TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering corrosion processes of MIC organisms - single cell-ICP-ToF-MS analysis of archaea on solid steels N2 - ICP-ToF (time of flight) MS enables the analysis of the multi-element fingerprint of single cells. The single cell ICP-ToF-MS is used in the presented poster for the analysis of archaea involved in microbiologically influenced corrosion (MIC) of steel. By means of sc-ICP-ToF-MS, the possible uptake of individual elements from the respective steel is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts. The work combines modern methods of analytical sciences with materials. T2 - SALSA - Make & Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea KW - Poster presentation PY - 2021 AN - OPUS4-53337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Development of a single cell-ICP-ToF-MS-method for multielement analysis of MIC organisms grown on solid steel samples N2 - The latest ICP-MS technology - ICP-ToF (time of flight)-MS – enables the analysis of the multi-element fingerprint of individual cells. The interface between material and environmental analysis thus receives special attention, e.g., when considering corrosion processes. Microbiologically influenced corrosion (MIC) is a highly unpredictable phenomenon due to the influence of the environment, microbial communities involved and the respective electron source. However, the interaction pathway between cells and the metal surface remains unclear. The development of the MIC-specific ICP-ToF-MS analytical method presented here at the single cell level, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. For this, a MIC-specific staining procedure was developed. It allows the analysis of archaea at a single cell level and provides information about the interaction of the cells with the staining agent which is extremely scarce compared to other well characterized organisms. Additionally, the single cell ICP-ToF-MS is used for the analysis of archaea involved in MIC of steel. Hence, the possible uptake of individual elements from different steel samples is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials. T2 - DAAS Doktorandenseminar 2021 CY - Online meeting DA - 20.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea PY - 2021 AN - OPUS4-53340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Pauw, Brian Richard T1 - The SAXS platform at BAM N2 - Presentation of the Small-Angle X-Ray Scattering intrument at BAM (Berlin - Germany). More information about SAXS is available on Brian Pauw's long-running SAXS blog: https://lookingatnothing.com/ KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Laboratory PY - 2021 UR - https://www.youtube.com/watch?v=OjYToZQTsqo PB - YouTube, LLC CY - San Bruno, CA, USA AN - OPUS4-53358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Feltin, N. A1 - Crouzier, L. A1 - Cios, G. A1 - Tokarski, T. T1 - Correlative imaging analysis of non-spherical nanoparticles N2 - It sounds like being a simple analytical task, it is definitely not. The way toward accurate measurement of the size distribution of nanoparticles (NPs) with complex shape, having a broad size polydispersity, with inhomogeneous chemistry, and with a high degree of agglomeration/aggregation is very challenging for all available analytical methods. Particularly for the NPs with complex shape, the access to the smallest dimension (as e.g. required for regulatory purposes) can be enabled only by using imaging techniques with spatial resolution at the nanoscale. Moreover, the full 3D-chacterisation of the NP shape can be provided either by advanced characterization techniques like 3D-TEM tomography or by correlative analysis, i. e. synergetic/complementary measurement of the same field-of-view of the sample with different probes. Examples of the latter type of analysis are: i) electron microscopy for the lateral dimensions and AFM for the height of the NPs, ii) SEM with STEM-in-SEM (also called T-SEM), iii) Electron Microscopy with TKD (Transmission Kikuchi Diffraction) for determination of the geometrical orientation of crystalline NPs, iv) Raman and SEM for e.g. thickness of graphen flakes, or v) Electron Microscopy for descriptive NP shape and SAXS for the NP concentration, the latter as a NP property able to be measured with higher and higher accuracy. For all these types of measurement, reference NPs are necessary for the validation of the measured size. Particularly non-spherical reference NPs are still missing. Examples of such new reference NPs as characterized by the correlative analyses enumerated above will be presented in detail in the contribution. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.9.2021 KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Correlative imaging KW - Electron microscopy KW - AFM KW - TiO2 KW - VAMAS PY - 2021 UR - https://www.european-mrs.com/meetings/2021-fall-meeting AN - OPUS4-53367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linberg, Kevin A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Tipping the Energy Scales to Control Mechanochemical Polymorphism N2 - Control of ball milling conversions is required before the full potential of mechanochemical processing can be realized. It is well known that many parameters affect the outcome of mechanochemical polymorphism, but the energy of ball milling itself is often overlooked. We show here how this parameter alone can exert a significant influence on the polymorphic outcome of ball mill grinding by allowing the selective isolation of two polymorphic forms in their pure form under the same grinding conditions. Furthermore, we show how apparent mechanochemical equilibria can be deceptive. Our results clearly demonstrate the need for careful design and interpretation of ball milling experiments beyond current thinking. T2 - SALSA make and measure CY - Online meeting DA - 16.09.2021 KW - Mechanochemistry KW - Energy KW - Polymorph KW - Cocrystal PY - 2021 AN - OPUS4-53293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas T1 - Phase Behaviour and Molecular Mobility of a confined Ionic Liquid Crystal N2 - Liquid crystalline mesophases in nanoconfinement exhibit intriguing orientational order and phase transition behaviors. Here, the plastic crystal to hexagonal columnar, and hexagonal columnar to isotropic transition temperatures are studied for the guanidinium-based ionic discotic liquid crystal confined in self- ordered nanoporous alumina membranes. The phase transition temperature of the plastic crystal to hexagonal columnar phase is reduced with inverse pore diameter. The hexagonal columnar to isotropic transition is suppressed completely in all pores and a possible explanation is given. The results are of technological relevance for the design of liquid crystal-based devices such as batteries and sensors with optimum tunable properties. T2 - Interpore Konferenz CY - Online meeting DA - 31.05.2021 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2021 AN - OPUS4-53298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Rabe, Torsten T1 - Comparative study of suitable preparation methods to evaluate irregular shaped, polydisperse nanoparticles by scanning electron microscopy (SEM). N2 - Reliable characterization of materials at the nanoscale regarding their physio-chemical properties is a challenging task, which is important when utilizing and designing nanoscale materials. Nanoscale materials pose a potential toxicological hazard to the environment and the human body. For this reason, the European Commission amended the REACH Regulation in 2018 to govern the classification of nanomaterials, relying on number-based distribution of the particle size. Suitable methods exist for the granulometric characterization of monodisperse and ideally shaped nanoparticles. However, the evaluation of commercially available nanoscale powders is problematic. These powders tend to agglomerate, show a wide particle size distribution and are of irregular particle shape. Zinc oxide, aluminum oxide and cerium oxide with particle sizes less than 100 nm were selected for the studies and different preparation methods were used comparatively. First, the nanoparticles were dispersed in different dispersants and prepared on TEM-supported copper grids. Furthermore, individual powders were deposited on carbon-based self-adhesive pads. In addition, the samples were embedded by hot mounting and then ground and polished. The prepared samples were investigated by scanning electron microscopy (including the transmission mode STEM-in-SEM) and Dynamic Light scattering. The software package ImageJ was used to segment the SEM images and obtain the particle sizes and shapes and finally the number-based particles size distribution with size expressed as various descriptors. T2 - Ceramics 2021 CY - Online meeting DA - 19.04.2021 KW - Nanoparticles KW - Preparation KW - Characterization PY - 2021 AN - OPUS4-53272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - The Meticulous Approach: Fully traceable X-ray scattering data via a comprehensive lab methodology N2 - To find out if experimental findings are real, you need to be able to repeat them. For a long time, however, papers and datasets could not necessarily include sufficient details to accurately repeat experiments, leading to a reproducibility crisis. It is here, that the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration) tries to implement change – at least for small- and wide-angle X-ray scattering (SAXS/WAXS). In the MOUSE project, we have combined: a) a comprehensive laboratory workflow with b) a heavily modified, highly automated Xenocs Xeuss 2.0 instrumental component. This combination allows us to collect fully traceable scattering data, with a well-documented data flow (akin to what is found at the more automated beamlines). With two full-time researchers, the lab collects and interprets thousands of datasets, on hundreds of samples for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. While these numbers do not light a candle to those achieved by our hardworking compatriots at the synchrotron beamlines, the laboratory approach does allow us to continually modify and fine-tune the integral methodology. So for the last three years, we have incorporated e.g. FAIR principles, traceability, automated processing, data curation strategies, as well as a host of good scattering practices into the MOUSE system. We have concomitantly expanded our purview as specialists to include an increased responsibility for the entire scattering aspect of the resultant publications, to ensure full exploitation of the data quality, whilst avoiding common pitfalls. This talk will discuss the MOUSE project1 as implemented to date, and will introduce foreseeable upgrades and changes. These upgrades include better pre-experiment sample scattering predictions to filter projects on the basis of their suitability, exploitation of the measurement database for detecting long-term changes and automated flagging of datasets, and enhancing MC fitting with sample scattering simulations for better matching of odd-shaped scatterers. T2 - S4SAS CY - Online meeting DA - 01.09.2021 KW - X-ray scattering KW - Methodology KW - MOUSE KW - Data organization KW - Automation KW - Traceability PY - 2021 AN - OPUS4-53273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark side of Science N2 - We all may have started out as bright-eyed students trying to do science to the best of our abilities, but over time, some of us have gradually drifted to the dark side. The dark side of science has an impressive publication rate in high-ranking journals, good success with funding agencies, and rocks the world with stellar findings. Unfortunately, these findings aren't real, either by accident or on purpose. As the presenter and his colleagues found, trying to correct or even dispute any of these findings in literature is a supremely complex and time-consuming effort. With no recent reduction in the frequency of such false findings, it is up to us to try to stem the flow. Besides looking at examples, we need to understand the underlying driving forces behind this dark scientific movement. By combining this understanding with a refresher of the core scientific principles, we can then develop the necessary argumentative tools and mechanisms that may prevent our own slide down the slippery slope. This talk will therefore start out with several entertaining examples of probably accidental, as well as definitely deliberate, false scientific findings in literature (and in particular in the field of materials research). We will then take a brief look at the possible causes for these developments, after which some tools will be presented that can help both the fresh as well as the well-seasoned scientist to rise up against the dark side. T2 - DGM special event (invited lecture) CY - Online meeting DA - 23.06.2021 KW - Scientific fraud KW - Reproducibility crisis KW - Bad science KW - Scientific method KW - Publication pressure PY - 2021 AN - OPUS4-53274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gojani, Ardian A1 - Tobias, Charlie A1 - Hülagü, Deniz A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Toward determination of the surface roughness of particles from a SEM image N2 - In this communication, we address the issue of roughness measurement by investigating if the grayscale values from SEM images can be used for surface roughness determination of spherical particles. KW - MamaLoCA KW - Core-shell particles KW - Electron microscopy KW - Image processing KW - Particle characterisation KW - Roughness PY - 2021 DO - https://doi.org/10.1017/S1431927621011375 SN - 1431-9276 SN - 1435-8115 VL - 27 IS - Suplement S1 SP - 3302 EP - 3305 PB - Cambridge University Press CY - New York, NY AN - OPUS4-53283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - Delivering Impact - A new ISO standard on the identification of nanoparticles N2 - Nanoparticles (NPs) are tiny – around 1 to 100 billionths of a meter – and can have different chemistries and behaviours than the same material of larger size. This property has led to advances in a wide range of industries, but it can also confer toxicity. Size measurements are the main way NPs are identified but a lack of standardised methods for identifying ones with complex shapes has hindered evaluation of their potential harm. KW - Nanoparticles KW - Standardisation KW - Particle size distribution KW - nPSize KW - ISO 21363 PY - 2024 UR - https://www.euramet.org/casestudies/casestudiesdetails/news/default-c3b26209e8 SP - 1 EP - 2 PB - EURAMET CY - Braunschweig AN - OPUS4-59626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Syntheses of Polyglycolide via Polycondensation: A Reinvestigation N2 - The Na salt of chloroacetic acid is condensed in suspension. Furthermore,glycolic acid is condensed in bulk or in concentrated solution by means of SnCl2 or 4-toluene sulfonic acid (TSA) as catalysts. The temperatures are varied from 160 to 200°C and the time from 1 to 5 days. Low molar mass cyclic poly(glycolic acid) (PGA) is detected by means of matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry in most PGAs. A predominance of certain cycles having an even number of repeat units is observed suggesting a thermodynamically favored formation of extended-ring crystals. Extremely high melting temperatures (up to 237.5°C)and high melting enthalpies are found for polycondensations with TSA in 1,2-dichlorobenzene. KW - MALDI TOF MS KW - Polycondensation KW - Polyglycolide KW - Cyclization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596856 DO - https://doi.org/10.1002/macp.202300397 IS - 2300397 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-59685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Kneiske, Sönke A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - EXAFS elucidating local structure of zirconium based aorphous heterogeneous catalysts in C-F bond activation N2 - Amorphous materials play an important role in C-F bond activation but face the difficulty of limited available structural information by methods such as powder XRD and solid-state MAS NMR spectroscopy especially if the nucleus is not abundant enough. Here, we present heterogeneous catalysts, active in C-F bond activation, where EXAFS allowed specifically elucidating the local structure, which would have not been possible elsewise. T2 - HZB User Meeing 2023 CY - Berlin, Germany DA - 22.06.2023 KW - Catalysis KW - Zirconium KW - C-F bond activation PY - 2023 AN - OPUS4-59615 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Kneiske, Sönke A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - A fluorolytic sol-gel route to access an amorphous Lewis-acidic Zr fluoride catalyst N2 - Kemnitz et al. developed a fluorolytic route to access metal fluorides 2 such as AlF3 3 and MgF2 4 which possess a high surface area. In aluminium-based systems, the synthetic approach led to amorphous xerogels that can be further converted into Lewis superacids.3 Still, despite zirconium oxide being described as a stronger Lewis acid than other metal oxides 4 zirconium fluoride-based materials have only recently been reported or investigated. 6 In this work we extend the class of amorphous Lewis acidic heterogeneous catalysts to an amorphous ZrF4 that is active in C-F bond activation. T2 - 2nd South African Fluorine Symposium CY - Sun City, South Africa DA - 11.02.2024 KW - ZrF4 KW - Heterogeneous catalysis KW - C-F bond activation PY - 2024 AN - OPUS4-59617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - Zirconium chloro fluoride as catalyst for C-F bond activation and HF transfer of fluoroalkanes N2 - In this work1, we have successfully synthesised amorphous zirconium chloro fluoride (ZCF), which exhibits medium lewis acidity. In addition to investigating the local coordination sphere around the Zr atoms and the material properties, we were able to establish a catalytic behavior of ZCF in C-F bond activation reactions. We present the first heterogeneous catalyst that performs dehydrofluorination of a fluoroalkane and consecutive hydrofluorination of an alkyne at room temperature. T2 - RSC Poster 2024 CY - Online meeting DA - 05.03.2024 KW - ZCF PY - 2024 AN - OPUS4-59619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Glimpses of the future: Systematic investigations of 1200 mofs using a highly automated, full-stack materials research laboratory N2 - By automatically recording as much information as possible in automated laboratory setups, reproducibility and traceability of experiments are vastly improved. This presentation shows what such an approach means for the quality of experiments in an X-ray scattering laboratory and an automated synthesis set-up. T2 - Winter School on Metrology and Nanomaterials for Clean Energy CY - Claviere, Italy DA - 28.01.2024 KW - Digitalization KW - Automation KW - Digital laboratory KW - Scattering KW - Synthesis KW - Nanomaterials KW - Holistic science PY - 2024 AN - OPUS4-59621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - Zirconium chloro fluoride as catalyst for C-F bond activation and HF transfer of fluoroalkanes N2 - In this work, we successfully synthesized amorphous zirconium chloro fluoride (ZCF), which exhibits medium lewis acidity. In addition to investigating the local coordination sphere around the Zr atoms and the material properties, we were able to establish a catalytic behavior of ZCF in C-F bond activation reactions. We present a heterogeneous catalyst that performs dehydrofluorination of a fluoroalkane and consecutive hydrofluorination of an alkyne at room temperature. T2 - MC 16 CY - Dublin, Ireland DA - 03.07.2023 KW - ZCF KW - Heterogeneous catalysis KW - C-F bond activation PY - 2023 AN - OPUS4-58052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - An Amorphous Lewis-acidic Zirconium Chloro Fluoride as HF Shuttle: C-F Bond Activation and Formation N2 - In this work, we successfully synthesized amorphous zirconium chloro fluoride (ZCF), which exhibits medium lewis acidity. In addition to investigating the local coordination sphere around the Zr atoms and the material properties, we were able to establish a catalytic behavior of ZCF in C-F bond activation reactions. We present a heterogeneous catalyst that performs dehydrofluorination of a fluoroalkane and consecutive hydrofluorination of an alkyne at room temperature. T2 - 23rd International Symposium on Fluorine Chemistry CY - Quebec City, Canada DA - 23.07.2023 KW - ZCF KW - Heterogeneous catalysis KW - C-F bond activation PY - 2023 AN - OPUS4-58053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. T1 - Cyclic polyglycolides via ring-expansion polymerization with cyclic tin catalysts N2 - Glycolide was polymerized in bulk with two cyclic catalysts − 2,2-dibutyl-2-stanna-1,3-dithiolane (DSTL) and 2-stanna-1,3-dioxa-4,5,6,7-dibenzepane (SnBiph). The monomer/initiator ratio, temperature (140 – 180 °C) and time (1–––4 days) were varied. The MALDI TOF mass spectra exclusively displayed peaks of cyclic polyglycolide (PGA) and revealed an unusual “saw-tooth pattern” in the mass range below m/z 2 500 suggesting formation of extended ring crystallites. The DSC measurements indicated increasing crystallinity with higher temperature and longer time, and after annealing for 4 d at 160 °C a hitherto unknown and unexpected glass transition was found in the temperature range of 170–185 °C. Linear PGAs prepared by means of metal alkoxides under identical conditions did not show the afore-mentioned features of the cyclic PGAs, neither in the mass spectra nor in the DSC measurements. All PGAs were also characterized by SAXS measurements, which revealed relatively small L-values suggesting formation of thin crystallites in all cases with little influence of the reaction conditions. KW - Polyglycolide KW - MALDI-TOF MS KW - Ring-expansion polymerization KW - Crystals PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595541 DO - https://doi.org/10.1016/j.eurpolymj.2024.112811 SN - 0014-3057 VL - 207 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-59554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falk, Florian A1 - Sobol, Oded A1 - Stephan-Scherb, Christiane T1 - The impact of the microstructure of Fe-16Cr-0.2C on high-temperature oxidation – sulphidation in SO2 N2 - This study elucidates the impact of the microstructure of Fe-16Cr-0.2C on oxide layer formation at 650 ◦C in Ar-0.5 % SO2. A cold-rolled and two heat-treated states of the alloy were exposed for up to 1000 h. The samples were characterised in detail from microstructural and chemical perspectives using scanning electron microscopy (SEM), X-ray diffraction (XRD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The microstructural modification of the alloy by heat-treatment was advantageous. It was found that Cr-carbides support chromia formation and reduce sulphidation when their area fraction is low and diameter is small. KW - Steel KW - Iron KW - SIMS KW - SEM KW - High temperature corrosion KW - Oxidation KW - Sulphidation PY - 2021 DO - https://doi.org/10.1016/j.corsci.2021.109618 VL - 190 SP - 109618 PB - Elsevier Ltd. AN - OPUS4-53001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Syntheses of high molecular mass polyglycolides via ring-opening polymerization with simultaneous polycondensation(ROPPOC) by means of tin and zinc catalysts N2 - Glycolide was polymerized in bulk by means of four different ROPPOC catalysts: tin(II) 2-ethylhexanoate (SnOct2), dibutyltin bis(pentafluoro-phenoxide) (BuSnOPF),zinc biscaproate (ZnCap), and zinc bis(pentafluoro-phenyl sulfide) (ZnSPF). The temperature was varied between 110 and 180°C and the time between 3 h and 7 days. For the few polyglycolides (PGAs) that were soluble extremely high molecular masses were obtained. The MALDI TOF mass spectra had all a low signal-to-noise ration and displayed the peaks of cyclic PGAs with a“saw-tooth pattern ”indicating formation of extended-ring crystallites in the mass range below m/z 2500. The shape of DSC curves varied considerably with catalyst and reaction conditions, whereas the long-distance values measured by SAXS were small and varied little with the polymeriza-tion conditions. KW - MALDI TOF MS KW - Polyglycolide KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598221 DO - https://doi.org/10.1002/pat.6365 VL - 35 IS - 4 SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-59822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Bienert, M. A1 - Gugin, Nikita A1 - Emmerling, Franziska A1 - Maiwald, Michael T1 - A database to select affordable MOFs for volumetric hydrogen cryoadsorption considering the cost of their linkers N2 - Physical adsorption at cryogenic temperature (cryoadsorption) is a reversible mechanism that can reduce the pressure of conventional compressed gas storage systems. Metal–organic framework (MOF) materials are remarkable candidates due to the combination of high specific surface area and density which, in some cases, provide a high volumetric storage capacity. However, such extensive use of MOFs for this application requires the selection of affordable structures, easy to produce and made from feasible metallic and organic components. Herein, we introduce a MOF database detailing the crystallographic and porous properties of 3600 existing MOFs made from industrially relevant metals and their organic composition. The comparison of the available minimum costs of linkers allowed the creation of a database to select affordable structures with high potential for volumetric hydrogen storage by cryoadsorption, considering their composition based on individual or mixed building blocks. A user inter� face, available online, facilitates the selection of MOFs based on the properties or names of structures and linkers. KW - MOF´s PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583619 DO - https://doi.org/10.1039/d3ma00315a VL - 4 IS - 18 SP - 4226 EP - 4237 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Dautain, Olivier A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Optimizing the Green Synthesis of ZIF-8 by Reactive Extrusion Using In Situ Raman Spectroscopy N2 - ZIF-8 is a prominent member of the zeolitic imidazolate frameworks (ZIFs) subfamily of MOFs which possesses high thermal, chemical, and mechanical stabilities. Different routes have been explored to achieve the large-scale production of ZIF-8. However, these synthetic procedures are often inconsistent with the principles of sustainable chemical manufacturing. Aimed at developing scalable and greener production of ZIF-8, we adapted our previously reported in-batch „mix and wait“ synthesis[2] to continuous extrusion. To optimize the process, in-situ Raman spectroscopy was applied. Finally, we developed a simple and comprehensive approach to evaluating the environmental friendliness and scalability of MOF syntheses in view of their large-scale production. The synthesis of ZIF-8 was performed using a twin-screw extruder ZE 12 HMI equipped with an automatic volumetric feeder ZD 12B (Three-Tec GmbH, Switzerland) and peristaltic pump BT-L (Lead Fluid, China). The process was monitored in six different zones using a Raman RXN1TM analyzer (Kaiser Optical Systems, France) with a non-contact probe head. PMMA screw-in parts, which are transparent to Raman laser radiation, were specially manufactured to provide the laser focus within the barrel. PXRD, TGA, N2 adsorption measurements, and SEM were used as complementary techniques to characterize the extrudates. The batch ‘mix and wait’ synthesis of ZIF-8, consisting of bringing solid basic zinc carbonate and 2-methylimidazole in contact in a closed vial, was successfully adapted to reactive extrusion. The crystalline ZIF-8 continuously forms in the extruder under the mixing of solid reagents in the presence of a catalytic amounts of H2O or EtOH. The temperature, type of liquid, feeding rate, and excess of linker were optimized using in situ Raman spectroscopy. Pure and highly crystalline ZIF-8 was isolated at 40 °C by adding a catalytic amount of EtOH and a linker excess of 25%. The resulting material has excellent porosity with the BET surface area slightly exceeding that of the reference Basolite® Z1200 (1816 vs. 1734 m2 g–1). The reaction could yield ~ 3 kg d–1 assuming a continuous operation, with a space-time yield of ca. 67,000 kg m–3 d–1. The present method was compared to the published pathways based on Green Chemistry principles and proved to have the highest potential for large-scale production of ZIF-8. T2 - 5th European Conference on Metal Organic Frameworks and Porous Polymers (EuroMOF2023) CY - Granada, Spain DA - 24.09.2023 KW - In situ Raman KW - Reactive extrusion KW - Green chemistry KW - Mechanochemistry KW - MOFs KW - Large-scale synthesis PY - 2023 AN - OPUS4-58950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Mixing Reactions Enable Green Synthesis of ZIF-8 at Large Scale: Batch and Continuous Modes N2 - We report the scale-up of a batch solid synthesis of zeolitic imidazolate framework-8 (ZIF-8) for reactive extrusion. The crystalline product forms in the extruder directly under the mixture of solid 2-methylimidazole and basic zinc carbonate in the presence of a catalytic amount of liquid. The process parameters such as temperature, liquid type, feeding rate, and linker excess were optimized using the setup specifically designed for in situ Raman spectroscopy. Highly crystalline ZIF-8 with a Brunauer–Emmett–Teller (BET) surface area of 1816 m2 g–1 was quantitatively prepared at mild temperature using a catalytic amount of ethanol and a small excess of the linker. Finally, we developed a simple and comprehensive approach to evaluating the environmental friendliness and scalability of metal–organic framework (MOF) syntheses in view of their large-scale production. T2 - 2023 #RSCPoster Twitter Conference CY - Online meeting DA - 28.02.2023 KW - MOFs KW - Green chemistry KW - Reactive extrusion KW - Large-scale production KW - Mechanochemistry KW - Zeolitic imidazolate framework PY - 2023 UR - https://twitter.com/NikitaGugin/status/1630538555675099139 AN - OPUS4-58951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Analysis of deuterium in austenitic stainless steel AISI 304L by Time-of-Flight Secondary Ion Mass Spectrometry N2 - Due to their excellent combination of ductility, strength and corrosive resistance, austenitic stainless steels (ASS) are widely used in many industrial applications. Thus, these steel grades can be found as structural components in the (petro-)chemical industry, in offshore applications and more recent for storage and transport of hydrogen fuel. Steels employed for these applications are exposed to aggressive environments and hydrogen containing media. The ingress and accumulation of hydrogen into the microstructure is commonly observed during service leading to a phenomenon called “hydrogen embrittlement”. A loss in ductility and strength, the formation of cracks and phase transformations are typical features of this hydrogen-induced degradation of mechanical properties. Although, great efforts are made to understanding hydrogen embrittlement, there is an ongoing debate of the underlying mechanisms. This knowledge is crucial for the safe use and durability of components on the one side and the development of new materials on the other. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a powerful tool for depicting the distribution of the hydrogen isotope deuterium in the microstructure of austenitic and duplex steels. The combination with imaging techniques such as electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM), delivering structural and morphological information, creates a comprehensive picture of the hydrogen/deuterium-induced effects in the materials. All the gathered data is treated with principal component analysis (PCA) and data fusion to enhance the depth of information. The mobility of hydrogen and deuterium in a steel microstructure is affected by external mechanical stress. To investigate the behaviour of deuterium in a strained microstructure, a new in situ experimental approach was developed. This gives the possibility of analysing samples in the SIMS instrument simultaneously to four-point-bending-tests. Specimens made from ASS AISI 304L were electrochemically charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and hydrogen existing in the pristine material or adsorbed from the rest gas in the analysis chamber. Nonetheless, similar diffusion, permeation and solubility data allow to draw qualitative conclusions from the experiments, which are relevant for the application addressed. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Hydrogen KW - Deuterium KW - Austenitic stainless steel KW - SIMS PY - 2018 AN - OPUS4-46029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, M. A1 - Curbera, J. A1 - Peltz, U. A1 - Peplinski, Burkhard T1 - Lead isotope analysis in magic artefacts from the Berlin museums N2 - A set of 59 ancient magical artefacts, mainly made of lead, was selected from the collections of the Staatliche Museen zu Berlin in order to unravel their origins. All the selected artefacts have been studied for their Pb isotope compositions, which covered the whole range of the Mediterranean ore deposits. However, the majority (≈86%) were made of lead matching the small compositional range of the Laurion ore deposits. Only eight out of the 59 artefacts were made of recycled lead or lead from other ore deposits. Additionally, all but two were approximately dated based on their inscriptions. The lead isotopic composition together with information obtained from the inscriptions, the resulting dating, the context of the find and the known history of each item allowed us to gain more detailed information about the origins of these magical artefacts. The Attic provenance of 36 curse tablets was confirmed, whereas for 11 curse tablets previously classified as non-Attic, the provenance was either confirmed and specified (six artefacts) or changed to Attic (five artefacts). Surprisingly, the majority (six out of eight) of the analysed curse tablets from the Egyptian collection showed a lead isotopic composition closely matching that of Laurion. A Laurion-like lead isotopic composition was also observed for three of the four analysed oracular tablets from Dodona. Together with the dating information, this points to Laurion as the major and dominant lead source in the Aegean, at least during the fourth–third century B.C. The few curse tablets from earlier than the fourth–third century B.C. point to the use of multiple and thus isotopically more variable lead sources compared with the Roman times. KW - Lead isotopes KW - Pb isotopes KW - Greek curse tablets KW - Antikensammlung Berlin KW - Ägyptisches Museum Berlin PY - 2018 DO - https://doi.org/10.1007/s12520-016-0445-6 SN - 1866-9557 SN - 1866-9565 VL - 10 IS - 5 SP - 1111 EP - 1127 PB - Springer Verlag CY - Berlin AN - OPUS4-45628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - van Wasen, Sebastian A1 - Riedel, Jens A1 - Volmer, D. T1 - High resolution mass spectrometry of acoustically-levitated droplets N2 - Acoustic levitators generate acoustic standing waves between a transducer and a concave reflector. These acoustic waves are separated by multiple integer numbers of half wavelengths. Thus, acoustic levitation is the effect that a small volume (5 nL-10 μL) of sample can be levitated in a contact-free manner. Until now, levitation in analytical chemistry has primarily been associated with optical techniques such as Raman, X-Ray or UV/Vis spectroscopy. Less common applications are combinations of acoustic levitation with mass spectrometry. One reason for this being that the acoustic field surrounding the droplet effectively shields the sample, thus making it inaccessible to most ambient ionization techniques. Any effective investigation of acoustically-levitated droplets therefore requires the physical removal of some of the sample from the confine region of the acoustic trap before analysis. T2 - DGMS 2019 CY - Rostock, Germany DA - 10.03.2019 KW - Acoustical Levitation KW - Mass Spectrometry KW - Ambient Ionization KW - Laser PY - 2019 AN - OPUS4-47552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böhmert, L. A1 - Sieg, H. A1 - Braeuning, A. A1 - Lampen, A. A1 - Thünemann, Andreas A1 - Kästner, Claudia T1 - Fluorescence labeling study of silver nanoparticles N2 - During the last years, there has been a rapid rise in the use of nanomaterials in consumer products. Especially silver nanoparticles are frequently used because of their well-known optical and antimicrobial properties. However, the toxicological studies focusing on silver nanoparticles are controversial, either claiming or denying a specific nano-efffect. To contribute to localizing nanoparticles in toxicological studies and to investigate the interaction of particles with cells, a fluorescent marker is often used to monitor their transport and possible degradation. A major problem, in this context is the issue of binding stability of a fluorescent marker which is attached to the particle. In order to overcome this problem we provide an investigation of the binding properties of fluorescence-labeled BSA to small silver nanoparticles. Therefore, we synthesized small silver nanoparticles which are stabilized by poly(acrylic acid). The particles are available as reference candidate material and were thoroughly characterized in an earlier study. The ligand was exchanged by fluorescence marked albumin (BSA-FITC). The adsorption of the ligands was monitored by dynamic light scattering (DLS). To verify that the observed effects on the hydrodynamic radius originate from the successful ligand exchange and not from agglomeration or aggregation we used small angle X-ray scattering (SAXS). The fluorescent particles were characterized by UV/Vis and fluorescence spectroscopy. Afterwards, desorption of the ligand BSA-FITC was monitored by fluorescence spectroscopy and the uptake of particles in different in vitro models was studied. The particles are spherical and show no sign of aggregation after successful ligand exchange. The fluorescence intensity is quenched significantly by the presence of the silver cores as expected, but the remaining fluorescence intensity was high enough to use these particles in biological investigations. Half-life of fluorescence labeling on the particle was 21 d in a highly concentrated solution of non-labeled BSA. Thus, a very high dilution and long incubation times are needed to remove BSA-FITC from the particles. Finally, the fluorescence-labeled silver nanoparticles were used for uptake studies in human liver and intestinal cells, showing a high uptake for HepG2 liver cells and almost no uptake in differentiated intestinal Caco-2 cells. In conclusion, we showed production of fluorescence-marked silver nanoparticles. The fluorescence marker is strongly adsorbed to the silver surface which is crucial for future investigations in biological matrices. This is necessary for a successful investigation of the toxicological potential of silver nanoparticles. T2 - NanoTox 2018 - 9th International Conference on Nanotoxicology CY - Neuss, Germany DA - 18.09.2018 KW - Silver nanoparticles KW - Fluorescence KW - Cell imaging KW - Dynamic light scattering PY - 2018 AN - OPUS4-45639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Characterization of (bio)macromolecules and polymeric materials with modern scattering methods N2 - The analysis of polymers, biopolymers and polymeric materials is of great interest in biomaterials science. Here small-angle x-ray scattering (SAXS), static light scatterin (SLS) and dynamic light scattering (DLS) are described. Current efforts for digitalization of this methods are explaind with respect to modern data science in biomedical research. T2 - MacroBio Summer School 2018: Biomaterial Science in View of Digitalization CY - Teltow, Germany DA - 24.09.2018 KW - Small-angle x-ray scattering KW - SAXS KW - Static light scattering KW - SLS KW - Dynamic light scattering KW - DLS KW - Biomaterials PY - 2018 AN - OPUS4-46051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Krause, B.-C. A1 - Kästner, Claudia A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Laux, P. A1 - Braeuning, A. A1 - Fessard, V. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Cellular Effects of In Vitro-Digested Aluminum Nanomaterials on Human Intestinal Cells N2 - Aluminum (Al) can be taken up from food, packaging, or the environment and thus reaches the human gastrointestinal tract. Its toxic potential after oral uptake is still discussed. The fate of different solid and ionic Al species during the passage through the digestive tract is the focus of this research, as well as the cellular effects caused by these different Al species. The present study combines the physicochemical processing of three recently studied Al species (metallic Al0, mineral Al2O3, and soluble AlCl3) in artificial digestion fluids with in vitro cell systems for the human intestinal barrier. Inductively coupled plasma mass spectrometry (ICP-MS) and small-angle X-ray scattering (SAXS) methods were used to characterize the Al species in the artificial digestion fluids and in cell culture medium for proliferating and differentiated intestinal Caco-2 cells. Cytotoxicity testing and cellular impedance measurements were applied to address the effects of digested Al species on cell viability and cell proliferation. Microarray-based transcriptome analyses and quantitative real-time PCR were conducted to obtain a deeper insight into cellular mechanisms of action and generated indications for cellular oxidative stress and an influence on xenobiotic metabolism, connected with alterations in associated signaling pathways. These cellular responses, which were predominantly caused by formerly ionic Al species and only at very high concentrations, were not impacted by artificial digestion. A two-directional conversion of Al between ionic species and solid particles occurred throughout all segments of the gastrointestinal tract, as evidenced by the presence of nanoscaled particles. Nevertheless, this presence did not increase the toxicity of the respective Al species. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02354 VL - 3 IS - 3 SP - 2246 EP - 2256 PB - American Chemical Society AN - OPUS4-50632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebig, Ferenc A1 - Moreno, Silvia A1 - Thünemann, Andreas A1 - Temme, Achim A1 - Appelhans, Dietmar A1 - Koetz, Joachim T1 - Toxicological investigations of “naked” and polymer-entrapped AOT-based gold nanotriangles N2 - tNegatively charged ultrathin gold nanotriangles (AuNTs) were synthesized in a vesicular dioctyl sodiumsulfosuccinate (AOT)/phospholipid-based template phase. These “naked” AuNTs with localized surfaceplasmon resonances in the NIR region at about 1300 nm and special photothermal properties are ofparticular interest for imaging and hyperthermia of cancerous tissues. For these kinds of applicationsthe toxicity and the cellular uptake of the AuNTs is of outstanding importance. Therefore, this studyfocuses on the toxicity of “naked” AOT-stabilized AuNTs compared to polymer-coated AuNTs. Poly-meric coating consisted of non-modified hyperbranched poly(ethyleneimine) (PEI), maltose-modifiedpoly(ethyleneimine) (PEI-Mal) and heparin. The toxicological experiments were carried out with twodifferent cell lines (embryonic kidney carcinoma cell line HEK293T and NK-cell leukemia cell line YTS).This study revealed that the heparin-coating of AuNTs improved biocompatibility by a factor of 50 whencompared to naked AuNTs. Of note, the highest nontoxic concentration of the AuNTs coated with PEI andPEI-Mal is drastically decreased. Overall, this is mainly triggered by the different surface charges of poly-meric coatings. Therefore, AuNTs coated with heparin were selected to carry out uptake studies. Theirpromising high biocompatibility and cellular uptake may open future studies in the field of biomedicalapplications. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle PY - 2018 DO - https://doi.org/10.1016/j.colsurfb.2018.04.059 SN - 0927-7765 VL - 167 SP - 560 EP - 567 PB - Elsevier AN - OPUS4-44844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebig, F. A1 - Sarhan, R. M. A1 - Prietzel, C. A1 - Thünemann, Andreas A1 - Bargheer, M. A1 - Koetz, J. T1 - Undulated Gold Nanoplatelet Superstructures: In Situ Growth of Hemispherical Gold Nanoparticles onto the Surface of Gold Nanotriangles N2 - Negatively charged flat gold nanotriangles, formed in a vesicular template phase and separated by an AOT-micelle-based depletion flocculation, were reloaded by adding a cationic polyelectrolyte, that is, a hyperbranched polyethylenimine (PEI). Heating the system to 100 °C in the presence of a gold chloride solution, the reduction process leads to the formation of gold nanoparticles inside the polymer shell surrounding the nanoplatelets. The gold nanoparticle formation is investigated by UV−vis spectroscopy, small-angle X-ray scattering, and dynamic light scattering measurements in combination with transmission electron microscopy. Spontaneously formed gold clusters in the hyperbranched PEI shell with an absorption maximum at 350 nm grow on the surface of the nanotriangles as hemispherical particles with diameters of ∼6 nm. High-resolution micrographs show that the hemispherical gold particles are crystallized onto the {111} facets on the bottom and top of the platelet as well as on the edges without a grain boundary. Undulated gold nanoplatelet superstructures with special properties become available, which show a significantly modified performance in SERS-detected photocatalysis regarding both reactivity and enhancement factor. KW - Small-angle X-ray scattering KW - SAXS KW - gold KW - nanoparticle PY - 2018 DO - https://doi.org/10.1021/acs.langmuir.7b02898 SN - 0743-7463 VL - 34 IS - 15 SP - 4584 EP - 4594 PB - American Chemical Society AN - OPUS4-44704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Lampen, A. A1 - Thünemann, Andreas T1 - What happens to the silver ions? – Silver thiocyanate nanoparticle formation in an artificial digestion N2 - An artificial digestion of silver nitrate is reported. It is shown that AgSCN nanoparticles emerge from ionic silver in saliva and remain present during the entire digestion process. The particles were characterized by infrared spectroscopy and small- and wide-angle X-ray scattering (SAXS/WAXS) regarding their composition and size distribution. KW - SAXS KW - WAXS KW - Artificial digestion PY - 2018 DO - https://doi.org/10.1039/c7nr08851e SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 8 SP - 3650 EP - 3653 PB - RSC Publ. CY - Cambridge AN - OPUS4-44277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - Exploring amorphous lewis-acidic zirconium chloro fluoride as a heterogeneous HF shuttle N2 - Owing to a growing shortage of fluorspar, a raw material used for producing fluorinated base chemicals, fluorspar has been named among the 30 critical raw materials in the EU. 1 However, the sustainable transfer of fluorine atoms from one molecule to another using heterogeneous catalysts has not yet been reported. Herein, we present the heterogeneous catalyst zirconium chloro fluoride (ZCF) that performs dehydrofluorination of a fluoroalkane and consecutive hydrofluorination of an alkyne at room temperature. T2 - Make and Measure 2023 CY - Berlin, Germany DA - 13.09.2023 KW - ZCF KW - Heterogeneous catalysis KW - C-F bond activation KW - HF-shuttle PY - 2023 AN - OPUS4-59616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Polycondensation of poly(L-lactide) alkyl esters combined with disproportionation and symproportionation of the chain lengths N2 - Ring-opening polymerizations (ROPs) of l-lactide (LA) were performed with ethyl l-lactate or 11-bromoundecanol as initiators (In) and tin(II) ethyl hexanoate (SnOct2) as catalyst (Cat) using four different LA/In ratios (20/1, 40/1, 60/1, and 100/1). One series of ROPs was conducted in bulk at 120 °C, yielding PLAs with low dispersities (Ð ~ 1.2–1.4), and a second series was conducted in bulk at 160 °C, yielding higher dispersities (Ð ~ 1.3–1.9). Samples from both series were annealed for 1 or 14 days at 140 °C in the presence of SnOct2. Both polycondensation and disproportionation reactions occurred, so that all four samples tended to form the same type of molar mass distribution below 10,000 Da, regardless of their initially different number average molar masses (Mn). Both initiators gave nearly identical results. The thermodynamic control of all reversible transesterification processes favored the formation of crystallites composed of chains with a Mn around 3500–3700, corresponding to a crystal thickness of 10–13 nm. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600081 DO - https://doi.org/10.1002/pol.20240118 SN - 2642-4150 SP - 1 EP - 12 PB - Wiley AN - OPUS4-60008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wiesner, Yosri A1 - Giovannozzi, A.M. A1 - Fadda, M. A1 - Sacco, A. A1 - Putzu, M. A1 - Norberta, S. A1 - Lorenzo, M. A1 - Miclea, P.-T. A1 - Benismail, N. A1 - Maltseva, A. A1 - van Bavel, B. A1 - Altmann, Korinna T1 - Reference material candidates for Microplastic analysis N2 - Microplastic reference material is required for validation and harmonization purposes. This includes the analysis of the pure polymer particles and the validation of the respective measurement methods. In addition, there is the harmonization of different laboratories. On the other hand, sample preparation methods must be validated and harmonized with regard to their recovery and subsequent analysis in the respective matrices. For this purpose, we produce reference material candidates in the form of tablets with different mass fractions and particle numbers of polyethelene terephthalate. In the presentation first measurement results by µ-Raman, µ-FTIR, pyrolysis-GC-MS and TED-GC/MS will be presented. T2 - SETAC Europe 34th Annual Meeting CY - Seville, Spain DA - 05.05.2024 KW - Reference material KW - Microplastics KW - PlasticTrace PY - 2024 AN - OPUS4-60019 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Hamann, Sven A1 - Weyer, Rüdiger A1 - Kalbe, Ute T1 - Assessment of Microplastic Emissions from Artificial Turf Sports Pitches N2 - Following the recommendation of the European Chemicals Agency, on 25 September 2023 the European Commission passed a comprehensive new regulation to reduce emissions of microplastics (MP) into the environment, which includes the sale and use of intentionally added MP.1,2 This also applies to the application of synthetic rubber granulate infill in artificial turf systems and will ultimately have an impact on recreational sports. In Germany, rubber granulate made of ethylene-propylene-diene-monomer rubber (EPDM) is currently predominantly used. So far, there is no sufficient database for estimating MP emissions from artificial turf pitches into the environment and thus their relevance as a source of MP pollution.3 This topic is controversially discussed due to the complexity of sampling and analytics. To close this research gap, this project has the goal to determine mass balances for the emissions of MP from artificial turf pitches to allow an estimation of the amount of MP released per artificial turf pitch and year. Within this study, MP emissions of three artificial turf scenarios at different time states (unaged, artificially aged and real-time aged) are compared: the past (old turf: fossil based, synthetic infill), present (most commonly installed in Europe: fossil based, EPDM infill), and the future (turf with recycled gras fibres, no synthetic infill). To simulate the outdoor weathering during the lifespan of an artificial turf of approx. 15 years, brand-new artificial turf and EPDM rubber granulate were accelerated aged by means of UV weathering and mechanical stress. Potential MP emissions into surface and groundwater are simulated by lysimeter and shake experiments. MP mass contents are subsequently determined by Thermal Extraction Desorption Gas Chromatography/Mass Spectrometry. Using special microfilter crucibles allows the estimation of the particle sizes of the emitted MP, which is a fundamental requirement for an assessment of potential health hazards for humans. T2 - SETAC 2024 CY - Seville, Spain DA - 05.05.2024 KW - Mikroplastik KW - TED-GC/MS KW - Lysimeter KW - PAK KW - Schwermetalle PY - 2024 AN - OPUS4-60014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Richter, Tim A1 - Erxleben, Kjell A1 - Schröpfer, Dirk A1 - Witt, Julia A1 - Özcan-Sandikcioglu, Özlem A1 - Kannengießer, Thomas T1 - Processing and application properties of multiple principal element alloys (MPEA) N2 - The presentation gives an overview of BAM's activities on processing influences and application properties of MPEAs in the form of joined and machined high and medium entropy alloys (CoCrFeMnNi and CoCrNi). In the case of welding, the focus is on defect-free welded joints with sufficient mechanical properties. In the case of machining, the focus is on the possible influence on the surface quality of the materials through adequate milling parameters. In addition, the hydrogen absorption and diffusion properties as well as the electrochemical corrosion behavior are fundamentally examined. T2 - FAU-Department Werkstoffwissenschaften, Seminar: Aktuelle Probleme der Werkstoffwissenschaften CY - Erlangen, Germany DA - 25.04.2024 KW - Welding KW - Application properties KW - Machining KW - High-entropy alloy KW - Hydrogen PY - 2024 AN - OPUS4-59975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - An Amorphous Lewis-acidic Zirconium Chlorofluoride as HF Shuttle: C-F Bond Activation and Formation N2 - In recent years, fluorine chemistry has gained increasing political attention. Owing to a growing shortage of fluorspar, a raw material used for producing fluorinated base chemicals, fluorospar has been named among the 30 critical raw materials in the EU.2 As such, it becomes increasingly important to recycle existing fluorinated compounds and make them available as sources of fluorine for reactions. Significant progress has been made in the field of C-F bond activation using heterogeneous catalysts such as aluminum chlorofluoride (ACF).3–5 However, the transfer of fluorine atoms from one molecule to another using heterogeneous catalysts has not yet been reported. In this study, we successfully synthesized amorphous zirconium chlorofluoride (ZCF), and we were able to establish a catalytic behavior of ZCF in C-F bond activation reactions. We present a heterogeneous catalyst that performs dehydrofluorination of a fluoroalkane and consecutive hydrofluorination of an alkyne at room temperature. T2 - 2nd South African Fluorine Symposium CY - Sun City, South Africa DA - 09.02.2024 KW - ZCF KW - Heterogeneous catalysis KW - C-F bond activation KW - HF-shuttle PY - 2024 AN - OPUS4-59618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dalgic, Mete-Sungur A1 - Weidner, Steffen T1 - Solvent-free sample preparation for matrix-assisted laserdesorption/ionization time-of-flight mass spectrometry ofpolymer blends N2 - Solvent-free sample preparation offers some advantages over solvent-based techniques, such as improved accuracy, reproducibility and sensitivity, for matrix-assisted laser desorption/ionization (MALDI) analysis. However, little or no information is available on the application of solvent-free techniques for the MALDI analysis of polymer blends. Solvent-free sample preparation by ball milling was applied with varying sample-to-matrix ratios for MALDI time-of-flight mass spectrometry analysis of various polymers, including polystyrenes, poly(methyl methacrylate)s and poly(ethylene glycol)s. The peak intensity ratios were compared with those obtained after using the conventional dried droplet sample preparation method. In addition, solvent-assisted milling was also applied to improve sample homogeneities. Depending on the sample preparation method used, different peak intensity ratios were found, showing varying degrees of suppression of the signal intensities of higher mass polymers. Ball milling for up to 30 min was required to achieve constant intensity ratios indicating homogeneous mixtures. The use of wet-assisted grinding to improve the homogeneity of the blends was found to be disadvantageous as it caused partial degradation and mass-dependent segregation of the polymers in the vials.The results clearly show that solvent-free sample preparation must be carefully considered when applied to synthetic polymer blends, as it may cause additional problems with regard to homogeneity and stability of the blends. KW - MALDI TOF MS KW - Sample preparation KW - Polymer blends KW - Solvent-free PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598570 DO - https://doi.org/10.1002/rcm.9756 SN - 0951-4198 VL - 38 IS - 12 SP - 1 EP - 9 PB - Wiley online library AN - OPUS4-59857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Kricheldorf, H. T1 - MALDI TOF MS zur Aufklärung von Kristallisationsprozessen in Polyestern N2 - MALDI TOF Massenspektrometrie wurde verwendet, um Kristallisationsprozesse in Polyestern (Polylactide, Polyglycolide) zu untersuchen. Dabei konnte gezeigt werden, dass Zyklen und Linearen simultan, aber in unterschiedlichen Kristalliten, kristallisieren. Die dabei ablaufenden Umesterungen (Transesterifizierungen) konnten mit der MALDI TOF Massenspektrometrie nachgewiesen werden. Damit wurde ein völlig neues Anwendungsgebiet dieser MS Methode demonstriert. T2 - 28. Kolloquium Massenspektrometrie von Polymeren CY - Berlin, Germany DA - 14.05.2024 KW - MALDI TOF MS KW - Bioabbaubare Polymere KW - Crystallinity PY - 2024 AN - OPUS4-60029 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dalgic, Mete-Sungur T1 - Lösemittelfreie Probenpräparation zur Untersuchung von Polymerblends mittels MALDI-TOF MS N2 - Die Probenpräparation ist ein wichtiger Schritt für die Qualität der Massenspektren in MALDI-TOF MS. Es werden Polymerproben, die lösungsmittelbasiert und lösungsmittelfrei präpariert worden sind, verglichen. Dabei werden die Intensitätsverhältnisse von ternären Mischungen von PEG-, PS- und PMMA-Polymeren beachtet. T2 - 28. Kolloquium - Massenspektrometrische Techniken zur Untersuchung synthetischer Polymere CY - Berlin, Germany DA - 14.05.2024 KW - Polymere KW - Massenspektrometrie KW - Probenpräparation PY - 2024 AN - OPUS4-60032 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Altmann, Korinna T1 - Validation of microplastics detection methods and proficiency testing: Suitable microplastic reference materials for interlaboratory comparison N2 - Since microplastics (MPs) can be found everywhere and are becoming a problem of high concern, it is necessary to understand their physico-chemical properties. To obtain reliable analytical data a set of validated methods for sampling, sample preparation, detection, and data evaluation are needed. To meet these needs an interlaboratory comparison (ILC) with 84 participants worldwide has been organized under the international pre-standardisation platform VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods” within the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. In this ILC thermo-analytical methods (Py-GC/MS and TED-GC/MS) and vibrational methods (µ-Raman and µ-FTIR) have been tested and compared by providing a set of microplastic representative test materials and measurement protocols developed at BAM. The defined measurands were: particle number concentration, particle size distribution (PSD), and polymer identity and mass content. To increase the statistical quality, 6 samples were shipped together with blank samples. Hence, the ILC provides information on precision and accuracy of the results obtained with different methods as well as strengths and limitations of the proposed protocols. T2 - SETAC 34th Meeting CY - Seville, Spain DA - 05.05.2024 KW - ILC KW - Microplastic KW - Method validation KW - Stakeholder KW - Reference materials KW - Polyethylene KW - Polyethylene Terephtalate PY - 2024 AN - OPUS4-60039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giovannozzi, A A1 - Altmann, Korinna A1 - Wiesner, Yosri T1 - Metrological traceability of measurement data from nano- to small microplastics for a greener environment and food safety N2 - This talk descibes the EMPIR project PlasticTrace. Reference materials for microplastics will be developed. The production process and characterisation is explained by SEM, Raman, IR, Py-GC/MS and TED-GC/MS. Homogeneity control was successful. Stability check show no changes over 6 month. T2 - SETAC Europe 2024 CY - Sevilla, Spain DA - 05.05.2024 KW - Microplastics KW - Reference materials KW - Polymer 3R KW - TED-GC/MS PY - 2024 AN - OPUS4-60033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Milczewski, Frank A1 - Ciornii, Dmitri A1 - Hodoroaba, Dan T1 - Preliminary results of an interlaboratory comparison on microplastics organised by plasticsfate N2 - Microplastics are everywhere in the environment, but analytics is challenging. Since harmonisation is missing as well es suitable reference materials, BAM did under th umbrella of VAMAS funded by the EU Horizon 2020 project PlasticsFate a ILC for microplastic detection methods. Methods adressed were IR, Raman, Py-GC/MS and TED-GC/MS. The talk gives a first presentation and evaluation on the results. T2 - CUSP annual meeting and conference CY - Utrecht, Netherlands DA - 12.09.2023 KW - Microplastics KW - TED-GC/MS KW - Polymer 3R KW - Reference material KW - ILC on detection methods PY - 2023 AN - OPUS4-60036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Benismail, Nizar A1 - Altmann, Korinna T1 - Interlaboratory comparisons for obtaining reliable data on microplastic detection methods N2 - Since microplastics (MPs) can be found everywhere and are becoming a problem of high concern, it is necessary to understand their occurrence and fate in the environment. However, to obtain data of high quality is very challenging, since measurement operating procedures differ from laboratory to laboratory. Currently, there are no standardized methods to analyze microplastics. One promissing possibility to adress standardization of the methodology and operating procedures are interlaboratory comparisons (ILCs). In this contribution we report the first results of an ILC on microplastic detection methods organized under the pre-stantdardisation plattform of VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods”, within the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. The ILC has gathered 84 participants all over the world representing all continents. BAM, as the project leader, produced a set of reference microplastic materials, which have been distributed to all the participants together with the measurement protocols and reporting data templates. T2 - SETAC 34th Meeting CY - Seville, Spain DA - 05.05.2024 KW - ILC KW - Microplastic KW - Py-GC/MS KW - Polyethylene KW - µ-Raman KW - µ-FTIR KW - Polyethylene Terephtalate KW - TED-GC/MS PY - 2024 AN - OPUS4-60038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Drago, C. A1 - Altmann, Korinna A1 - Wiesner, Yosri T1 - Standardization Methods for the Analysis of Microplastics (10 100µm) in Food Matrix: Sample Preparation and Digestion of Milk Powder. N2 - Monitoring of microplastics in food matrices is crucial to determinate the human exposure. By direct ingestion microplastics could be released in the food during the production, through packaging and by consumer’s use. The absence of standard methods to quantify and detect different size range and type of microplastics has led to difficult and time consuming procedural steps, poor accuracy and lack of comparability. In this work, matrix characterization and laboratory experiments were used to investigate the efficiency of sample preparation in milk powder. This information is crucial to compile a standard procedure for sample preparation and digestion of common milk powder to detect different particle sizes and types of polymers. Charaterisation is done by TGA and TOC measurements. T2 - SETAC Europe 2024 CY - Sevilla, Spain DA - 05.05.2024 KW - Microplastics KW - Harmonisation in microplastics KW - Polymer 3R KW - Microplastics in milk PY - 2024 AN - OPUS4-60034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan T1 - Validation of microplastics detection methods and proficiency testing: Suitable microplastic reference materials for interlaboratory comparison N2 - The talk summarizes challenges in microplastic analysis. It shows the preparation of microplastic reference materials as well as the testing on homogeneity and stability. The reference material is used in an international laboratory comparison to compare different detection methods used for microplastic analysis. The methods used were µ-IR (FTIR+LDIR) for number-based methods and TED-GC/MS and Py-GC/MS for mass-based methods. The ILC was done under the umbrella of VAMAS TWA 45. Results of the participants are presented. T2 - BAM Akademie CY - Online meeting DA - 16.05.2024 KW - Microplastics KW - Reference materials KW - ILC KW - Microplastics detection KW - TED-GC/MS KW - Polymer 3R PY - 2024 AN - OPUS4-60085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlögl, Johanna A1 - Goldammer, Ole A1 - Bader, Julia A1 - Emmerling, Franziska A1 - Riedel, Sebastian T1 - Introducing AFS ([Al(SO3F)3]x) – a thermally stable, readily available, and catalytically active solid Lewis superacid N2 - This paper introduces the thermally stable, solid Lewis superacid aluminium tris(fluorosulfate) (AFS), that is easy-to-synthesize from commercially available starting materials. Its applicability, e.g. in catalytic C–F bond activations, is shown. KW - Lewis Acid KW - C-F activation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601001 DO - https://doi.org/10.1039/D4SC01753F SN - 2041-6520 SP - 1 EP - 7 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan A1 - Fontanges, Richard T1 - A new deep-learning AI tool for analysing images of complex nanoparticles N2 - A thousand times thinner than a human hair, nanoparticles (NPs) are finding applications in a range of modern products. However, as some can affect human health or the environment, knowing the types present is essential. Electron microscopy is the ‘gold standard’ for NP analysis, allowing identification based on manual size analysis, but a new method was required to analyse these particles quickly, accurately and in a consistent way. KW - Nanoparticles KW - Imaging KW - AI tool KW - Particle size and shape distribution PY - 2024 UR - https://www.euramet.org/casestudies/casestudiesdetails/news/a-new-deep-learning-ai-tool-for-analysing-images-of-complex-nanoparticles SP - 1 EP - 2 PB - EURAMET CY - Braunschweig AN - OPUS4-60095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Ongoing VAMAS ILC s on Nanoparticles and Graphene Oxide N2 - This contributions shows the first results of the ongoing interlaboratory comparisons under VAMAS/TWA 34 Nanoparticle populations related on the determination of pasrticle size distribution and relative concentration of nanoparticles and an example of an ILC running under VAMAS/TWA 41 Graphene and Related 2D Materials on the determination of the lateral diemsnions of graphene oxide flakes by Scanning Electron Microscopy. The link to related standardisation projects at ISO/TC Nanotechnologies are explained. T2 - Webinar Building the Foundation: Interlaboratory Comparisons and Reference Products for Advanced Materials CY - Berlin, Germany DA - 16.05.2024 KW - Nanoparticles KW - VAMAS KW - Interlaboratory comparison KW - Standardisation KW - Electron microscopy KW - AFM KW - SAXS PY - 2024 AN - OPUS4-60097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - About Interlaboratory Comparisons (ILCs) and VAMAS N2 - Advanced materials, such as nanomaterials, 2D materials, or thin films, play a crucial role in driving economic development and addressing major challenges in the coming years. These challenges include mitigating the impact of climate change, advancing lightweight engineering, enhancing catalysis, and improving medical applications. To comprehend the performance of these materials and ensure their acceptance across various sectors as safe and sustainable for both humans and the environment, the availability of reference procedures, materials, and data is essential. One versatile tool for establishing such references and evaluating the proficiency of individual laboratories and their competencies is through (international) interlaboratory comparisons (ILC). Notably, initiatives like the Versailles Project on Advanced Materials and Standards (VAMAS) provide a platform for conducting ILCs. This webinar will showcase various examples of interlaboratory comparisons, illustrating their impact on the development of reference products. T2 - Webinar Building the Foundation: Interlaboratory Comparisons and Reference Products for Advanced Materials CY - Berlin, Germany DA - 16.05.2024 KW - Interlaboratory comparison KW - Reference products KW - VAMAS KW - Standardisation PY - 2024 AN - OPUS4-60096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmar, Stefan A1 - Ruhl, Aki S. A1 - Altmann, Korinna A1 - Jekel, Martin T1 - Settling Velocities of Small Microplastic Fragments and Fibers N2 - There is only sparse empirical data on the settling velocity of small, non-buoyant microplastics thus far, although it is an important parameter governing their vertical transport within aquatic environments. This study reports the settling velocities of 4031 exemplary microplastic particles. Focusing on the environmentally most prevalent particle shapes, irregular microplastic fragments of four different polymer types (9–289 µm) as well as five discrete length fractions (50–600 µm) of common nylon and polyester fibers were investigated, respectively. All settling experiments were carried out in quiescent water using a specialized optical imaging setup. The method has been previously validated in order to minimize disruptive factors, e.g. thermal convection or particle interactions, and thus enable the precise measurements of the velocities of individual microplastic particles (0.003–9.094 mm/s). Based on the obtained data, ten existing models for predicting a particle’s terminal settling velocity were assessed. It is concluded that models, which were specifically deduced from empirical data on larger microplastics, fail to provide accurate predictions for small microplastics. Instead, a different approach is highlighted as a viable option for computing settling velocities across the microplastics continuum in terms of size, density and shape. KW - Microplastics KW - Microplastic fibers KW - Settling velocity KW - Sinking velocity KW - Sedimentation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597455 DO - https://doi.org/10.1021/acs.est.3c09602 SN - 0013-936X VL - 58 IS - 14 SP - 6359 EP - 6369 PB - American Chemical Society (ACS) AN - OPUS4-59745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, Holger A1 - Schaar, Caroline A1 - Fouquet, Nicole A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Braeuning, Albert T1 - Particulate iron oxide food colorants (E 172) during artificial digestion and their uptake and impact on intestinal cells N2 - Iron oxide of various structures is frequently used as food colorant (E 172). The spectrum of colors ranges from yellow over orange, red, and brown to black, depending on the chemical structure of the material. E 172 is mostly sold as solid powder. Recent studies have demonstrated the presence of nanoscaled particles in E 172 samples, often to a very high extent. This makes it necessary to investigate the fate of these particles after oral uptake. In this study, 7 differently structured commercially available E 172 food colorants (2 x Yellow FeO(OH), 2 x Red Fe2O3, 1 x Orange Fe2O3 + FeO(OH) and 2 x Black Fe3O4) were investigated for particle dissolution, ion release, cellular uptake, crossing of the intestinal barrier and toxicological impact on intestinal cells. Dissolution was analyzed in water, cell culture medium and artificial digestion fluids. Small-angle X-ray scattering (SAXS) was employed for determination of the specific surface area of the colorants in the digestion fluids. Cellular uptake, transport and toxicological effects were studied using human differentiated Caco-2 cells as an in vitro model of the intestinal barrier. For all materials, a strong interaction with the intestinal cells was observed, albeit there was only a limited dissolution, and no toxic in vitro effects on human cells were recorded. KW - Toxicology KW - Nanoparticles KW - Small-angle X-ray scattering KW - SAXS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593935 DO - https://doi.org/10.1016/j.tiv.2024.105772 VL - 96 SP - 1 EP - 12 PB - Elsevier BV AN - OPUS4-59393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, J. A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - Towards automation of the polyol process for the synthesis of silver nanoparticles N2 - Metal nanoparticles have a substantial impact across diferent felds of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver nanoparticles are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize silver nanoparticles often do not result in well-defned products, the main obstacles being high polydispersity or a lack of particle size tunability. We describe an automated approach to on-demand synthesis of adjustable particles with mean radii of 3 and 5 nm using the polyol route. The polyol process is a promising route for silver nanoparticles e.g., to be used as reference materials. We characterised the as-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties. KW - Sillver KW - Nanoparticles KW - Automated synthesis KW - Chemputer KW - Scattering KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546803 DO - https://doi.org/10.1038/s41598-022-09774-w VL - 12 IS - 1 SP - 1 EP - 9 PB - Nature Springer AN - OPUS4-54680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Maxi B. A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Loeschner, Katrin A1 - Givelet, Lucas A1 - Fahrenson, Christoph A1 - Braeuning, Albert A1 - Sieg, Holger T1 - Influence of artificial digestion on characteristics and intestinal cellular effects of micro-, submicro- and nanoplastics N2 - The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles. KW - Toxicology KW - General Medicine KW - Food Science KW - Nanoplastics KW - Nanoparticle KW - Dynamic Light Scattering KW - DLS PY - 2024 DO - https://doi.org/10.1016/j.fct.2023.114423 VL - 184 SP - 1 EP - 16 PB - Elsevier AN - OPUS4-59298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juling, S. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Oberemm, A. A1 - Creutzenberg, O. A1 - Thünemann, Andreas A1 - Braeuning, A. A1 - Lampen, A. T1 - Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats N2 - The presence of nano-scaled particles in food and food-related products has drawn attention to the oral uptake of nanoparticles and their interactions with biological systems. In the present study, we used a toxicoproteomics approach to allow for the untargeted experimental identification and comparative analysis of cellular Responses in rat liver after repeated-dose treatment with silver nanoparticles, ions, and the coating matrix used for particle stabilization. The proteomic analysis revealed treatment-related effects caused by exposure to silver in particulate and ionic form. Both silver species induced similar patterns of signaling and metabolic alterations. Silver-induced cellular alterations comprised, amongst others, proteins involved in metal homeostasis, oxidative stress response, and energy metabolism. However, we discovered that secondary nano-scaled structures were formed from ionic silver. Furthermore, also the coating matrix alone gave rise to the formation of nano-scaled particles. The present data confirm, complement, and extend previous knowledge on silver toxicity in rodent liver by providing a comprehensive proteomic data set. The observation of secondary particle formation from nonparticle controls underlines the difficulties in separating particle-, ion-, and matrix coating-related effects in biological systems. Awareness of this issue will support proper evaluation of nanotoxicology-related data in the future. KW - Silver nanoparticles KW - Small-angle X-ray scattering KW - SAXS PY - 2018 DO - https://doi.org/10.1016/j.fct.2018.01.056 SN - 0278-6915 SN - 1873-6351 VL - 113 SP - 255 EP - 266 PB - Elsevier AN - OPUS4-44563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Relling, Alexander A1 - Wegner, Karl David A1 - Niermann, L. A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Copper doped AgInS2-ZnS QDs from a single-source-precursor N2 - Quaternary semiconductor nanocrystals like AgInS2-ZnS solid solution quantum dots (QDs) are a highly promising material for material science and biomedical applications due to their tunable photoluminescence (PL), their high quantum yields (QY), and their low cytotoxicity1. A red shift of the PL into the NIR and SWIR region could further increase their application potential. Copper doping has been proven to be a suitable approach for bathochromically shifting the PL of QDs2. The synthesis of copper doped AgInS2-ZnS QDs from a single-source-precursor should enable an easily scalable synthesis with high reproducibility. T2 - Summer School "Exciting nanostructures: characterizing advanced confined systems" CY - Bad Honnef, Germany DA - 18.07.2021 KW - Nanocrystals KW - Quantum dots KW - Doping KW - AgInS2 KW - Single-source-precursor PY - 2021 AN - OPUS4-53129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, B. A1 - Meyer, T. A1 - Sieg, H. A1 - Kästner, Claudia A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Estrela-Lopis, I. A1 - Burel, A. A1 - Chevance, S. A1 - Gauffre, F. A1 - Jalili, P. A1 - Meijer, J. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Fessard, V. A1 - Laux, P. A1 - Lampen, A. A1 - Luch, A. T1 - Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis N2 - The application of appropriate analytical techniques is essential for nanomaterial (NM) characterization. In this study, we compared different analytical techniques for NM analysis. Regarding possible adverse health effects, ionic and particulate NM effects have to be taken into account. As NMs behave quite differently in physiological media, special attention was paid to techniques which are able to determine the biosolubility and complexation behavior of NMs. Representative NMs of similar size were selected: aluminum (Al0) and aluminum oxide (Al2O3), to compare the behavior of metal and metal oxides. In addition, titanium dioxide (TiO2) was investigated. Characterization techniques such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were evaluated with respect to their suitability for fast characterization of nanoparticle dispersions regarding a particle's hydrodynamic diameter and size distribution. By application of inductively coupled plasma mass spectrometry in the single particle mode (SP-ICP-MS), individual nanoparticles were quantified and characterized regarding their size. SP-ICP-MS measurements were correlated with the information gained using other characterization techniques, i.e. transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The particle surface as an important descriptor of NMs was analyzed by X-ray diffraction (XRD). NM impurities and their co-localization with biomolecules were determined by ion beam microscopy (IBM) and confocal Raman microscopy (CRM). We conclude advantages and disadvantages of the different techniques applied and suggest options for their complementation. Thus, this paper may serve as a practical guide to particle characterization techniques. KW - Small-angle X-ray scattering KW - SAXS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447057 DO - https://doi.org/10.1039/C8RA00205C SN - 2046-2069 VL - 8 IS - 26 SP - 14377 EP - 14388 PB - The Royal Society of Chemistry AN - OPUS4-44705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Böhmert, Linda A1 - Braeuning, Albert A1 - Lampen, Alfonso A1 - Thünemann, Andreas T1 - Fate of fluorescence labels - Their adsorption and desorption kinetics to silver nanoparticles N2 - Silver nanoparticles are among the most widely used and produced nanoparticles. Because of their frequent application in consumer products, the assessment of their toxicological potential has seen a renewed importance. A Major difficulty is the traceability of nanoparticles in in vitro and in vivo experiments. Even if the particles are labeled, for example, by a fluorescent marker, the dynamic exchange of ligands often prohibits their spatial localization. Our study provides an insight into the adsorption and desorption kinetics of two different fluorescent labels on silver nanoparticles with a core radius of 3 nm by dynamic light scattering, small-angle X-ray scattering, and fluorescence spectroscopy. We used BSA-FITC and tyrosine as examples for common fluorescent ligands. It is shown that the adsorption of BSA-FITC takes at least 3 days, whereas tyrosine adsorbs immediately. The quantitative amount of stabilizer on the particle surface was determined by fluorescence spectroscopy and revealed that the particles are stabilized by a monolayer of BSA-FITC (corresponding to 20 ± 9 molecules), whereas tyrosine forms a multilayered structure consisting of 15900 ± 200 molecules. Desorption experiments show that the BSA-FITC-stabilized particles are ideally suited for application in in vitro and in vivo experiments because the ligand desorption takes several days. Depending on the BSA concentration in the particles surroundings, the rate constant is k = 0.2 per day or lower when applying first order kinetics, that is, 50% of the BSAFITC molecules are released from the particle’s surface within 3.4 days. For illustration, we provide a first application of the fluorescence-labeled particles in an uptake study with two different commonly used cell lines, the human liver cell model HepG2 and the human intestinal cell model of differentiated Caco-2 cells. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Silver nanoparticles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452166 DO - https://doi.org/10.1021/acs.langmuir.8b01305 SN - 1520-5827 SN - 0743-7463 VL - 34 IS - 24 SP - 7153 EP - 7160 PB - American Chemical Society AN - OPUS4-45216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - High-speed but not magic: Microwave-assisted synthesis of ultra-small silver nanoparticles N2 - Reaction procedures have been improved to achieve higher yields and shorter reaction times: one possibility is the usage of microwave reactors. In the literature, this is under discussion, for example, nonthermal effects resulting from the microwave radiation are claimed. Especially for the synthesis of nanomaterials, it is of crucial importance to be aware of influences on the reaction pathway. Therefore, we compare the syntheses of ultra-small silver nanoparticles via conventional and microwave heating. We employed a versatile one-pot polyol synthesis of poly(acrylic acid)-stabilized silver nanoparticles, which display superior catalytic properties. No microwave-specific effects in terms of particle size distribution characteristics, as derived by small-angle X-ray scattering and dynamic light scattering, are revealed. Because of the characteristics of a closed system, microwave reactors give access to elevated temperatures and pressures. Therefore, the speed of particle formation can be increased by a factor of 30 when the reaction temperature is increased from 200 to 250 °C. The particle growth process follows a cluster coalescence mechanism. A postsynthetic incubation step at 250 °C induces a further growth of the particles while the size distribution broadens. Thus, utilization of microwave reactors enables an enormous decrease of the reaction time as well as the opportunity of tuning the particle size. Possibly, decomposition of the stabilizing ligand at elevated temperatures results in reduced yields. A compromise between short reaction times and high yields can be found at a temperature of 250 °C and a corresponding reaction time of 30 s. KW - Silver nanoparticles KW - SAXS KW - Small-angle X-ray scattering KW - Microwave synthesis PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-437028 DO - https://doi.org/10.1021/acs.langmuir.7b01541 SN - 0743-7463 SN - 1520-5827 VL - 34 IS - 1 SP - 147 EP - 153 PB - American Chemical Society CY - Washington, D.C. AN - OPUS4-43702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - Kinetic monitoring of glutathione-induced silver nanoparticle disintegration N2 - We report on etching of polyacrylic acid-stabilised silver nanoparticles in the presence of glutathione (GSH). The initial particles with a radius of 3.2 nm and consisting of ∼8100 silver atoms dissolve in a two-step reaction mechanism while in parallel smaller silver particles with a radius of 0.65 nm and consisting of 60 to 70 silver atoms were formed. The kinetics of the etching of the initial particles, accompanied by formation of smaller silver particles was interpreted based on in situ, time-resolved small-angle X-ray scattering (SAXS) experiments. KW - Small-angle X-ray scattering KW - SAXS KW - Silver nanoparticles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452464 DO - https://doi.org/10.1039/c8nr02369g SN - 2040-3372 VL - 10 IS - 24 SP - 11485 EP - 11490 PB - The Royal Society of Chemistry AN - OPUS4-45246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Maxi B. A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Loeschner, Katrin A1 - Givelet, Lucas A1 - Fahrenson, Christoph A1 - Braeuning, Albert A1 - Sieg, Holger T1 - Influence of artificial digestion on characteristics and intestinal cellular effects of micro-, submicro- and nanoplastics N2 - The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles. KW - Toxicology KW - Nanoparticles KW - Dynamic Light Scattering KW - Nanoplastics KW - Microplastics KW - Reference Method KW - Reference Material PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593947 DO - https://doi.org/10.1016/j.fct.2023.114423 VL - 184 SP - 1 EP - 16 PB - Elsevier BV AN - OPUS4-59394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pérez Blanes, H. A1 - Ghiasi, P. A1 - Sandkühler, J. A1 - Yesilcicek, Yasemin A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Prinz, Carsten A1 - Al-Sabbagh, Dominik A1 - Thünemann, Andreas A1 - Ozcan, Ozlem A1 - Witt, Julia T1 - High CO2 reduction activity on AlCrCoCuFeNi multi-principal element alloy nanoparticle electrocatalysts prepared by means of pulsed laser ablation N2 - Noble metal-free nanoparticles (NPs) based on multi-principal element alloys (MPEAs) were synthesized using a one-step pulsed laser ablation in liquids (PLALs) method for the electrochemical reduction of CO2. Laser ablation was performed in pure water or poly-(diallyldimethylammonium chloride) (PDADMAC)-containing an aqueous solution of Al8Cr17Co17Cu8Fe17Ni33 MPEA targets. Transmission electron microscopy (TEM) measurements combined with energy dispersive X-ray (EDX) mapping were used to characterize the structure and composition of the laser-generated MPEA nanoparticles (MPEA-NPs). These results confirmed the presence of a characteristic elemental distribution of a core-shell phase structure as the predominant NP species. The electrocatalytic performance of the laser-generated MPEA-NPs was characterized by linear sweep voltammetry (LSV) demonstrating an enhanced electrocatalytic CO2 activity for PDADMAC-stabilized NPs. The findings of these investigations indicate that MPEAs have great potential to replace conventional, expensive noble metal electrocatalysts. KW - Multi-principal element alloys KW - Chemically Complex Materials KW - CCMat KW - Electrocatalysis KW - Carbon dioxide reduction KW - Pulsed laser ablation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594018 DO - https://doi.org/10.1016/j.jmrt.2023.05.143 VL - 24 SP - 9434 EP - 9440 PB - Elsevier BV AN - OPUS4-59401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Hsiao, I-L. A1 - Ebisch, Maximilian A1 - Vidmar, J. A1 - Dreiack, N. A1 - Böhmert, L. A1 - Stock, V. A1 - Braeuning, A. A1 - Loeschner, K. A1 - Laux, P. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - The presence of iron oxide nanoparticles in the food pigment E172 N2 - Iron oxides used as food colorants are listed in the European Union with the number E172. However, there are no specifications concerning the fraction of nanoparticles in these pigments. Here, seven E172 products were thoroughly characterized. Samples of all colors were analyzed with a Broad spectrum of methods to assess their physico-chemical properties. Small-Angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), zeta-potential, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), X-ray diffraction (XRD), Brunauer-Emmett-Teller analysis (BET), Asymmetric Flow Field-Flow Fractionation (AF4) and in vitro cell viability measurements were used. Nanoparticles were detected in all E172 samples by TEM or SAXS measurements. Quantitative results from both methods were comparable. Five pigments were evaluated by TEM, of which four had a size median below 100 nm, while SAXS showed a size median below 100 nm for six evaluated pigments. Therefore, consumers May be exposed to iron oxide nanoparticles through the consumption of food pigments. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1016/j.foodchem.2020.127000 VL - 327 SP - 127000 PB - Elsevier Ltd. AN - OPUS4-50810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chowdhary, S. A1 - Moschner, J. A1 - Mikolajczak, D. J. A1 - Becker, M. A1 - Thünemann, Andreas A1 - Kästner, Claudia A1 - Klemczak, D. A1 - Stegemann, A.-K. A1 - Böttcher, C. A1 - Metrangolo, P. A1 - Netz, R. R. A1 - Koksch, B. T1 - The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation N2 - The hexapeptide hIAPP22–27 (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild‐type hIAPP′s toxicity to β‐cell death. In amyloid research, the role of hydrophobic and aromatic‐aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic‐aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues. We used thioflavin T staining, transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS) to study the impact of side‐chain halogenation on NFGAIL amyloid formation kinetics. Our data revealed a synergy between aggregation behavior and hydrophobicity of the phenylalanine residue. This study introduces systematic fluorination as a toolbox to further investigate the nature of the amyloid self‐assembly process. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nanostructure KW - Peptide KW - Amyloid PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518632 DO - https://doi.org/10.1002/cbic.202000373 VL - 21 IS - 24 SP - 3544 EP - 3554 PB - Wiley CY - Weinheim AN - OPUS4-51863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kröcke, N. A1 - Grebenteuch, S. A1 - Keil, C. A1 - Demtröder, S. A1 - Koch, L. A1 - Thünemann, Andreas A1 - Benning, R. A1 - Haase, H. T1 - Effect of different drying methods on nutrient quality of the yellow mealworm (Tenebrio molitor L.) N2 - Yellow mealworm (Tenebrio molitor L.) represents a sustainable source of proteins and fatty acids for feed and food. Industrial production of mealworms necessitates optimized processing techniques, where drying as the first postharvest procedure is of utmost importance for the quality of the final product. This study examines the nutritional quality of mealworm larvae processed by rack oven drying, vacuum drying or freeze drying, respectively. Proximate composition and fatty acid profile were comparable between the dried larvae. In contrast, larvae color impressions and volatile compound profiles were very much dependent on processing procedure. High-temperature rack oven drying caused pronounced darkening with rather low content of volatiles, pointing toward the progress of Maillard reaction. On the other hand, vacuum drying or freeze drying led to enrichment of volatile Maillard reaction and lipid oxidation intermediates, whose actual sensory relevance needs to be clarified in the future. Beyond sensory and visual importance drying intermediates have to be considered with regard to their metal ion chelating ability; in particular for essential trace elements such as Zn2+. This study found comparable total zinc contents for the differently dried mealworm samples. However, dried larvae, in particular after rack oven drying, had only low zinc accessibility, which was between 20% and 40%. Therefore, bioaccessibility rather than total zinc has to be considered when their contribution to meeting the nutritional requirements for zinc in humans and animals is evaluated. KW - Food PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476320 DO - https://doi.org/10.3390/insects10040084 SN - 2075-4450 VL - 10 IS - 4 SP - 84, 1 EP - 13 PB - MDPI AN - OPUS4-47632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Fähler, Sebastian A1 - Fähler, Sebastian T1 - Thermomagnetic generators with magnetocaloric materials for harvesting low grade waste heat N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. Here we give an overview on our research, covering both materials and systems. We demonstrate that guiding the magnetic flux with an appropriate topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude. Through a combination of experiments and simulations, we show that a pretzel-like topology results in a sign reversal of the magnetic flux. This avoids the drawbacks of previous designs, namely, magnetic stray fields, hysteresis and complex geometries of the thermomagnetic material. Though magnetocaloric materials had been the first choice also for thermomagnetic generators, they require some different properties, which we illustrate with Ashby plots for materials selection. Experimentally we compare La-Fe-Co-Si and Gd plates in the same thermomagnetic generator. Furthermore, we discuss corrosion and deterioration under cyclic use is a severe problem occurring during operation. To amend this, composite plates using polymer as a matrix have been suggested previously. T2 - Dresden Days of Magnetocalorics CY - Dresden, Germany DA - 13.11.2023 KW - Thermomagnetic material KW - Waste heat recovery KW - Generator PY - 2023 AN - OPUS4-58865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprachmann, J. A1 - Wachsmuth, T. A1 - Bhosale, M. A1 - Burmeister, D. A1 - Smales, Glen Jacob A1 - Schmidt, M. A1 - Kochovski, Z. A1 - Grabicki, N. A1 - Wessling, R. A1 - List-Kratochvil, E. J. W. A1 - Esser, B. A1 - Dumele, O. T1 - Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes N2 - Despite their inherent instability, 4n π systems have recently received significant attention due to their unique optical and electronic properties. In dibenzopentalene (DBP), benzanellation stabilizes the highly antiaromatic pentalene core, without compromising its amphoteric redox behavior or small HOMO−LUMO energy gap. However, incorporating such molecules in organic devices as discrete small molecules or amorphous polymers can limit the performance (e.g., due to solubility in the battery electrolyte solution or low internal surface area). Covalent organic frameworks (COFs), on the contrary, are highly ordered, porous, and crystalline materials that can provide a platform to align molecules with specific properties in a well-defined, ordered environment. We synthesized the first antiaromatic framework materials and obtained a series of three highly crystalline and porous COFs based on DBP. Potential applications of such antiaromatic bulk materials were explored: COF films show a conductivity of 4 × 10−8 S cm−1 upon doping and exhibit photoconductivity upon irradiation with visible light. Application as positive electrode materials in Li-organic batteries demonstrates a significant enhancement of performance when the antiaromaticity of the DBP unit in the COF is exploited in its redox activity with a discharge capacity of 26 mA h g−1 at a potential of 3.9 V vs. Li/Li+ . This work showcases antiaromaticity as a new design principle for functional framework materials. KW - SAXS KW - MOUSE KW - Covalent Organic Frameworks KW - Batteries PY - 2023 DO - https://doi.org/10.1021/jacs.2c10501 SP - 1 EP - 12 PB - ACS Publications AN - OPUS4-56958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Henning, L. M. A1 - Smales, Glen Jacob A1 - Colmenares, M. G. A1 - Bekheet, M. F. A1 - Simon, U. A1 - Gurlo, A. T1 - Synthesis and properties of COK-12 large-pore mesocellularsilica foam N2 - Large, ink-bottle-shaped pores in mesocellular foams (MCFs) are desired for various applications requiring enhanced mass transfer or the immobilization of larger compounds. Hence, the cylindrical pores of COK-12, an ordered mesoporous silica structurally comparable to SBA-15 but synthesized at room-temperature at quasi-neutral pH, are chemically swollen into ink-bottle pores. Therefore, p-xylene is used as a more sustainable swelling agent compared to popular alternatives. Its high boiling point allows for an additional thermal aging step to amplify the mesostructure enlargement without needing additional chemicals. For COK-12, the MCFs obtained at room temperature reach an unprecedented plateau for the modal mesopore cell and window diameter of 19.9 and 5.5 nm, respectively, with an underlying broad pore size distribution and distorted hexagonal lattice up to 14.5 nm, involving hexagonal and spherical structures. The combined chemical and thermal swelling resulted in the selective enlargement of the window diameter to more than 200% and a slightly increased cell diameter, pore size distribution, and hexagonal lattice distortion in comparison to the room temperature synthesis. Such materials are thought to be promising alternatives to SBA-15-based MCFs, often utilizing toxic catalysts during synthesis. The presented results pave the way for enhanced adsorptive, catalytic, and drug delivery performances for COK-12-based materials. KW - SAXS KW - MOUSE KW - Mesocellular foam KW - Mesoporous silica PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569590 DO - https://doi.org/10.1002/nano.202200223 SP - 1 EP - 11 AN - OPUS4-56959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fink, Friedrich A1 - Falkenhagen, Jana A1 - Emmerling, Franziska T1 - Mechanochemical valorisation of kraft-lignin N2 - As one of nature's largest carbon sources with an annual production of around 20 billion tonnes, lignin is the third most abundant biopolymer on the planet. It becomes available as technical lignin, which is produced as a by-product in the pulp and paper industry and in smaller quantities in second generation biofuel refineries. Current estimates suggest that less than 10% of all technical lignin is reused. The high polydispersity, complex heterogeneous structure and uncertain reactivity are the major limiting factors for further processing. The most common applications for various technical lignins without extensive modifications are for example: Surface active substances, additives in bitumen, cement and animal feed. One way to make lignin usable is to break the structure into oligomer units and thus reduce the polydispersity and average molar mass. In addition, it is advantageous to introduce new functionalities such as hydroxyl or carbonyl groups when splitting the high-molecular-weight (HMW) fractions, or to convert existing functionalities. In this study, a mechanochemical method is presented that can degrade and modify technical kraft lignin by means of sodium percarbonate (SPC). T2 - 10th Intern. Symp. on the Separation and Characterisation of Natural and Synthetic Macromolecules (SCM-10) CY - Amsterdam, Netherlands DA - 01.02.2023 KW - Technical Lignin KW - Mechanochemical oxidation PY - 2023 AN - OPUS4-57001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - de Oliveira Guilherme Buzanich, Ana A1 - Heinekamp, Christian A1 - Smales, Glen Jacob A1 - Hodoroaba, Vasile-Dan A1 - ten Elshof, J. E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Template-free synthesis of mesoporous, amorphous transition metal phosphate materials N2 - We present how mesoporosity can be engineered in transition metal phosphate (TMPs) materials in a template-free manner. The method involves a transformation of a precursor metal phosphate phase, called M-struvite (NH4MPO4·6H2O, M = Mg2+, Ni2+, Co2+, NixCo1-x2+). It relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneously mesoporous phase, which forms while degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the metal coordination environment were followed with in-situ and ex-situ scattering and diffraction, as well as X -ray spectroscopy. Despite sharing the same precursor struvite structure, different amorphous and mesoporous structures were obtained depending on the involved transition metal. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions depending on a metal cation present in the analogous M-struvites. The amorphous structures of thermally decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes (240 m²g-1 and 0.32 cm-3 g-1 for Mg and 90 m²g-1 and 0.13 cm-3 g-1 for Ni). We propose that the low-cost, environmentally friendly M-struvites could be obtained as recycling products from industrial and agricultural wastewaters. These waste products could be then upcycled into mesoporous TMPs through a simple thermal treatment for further applications, for instance, in (electro)catalysis. KW - Struvite KW - Pphosphates KW - Transition metal KW - In-situ SAXS/WAXS KW - Mesoporosity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569503 DO - https://doi.org/10.1039/D2NR05630E SN - 2040-3364 SP - 1 EP - 15 PB - Royal Society of Chemistry (RSC) AN - OPUS4-56950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madeja, B. A1 - Gebauer, D. A1 - Marsiske, M. R. A1 - Ott, A. A1 - Rückel, M. A1 - Rosenberg, R. A1 - Baken, A. A1 - Stawski, Tomasz M. A1 - Fernandez-Martinez, A. A1 - Van Driessche, A.E.S. A1 - Cölfen, H. A1 - Kellermeier, M. T1 - New insights into the nucleation of portlandite and the effects of polymeric additives N2 - The crystallization of calcium hydroxide (Ca(OH)2, CH, portlandite) is a key process during the early stages of cement hydration. In the present work, we have revisited the formation of this mineral through nucleation and growth from supersaturated aqueous solutions, in the light of the currently emerging picture of multistage “non-classical” crystallization. To that end, we developed a titration-based assay, in which stock solutions of both relevant ions are added simultaneously into a reservoir, where supersaturation increases slowly at constant stoichiometry until nucleation occurs. This procedure allows both pre- and early post-nucleation phenomena to be analyzed quantitatively. Complementarily, the early stages of portlandite mineralization were probed by various advanced characterization techniques, including cryo-transmission electron microscopy (cryo-TEM), in-situ small-angle X-ray scattering (SAXS), pair distribution function (PDF) analysis of high-energy X-ray scattering (HEXS) data, and analytical ultracentrifugation (AUC). The experimental data show that the formation of calcium hydroxide starts with the association of ions into complexes and clusters, which subsequently coalesce to form amorphous nanoparticles – much like what has been observed in the case of calcium carbonate and other prominent minerals. Subsequently, these particles aggregate and build networks, which eventually transform into hexagonal Ca(OH)2 crystals. The presence of a soluble polycarboxylate – as a known inhibitor of portlandite crystallization – does not change the main characteristics of this multistep nucleation pathway, but it proved capable of significantly extending the lifetime of the amorphous intermediate phase and thus delaying the transition to the final crystalline phase. Our observations confirm the notion that “non-classical” crystallization is a much more common phenomenon than initially believed – and that, for minerals forming in aqueous environments, it may actually be the rule rather than the exception. KW - General Materials Science KW - Building and Construction PY - 2023 DO - https://doi.org/10.1016/j.cemconres.2023.107258 SN - 0008-8846 VL - 173 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-58162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Somasundaram, S. K. A1 - Buzanich, Ana A1 - Emmerling, Franziska A1 - Krishnan, S. A1 - Senthilkumar, K. A1 - Joseyphus, R.J. T1 - New insights into pertinent Fe-complexes for the synthesis of iron via the instant polyol process N2 - Chemically synthesized iron is in demand for biomedical applications due to its large saturation magnetization compared to iron oxides. The polyol process, suitable for obtaining Co and Ni particles and their alloys, is laborious in synthesizing Fe. The reaction yields iron oxides, and the reaction pathway remains unexplored. This study shows that a vicinal polyol, such as 1,2-propanediol, is suitable for obtaining Fe rather than 1,3-propanediol owing to the formation of a reducible Fe intermediate complex. X-ray absorption spectroscopy analysis reveals the ferric octahedral geometry and tetrahedral geometry in the ferrous state of the reaction intermediates in 1,2-propanediol and 1,3-propanediol, respectively. The final product obtained using a vicinal polyol is Fe with a γ-Fe2O3 shell, while the terminal polyol is favourable for Fe3O4. The distinct Fe–Fe and Fe–O bond lengths suggest the presence of a carboxylate group and a terminal alkoxide ligand in the intermediate of 1,2-propanediol. A large Fe–Fe bond distance suggests diiron complexes with bidentate carboxylate bridges. Prominent high-spin and low-spin states indicate the possibility of transition, which favors the reduction of iron ions in the reaction using 1,2-propanediol. KW - XAS KW - Nanoparticle PY - 2023 DO - https://doi.org/10.1039/D3CP01969A SN - 1463-9076 VL - 25 IS - 33 SP - 21970 EP - 21980 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fink, Friedrich A1 - Stawski, Tomasz M. A1 - Stockmann, Jörg M. A1 - Emmerling, Franziska A1 - Falkenhagen, Jana T1 - Surface Modification of Kraft Lignin by Mechanochemical Processing with Sodium Percarbonate N2 - In this article, we present a novel one-pot mechanochemical reaction for the surface activation of lignin. The process involves environmentally friendly oxidation with hydrogen peroxide, depolymerization of fractions with high molecular mass, and introduction of new carbonyl functions into the lignin backbone. Kraft lignin was ground with sodium percarbonate and sodium hydroxide in a ball mill at different time intervals. Analyses by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), size exclusion chromatography (SEC), dynamic vapor sorption (DVS), and small-angle X-ray scattering (SAXS) showed significant improvements. After only 5 min of reaction, there was a 47% reduction in mass-average molecular weight and an increase in carboxyl functionalities. Chemical activation resulted in an approximately 2.8-fold increase in water adsorption. Principal component analysis (PCA) provided further insight into the correlations between IR spectra and SAXS parameters KW - Kraft Lignin KW - Mechanochemical oxidation KW - SEC KW - FTIR KW - SAXS KW - PCA PY - 2023 DO - https://doi.org/10.1021/acs.biomac.3c00584 SN - 1525-7797 SP - 1 EP - 11 PB - American Chemical Society AN - OPUS4-58074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gupta, Kanhaiya A1 - Waske, Anja T1 - Classification of pores from micro-XCT data of additively manufactured components prepared by laser powder bed fusion. N2 - Laser powder bed fusion (PBF-LB/M) is a metal-based additive manufacturing (AM) process that utilizes a laser to melt powder particles selectively and form the desired product through a layer-by-layer fabrication process. It allows access to a vast new design space and can produce parts with far greater geometrical complexity than traditional methods. However, PBF-LB/M induces inevitable microstructural defects, such as voids and pores, that can adversely affect the quality and performance of the manufactured components. Hence, knowledge of pore formation, types, and suppression is essential for successful future AM applications. This research investigates the formation of different types of pores and their quantification from X-ray micro-computed tomography images of a formerly reported sample. It also examines the influence of the volumetric energy density (VED) on the size, shape, and location of pores for 316L stainless steel parts produced by the PBF-LB/M process. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - X-ray Computed Tomography PY - 2023 AN - OPUS4-58337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Correlative Morphological-Chemical Imaging of Nanostructured Materials N2 - Newly developed methodical approaches with an emphasis on correlative imaging analysis of morphology and chemistry of nanomaterials will be presented. Correlative imaging by high-resolution SEM with STEM-in-SEM as well as with EDS, and further with AFM, or with the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and as embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for the local surface chemistry will be highlighted. Examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy and the highest surface-sensitive methods XPS and ToF-SIMS as advanced surface characterization methods available in the Competence Centre nano@BAM will be showed. Particularly for the spatially resolved analysis of the chemistry of nanostructures, such in-depth and lateral gradients of chemistry within mesoporous thin layers, or the completeness of the shells of core-shell nanoparticles, the latter methods are inherent. Other dedicated developments like approaches for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM or the quantitative determination of the roughness of particle surface by high-resolution imaging with electron microscopy will be also presented. T2 - Conference on Applied Surface and Solid Material Analysis AOFKA 2023 CY - Zurich, Switzerland DA - 11.09.2023 KW - Correlative imaging KW - Electron microscopy KW - X-ray spectroscopy KW - Nanostructures PY - 2023 UR - https://aofka23.scg.ch/ AN - OPUS4-58338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Procop, Mathias T1 - Theoretical calculation and experimental determination of x-ray production efficiencies for copper, zirconium, and tungsten N2 - The X-ray intensities of the K-, L- and M-lines of copper, zirconium and tungsten have been measured with an energy-dispersive X-ray spectrometer of known efficiency as function of photon energy. X-ray production efficiencies were determined from the measured intensities for Kα- and L-series of Cu and Zr and for the L- and M-series of W. These data were compared to calculated X-ray production efficiencies based on the widely used matrix correction models of Pouchou and Pichoir (XPP) and Bastin (PROZA96). Our results indicate that a replacement of the stopping power in the PROZA96 algorithm by expressions of Joy and Jablonski has only a minor influence on the calculated X-ray production efficiencies. In contrast, the modifications of the ionization cross-section show a stronger effect. We replaced the ionization cross-sections for K lines of the PROZA96 algorithm with different models. The results for L- and M-Lines are different. For the L-lines of Cu the original XPP and PROZA96 models show the best agreement while using the Bote cross-sections result in an overestimation. For the Zr-L and W-L1, -L2, -L3 X-ray production efficiencies, the Bote cross-sections lead to a significant improvement compared to all other models. The original XPP model represents the best agreement for the M5 efficiencies but underestimates the M4 efficiencies. There is no superior model or modification because the parameter sets in the models need to be aligned to each other. However, using the ionization cross-sections of Bote, which are based on quantum mechanical calculations, show promising results in many cases. KW - X-ray production efficiency KW - EPMA KW - Copper KW - Zirconium KW - Tungsten PY - 2023 DO - https://doi.org/10.1093/micmic/ozad067.110 SN - 1435-8115 VL - 29 IS - Supplement 1 SP - 245 EP - 246 PB - Oxford University Press CY - Oxford AN - OPUS4-58339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Alcohol-initiated and Tin(II) 2-ethylhexanoate-catalyzed polymerization of L-lactide in bulk – About separate crystallization of cyclic and linear Poly (L-lactide)s N2 - Alcohol-initiated ROPs of L-Lactide were performed at 140 ◦C in bulk with variation of the initiator/catalyst ratio and time. Lower ratios favor the formation of cycles which upon annealing display a change of the MALDI mass peak distribution towards a new maximum with a “saw-tooth pattern” of the mass peaks representing the cycles. Such a pattern was not observed for the mass peak of the linear chains. The coexistence of these patterns indicate that linear and cyclic poly (L-lactide)s (PLA) crystallize in separate crystals, and that the crystallites of the cycles are made up by extended rings. High Tm and ΔHm values confirm that these extended-ring crystallites represent a thermodynamically optimized form of PLA. Experiments with preformed cyclic and linear PLAs support this interpretation. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Polymerization PY - 2023 DO - https://doi.org/10.1016/j.polymer.2023.126355 VL - 285 IS - 126355 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-58355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fareed, Adnan A1 - Rosalie, Julian M. A1 - Kumar, Sourabh A1 - Kar, S. A1 - Hickel, Tilmann A1 - Fähler, S. A1 - Maaß, Robert T1 - Constrained incipient phase transformation in Ni-Mn-Ga films: A small-scale design challenge N2 - Ni-Mn-Ga shape-memory alloys are promising candidates for large strain actuation and magnetocaloric cooling devices. In view of potential small-scale applications, we probe here nanomechanically the stress-induced austenite–martensite transition in single crystalline austenitic thin films as a function of temperature. In 0.5 μm thin films, a marked incipient phase transformation to martensite is observed during nanoindentation, leaving behind pockets of residual martensite after unloading. These nanomechanical instabilities occur irrespective of deformation rate and temperature, are Weibull distributed, and reveal large spatial variations in transformation stress. In contrast, at a larger film thickness of 2 μm fully reversible transformations occur, and mechanical loading remains entirely smooth. Ab-initio simulations demonstrate how an in-plane constraint can considerably increase the martensitic transformation stress, explaining the thickness-dependent nanomechanical behavior. These findings for a shape-memory Heusler alloy give insights into how reduced dimensions and constraints can lead to unexpectedly large transformation stresses that need to be considered in small-scale actuation design. KW - Shape-memory alloys KW - Nanoindentation KW - Incipient plasticity KW - NiMaGa PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581422 DO - https://doi.org/10.1016/j.matdes.2023.112259 VL - 233 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-58142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haacke, Nasrin A1 - Sahre, Mario A1 - Schlau, Sven A1 - Gersdorf, Sven A1 - Ebell, Gino T1 - Design and construction of a rainfall simulator to test metal runoff at atmospheric conditions N2 - A rainfall simulator was presented as an environmental assessment tool to quantify wash-off concentrations from metallic materials. It is part of the RUNOFF-project, which studies and re-assesses the durability of roofing and facade materials under current atmospheric conditions in Germany. Studying building materials is important as they have a significant impact on achieving a variety of goals and targets within the sustainable developments goals (SDGs). The durability of materials is essential to reach sustainability. However, the durability of metallic materials is strongly depended on climate conditions, which have changed as a result of technical measures in industry, climate change and increasing urbanisation. In Germany at least, the data base is not up-to-date leading to prediction models regarding corrosion resistance and durability of metallic materials which can no longer be trusted and therefore need to be re-assessed and updated. Also, not only the demand for sustainable but also environmentally friendly building materials has increased dramatically. A number of construction materials produce chemical hazards, and therefore have negative impacts on water quality, soils health and ecosystems. To limit these impacts, environmental assessment methods and tools are needed to measure and quantify the inputs and outputs of building materials throughout their lifetime. T2 - EUROCORR 2023 CY - Brussels, Belgium DA - 27.08.2023 KW - Rainfall simulator KW - Runoff KW - Atmospheric conditions KW - Laboratory experiments PY - 2023 AN - OPUS4-58152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - Ring-ring equilibration (RRE) of cyclic poly(L-lactide)s by means of cyclic tin catalysts N2 - With 2,2-dibutyl-2-stanna-1,3-dithiolane (DSTL) and 2-stanna-1,3-dioxa-4,5,6,7-dibenzoxepane (SnBiPh) as catalysts ring-expansion polymerizations (REP) were performed either in 2 M solution using three different solvents and two different temperatures or in bulk at 140 and 120 ◦C. A kinetically controlled rapid REP up to weight average molecular masses (Mẃs) above 300 000 was followed by a slower degradation of the molecular masses at 140 ◦C, but not at 120 ◦C Furthermore, a low molecular mass cyclic poly(L-lactide) (cPLA) with a Mn around 16 000 was prepared by polymerization in dilute solution and used as starting material for ring-ring equilibration at 140 ◦C in 2 M solutions. Again, a decrease of the molecular mass was detectable, suggesting that the equilibrium Mn is below 5 000. The degradation of the molecular masses via RRE was surprisingly more effective in solid cyclic PLA than in solution, and a specific transesterification mechanism involving loops on the surface of crystallites is proposed. This degradation favored the formation of extended-ring crystallites, which were detectable by a “saw-tooth pattern” in their MALDI mass spectra. KW - Organic Chemistry KW - Polymers and Plastics KW - MALDI-TOF MS KW - Materials Chemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593819 DO - https://doi.org/10.1016/j.eurpolymj.2024.112765 SN - 0014-3057 VL - 206 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-59381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, Stefan A1 - Bartling, Stephan A1 - Parlinska-Wojtan, Magdalena A1 - Wotzka, Alexander A1 - Guilherme Buzanich, Ana A1 - Wohlrab, Sebastian A1 - Abdel-Mageed, Ali M. T1 - Stabilization of intermediate Mo oxidation states by Nb doping enhancing methane aromatization on Mo/HZSM-5 catalysts N2 - The dehydroaromatization of methane is a promising process to produce aromatics and ultra-pure hydrogen. Increased yields and stability of Mo/HZSM-5 against irreversible deactivation were achieved via a redox interaction by doping with otherwise inert Nb. KW - General Materials Science KW - Sustainability and the Environment KW - General Chemistry KW - Renewable Energy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597670 DO - https://doi.org/10.1039/D3TA07532J SN - 2050-7488 SP - 1 EP - 16 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena T1 - Hybrid measurement technique for defect characterisation in wide bandgap semiconductors N2 - Climate change and increasing demand for electricity require the use of power electronics based on new wide bandgap (WBG) compound semiconductors. Power electronics devices are used in numerous application areas to control and convert electric energy. These may include generation and distribution of renewable energy for green hydrogen, electrification of transport or 5G communication. WBG electronics have much higher efficiency than the silicon-based ones and can operate at higher power densities, voltages, temperatures and switching frequencies with low energy losses. However, defects in the semiconductors can considerably affect the performance of power electronic devices or make their operation even impossible. The presentation will show the application of spectroscopic and imaging ellipsometry as well as white light interference microscopy for defect characterisation in SiC, GaN and Ga2O3 over a wide wavelength range. We used parameterized modelling of ellipsometric transfer parameters to determine the dielectric properties of bulk materials and thin layers. Imaging ellipsometry offers more information and is an advanced variant of optical microscopy, combining the lateral resolution of optical microscopy with the extreme sensitivity to surface and interface effects of ellipsometry. Surface topography and morphology of different types of defects were additionally investigated with imaging white light interference microscopy. Modern electronic thin film components require complex surface analysis methodologies and hybrid metrology. Hybrid measurement techniques enable fast and non-destructive traceable characterisation of thin film compound semiconductors as well as accurate detection and identification of defects. This methodical approach leads to a better understanding of the materials themselves and of the defect formation mechanisms during manufacturing. This work aims to enable highly reproducible manufacturing of compound semiconductor power electronics as well as operation monitoring to ensure failure-safety of electronic systems in power electronic devices. T2 - Abteilungskolloquium 2023, BAM CY - Berlin, Germany DA - 09.02.2023 KW - Spectroscopic and imaging ellipsometry KW - White light interference microscopy KW - Wide bandgap semiconductors KW - Surface analysis, PY - 2023 AN - OPUS4-59443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emamverdi, Farnaz A1 - Huang, J. A1 - Mosane Razavi, Negar A1 - Bojdys, M. J. A1 - Forster, A. B. A1 - Budd, P. M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Molecular Mobility and Gas Transport Properties of Mixed Matrix Membranes Based on PIM‑1 and a Phosphinine Containing Covalent Organic Framework N2 - Polymers with intrinsic microporosity (PIMs) are gaining attention as gas separation membranes. Nevertheless, they face limitations due to pronounced physical aging. In this study a covalent organic framework containing λ5-phosphinine moieties, CPSF-EtO were incorporated as a nanofiller (concentration range 0-10 wt%) into a PIM-1 matrix forming dense films with a thickness of ca. 100 μm. The aim of the investigation was to investigate possible enhancements of gas transport properties and mitigating effects on physical aging. The incorporation of the nanofiller occurred on aggregate level with domains up to 100 nm as observed by T-SEM and confirmed by X-ray scattering. Moreover, the X-ray data show that the structure of the microporous network of the PIM-1 matrix is changed by the nanofiller. As the molecular mobility is fundamental for gas transport as well as for physical aging, the study includes dielectric investigations of pure PIM-1 and PIM-1/CPSF-EtO mixed matrix membranes to establish a correlation between the molecular mobility and the gas transport properties. Using the time-lag method the gas permeability and the permselectivity were determined for N2, O2, CH4 and CO2 for samples with variation in filler content. A significant increase in the permeability of CH4 and CO2 (50 % increase compared to pure PIM-1) was observed for a concentration of 5 wt% of the nanofiller. Furthermore, the most pronounced change in the permselectivity was found for the gas pair CO2/N2 at a filler concentration of 7 wt%. KW - Polymers of Intrinsic Microporosity KW - Nanocomposites PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595031 DO - https://doi.org/10.1021/acs.macromol.3c02419 SN - 0024-9297 VL - 57 IS - 4 SP - 1829 EP - 1845 PB - ACS Publications AN - OPUS4-59503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bartczack, Dorota A1 - Taché, Olivier A1 - Hodoroaba, Vasile-Dan T1 - Report on the homogeneity assessment of bimodal gold materials (nPSize1 and nPSize2) and particle number concentration by frequency method N2 - The main objective was to assess homogeneity of two bimodal gold materials, namely nPsize1 and nPSize2, containing approximately 1:1 and 10:1 particle number-based ratio of ~30nm and ~60nm particles. Particle number-based concentration within the two size fractions was determined with spICP-MS using the particle frequency method of calibration. KW - Nanoparticles KW - Homogeneity KW - Particle number concentration KW - Gold KW - nPSize PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595451 DO - https://doi.org/10.5281/zenodo.10654245 SP - 1 EP - 5 PB - Zenodo CY - Geneva AN - OPUS4-59545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manoharan, Deepak A1 - Ranjan, Subham A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Takamizawa, Satoshi A1 - Ghosh, Soumyajit T1 - Elasto-plastic behaviour with reversible thermosalient expansion in acrylonitrile-based organic crystals N2 - Crystalline materials that exhibit reversible mechanical responses upon exposure to external stimuli have garnered significant attention owing to their potential applications in various fields. Herein, we report a crystal of (2Z,2′Z)-2,2′-(1,4-phenylene)bis(3-(4-bromophenyl)acrylonitrile) (DSBr), which displays simultaneous elasto-plastic behaviour and reversible thermosalient effects. While elasto-plastic behaviour is attributed to underlying packing features, reversible thermosalient expansion is attributed to uniaxial expansion mediated by heat. Exceptional length increase and contraction upon cooling is due to the restorative nature of weak interactions through a cooperative effect. The cooperative movement of molecules is reflected in the unidirectional expansion of the habit plane. Thermosalient reversible expansion–contraction in elasto-plastic crystals have not been discussed in the literature so far. Detailed analysis reported herein provides a comprehensive understanding of the underlying mechanism of flexibility and thermosalient responses. This crystal's unique blend of reversible thermal expansion with flexibility holds substantial promise for applications in flexible thermal actuators. KW - Materials Chemistry KW - General Chemistry PY - 2024 DO - https://doi.org/10.1039/D3TC04272C SN - 2050-7526 SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Kun A1 - Carrod, Andrew J. A1 - Del Giorgio, Elena A1 - Hughes, Joseph A1 - Rurack, Knut A1 - Bennet, Francesca A1 - Hodoroaba, Vasile-Dan A1 - Harrad, Stuart A1 - Pikramenou, Zoe T1 - Luminescence Lifetime-Based Sensing Platform Based on Cyclometalated Iridium(III) Complexes for the Detection of Perfluorooctanoic Acid in Aqueous Samples N2 - Luminescence lifetimes are an attractive analytical method for detection due to its high sensitivity and stability. Iridium probes exhibit luminescence with long excited-state lifetimes, which are sensitive to the local environment. Perfluorooctanoic acid (PFOA) is listed as a chemical of high concern regarding its toxicity and is classified as a “forever chemical”. In addition to strict limits on the presence of PFOA in drinking water, environmental contamination from industrial effluent or chemical spills requires rapid, simple, accurate, and cost-effective analysis in order to aid containment. Herein, we report the fabrication and function of a novel and facile luminescence sensor for PFOA based on iridium modified on gold surfaces. These surfaces were modified with lipophilic iridium complexes bearing alkyl chains, namely, IrC6 and IrC12, and Zonyl-FSA surfactant. Upon addition of PFOA, the modified surfaces IrC6-FSA@Au and IrC12-FSA @Au show the largest change in the red luminescence signal with changes in the luminescence lifetime that allow monitoring of PFOA concentrations in aqueous solutions. The platform was tested for the measurement of PFOA in aqueous samples spiked with known concentrations of PFOA and demonstrated the capacity to determine PFOA at concentrations >100 μg/L (240 nM). KW - Perfluorooctanoic Acid (PFOA) KW - Cyclometalated iridium (III) complexes KW - Luminescent lifetime KW - Optically active surfaces KW - ToF-SIMS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594535 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.3c04289 DO - https://doi.org/10.1021/acs.analchem.3c04289 VL - 96 IS - 4 SP - 1565 EP - 1575 PB - American Chemical Society (ACS) AN - OPUS4-59453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz A1 - Emmerling, Franziska A1 - Retzmann, Anika A1 - Scoppola, E. A1 - Kochovski, Z. A1 - ten Elshof, J.E. A1 - Hodoroaba, Vasile-Dan T1 - Deciphering the non-classical Crystallization of transition metal phosphates (TMP) N2 - A crucial aspect of ensuring sustainable raw material utilization to meet global demand lies in the efficient recovery and reuse of critical elements and compounds. Phosphate, PO43-, and many transition metals e.g. Ni and Co are listed as critical raw materials (CRMs) due to their indispensable role in numerous industrial processes. However, these elements can also exert harmful environmental impacts, with phosphorus being a major contributor to anthropogenic eutrophication and transition metal ions acting as toxic pollutants, particularly in ground- and wastewaters. Typically, separate pathways have been considered to extract hazardous substances such as transition metals or phosphate, independently from each other. Here, we report the crystallization pathways of transition metal phosphate (TMP) compounds, M-struvite and M-phosphate octahydrate with M = Ni2+, Co2+, NixCo1-x2+, NH4MPO4∙6H2O, M3(PO4)2∙8H2O from aqueous solutions. The co-precipitation of these particular TMP compounds from industrial and agricultural wastewaters has high potential as a P- and 3d metal recovery route. For efficient extraction and transformation of the TMPs, a comprehensive understanding of their nucleation and crystallization pathways from aqueous solutions is required. While the crystallization mechanisms of magnesium or calcium phosphate-bearing phases have been researched for many decades (e.g. struvite, apatite), investigations into TMP materials are relatively scarce and often focus on the adsorption of transition metals on the surface instead of their actual incorporation in minerals. In our study, we investigated in detail the precipitation process of several Co and Ni phosphates using ex- and in-situ spectroscopic-, spectrometric- and diffraction-/scattering-based techniques. We show that the crystallization behavior of TMPs, indeed deviates from a classical crystallization paradigm and follows a non-classical multi-step pathway. Our work extends the understanding of TMP crystallization by elucidating the formation of amorphous precursors preceding the final crystalline phase This time-dependent transition of the transition metal precursor phases can be observed by electron-imaging/tomography depicting a progressively changing amorphous solids until their ultimate reconfiguration to a crystal (Figure 1). Here, the two-metallic NixCo1-x-mixtures deviated anomalously in their reaction kinetics, crystallization outcome and participation of both metals from their pure endmembers. By measuring the crystallization with in-situ X-ray scattering and pH using a flow-through setup geometry, a complex prolonged interplay among nucleating entities e.g. and amorphous or crystalline solids could be observed in the metal phosphate mixtures reaching equilibrium after almost two and a half hours (Figure 2). Our results provide a holistic perspective on the crystallization behavior of transition metal phosphate phases, shedding light on their unique nucleation and growth kinetics involving structural and chemical transformations of the intermediate phases. T2 - Granada Münster Discussion Meeting 2023 CY - Münster, Germany DA - 29.11.2023 KW - Non-classical crystallization theory KW - Transition metals KW - Phosphates PY - 2023 AN - OPUS4-59007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Driscoll, Laura L. A1 - Driscoll, Elizabeth H. A1 - Dong, Bo A1 - Sayed, Farheen N. A1 - Wilson, Jacob N. A1 - O’Keefe, Christopher A. A1 - Gardner, Dominic J. A1 - Grey, Clare P. A1 - Allan, Phoebe K. A1 - Michalchuk, Adam A. L. A1 - Slater, Peter R. T1 - Under pressure: offering fundamental insight into structural changes on ball milling battery materials N2 - Synthesis of Li ion battery materials via ball milling has been a huge area of growth, leading to new high-capacity electrode materials, such as a number of promising disordered rocksalt (DRS) phases. In prior work, it was generally assumed that the synthesis was facilitated simply by local heating effects during the milling process. In this work, we show that ball milling Li2MoO4 leads to a phase transformation to the high pressure spinel polymorph and we report electrochemical data for this phase. This observation of the formation of a high pressure polymorph shows that local heating effects alone cannot explain the phase transformation observed (phenakite to spinel) and so indicates the importance of other effects. In particular, we propose that when the milling balls collide with the material, the resulting shockwaves exert a localised pressure effect, in addition to local heating. To provide further support for this, we additionally report ball milling results for a number of case studies (Li2MnO3, Li2SnO3, Nb2O5) which reinforces the conclusion that local heating alone cannot explain the phase transformations observed. The work presented thus provides greater fundamental understanding of milling as a synthetic pathway and suggests potential strategies to prepare such samples without milling (e.g., doping to create internal chemical pressure). In addition, we suggest that further research is needed into the effect of the use of milling as a route to smaller particles, since we believe that such milling may also be affecting the surface structure of the particles through the influence of the shockwaves generated. KW - Pollution KW - Nuclear Energy and Engineering KW - Sustainability and the Environment KW - Environmental Chemistry KW - Renewable Energy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590086 DO - https://doi.org/10.1039/d3ee00249g VL - 16 IS - 11 SP - 5196 EP - 5209 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Casali, Lucia A1 - Emmerling, Franziska T1 - Use of the solvent-free mechanochemical method for a sustainable preparation of pharmaceuticals N2 - With the growing interest in environmental issues on the part of governments and institutions, pharmaceutical industries are asked to reduce their environmental footprint. Given the major impact related to the use of solvents, the development of methodologies less solvent demanding is nowadays even more urgent. In light of that, mechanochemistry would be a suitable solvent-free technology since it promotes the activation of the chemical reactions between (generally) solid materials via inputs of mechanical energy. Since such reactions may occur outside the kinetic and thermodynamic rules of conventional solution chemistry, the main limit of mechanochemistry is the poor mechanistic understanding of the solid-state transformations involved, which is still hindering a widespread use of the method, as well a scale-up to the industrial level. However, the development of methods for real-time monitoring of the mechanochemical reactions enables obtaining (in)accessible information on reaction intermediates, new products, or reaction time, thus getting closer to a better understanding of the mechanistic behaviour. With the rules of this chemistry becoming increasingly clear, the new reaction pathways of mechanochemistry wouldn’t represent a limit anymore, but an asset, that may lead to lot of opportunities for the pharmaceutical industry. T2 - Post Doc Day Berlin CY - Berlin, Germany DA - 02.11.2023 KW - Mechanochemistry KW - Sustainability KW - Pharmaceuticals PY - 2023 AN - OPUS4-59010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry emerges as a potent, environmentally friendly, and straightforward approach for crafting novel multicomponent crystal systems. Various milling parameters, including milling frequency, time, filling degree of the milling jar, ball diameter, vessel size, degree of milling ball filling, and material of jars, are recognized influencers on the mechanisms and rates of product formation. Despite the growing interest in mechanochemistry, there exists a gap in understanding the mechanistic aspects of mechanochemical reactivity and selectivity. To address this, diverse analytical methods and their combinations, such as powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography, have been developed for real-time, in situ monitoring of mechanochemical transformations. This discussion centers on our recent findings, specifically investigating the formation of (polymorphic) cocrystals and metal-organic frameworks. Through these studies, we aim to unravel the impact of milling parameters and reaction sequences on the formation mechanism and kinetics. Notably, in the mechanochemical chlorination reaction of hydantoin, normalizing kinetic profiles to the volume of the milling ball unequivocally demonstrates the conservation of milling reaction kinetics. In this ball-milling transformation, physical kinetics outweigh chemical factors in determining reaction rates. Attempting to interpret such kinetics solely through chemical terms poses a risk of misinterpretation. Our results highlight that time-resolved in situ investigations of milling reactions provide a novel avenue for fine-tuning and optimizing mechanochemical processes. T2 - PhD Seminar CY - Online meeting DA - 12.10.2023 KW - Mechanochemistry KW - In situ PY - 2023 AN - OPUS4-59022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goswami, Juli Nanda A1 - Haque, Najirul A1 - Seikh, Asiful H. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Bar, Nimai A1 - Ifseisi, Ahmad A. A1 - Biswas, Surajit A1 - Dolai, Malay T1 - Carboxylative cyclization of propargyl alcohols with carbon dioxide for the synthesis of α-alkylidene cyclic carbonates in presence of Co(III) schiff base complex catalyst N2 - A cobalt(III) complex, [Co(L)3](DMF) (1) of Schiff base ligand HL, 2-((E)-(benzylimino)methyl)-4-bromophenol is prepared and single crystal X-ray structural analysis have also been performed. The structures of complex 1 showed hexa-coordinated mononuclear systems that adopt octahedral geometry. The complex has also exhibited the supramolecular networks through non-covalent interactions like H-bonding, C–Hπ stacking. Moreover, the complex 1 is very effective in the catalytic fixation of carbon dioxide in propergyl alcohols to produce α-alkylidene cyclic carbonates. The catalytic production of α-alkylidene cyclic carbonates have been carried out through carboxylative cyclization of propargyl alcohols using CO2 balloon of 1 atm pressure at 80 ◦C. Solvent free condition (green synthesis) made this catalytic protocol eco-friendly towards the environment. Utilizing various substrates of propargyl alcohols moderate to high percentage yield (62–95%) of respective α-alkylidene cyclic carbonates product have been isolated over this catalytic reaction. Besides, the theoretical calculations (DFT) was performed for the prediction of probable mechanism of the catalytic reaction KW - Catalytic fixation of carbon dioxide KW - Carboxylative cyclization of propargyl alcohols KW - Cobalt (III) Schiff base complex KW - X-ray crystal analysis PY - 2024 DO - https://doi.org/10.1016/j.molstruc.2023.136868 SN - 0022-2860 VL - 1296 IS - Part 1 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-58947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Schwab, Alexander A1 - Villajos Collado, José Antonio A1 - Emmerling, Franziska T1 - Reactive extrusion of a model BSA@ZIF-8 biocomposite: a scalable, continuous and sustainable approach N2 - Metal-organic framework-based biocomposites (MOF-biocomposites) are promising materials for biosensing, biocatalysis, and delivery of biopharmaceuticals. One of the most studied MOFs for bioapplications is ZIF-8 (zeolitic imidazolate framework 8) due to its high surface area, high thermal and chemical stability, and low cytotoxicity. The conventional synthesis of ZIF-8-biocomposites called biomimetic mineralization includes mixing selected biomolecules 2-methylimidazole, and soluble Zn2+ source in water. Despite the high efficiency of the method, it does not allow for large-scale production and is restricted to hydrophilic biomolecules. Aimed at developing a scalable and versatile approach, we adapted our recently-reported ZIF-8 reactive extrusion for biocomposite production. We selected bovine serum albumin (BSA) as an inexpensive model biomacromolecule for the preparation of biocomposites. The synthesis of BSA@ZIF-8 was performed using a twin-screw extruder ZE 12 HMI (Three-Tec Gmbh) at a mild temperature of 40 °C. Automatic volumetric feeder ZD 12B (Three-Tec GmbH) was used to supply the reagent mixture consisting of 2-methylimidazole, zinc source, and BSA. To initiate the reaction, a catalytic amount of EtOH was added using a peristaltic pump BT-L (Lead Fluid, China). Powder X-Ray diffraction (PXRD), thermogravimetric analysis (TGA), FTIR, and N2 adsorption were used to characterize the extrudates. Highly crystalline and pure BSA@ZIF-8 with different BSA loadings was isolated after washing the extrudate with EtOH and sodium dodecyl sulfate. The EtOH feeding rate was optimized by following the protein encapsulation efficiency at a BSA mass fraction of 10%. A continuous extruder operation under optimized conditions showed good reproducibility and capability of producing biocomposites on the kilograms scale. These results provide highly valuable information for cheap and large-scale production of ZIF-8-based biocomposites. Due to the lack of restrictions on molecule size and solubility, our proof-of-concept study may significantly expand the selection of biomolecules for immobilization in ZIF-8, making the method applicable to various functional applications T2 - Tag der Chemie 2023 CY - Berlin, Germany DA - 05.07.2023 KW - Biocomposite KW - MOFs KW - Reactive extrusion KW - Zeolitic imidazolate framework PY - 2023 AN - OPUS4-58949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Emmerling, Franziska T1 - Chemists have solutions and know how to get rid of them N2 - Metal-organic framework-based biocomposites (MOF-biocomposites) are promising materials for biosensing, biocatalysis, and delivery of biopharmaceuticals. One of the most studied MOFs for bioapplications is ZIF-8 (zeolitic imidazolate framework 8) due to its high surface area, high thermal and chemical stability, and low cytotoxicity. The conventional synthesis of ZIF-8-biocomposites called biomimetic mineralization includes mixing selected biomolecules 2-methylimidazole, and soluble Zn2+ source in water.[3] Despite the high efficiency of the method, it does not allow for large-scale production and is restricted to hydrophilic biomolecules. Aimed at developing a scalable and versatile approach, we adapted our recently-reported ZIF-8 reactive extrusion for biocomposite production. We selected bovine serum albumin (BSA) as an inexpensive model biomacromolecule for the preparation of biocomposites. The synthesis of BSA@ZIF-8 was performed using a twin-screw extruder ZE 12 HMI (Three-Tec Gmbh) at a mild temperature of 40 °C. Automatic volumetric feeder ZD 12B (Three-Tec GmbH) was used to supply the reagent mixture consisting of 2-methylimidazole, zinc source, and BSA. To initiate the reaction, a catalytic amount of EtOH was added using a peristaltic pump BT-L (Lead Fluid, China). Powder X-Ray diffraction (PXRD), thermogravimetric analysis (TGA), FTIR, and N2 adsorption were used to characterize the extrudates. Highly crystalline and pure BSA@ZIF-8 with different BSA loadings was isolated after washing the extrudate with EtOH and sodium dodecyl sulfate. The EtOH feeding rate was optimized by following the protein encapsulation efficiency at a BSA mass fraction of 10%. A continuous extruder operation under optimized conditions showed good reproducibility and capability of producing biocomposites on the kilograms scale. These results provide highly valuable information for cheap and large-scale production of ZIF-8-based biocomposites. Due to the lack of restrictions on molecule size and solubility, our proof-of-concept study may significantly expand the selection of biomolecules for immobilization in ZIF-8, making the method applicable to various functional applications T2 - SALSA Make and Measure conference CY - Berlin, Germany DA - 13.09.2023 KW - In situ Raman KW - Large-scale processing KW - Reactive extrusion KW - Large-scale production KW - Mechanochemistry PY - 2023 AN - OPUS4-58953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Investigating the mechanism and kinetics of the mechanochemical synthesis of multi-component systems N2 - Mechanochemistry is a promising and environmentally friendly approach for synthesizing (novel) multicomponent crystal systems. Various milling parameters, such as milling frequency, milling time, and ball diameter have been shown to influence the mechanisms and rates of product formation. Despite increasing interest in mechanochemistry, there is still limited understanding of the underlying reactivity and selectivity mechanisms. Various analytical techniques have been developed to gain insight into the mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy and thermography. Using these techniques, we have studied the formation of (polymorphic) cocrystals, organometallic compounds and salts, and elucidated the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For example, our study of the mechanochemical chlorination reaction of hydantoin revealed that normalisation of the kinetic profiles to the volume of the grinding ball clearly showed that physical kinetics dominate the reaction rates in a ball-milling transformation. Attempts to interpret such kinetics in purely chemical terms risk misinterpretation of the results. Our results suggest that time-resolved in situ investigation of milling reactions is a promising way to fine-tune and optimise mechanochemical processes. T2 - ISIC 2023 CY - Glasgow, Scotland DA - 05.09.2023 KW - Mechanochemistry KW - Polymorphy KW - In situ PY - 2023 AN - OPUS4-59023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry emerges as a potent, environmentally friendly, and straightforward approach for crafting novel multicomponent crystal systems. Various milling parameters, including milling frequency, time, filling degree of the milling jar, ball diameter, vessel size, degree of milling ball filling, and material of jars, are recognized influencers on the mechanisms and rates of product formation. Despite the growing interest in mechanochemistry, there exists a gap in understanding the mechanistic aspects of mechanochemical reactivity and selectivity. To address this, diverse analytical methods and their combinations, such as powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography, have been developed for real-time, in situ monitoring of mechanochemical transformations. This discussion centers on our recent findings, specifically investigating the formation of (polymorphic) cocrystals and metal-organic frameworks. Through these studies, we aim to unravel the impact of milling parameters and reaction sequences on the formation mechanism and kinetics. Notably, in the mechanochemical chlorination reaction of hydantoin, normalizing kinetic profiles to the volume of the milling ball unequivocally demonstrates the conservation of milling reaction kinetics. In this ball-milling transformation, physical kinetics outweigh chemical factors in determining reaction rates. Attempting to interpret such kinetics solely through chemical terms poses a risk of misinterpretation. Our results highlight that time-resolved in situ investigations of milling reactions provide a novel avenue for fine-tuning and optimizing mechanochemical processes. T2 - Brimingham Green chemsistry CY - Birmingham, England DA - 08.09.2023 KW - Mechanochemistry KW - Green Chemistry PY - 2023 AN - OPUS4-59024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Combination of complementary methods For in situ studies N2 - This talk explores the synergistic application of complementary synchrotron methods for in situ investigations, providing a comprehensive approach to enhance analytical capabilities in materials research and characterization. T2 - INSYNX - DEUTSCH-BRASILIANISCHER WORKSHOP ON BREAKING BOUNDARIES OF IN SITU SYNCHROTRON X-RAY METHODS CY - Sao Paulo, Brazil DA - 06.03.2023 KW - In situ KW - Synchrotron PY - 2023 AN - OPUS4-59025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry has become a compelling method for producing (new) molecule s and mate-rials, but the inner workings of the milling jars remain a fascinating mystery. Advances in this field include tailor-made chemical systems and real-time revelations using techniques such as XRD and Raman spectroscopy. This talk will discuss our recent progress in using X-ray diffraction and sophisticated spectros-copy to observe reactions in various material systems during ball milling and extrusion in real-time. The complexity of mechanochemical reactions spans multiple scales and requires a holistic ap-proach. The categorisation of reactions by investigative methods precedes the exploration of real-time analysis that reveals macroscopic processes using synchrotron techniques. During this exploration, one resounding realisation remains: We are on the threshold of under-standing. The complexity of mechanochemistry requires a collective effort, drawing on the ex-pertise of a diverse community. As we unravel the web of mechanochemical phenomena, we acknowledge the collaborative nature of this ongoing journey. T2 - CMCC Mechanochemistry Discussions CY - Online meeting DA - 21.09.2023 KW - Mechanochemistry KW - In situ PY - 2023 AN - OPUS4-59026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Connecting the nodes: networks and networking N2 - This talk explores the intricate connections between scientists, focusing on the networking dynamics within the realm of metal-organic frameworks (MOFs). The study delves into the collaborative networks formed among scientists, shedding light on the synergistic relationships that contribute to advancements in MOF research. T2 - WINS School 2023 Frameworks and networks CY - Blossin, Germany DA - 02.06.2023 KW - Metal-organic frameworks PY - 2023 AN - OPUS4-59028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -