TY - JOUR A1 - Yildirim, Arda A1 - Krause, Christina A1 - Huber, P. A1 - Schönhals, Andreas T1 - Multiple glassy dynamics of a homologous series of triphenylene-based columnar liquid crystals – A study by broadband dielectric spectroscopy and advanced calorimetry JF - Journal Molecular Liquids N2 - Hexakis(n-alkyloxy)triphenylene) (HATn) consisting of an aromatic triphenylene core and alkyl side chains are model discotic liquid crystal (DLC) systems forming a columnar mesophase. In the mesophase, the molecules of HATn self-assemble in columns, which has one-dimensional high charge carrier mobility along the columns. Here, a homologous series of HATn with different length of the alkyl chain (n = 5,6,8,10,12) is investigated using differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS) and advanced calorimetric techniques including fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). The investigation of the phase behavior was done utilizing DSC experiments and the influence of the alkyl chain length on the phase behavior was revealed. By the dielectric investigations probing the molecular mobility, a c-relaxation due to localized fluctuations as well as two glassy dynamics, the acore- and aalkyl-relaxation, were observed in the temperature range of the plastic crystalline phase. Moreover, the observed glassy dynamics were further studied employing advanced calorimetry. All observed relaxation processes are attributed to the possible specific molecular fluctuations and discussed in detail. From the results a transition at around n = 8 from a rigid constrained (n = 5,6) to a softer system (n = 10,12) was revealed with increasing alkyl chain length. A counterbalance of two competing effects of a polyethylene-like behavior of the alkyl chains in the intercolumnar domains and self-organized confinement is discussed in the context of a hindered glass transition. KW - Discotic liquid crystals KW - Broadband dielectric spectroscopy KW - Advanced calorimetry PY - 2022 DO - https://doi.org/10.1016/j.molliq.2022.119212 VL - 358 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-54721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed Aejaz A1 - Szymoniak, Paulina A1 - Zorn, R. A1 - Böhning, Martin A1 - Wolff, M. A1 - Zamponi, M. A1 - Schönhals, Andreas T1 - Molecular mobility in high-performance polynorbornenes:A combined broadband dielectric, advanced calorimetry,and neutron scattering investigation JF - Polymer Engineering and Science N2 - The molecular dynamics of two addition type polynorbornenes, exo-PNBSiand PTCNSi1, bearing microporosity has been investigated by broadbanddielectric spectroscopy, fast scanning calorimetry, and neutron scattering. Bothpolymers have the same side groups but different backbones. Due to theirfavorable transport properties, these polymers have potential applications inseparation membranes for gases. It is established in literature that molecularfluctuations are important for the diffusion of small molecules through poly-mers. For exo-PNBSi, two dielectric processes are observed, which are assignedto Maxwell/Wagner/Sillars (MWS) process due to blocking of charge carriersat internal voids or pore walls. For PTCNSi1, one MWS-polarization process isfound. This points to a bimodal pore-size distribution for exo-PNBSi. A glasstransition for exo-PNBSi and for PTCNSi1 could be evidenced for the first timeusing fast scanning calorimetry. For Tgand the corresponding apparent activa-tion energy, higher values were found for PTCNSi1 compared to exo-PNBSi.For both polymers, the neutron scattering data reveal one relaxation process.This process is mainly assigned to methyl group rotation probably overlayedby carbon–carbon torsional fluctuations. KW - Advanced calorimetry KW - Dielectric spectroscopy KW - Neutron scattering KW - Polynorbornenes PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547086 DO - https://doi.org/10.1002/pen.25995 SN - 0032-3888 VL - 62 IS - 7 SP - 2143 EP - 2155 PB - Wiley AN - OPUS4-54708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -