions. To facilitate in situ measurements, the sample is continuously passed through a small-angle x-ray scattering (SAXS) system. This custom-made machine is capable of measuring over a wide q-range and thereby able to resolve structures from around 250 nm down to the crystal structure. It is thus an excellent tool for investigating both the particle size distribution and the atomic structure of the sample. By curve fitting, we found that shortly after addition of zinc chloride to saliva, small particles with a mean radius of 1.9 ± 0.1 nm and a distribution width of 0.6 ± 0.1 nm formed. These particles are aggregated to compact mass fractals with a fractal aggregate size of 14.7 ± 0.1 nm and a fractal dimension of 2.96 ± 0.02. Approximately 7200 single particles form each mass fractal, whose radius of gyration was found to be 36 ± 1 nm. The growth of these structures continues over the course of several weeks. To determine the compound that was formed, infrared spectroscopy was used in addition to the SAXS measurements, and zinc phosphate was identified as the product. T2 - 6th Nano Today Conference CY - Lisbon, Portugal DA - 16.06.2019 KW - SAXS KW - digestion KW - nanoparticles PY - 2019 AN - OPUS4-48342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fischer, Daniel A1 - Beck, Uwe A1 - Duwe, M. A1 - Schneider, S. T1 - Mueller-matrix imaging ellipsometry of structural anomalies and inhomogenities N2 - In the last years, the implementation of imaging ellipsometry in the variety of optical characterization techniques has shown tremendous potential to analyze the topology of surfaces in the lateral dimension. In the later studies, this contrast-rich surface images were affiliated with changes of the refraction indices, Absorption bands or layer thicknesses. However, it was realized that additional factors like curvature or scattering can have a great Impact on the ellipsometric readout of the analyzed system. In this study, we focus on the systematic evaluation of structural anomalies and inhomogenities of several Basic systems. This includes spherical particles as a model for microscopic curved surfaces in a range of 0.25 to 25 μm in diameter. In the macroscopic regime several conventional convex lenses were analyzed. Additional affords were made to generate microscopic concave model systems by applying nanoindentation with a spherical indentation unit. With this method calottes with a depth of 0.04 to 2 μm and radius of 2.5 μm were made. The macroscopic counterpart is delivered by conventional concave lens systems. For all systems, a variety of different bulk materials was investigated. This includes metal oxides, metals and polymers as well as combinations of each by applying coatings on the bulk materials with different layer thicknesses. To analyze these structural anomalies and inhomogenities properly, Mueller-Matrix imaging ellipsometry is the method of choice to address cross- and depolarization effects that occur due to the curved surfaces. Supplementary methods were used for an independent characterization of the topological properties of all structural anomalies and inhomogenities. This includes AFM and SEM for the microscopic samples (microparticles and nanoindented holes) and white light interferometry for the macroscopic lenses. This study results in a systematic screening of different coated and uncoated material systems with a topology that does not fit into conventional ellipsometry and thus is analyzed by Muller-Matrix imaging ellipsometry. This will help in quality control and is a contribution to the understanding of the polarizing effects of non-ideal Systems analyzed by ellipsometry. T2 - 8th International conference on spectroscopic ellipsometry (ICSE-8) CY - Barcelona, Spain DA - 26.05.2019 KW - Spectroskopic Imaging KW - Mueller-Matrix imaging ellipsometry KW - Structural anomalies KW - Structural inhomogenities PY - 2019 AN - OPUS4-48347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joseba Ayerdi, J. A1 - Slachciak, Nadine A1 - Llavori, I. A1 - Zabala, A. A1 - Aginagalde, A. A1 - Bonse, Jörn A1 - Spaltmann, Dirk T1 - On the role of a ZDDP in the tribological performance of femtosecond laser-induced periodic surface structures on titanium alloy against different counterbody materials N2 - Laser-induced periodic surface structures (LIPSS, ripples) with ~500–700 nm period were produced on titanium alloy (Ti6Al4V) surfaces upon scan processing in air by a Ti:sapphire femtosecond laser. The tribological performance of the surfaces were qualified in linear reciprocating sliding tribological tests against balls made of different materials using different oilbased lubricants. Extending our previous work, we studied the admixture of the additive 2-ethylhexyl-zinc-dithiophosphate to a base oil containing only anti-oxidants and temperature stabilizers. The presence of this additive along with the variation of the chemical composition of the counterbodies allows us to explore the synergy of the additive with the laseroxidized nanostructures. KW - Additives KW - Surface structures KW - Wear KW - Friction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488458 DO - https://doi.org/10.3390/lubricants7090079 SN - 2075-4442 VL - 7 SP - 79, 1 EP - 13 PB - MDPI AN - OPUS4-48845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stock, V. A1 - Fahrenson, C. A1 - Voss, L. A1 - Thünemann, Andreas A1 - Boehmert, L. A1 - Sieg, S. A1 - Lampen, A. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles N2 - The environmental pollution with plastic debris is one of the great challenges scientists are facing in recent times Due to degradation by UV radiation and other environmental factors, larger pieces of plastic can decompose into microscale fragments which can enter human foodstuff through the food chain or by environmental entry Recent publications show a contamination of various food products with microplastic particles suggesting a widespread exposure Thus, orally ingested plastic particles pose a potential health risk to humans In this study, we investigated the impact of artificial digestive juices on the size and shape of the three environmentally relevant microplastic particles polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC). T2 - 12th International Particle Toxicology CY - Salzburg , Austria DA - 11.09.2019 KW - Microplastic KW - Particle PY - 2019 AN - OPUS4-48847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rades, Steffi A1 - Natte, Kishore A1 - Unger, Wolfgang T1 - NanoValid D.5.47 Annex 2 Inter-laboratory comparison on measurand surface charge (Zeta Potential) of silica particles: Report of the results N2 - An inter-laboratory comparison on the surface charge, expressed as zeta potential ζ, of nanoscaled SiO2 has been performed using #14 BAM Silica (see D.5.41/5.42) nanoparticles. The comparability of results delivered by participants has been tested. The Task 5.4 of NanoValid is designed to test, compare and validate current methods to measure and characterize physicochemical properties of selected engineered nanoparticles. The measurand is Surface charge expressed as zeta-Potential. The measurements are to be accompanied by estimates of the uncertainties at a confidence level of 95%, deduced from the standard uncertainties. Therefore an uncertainty budget comprising statistical (Type A) and systematic (Type B) errors has to be established and delivered for the measurand. The protocol comprises two Annexes addressing the establishment of uncertainty budgets following GUM. The final goal of the comparison is to identify those methods of measurement which have potential as reference methods in pc characterization of nanoparticles for the determination of a given measurand. KW - Inter-laborator comparison KW - Surface charge KW - Zeta potential KW - Uncertainty budget KW - Silica nanoparticles KW - NanoValid PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488483 DO - https://doi.org/10.5281/zenodo.3379815 SP - 1 EP - 10 PB - Zenodo CY - Geneva AN - OPUS4-48848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rades, Steffi A1 - Unger, Wolfgang T1 - NanoValid D.5.47 Annex 3 Inter-laboratory comparison on measurand specific surface area (BET) of nanoparticular Titania (#15 BAM Titania): Report of the results N2 - This Report describes an inter-laboratory comparison aiming on the establishment of the used method (BET) as a reference method. Another purpose was the certification of the porous reference material #15 BAM Titania as CRM BAM-P110 (cf. D 5.41/42). The certified values determined by nitrogen ad-sorption at 77.3 K according to the international standards ISO 15901-2 and ISO 9277 are summarized in the Table below. KW - Inter-laboratory comparison KW - Specific Surface Area (BET) KW - Nanoparticular TiO2 (Anatase) KW - EU FP7 project NanoValid PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488491 DO - https://doi.org/10.5281/zenodo.3379612 SP - 1 EP - 22 PB - Zenodo CY - Geneva AN - OPUS4-48849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Synthesis of cyclic poly(l-lactide) catalyzed by Bismuth salicylates-A combination of two drugs N2 - l‐lactide was polymerized in bulk at 160 or 180°C with mixtures of bismuth subsalicylate (BiSub) and salicylic (SA) as catalysts. The SA/Bi ratio and the monomer/Bi ratio were varied. The highest molecular weights (weight average, Mw) were achieved at a SA/Bi ratio of 1/1 (Mw up to 92 000 g mol−1). l‐Lactide was also polymerized with combinations of BiSub and silylated SA, and Mw values up to 120 000 g mol−1 were achieved at 180°C. MALDI‐TOF mass spectrometry and Mark‐Houwink‐Sakurada measurements proved that under optimized reaction conditions the resulting polylactides consist of cycles. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Salicylate PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488622 DO - https://doi.org/10.1002/pola.29473 SN - 0887-624X SN - 1099-0518 SP - 29473 PB - Wiley AN - OPUS4-48862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Procop, Mathias A1 - Hodoroaba, Vasile-Dan T1 - Uncertainties in secondary fluorescence correction in EPMA N2 - Secondary fluorescence is an inevitable effect that has to be taken into account in any algorithm for quantitative electron probe microanalysis (EPMA) as an additional correction. Moreover, secondary fluorescence worsens spatial resolution of EPMA. Secondary fluorescence is excited both by characteristic radiation and by the X-ray continuum. In most cases the correction is small. There are, however, cases, e.g. the determination of low heavy metal concentration in a light matrix, where the contribution of secondary fluorescence exceeds 10% of the measured X-ray line intensity. For secondary fluorescence correction the measured X-ray line intensity has to be divided by the correction factor (1+I_flchar/I_p +I_flcont/I_p )≈(1+I_flchar/I_p )(1+I_flcont/I_p ) in order to get those intensity I_p, which is excited only by the primary electrons. I_flchar and I_flcont mean the calculated characteristic and continuums fluorescence intensities. In order to get the intensity of fluorescence radiation, the absorption of the exciting radiation in the specimen, the photoionization probability and the self-absorption of the emitted line must be calculated. The critical quantity is the X-ray yield of the exciting atoms in case of fluorescence by characteristic radiation and the bremsstrahlung yield of the specimen in case of continuum fluorescence. In the former case it is reasonable to apply the same physical model to calculate I_flchar and I_p. KW - EPMA KW - Secondary fluorescence correction KW - Uncertainties KW - Microanalysis PY - 2019 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/uncertainties-in-secondary-fluorescence-correction-in-epma/AA92E973D350A74C574067AAFB2D9044 DO - https://doi.org/10.1017/S1431927619012534 SN - 1431-9276 SN - 1435-8115 VL - 25 IS - Suppl. 2 SP - 2360 EP - 2361 PB - Cambridge University Press AN - OPUS4-48863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Persson, K. A1 - Johansson Salazar-Sandoval, E. A1 - Ernstsson, M. A1 - Sundin, M. A1 - Wachtendorf, Volker A1 - Kunz, Valentin A1 - Unger, Wolfgang T1 - The EC4SafeNano Project - and the case study of Surface Chemical Transformations of Nano-TiO2 Samples upon Weathering N2 - A central challenge to ensure the sustainable production and use of nanotechnologies is to understand and effectively control the risks along the industrial innovation value chain. Knowledge about nanotechnology processes and nanosafety issues (hazards, fate, risk...) is growing rapidly but the effective use of this knowledge for risk management by market actors is lagging behind. EC4SafeNano (European Centre for Risk Management and Safe Innovation in Nanomaterials and Nanotechnologies) promotes a harmonized vision of expertise in risk assessment and management for the public and private sectors to enable the safe development and commercialization of nanotechnology. EC4SafeNano is operated together by major European risk institutes with the support of numerous associated partners, gathering all stakeholders involved in Nanomaterials and Nanotechnologies (regulators, industry, society, research, service providers...). In a case study the surface chemical transformations upon 2 different ageing procedures (long-term UV irradiation or swimming pool water) of a representative set of titanium dioxide nanoparticles has been investigated. The materials have been analyzed by various analytical techniques. Each method addresses different aspects of the complex endpoint surface chemistry. The multi technique approach allows evaluation of the capabilities and limitations of the applied methods regarding their suitability to address the endpoint surface chemistry and their sensitivity to identify even small surface chemical transformations. Results: - To obtain a comprehensive picture, it is insufficient to concentrate on a single analysis technique. - By using time-of-flight secondary ion mass spectrometry (ToF-SIMS) in combination with principal component analysis (PCA) it was possible to identify even subtle changes in the surface chemistry of the investigated materials. - A general trend that was observed for the UV-aged samples is the decrease of organic material on the nanomaterial surface. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 723623. T2 - FormulaX/NanoFormulation 2019 CY - Manchester, England, United Kingdom DA - 24.06.2019 KW - TiO2 nanoparticle KW - Surface Chemical Transformation KW - UV Weathering KW - SIMS KW - XPS KW - IR spectroscopy KW - EC4SafeNano PY - 2019 UR - https://www.formulation.org.uk/images/stories/FormulaX/Posters/P-14.pdf AN - OPUS4-48912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -