TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Reply to the comment on “synthesis of cyclic polymers and flaws of the Jacobson-Stockmayer theory” by R. Szymanski JF - RSC Polymer Chemistry N2 - In a recent publication the authors have presented theoretical and experimental results indicating that the Jacobson–Stockmayer (JS) theory does not provide a correct description of reversible polycondensations for all polymers and for high conversions (e.g. polycondensation in bulk). In this context reversibility means that all condensation step whether resulting in chain growth or in cyclization are reversible and thus, part of an equilibrium. The first two sections of that paper were focused on the demonstration that small, and above all, large cycles can be formed by end-to-end (ete) cyclization in reversible like in irreversible polycondensations. A significant contribution of ete-cyclization to the course of reversible polycondensations was denied by J + S apparently as a contribution to Florýs dogma, that the end groups of long polymer chains will never meet. KW - Polylactide KW - MALDI-TOF MS KW - Jacobsen-Stockmayer theory PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513985 DO - https://doi.org/10.1039/D0PY01118E VL - 11 IS - 38 SP - 6226 EP - 6228 PB - Royal Society of Chemistry AN - OPUS4-51398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - ROP of L-lactide and ε-caprolactone catalyzed by tin(ii) and tin(iv) acetates–switching from COOH terminated linear chains to cycles JF - Journal of Polymer Science A: Polymer Chemistry N2 - The catalytic potential of tin(II)acetate, tin(IV)acetate, dibutyltin-bis-acetate and dioctyl tin-bis-acetate was compared based on polymerizations of L-lactide conducted in bulk at 160 or 130C. With SnAc2 low-Lac/Cat ratios (15/1–50/1) were studied and linear chains having one acetate and one carboxyl end group almost free of cyclics were obtained. Higher monomer/catalyst ratios and lower temperatures favored formation of cycles that reached weight average molecular weights (Mw's) between 100,000 and 2,500,000. SnAc4 yielded mixtures of cycles and linear species under all reaction conditions. Dibutyltin- and dioctyl tin bis-acetate yielded cyclic polylactides under most reaction conditions with Mw's in the range of 20,000–80,000. Ring-opening polymerizations performed with ε-caprolactone showed similar trends, but the formation of COOH-terminated linear chains was significantly more favored compared to analogous experiments with lactide. The reactivity of the acetate catalysts decreased in the following order: SnAc2> SnAc4>Bu2SnAc2 Oct2SnAc2. KW - Catalyst KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Tin acetates KW - Polylactide PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520831 DO - https://doi.org/10.1002/pol.20200866 SP - 1 EP - 12 PB - Wiley Online Library AN - OPUS4-52083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - High molecular weight poly(l-lactide) via ring-opening polymerization with bismuth subsalicylate-The role of cocatalysts JF - Journal of Applied Polymer Science N2 - The catalytic potential of bismuth subsalicylate (BiSub), a commercial drug, for ring-opening polymerization (ROP) of L-lactide was explored by variation of co-catalyst and polymerization time. Various monofunctional phenols or carboxylic acids, aromatic ortho-hydroxy acids and diphenols were examined as potential co-catalysts. 2,2´-Dihydroxybiphenyl proved to be the most successful co-catalyst yielding weight average molecular weights (uncorrected Mw values up to 185 000) after optimization of reaction time and temperature. Prolonged heating (>1-2h) depending on catalyst concentration) caused thermal degradation. In polymerization experiments with various commercial Bi(III) salts a better alternative to BiSub was not found. By means of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry a couple of unusual and unexpected transesterification reactions were discovered. Finally, the effectiveness of several antioxidants and potential catalyst poisons was explored, and triphenylphosphine was found to be an effective catalyst poison. KW - Polylactide KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Bismuth PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519513 DO - https://doi.org/10.1002/app.50394 SN - 0021-8995 VL - 138 IS - 19 SP - 50394 PB - Wiley AN - OPUS4-51951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Cyclic poly(L-lactide)s via simultaneous ROP and polycondensation (ROPPOC) catalyzed by dibutyltin phenoxides JF - European Polymer Journal N2 - Starting from dibutyltin oxide, four catalysts were synthesized, namely the dibutyltin bisphenoxides of Phenol (SnPh), 4-chlorophenol (SnCP), 4-hydroxybenzonitrile (SnCN) and pentafluorophenol (SnOPF). With the first three catalysts polymerizations of L-lactide at 160 °C in bulk yielded large fraction of linear chains having phenylester end groups at short reaction times. At longer times the fraction of cycles considerably increased at the expense of the linear chains, when SnCN was used as catalyst. With SnOPF only cyclic polylactides were obtained at low Lac/Cat ratios (< 400) with weight average molecular weights (Mw) up to 90 000 Da, whereas for high Lac/Cat ratios mixtures of cyclic and linear chains were found. Polymerizations in solution enabled variation of the molecular weight. Polymerizations of meso-lactide at temperatures down to 60 °C mainly yielded even-numbered linear chains supporting the postulated ROPPOC mechanism. KW - Cyclization KW - MALDI-TOF MS KW - Polycondensation KW - Ring-opening Polymerization KW - Polylactide PY - 2018 DO - https://doi.org/10.1016/j.eurpolymj.2018.10.005 SN - 0014-3057 IS - 109 SP - 360 EP - 366 PB - Elsevier AN - OPUS4-46263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - About the crystallization of cyclic and linear poly(L-lactide)s in alcohol-initiated and Sn(II)2-ethylhexanoate- catalyzed ROPs of L-lactide conducted in solution JF - Polymer N2 - 1-Hydroxymethylnaphtalene (HMN) or 11-bromoundecanol (BUND) were used as initiators and Sn(II) 2-ethylhexanoate (SnOct2) as catalyst for ROPs of L-Lactide (LA) at 115 °C in bulk or in 4 M and 2M solutions in toluene. The LA/In ratio, the LA/Cat ratio and the time were varied. The matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectra exclusively displayed peaks of linear chains, when the ROPs were conducted in bulk. But in contrast to reports in the literature, mixtures of linear and cyclic poly(L-lactide) (PLA), were obtained, when the ROPs were performed in solution. The intensity distribution of the mass peaks of cyclic PLAs displayed a “saw-tooth pattern” after annealing in contrast to the mass peak distribution of the liner chains. This new phenomenon indicated that cyclic PLAs and linear PLAs crystallized in separate crystals from the same reaction mixture. This conclusion was confirmed by fractionated crystallization from 2 M solution, which confirmed that the cyclic PLAs nucleate and crystallize faster than the linear chains. KW - Polylactide KW - MALDI-TOF MS KW - Ring opening polymerization KW - Crystallization PY - 2023 DO - https://doi.org/10.1016/j.polymer.2023.125946 SN - 0032-3861 VL - 276 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-57308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Meyer, A. A1 - Weidner, Steffen T1 - High Tm Poly(l-lactide)s by Means of Bismuth Catalysts? JF - Macromolecular Chemistry and Physics N2 - One series of BiSub-catalyzed ring-opening polymerizations (ROPs) is per-formed at 160 °C for 3 days with addition of difunctional cocatalysts to find out, if poly(l-lactide) crystallizes directly from the reaction mixture. An analogous series is performed with monofunctional cocatalysts. High Tm crystal-lites (Tm > 190 °C) are obtained from all bifunctional cocatalysts, but not from all monofunctional ones. It is shown by means of SAXS measurements that the high Tm values are mainly a consequence of a transesterification–homogenization process across the lamellar surfaces resulting in thickness and smoothing of the surfaces. An unusual enthalpy-driven modification of the molecular weight distribution is found for samples that have crystallized during the polymerization. A third series of ROPs is performed at 170 °C for 2 h followed by annealing at 120 °C (2 h) to induce crystallization. Complete transformation of the resulting low Tm crystallites (Tm < 180 °C) into the high Tm crystallites by annealing at 170 °C for 1 d is not achieved, despite variation of the cocatalyst. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522777 DO - https://doi.org/10.1002/macp.202100019 SN - 1022-1352 VL - 222 IS - 8 SP - 19 PB - Wiley AN - OPUS4-52277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, Sabrina A1 - Zimmermann, B. A1 - Bagcioglu, M. A1 - Seifert, Stephan A1 - Kohler, A. A1 - Ohlson, M. A1 - Fjellheim, S. A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows adaption of grass pollen composition JF - Scientific Reports N2 - MALDI time-of-flight mass spectrometry (MALDI-TOF MS) has become a widely used tool for the classification of biological samples. The complex chemical composition of pollen grains leads to highly specific, fingerprint-like mass spectra, with respect to the pollen species. Beyond the species-specific composition, the variances in pollen chemistry can be hierarchically structured, including the level of different populations, of environmental conditions or different genotypes. We demonstrate here the sensitivity of MALDI-TOF MS regarding the adaption of the chemical composition of three Poaceae (grass) pollen for different populations of parent plants by analyzing the mass spectra with partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Thereby, variances in species, population and specific growth conditions of the plants were observed simultaneously. In particular, the chemical pattern revealed by the MALDI spectra enabled discrimination of the different populations of one species. Specifically, the role of environmental changes and their effect on the pollen chemistry of three different grass species is discussed. Analysis of the Group formation within the respective populations showed a varying influence of plant genotype on the classification, depending on the species, and permits conclusions regarding the respective rigidity or plasticity towards environmental changes. KW - Pollen KW - MALDI-TOF MS KW - Classification KW - Partial least square discriminant analysis (PLS-DA) KW - Principal component analysis (PCA) PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465294 DO - https://doi.org/10.1038/s41598-018-34800-1 SN - 2045-2322 VL - 8 IS - 1 SP - 16591, 1 EP - 11 PB - Nature AN - OPUS4-46529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, S. A1 - Zimmermann, B. A1 - Tafintseva, V. A1 - Seifert, S. A1 - Bagcioglu, M. A1 - Ohlson, M. A1 - Weidner, Steffen A1 - Fjellheim, S. A1 - Kohler, A. A1 - Kneipp, Janina T1 - Combining Chemical Information From Grass Pollen in Multimodal Characterization JF - Frontiers in Plant Science N2 - The analysis of pollen chemical composition is important to many fields, including agriculture, plant physiology, ecology, allergology, and climate studies. Here, the potential of a combination of different spectroscopic and spectrometric methods regarding the characterization of small biochemical differences between pollen samples was evaluated using multivariate statistical approaches. Pollen samples, collected from three populations of the grass Poa alpina, were analyzed using Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, surface enhanced Raman scattering (SERS), and matrix assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). The variation in the sample set can be described in a hierarchical framework comprising three populations of the same grass species and four different growth conditions of the parent plants for each of the populations. Therefore, the data set can work here as a model system to evaluate the classification and characterization ability of the different spectroscopic and spectrometric methods. ANOVA Simultaneous Component Analysis (ASCA) was applied to achieve a separation of different sources of variance in the complex sample set. Since the chosen methods and sample preparations probe different parts and/or molecular constituents of the pollen grains, complementary information about the chemical composition of the pollen can be obtained. By using consensus principal component analysis (CPCA), data from the different methods are linked together. This enables an investigation of the underlying global information, since complementary chemical data are combined. The molecular information from four spectroscopies was combined with phenotypical information gathered from the parent plants, thereby helping to potentially link pollen chemistry to other biotic and abiotic parameters. KW - Pollen KW - MALDI-TOF MS KW - FTIR KW - Raman KW - Multivariate analyses PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504822 DO - https://doi.org/10.3389/fpls.2019.01788 VL - 10 SP - 1788 AN - OPUS4-50482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -