TY - JOUR A1 - Solomun, Tihomir A1 - Hahn, Marc Benjamin A1 - Smiatek, J. T1 - Raman spectroscopic signature of ectoine conformations in bulk solution and crystalline state N2 - Recent crystallographic results revealed conformational changes of zwitterionic ectoine upon hydration. By means of confocal Raman spectroscopy and density functional theory calculations, we present a detailed study of this transformation process as part of a Fermi resonance analysis. The corresponding findings highlight that all resonant couplings are lifted upon exposure to water vapor as a consequence of molecular binding processes. The importance of the involved molecular groups for water binding and conformational changes upon hydration is discussed. Our approach further Shows that the underlying rapid process can be reversed by carbon dioxide saturated atmospheres. For the first time, we also confirm that the conformational state of ectoine in aqueous bulk solution coincides with crystalline ectoine in its dihydrate state, thereby highlighting the important role of a few bound water molecules. KW - Fermi resonance KW - Ectoine hydration KW - DFT calculations of Raman spectra KW - Position of carboxylate group PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509855 DO - https://doi.org/10.1002/cphc.202000457 SN - 1439-4235 SN - 1439-7641 VL - 21 IS - 17 SP - 1945 EP - 1950 PB - Wiley-VCH CY - Weinheim AN - OPUS4-50985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Das, S. A1 - Lal, G. A1 - Soni, S. R. A1 - Ghosh, A. A1 - Reddy, C. M. A1 - Ghosh, S. T1 - Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine N2 - Multidrug solids have a potential use to efficiently treat and control a superfluity of medical conditions. To address the current drawbacks of drug development in R&D, it was targeted to achieve new pharmaceutical solid forms of fenamic acids having improved solubility and thermal stability. Subsequently, five new multicomponent solids consisting of three salt hydrates of trimethoprim (TMP) with mefenamic acid (TMP-MFA-H2O), tolfenamic acid (TMP-TFA-H2O) and flufenamic acid (TMP-FFA-H2O), and two cocrystals of sulfamethazine (SFZ) with flufenamic acid (SFZ-FFA) and niflumic acid (SFZ-NFA) were prepared by liquid assisted grinding. Looking at the structures of active pharmaceutical ingredient (API) molecules, it was quite expected that a wide range of supramolecular synthons would lead to cocrystallization. New forms were characterized thoroughly by various solid-state techniques, including single crystal X-ray diffraction (SCXRD), which provided details of hydrogen bonding, molecular packing and interactions between drug and coformer. Kinetic solubility at pH 7.4 buffer study has been carried out and a comparison is made with respect to the parent drugs. A significant enhancement of NSAIDs solubility was observed in all salt hydrate systems of TMP. Thus with increasing physicochemical properties such as improved solubility further leads to the enhancement of bioavailability, which has implications to overcoming the formulation related problems of active pharmaceutical ingredients (APIs). KW - Cocrystals KW - Crystal engineering KW - Solubility PY - 2020 DO - https://doi.org/10.1016/j.molstruc.2019.127028 SN - 0022-2860 VL - 1199 SP - 127028 PB - Elsevier B.V. AN - OPUS4-49873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe T1 - Zentrifugentechnologie zur statistischen Untersuchung von Stumpfklebungen: Ergebnisse ZENSUS-Ringversuchs N2 - Der Vortrag widmet sich der „Zentrifugentechnologie zur statistischen Untersuchung von Stumpfklebungen“ und beschreibt drei wesentlich verschiedene Realsysteme (Fügefläche 1/Klebstoff/ Fügefläche 2), um die Statistik ZPM (wiederholte Ein-Proben-Prüfung) vs. CAT (Mehr-Proben-Prüfung) zu vergleichen. Dazu wurden drei unterschiedliche Klebstoff-klassen mit typischen Fügeteilmaterialkombinationen ausgewählt und in einem Vorversuch mit jeweils 3 unterschiedlichen Prüfgeschwindigkeiten sowohl im Weg-geregelten als auch Kraft-geregelten Mode beansprucht. Die Ergebnisse ZPM vs. CAT und Kraft- vs. Weg-Regelung des Vorversuches zeigten keinerlei Unterschiede auf. Im Ergebnis wurde ein Ringversuch im Kraft-geregelten Mode (6xZPM vs. 8xCAT) für ein Referenzsystem durchgeführt, der nachwies, dass die CAT-Technologie statistisch relevante Prüfergebnisse zur Klebfestigkeit bereitstellt. Es zeigte sich, dass für zwei ZPM-Teilnehmer im Vertrauensbereich 99% statistisch signifikant etwas kleinere Werte der Klebfestigkeit bestimmt wurden, was auf geringfügige Abweichungen von der axialen Ausrichtung des eingespannten Prüflings bei der Ein-Proben-ZPM-Zugprüfung zurückgeführt wird. T2 - VCI CY - Frankfurt/Main, Germany DA - 10.03.2020 KW - Zentrifugentechnologie KW - Statistischen Untersuchung KW - Normung KW - Prüfgeschwindigkeiten KW - Stumpfklebungen PY - 2020 AN - OPUS4-50581 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Wonneberger, R. A1 - Undisz, A. A1 - Kirner, Sabrina V. A1 - Wasmuth, Karsten A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Chemical effects during the formation of various types of femtosecond laser-generated surface structures on titanium alloy N2 - In this contribution, chemical, structural, and mechanical alterations in various types of femtosecond laser-generated surface structures, i.e., laser-induced periodic surface structures (LIPSS, ripples), Grooves, and Spikes on titanium alloy, are characterized by various surface analytical techniques, including X-ray diffraction and glow-discharge optical emission spectroscopy. The formation of oxide layers of the different laser-based structures inherently influences the friction and wear performance as demonstrated in oil-lubricated reciprocating sliding tribological tests (RSTTs) along with subsequent elemental mapping by energy-dispersive X-ray analysis. It is revealed that the fs-laser scan processing (790 nm, 30 fs, 1 kHz) of near-wavelength-sized LIPSS leads to the formation of a graded oxide layer extending a few hundreds of nanometers into depth, consisting mainly of amorphous oxides. Other superficial fs-laser-generated structures such as periodic Grooves and irregular Spikes produced at higher fluences and effective number of pulses per unit area present even thicker graded oxide layers that are also suitable for friction reduction and wear resistance. Ultimately, these femtosecond laser-induced nanostructured surface layers efficiently prevent a direct metal-to-metal contact in the RSTT and may act as an anchor layer for specific wear-reducing additives contained in the used engine oil. KW - Laser-induced oxide layer KW - Laser-induced periodic surface strctures (LIPSS) KW - Femtosecond laser processing KW - Tribology KW - Surface processing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505660 DO - https://doi.org/10.1007/s00339-020-3434-7 SN - 0947-8396 SN - 1432-0630 VL - 126 IS - 4 SP - 266 PB - Springer Nature Switzerland AG AN - OPUS4-50566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray radiation protection aspects during ultrashort laser processing N2 - Ultrashort pulse laser processing of materials allows for precise machining with high accuracy. By increasing the repetition rate to several 100 kHz, laser machining becomes quick and cost-effective. Ultrafast laser processing at high repetition rates and peak intensities above 10^13 W/cm^2 can cause a potential hazard by generation of unwanted x-ray radiation. Therefore, radiation protection must be considered. For 925 fs pulse duration at a center wavelength of 1030 nm, the x-ray emission in air at a repetition rate of 400 kHz was investigated up to a peak intensity of 2.6 × 10^14 W/cm^2. Based on the presented measurements, the properties of potential shielding materials will be discussed. By extending our previous works, a scaling of the x-ray radiation emission to higher peak intensities up to 10^15 W/cm^2 is described, and emitted x-ray doses are predicted. KW - Laser ablation KW - Ultrashort pulse laser processing KW - Laser-induced x-ray emission KW - Radiation protection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505677 DO - https://doi.org/10.2351/1.5134778 VL - 32 IS - 2 SP - 022004 AN - OPUS4-50567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Gefährdung durch Röntgenstrahlung bei der UKP-Lasermaterialbearbeitung N2 - Der Vortrag beschreibt die Gefährdung durch die Erzeugung unerwünschter Röntgenstrahlung bei der Lasermaterialbearbeitung mit ultrakurzen Laserimpulsen. Die Einfluss der Laserparameter, der Prozessführung und die Materialabhängigkeit werden dargestellt. T2 - Bayerische Laserschutztage 2020 CY - Nuremberg, Germany DA - 21.01.2020 KW - Ultrakurze Laserimpulse KW - Materialbearbeitung KW - Röntgenstrahlung KW - Strahlenschutz PY - 2020 AN - OPUS4-50318 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Particle Scattering Simulations with Geant4: An Overview N2 - A brief overview over the capabilities of Geant4 is provided together with some example applications T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Bogotá, Columbia DA - 03.02.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Simulation KW - Monte-Carlo simulation KW - Particle scattering simulation KW - Dosimetry KW - Xrays KW - Electrons KW - Radiation PY - 2020 AN - OPUS4-50332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Hands on: Particle scattering simulations A practical introduction N2 - A practical introduction is given for the necessary steps to start with particle scattering simulations based on Geant4/Topas. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Bogotá, Columbia DA - 04.02.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Monte-Carlo simulations KW - Simulations KW - Particle scattering simulation KW - Scattering KW - Topas PY - 2020 AN - OPUS4-50333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - The role of scattering in the formation of laserinduced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon that is accompanying laser materials processing. These surface nanostructures pave a simple way for surface functionalization with numerous applications in optics, fluidics, tribology, medicine, etc. This contribution reviews the current view on the role of electromagnetic scattering in the formation of LIPSS. T2 - Workshop on Theoretical and Numerical Tools for Nanophotonics (TNTN 2020) CY - Berlin, Germany DA - 12.02.2020 KW - Laser-induced periodic surface structures, LIPSS KW - Electromagnetic scattering KW - Finite-difference time-domain calculations PY - 2020 AN - OPUS4-50399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo T1 - Femtosecond laser nanostructuring of metal and semiconductor surfaces N2 - The irradiation of solids with high-intensity laser pulses can excite materials into extreme conditions, which then return to equilibrium via various structural and topographical relaxation mechanisms. Thus, ultrafast laser processing can manifest in various morphological surface transformations, ranging from direct contour shaping to large-area-surface functionalization through the generation of self-organized nano- and microstructures. The interaction mechanisms between semiconductors and metals with ultrashort laser pulses have been extensively studied using femtosecond laser sources, generating a general understanding of the main interaction mechanisms present during the processing of those materials. In the specific case of nanometer-scaled laser-induced periodic surface structures (LIPSS), however, the general explanation that fits all the experimental outcomes is still to be completed. The most accepted explanation consists in the interference of the incoming laser pulse with light scattered at the rough surface, e.g. via surface plasmon polaritons. Such scattering and interference effects generate a spatially modulated pattern of the absorbed optical energy featuring maxima and minima with periods very close to the laser irradiation wavelength, λ. One general criterion that allows to classify LIPSS in terms of their spatial periodicity (Λ) for normally incident radiation is the following: low spatial frequency for Λ≈λ, and high spatial frequency for Λ≪λ. In this way, the right combination of irradiation parameters (laser fluence, number of pulses per spot area unit and repetition rate) could be used to cover a wide size range that can ultimately be exploited for different applications in optics, biology, fluidics and tribology among others. T2 - SPIE Photonics West Conference, Symposium "Synthesis and Photonics of Nanoscale Materials XVII" CY - San Francisco, CA, USA DA - 01.02.2020 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Metal KW - Semiconductor PY - 2020 AN - OPUS4-50388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo T1 - Femtosecond laser functionalized surfaces inspired by nature N2 - Nature has continuously inspired science when practical problems need to be solved in a functional and efficient way. The challenge for researchers usually consists in the transfer of such biological functionalities to diverse types of technical materials with the available processing technologies. In this regard, femtosecond laser-based approaches offer a large flexibility to modify virtually any material (metals, semiconductors and dielectrics), provide the ability to work under different environment conditions (air, vacuum or reactive atmospheres) and when combined with the proper optics, they offer exceptional spatial resolutions that could be used to mimic effectively very complex functionalities. In the particular case of surface processing, lasers have been proven feasible to functionalize materials by customizing its optical properties, chemical composition and surface morphology in a controllable way and in some cases at industrially relevant speeds. In this work, we present a selection of technical applications based on surface modifications in the form of laser-induced periodic surface structures (LIPSS) to tailor the material properties for utilization in optics, fluid transport, wetting control and tribology. T2 - SPIE Photonics West Conference, Symposium "Laser-Based Micro- and Nano-Processing XIV" CY - San Francisco, CA, USA DA - 01.02.2020 KW - Laser-induced periodic surface structures, LIPSS KW - Biomimetics KW - Surface functionalization KW - Laser ablation PY - 2020 AN - OPUS4-50400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Petrushina, M. A1 - Dedova, E. A1 - Portnaygin, A. A1 - Papynov, E. A1 - Filatov, E. A1 - Gubanov, A. T1 - Pressure induced change in the ZrWMoO8 N2 - In this paper we report high-pressure synchrotron x-ray powder diffraction data for the cubic ZrWMoO8. For the first time, extensive structural study of ZrWMoO8 solid solution as a function of pressure was performed. This study shows that disordered cubic-ZrWMoO8 (space group Pa) transforms to ordered cubic-ZrWMoO8 (space group P) at low pressure. A further high-pressure influence leads followed by amorphization of the sample at 2.2 GPa. All transformations are irreversible. Our work will have high impact in the design of new composite materials with well-defined thermal expansion, especially for applications under extreme conditions and high mechanic stress. KW - Phase transition KW - High-pressure KW - Complex oxides PY - 2020 DO - https://doi.org/10.1016/j.matpr.2019.12.141 VL - 25 IS - 3 SP - 428 EP - 430 PB - Elsevier Ltd. AN - OPUS4-50822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Pauw, Brian Richard A1 - Qu, Xintong A1 - Schönhals, Andreas T1 - Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite N2 - The complex effects of nanoparticles on a thermosetting material based on an anhydride cured DGEBA/Boehmite nanocomposite with different particle concentrations is considered. A combination of X-ray scattering, calorimetry, including fast scanning calorimetry as well as temperature modulated calorimetry and dielectric spectroscopy, was employed to study the structure, the vitrification kinetics and the molecular dynamics of the nanocomposites. For the first time in the literature for an epoxy-based composite a detailed analysis of the X-ray data was carried out. Moreover, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking density, indicated by two separate dynamic glass transitions. The glass transition temperature decreases with increasing nanoparticle concentration, resulting from a change in the crosslinking density. Moreover, on the one hand, for nanocomposites the incorporation of nanofiller increased the number of mobile segments for low nanoparticle concentrations, due to the altered crosslinking density. On the other hand, for higher loading degrees the number of mobile segments decreased, resulting from the formation of an immobilized interphase (RAF). The simultaneous mobilization and immobilization of the segmental dynamics cannot be separated unambiguously. Taking the sample with highest number of mobile segments as reference state it was possible to estimate the amount of RAF. KW - Nanocomposite PY - 2020 DO - https://doi.org/10.1039/d0sm00744g SN - 1744-683X VL - 16 IS - 23 SP - 5406 EP - 5421 PB - Royal Chemical Society AN - OPUS4-50883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - DNA basierte Dosimetrie N2 - We propose the development of a standardized DNA based dosimeter. This dosimeter will improve the comparability between the results of different laboratories in radiation research. Compared to conventional methods in dosimetry, this Approach provides direct access to the relation between radiation interaction and biological damage. Moreover, it enables the systematic investigation of the relation between the microscopic characteristics of radiation and DNA damage over a wide dose range. T2 - Zertkom CY - Online meeting DA - 13.05.2020 KW - DNA KW - Dosimetrie KW - Dosimetry KW - Effective dose KW - Energy dose KW - Energiedosis KW - Equivalent dose KW - Absorbed dose PY - 2020 AN - OPUS4-50779 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface functionalization by laser-induced periodic surface structures N2 - In recent years, the improved understanding of the formation of laser-induced periodic surface structures (LIPSS) has led to an emerging variety of applications that modify the optical, mechanical, and chemical properties of many materials. Such structures strongly depend on the laser beam polarization and are formed usually after irradiation with ultrashort linearly polarized laser pulses. The most accepted explanation for the origin of the structures is based on the interference of the incident laser radiation with electromagnetic surface waves that propagate or scatter at the surface of the irradiated materials. This leads to an intensity modulation that is finally responsible for the selective ablation in the form of parallel structures with periods ranging from hundreds of nanometers up to some micrometers. The versatility when forming such structures is based on the high reproducibility with different wavelengths, pulse durations and repetition rate laser sources, customized micro- and nanometric spatial resolutions, and compatibility with industrially relevant processing speeds when combined with fast scanning devices. In this contribution, we review the latest applications in the rapidly emerging field of surface functionalization through LIPSS, including biomimetic functionalities on fluid transport, control of the wetting properties, specific optical responses in technical materials, improvement of tribological performance on metallic surfaces, and bacterial and cell growth for medical devices, among many others. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Surface functionalization KW - Applications PY - 2020 DO - https://doi.org/10.2351/7.0000103 SN - 1938-1387 VL - 32 IS - 2 SP - 022063 PB - Laser Institute of America AN - OPUS4-50780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Heise, M. A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - New 2D layered structures with direct fluorine-metal bonds: MF(CH3COO) (M: Sr, Ba, Pb) N2 - New coordination polymers with 2D network structures with fluorine directly coordinated to the metal ion were prepared both via mechanochemical synthesis and fluorolytic sol–gel synthesis. Depending on the synthesis route, the samples show different particle sizes, according to SEM imaging. The crystal structures of barium acetate fluoride, strontium acetate fluoride, and lead acetate fluoride (BaFIJCH3COO), SrFIJCH3COO) and PbFIJCH3COO)) were solved from X-ray powder diffraction data. The structure solution is backed by the results from 19F MAS NMR, FT IR data, and thermal analysis. The calculated chemical shifts of the 19F MAS NMR spectra coincide well with the measured ones. It turns out that the grinding conditions have a remarkable influence on the mechanochemical synthesis and its products. Our systematic study also indicates a strong influence of the atomic radii of Ca, Sr, Ba, and Pb on the success of the syntheses. KW - Mechanochemistry KW - Coordination polymers PY - 2020 DO - https://doi.org/10.1039/d0ce00287a VL - 22 IS - 16 SP - 2772 EP - 2780 PB - Royal Society of Chemistry AN - OPUS4-50789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Axel A1 - Goedecke, Caroline A1 - Eisentraut, Paul A1 - Piechotta, Christian A1 - Braun, Ulrike T1 - Microplastic analysis using chemical extraction followed by LC‑UV analysis: a straightforward approach to determine PET content in environmental samples N2 - Background: The ubiquitous occurrence of microplastic particles in marine and aquatic ecosystems was intensively investigated in the past decade. However, we know less about the presence, fate, and input paths of microplastic in terrestrial ecosystems. A possible entry path for microplastic into terrestrial ecosystems is the agricultural application of sewage sludge and solid bio-waste as fertilizers. Microplastic contained in sewage sludge also includes Polyethylene terephthalate (PET), which could originate as fiber from textile products or as a fragment from packaging products (foils, bottles, etc.). Information about microplastic content in such environmental samples is limited yet, as most of the used analytical methods are very time-consuming, regarding sample preparation and detection, require sophisticated analytical tools and eventually need high user knowledge. Results: Here, we present a simple, specific tool for the analysis of PET microplastic particles based on alkaline extraction of PET from the environmental matrix and subsequent determination of the monomers, terephthalic acid, using liquid chromatography with UV detection (LC-UV). The applicability of the method is shown for different types of PET in several soil-related, terrestrial environmental samples, e.g., soil, sediment, compost, fermentation residues, but also sewage sludge, suspended particles from urban water management systems, and indoor dust. Recoveries for model samples are between 94.5 and 107.1%. Limit of determination and limit of quantification are absolute masses of 0.031 and 0.121 mg PET, respectively. In order to verify the measured mass contents of the environmental samples, a method comparison with thermal extraction-desorption-gas chromatography–mass spectrometry (TED-GC/MS) was conducted. Both methods deliver similar results and corroborated each other. PET mass contents in environmental samples range from values below LOQ in agriculture soil up to 57,000 mg kg−1 in dust samples. Conclusions: We demonstrate the potential of an integral method based on chemical extraction for the Determination of PET mass contents in solid environmental samples. The method was successfully applied to various matrices and may serve as an analytical tool for further investigations of PET-based microplastic in terrestrial ecosystems. KW - Soil KW - Analysis KW - Microplastic KW - PET KW - LC-UV PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509060 DO - https://doi.org/10.1186/s12302-020-00358-x IS - 32 SP - 85 PB - Springer Open CY - Berlin AN - OPUS4-50906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kanwal, S. A1 - Ali, Naveed Zafar A1 - Hussain, R. A1 - Shah, F.U. A1 - Akhter, Z. T1 - Poly-thiourea formaldehyde based anticorrosion marine coatings on Type 304 stainless steel N2 - In the present study, hexamethylene diisocyanate (HMDI) encapsulated poly-thiourea formaldehyde (PTF) (10 wt%) coating was developed in an epoxy-polyamine matrix and their anticorrosion studies on Type SS304 stainless steel substrate have been conducted using electrochemistry techniques. The compact and hydrophobic shell wall of PTF proved to be a potent shell wall material for HMDI encapsulation. The effect of temperature and pH values was found to be decisive factor in the synthesis of microcapsules. The PTF microcapsules were synthesized in acidic condition with a pH value of 3. Over 90% of the core fraction is retained in water after 21 days immersion. However, core content decreased with increasing temperature. The capsules were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Electrochemical Impedance spectroscopy (EIS). Scanning electron microscopic analysis depicts the uniform morphology of coating with a particle size in the range of 1.08 µm–22.06 µm. The vibrational band at 2271 cm−1 attributed to NCO signal further endorses the successful encapsulation of HMDI into the PTF capsules. Electrochemical testing on steel specifies the appreciable anticorrosion performance of the synthesized poly thiourea formaldehyde (PTF) coating against artificial sea water. KW - In-situ polymerization KW - Encapsulation KW - Thiourea-formaldehyde KW - Marine corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507932 DO - https://doi.org/10.1016/j.jmrt.2019.12.045 VL - 9 IS - 2 SP - 2146 EP - 2153 PB - Elsevier B.V. AN - OPUS4-50793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Krause, Christina A1 - Zorn, R. A1 - Lohstroh, W. A1 - Schneider, G. J. A1 - Zamponi, M. A1 - Holerer, O. A1 - Frick, B. A1 - Schönhals, Andreas T1 - Complex molecular dynamics of a symmetric model discotic liquid crystal revealed by broadband dielectric, thermal and neutron spectroscopy N2 - The molecular dynamics of the triphenylene-based discotic liquid crystal HAT6 is investigated by broadband dielectric spectroscopy, advanced dynamical calorimetry and neutron scattering. Differential scanning calorimetry in combination with X-ray scattering reveals that HAT6 has a plastic crystalline phase at low temperatures, a hexagonally ordered liquid crystalline phase at higher temperatures and undergoes a clearing transition at even higher temperatures. The dielectric spectra show several relaxation processes: a localized gamma-relaxation a lower temperature and a so called alpha-2-relaxation at higher temperatures. The relaxation rates of the alpha-2-relaxation have a complex temperature dependence and bear similarities to a dynamic glass transition. The relaxation rates estimated by hyper DSC, Fast Scanning calorimetry and AC Chip calorimetry have a different temperature dependence than the dielectric alpha-2-relaxation and follows the VFT-behavior characteristic for glassy dynamics. Therefore, this process is called alpha-1-relaxation. Its relaxation rates show a similarity with that of polyethylene. For this reason, the alpha-1-relaxation is assigned to the dynamic glass transition of the alkyl chains in the intercolumnar space. Moreover, this process is not observed by dielectric spectroscopy which supports its assignment. The alpha-2-relaxation was assigned to small scale translatorial and/or small angle fluctuations of the cores. The neutron scattering data reveal two relaxation processes. The process observed at shorter relaxation times is assigned to the methyl group rotation. The second relaxation process at longer time scales agree in the temperature dependence of its relaxation rates with that of the dielectric gamma-relaxation. KW - Discotic Liquid Crystals PY - 2020 DO - https://doi.org/10.1039/c9sm02487e VL - 16 IS - 8 SP - 2005 EP - 2016 PB - Royal Chemical Society AN - OPUS4-50466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - Adham-Zomrawy, A. A1 - Saeed, A. M. A1 - El-Arab, M. A. E. A1 - Shehata, H. A1 - Friedrich, J. T1 - Degradation of organic dye using plasma discharge: optimization, pH and energy N2 - Decolorization of Acid Orange 142 (AO142) as important water pollutant was observed on the exposure of the dye solutions to an atmospheric non-thermal gas plasma. Aresponse Surface methodology (RSM) combined with a central composite design (CCD) was utilized to optimize the main factors (variables) affecting the degradation efficiency (response) of AO142, such as the applied voltage, the gap distance between the high voltage electrode and the surface of the solution. The regression analysis showed that a first-order polynomial model well fits the experimental data with a coefficient of determination R2=0.96. FT-IR, UV-vis,TOCand GC-MS measurements were used to investigate the decolorization of the dye on exposure to the plasma discharges. A possible Degradation pathway was postulated. Additionally, the conductivity and pH changes during the treatment were also evaluated. The plasma treatment combined with Fe2+ (plasma Fenton reaction) exhibited a higher degradation efficiency, higher energy yield connected with lower energy consumption in comparison to the plasma treatment without Fe2+ addition. KW - Advanced Oxidation PY - 2020 DO - https://doi.org/10.1088/2516-1067/ab6703 VL - 2 IS - 1 SP - 015009 PB - IOP publishing Ltd AN - OPUS4-50467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Aktuelle Ultrakurzpulslaser-Anwendungen an der BAM N2 - Der Vortrag fasst aktuelle Anwendungsgebiete ultrakurzer Laserimpulse in der Materialbearbeitung zusammen. Dabei wird auch die Gefährdung durch unerwünschte Emission von Röntgenstrahlung bei der Überschreitung bestimmter Laserparameter thematisiert. T2 - Anwendertreffen des Laserverbundes Berlin-Brandenburg e.V. CY - Brandenburg, Germany DA - 16.01.2020 KW - Ultrakurze Laserimpulse KW - Materialbearbeitung KW - Oberflächenstrukturierung PY - 2020 AN - OPUS4-50317 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Déziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - The role of the laser-induced oxide layer in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are often present when processing solid targets with linearly polarized ultrashort laser pulses. The different irradiation parameters to produce them on metals, semiconductors and dielectrics have been studied extensively, identifying suitable regimes to tailor its properties for applications in the fields of optics, medicine, fluidics and tribology, to name a few. One important parameter widely present when exposing the samples to the high intensities provided by these laser pulses in air environment, that generally is not considered, is the formation of a superficial laser-induced oxide layer. In this paper, we fabricate LIPSS on a layer of the oxidation prone hard-coating material chromium nitride in order to investigate the impact of the laser-induced oxide layer on its formation. A variety of complementary surface analytic techniques were employed, revealing morphological, chemical and structural characteristics of well-known high-spatial frequency LIPSS (HSFL) together with a new type of low-spatial frequency LIPSS (LSFL) with an anomalous orientation parallel to the laser polarization. Based on this input, we performed finite-difference time-domain calculations considering a layered system resembling the geometry of the HSFL along with the presence of a laser-induced oxide layer. The simulations support a scenario that the new type of LSFL is formed at the interface between the laser-induced oxide layer and the non-altered material underneath. These findings suggest that LSFL structures parallel to the polarization can be easily induced in materials that are prone to oxidation. KW - Laser-induced oxide layer KW - Laser-induced periodic surface structures (LIPSS) KW - Surface chemistry KW - Femtosecond laser processing KW - Nanostructuring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502530 DO - https://doi.org/10.3390/nano10010147 SN - 2079-4991 VL - 10(1) IS - Special issue "Laser-generated periodic nanostructures" SP - 147-1 EP - 147-18 PB - MDPI CY - Basel AN - OPUS4-50253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Effects of laser-induced periodic surface structures on the superconducting properties of Niobium N2 - It is well known that the use of ultrashort (fs) pulsed lasers can induce the generation of (quasi-) periodic nanostructures (LIPSS, ripples) on the surface of many materials. Such nanostructures have also been observed in sample’s surfaces irradiated with UV lasers with a pulse duration of 300 ps. In this work, we compare the characteristics of these nanostructures on 1-mm and on 25-μm thick niobium sheets induced by 30 fs n-IR and 300 ps UV pulsed lasers. In addition to conventional continuous or burst mode processing configurations, two-dimensional laser beam and line scanning modes have been investigated in this work. The latter allows the processing of large areas with a more uniform distribution of nanostructures at the surface. The influence of the generated nanostructures on the superconducting properties of niobium has also been explored. For this aim, magnetic hysteresis loops have been measured at different cryogenic temperatures to analyse how these laser treatments affect the flux pinning behaviour and, in consequence, the superconductor’s critical current values. It was observed that laser treatments are able to modify the superconducting properties of niobium samples. T2 - E-MRS Spring Meeting 2019 CY - Nice, France DA - 27.05.2019 KW - Superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Niobium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502541 DO - https://doi.org/10.1016/j.apsusc.2019.145140 SN - 0169-4332 SN - 1873-5584 VL - 508 IS - 1 SP - 145140-1 EP - 145140-7 PB - Elsevier CY - Amsterdam AN - OPUS4-50254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marquardt, Julien T1 - Investigating the morphology of nanostructured mixed metal oxides (Ir/TiOx) and its impact on the electrocatalytic OER-activity N2 - The electrocatalytic conversion of water into molecular hydrogen and oxygen under the utilization of excess renewable energies, such as wind power, photovoltaics and hydroelectric power is one possible pathway to establish a sustainable hydrogen economy. The obtained hydrogen is either stored and used in a fuel cell or consumed on-site in industrial applications. Water electrolysis systems (WES) are based on two half cell reactions, such as oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) which both proceed simultaneously. The OER suffers from slow reaction kinetics and thus limits the overall performance. The most promising compounds in acidic electrolysis are IrO2 and RuO2. Due to their rare abundance and extremely high price a wide use of acidic WES was prevented. Lowering the catalysts noble metal content by mixing iridium with titanium reduces the production costs. Thin films are produced by dip coating a solution of metal oxide precursors alongside with a polymer template dissolved in ethanol. The obtained samples are subsequently calcined to the remove the template and adjust crystallinity. Finally, an additional iridium deposition step was performed on the outer surface plane area. Understanding the influence of structural and morphological aspects on the OER-activity is beneficial to further optimize WES. The current presentation will thus give detailed insights to structural aspects obtained by Raman spectroscopy, small- and wide-angle X-ray scattering which are then combined with electrochemical parameters to deduce structure-activity relationships. T2 - Joint Polish-German Crystallographic Meeting 2020 CY - Wrocław, Poland DA - 24.02.2020 KW - nanostructured KW - electrocatalysis PY - 2020 AN - OPUS4-50664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baláž, M. A1 - Tešinský, M. A1 - Marquardt, Julien A1 - Škrobian, M. A1 - Daneu, N. A1 - Rajňák, M. A1 - Baláž, P. T1 - Synthesis of copper nanoparticles from refractory sulfides using a semi-industrial mechanochemical approach N2 - The large-scale mechanochemical reduction of binary sulfides chalcocite (Cu2S) and covellite (CuS) by elemental iron was investigated in this work. The reduction of Cu2S was almost complete after 360 min of milling, whereas in the case of CuS, a significant amount of non-reacted elemental iron could still be identified after 480 min. Upon application of more effective laboratory-scale planetary ball milling, it was possible to reach almost complete reduction of CuS. Longer milling leads to the formation of ternary sulfides and oxidation product, namely cuprospinel CuFe2O4. The rate constant calculated from the magnetometry measurements using a diffusion model for Cu2S and CuS reduction by iron in a large-scale mill is 0.056 min−0.5 and 0.037 min−0.5, respectively, whereas for the CuS reduction in a laboratory-scale mill, it is 0.1477 min−1. The nanocrystalline character of the samples was confirmed by TEM and XRD, as the produced Cu exhibited sizes up to 16 nm in all cases. The process can be easily scaled up and thus copper can be obtained much easier from refractory minerals than in traditional metallurgical approaches. KW - Mechanochemistry KW - Copper sulfides KW - Copper nanoparticles KW - Magnetometry KW - Oxidation PY - 2020 DO - https://doi.org/10.1016/j.apt.2019.11.032 VL - 31 IS - 2 SP - 782 EP - 791 PB - Elsevier B.V. AN - OPUS4-50665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aratsu, K. A1 - Takeya, R. A1 - Pauw, Brian Richard A1 - Hollamby, M.J. A1 - Kitamoto, Y. A1 - Shimizu, N. A1 - Takagi, H. A1 - Haruki, R. A1 - Adachi, S. A1 - Yagai, S. T1 - Supramolecular copolymerization driven by integrative self-sorting of hydrogen-bonded rosettes N2 - Molecular recognition to preorganize noncovalently polymerizable supramolecular complexes is a characteristic process of natural supramolecular polymers, and such recognition processes allow for dynamic self-alteration, yielding complex polymer systems with extraordinarily high efficiency in their targeted function. We herein show an example of such molecular recognition-controlled kinetic assembly/disassembly processes within artificial supramolecular polymer systems using six-membered hydrogen-bonded supramolecular complexes (rosettes). Electron-rich and poor monomers are prepared that kinetically coassemble through a temperature-controlled protocol into amorphous coaggregates comprising a diverse mixture of rosettes. Over days, the electrostatic interaction between two monomers induces an integrative self-sorting of rosettes. While the electron-rich monomer inherently forms toroidal homopolymers, the additional electrostatic interaction that can also guide rosette association allows helicoidal growth of supramolecular copolymers that are comprised of an alternating array of two monomers. Upon heating, the helicoidal copolymers undergo a catastrophic transition into amorphous coaggregates via entropy-driven randomization of the monomers in the rosette. KW - Self-assembly KW - Coaggregation KW - Scattering KW - Simulation KW - AFM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506555 DO - https://doi.org/10.1038/s41467-020-15422-6 VL - 11 IS - 1 SP - Article number: 1623 PB - Springer Nature AN - OPUS4-50655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Bernsmeier, D. A1 - Schmack, R. A1 - Häusler, I. A1 - Hertwig, Andreas A1 - Kraffert, K. A1 - Nissen, J. A1 - Kraehnert, R. T1 - Colloidal bimetallic platinum–ruthenium nanoparticles in ordered mesoporous carbon films as highly active electrocatalysts for the hydrogen evolution reaction N2 - Hydrogen features a very high specific energy density and is therefore a promising candidate for clean fuel from renewable resources. Water electrolysis can convert electrical energy into storable and transportable hydrogen gas. Under acidic conditions, platinum is the most active and stable monometallic catalyst for the hydrogen evolution reaction (HER). Yet, platinum is rare and needs to be used efficiently. Here, we report a synthesis concept for colloidal bimetallic platinum–ruthenium and rhodium–ruthenium nanoparticles (PtRuNP, RhRuNP) and their incorporation into ordered mesoporous carbon (OMC) films. The films exhibit high surface area, good electrical conductivity and well-dispersed nanoparticles inside the mesopores. The nanoparticles retain their size, crystallinity and composition during carbonization. In the hydrogen evolution reaction (HER), PtRuNP/OMC catalyst films show up to five times higher activity per Pt than Pt/C/Nafion® and PtRu/C/Nafion® reference catalysts. KW - Ordered mesoporous carbon KW - Bimetallic noble metal nanoparticles KW - Platinum-ruthenium colloid KW - Electrolysis KW - Hydrogen evolution reaction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506868 DO - https://doi.org/10.1039/C9CY02285F SN - 2044-4753 VL - 10 IS - 7 SP - 2057 EP - 2068 PB - Royal Society of Chemistry AN - OPUS4-50686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Goedecke, Caroline A1 - Wiesner, Yosri A1 - Jekel, M A1 - Ruhl, A S A1 - Braun, Ulrike T1 - Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine N2 - The adsorption of organic micropollutants onto activated carbon is a favourable solution for the treatment of drinking water and wastewater. However, these adsorption processes are not sufficiently understood to allow for the appropriate prediction of removal processes. In this study, thermogravimetric analysis, alongside evolved gas analysis, is proposed for the characterisation of micropollutants adsorbed on activated carbon. Varying amounts of carbamazepine were adsorbed onto three different activated carbons, which were subsequently dried, and their thermal decomposition mechanisms examined. The discovery of 55 different pyrolysis products allowed differentiations to be made between specific adsorption sites and conditions. However, the same adsorption mechanisms were found for all samples, which were enhanced by inorganic constituents and oxygen containing surface groups. Furthermore, increasing the loadings led to the evolution of more hydrated decomposition products, whilst parts of the carbamazepine molecules were also integrated into the carbon structure. It was also found that the chemical composition, especially the degree of dehydration of the activated carbon, plays an important role in the adsorption of carbamazepine. Hence, it is thought that the adsorption sites may have a higher adsorption energy for specific adsorbates, when the activated carbon can then potentially increase its degree of graphitisation. KW - Aktivkohle KW - TED-GC/MS KW - Adsorption KW - Thermoanalytik PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506946 DO - https://doi.org/10.1038/s41598-020-63481-y VL - 10 IS - 1 SP - 6695 PB - Nature Publishing Group AN - OPUS4-50694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Spektor, K. A1 - Khandarkhaeva, S. A1 - Fedotenko, T. A1 - Pakhomova, A. A1 - Kupenko, I. A1 - Rohrbach, A. A1 - Klemme, S. A1 - Crichton, W. A. A1 - Dyachkova, T. V. A1 - Tyutyunnik, A. P. A1 - Zainulin, Y. G. A1 - Gramilov, S. A. A1 - Dubrovinsky, L. S. T1 - Decomposition of single-source precursors under high-temperature highpressure to access osmium–platinum refractory alloys N2 - Thermal decomposition of (NH4)2[OsxPt1-xCl6] as single-source precursors for Os-Pt binary alloys has been investigated under ambient and high pressure up to 40 GPa. Thermal decomposition of mixed-metal (NH4)2[OsxPt1-xCl6] precursor in hydrogen atmosphere (reductive environment) under ambient pressure results in formation of β-trans[Pt(NH3)2Cl2] and α-trans-[Pt(NH3)2Cl2] crystalline intermediates as well as single and twophase Os—Pt binary alloys. For the first time, direct thermal decomposition of coordination compound under pressure has been investigated. A formation of pure metallic alloys from single-source precursors under pressure has been shown. Miscibility between fcc- and hcpstructured alloys has been probed up to 50 GPa by in situ high-pressure X-ray diffraction. Miscibility gap between fcc- and hcp-structured alloys does not change its positions with pressure up to at least 50 GPa. KW - High-pressure high-temperature KW - Osmium KW - Platinum KW - Phase diagrams KW - Alloys KW - Single-source precursors PY - 2020 DO - https://doi.org/10.1016/j.jallcom.2019.152121 VL - 813 SP - 152121 PB - Elsevier AN - OPUS4-50019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Axel T1 - Analysis of tire wear particles in soil samples from roadside using TED-GC/MS N2 - Tire wear particles (TW) are generated by the abrasions of tires on the road surface through traffic. These particles can be transported by air and surface runoff and might also infiltrate the soil and consequently affect terrestrial ecosystems. The estimated tire wear (TW) emissions are immense, with 1.33 106 t a-1 in Europe. Despite this, only little is known about the environmental contents or the fate of TW. One reason for this knowledge gap is the challenging analysis of TW in environmental samples. Detection of TW with spectroscopic methods is problematic due to high fluorescence interferences caused by contained black carbon. One analytical approach is to use zinc (Zn), a typical additive in tires, as a specific marker for the quantification of tire wear. However, any Zn originating from the sample matrix must be separated beforehand and requires elaborate sample preparation. Car tires consist partly of synthetic rubbers, such as styrene-butadiene-rubber (SBR). This SBR could be identified and quantified via Thermal-Extraction-Desorption-Gas Chromatography-Mass Spectrometry (TED-GC-MS). This newly developed and fast screening method allows the simultaneous detection of microplastics and TW mass contents and requires minimal to no sample preparation. Firstly the sample is thermally extracted in a thermobalance under a nitrogen atmosphere. The resulting specific decomposition products are sorbed on a solid phase adsorber, which is then transferred to a GC-MS via an autosampler, where the products are desorbed, separated and identified. Cyclohexenylbenzene is used as a specific marker for SBR. Here we investigated top layer soil samples, collected at the roadside of highly frequented German highways. Samples were analyzed without sample preparation, and SBR was detected in all investigated samples in mass contents ranging from 67.2 to 2230 mg kg-1. A correlation between SBR and Zn content in the soil was confirmed, while the correlation between SBR and Corg was hardly pronounced. We successfully demonstrated the application of TED-GC-MS as a screening method for tire wear in soil samples. The present study will discuss these analytical results in detail as well as sampling parameters like sampling depth and distance to the roadside, and the effect of the particle size on the particle transport by water runoff and air. T2 - SETAC 2020 SciCon CY - Online meeting DA - 03.05.2020 KW - Microplastic KW - Analysis KW - Tire wear KW - Soil PY - 2020 AN - OPUS4-51086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Medeiros, V.L. A1 - Goulart de Araujo, L. A1 - Ratero, D.R. A1 - Paula, A.S. A1 - Ferreira Molina, E. A1 - Jaeger, Christian A1 - Takehiro Marumo, J. T1 - Synthesis and physicochemical characterization of a novel adsorbent based on yttrium silicate: A potential material for removal of lead and cadmium from aqueous media N2 - A new metallosilicate based on yttrium was synthesized and characterized by XRD, FT-IR, 29Si MAS-NMR, and 89Y MAS-NMR. The mixed framework of the material was confirmed by the detection of distinct chemical shift groups using 29Si MAS-NMR (at -82 to -87 ppm, -91 to -94 ppm, -96 to -102 ppm, and -105 to -108 ppm), as well as four distinct chemical shifts in the 89Y MAS-NMR spectrum (at -89, -142, -160, and -220 ppm). Adsorption and kinetic analyses indicated the potential of the new material for the removal of lead and cadmium from aqueous media. The adsorption results for lead indicated that dynamic equilibrium was reached after five hours, with total lead removal of around 94 %, while for cadmium it was reached in the first hour, with total Cadmium removal of around 74 %. The adsorptions of lead and cadmium were modeled using pseudo-first order (PFO) and pseudo-second order (PSO) kinetic models. Although both models provided high R2 values (0.9903 and 0.9980, respectively), the PSO model presented a much lower χ2 red value (4.41×10−4), compared to the PFO model (2.12×10−3), which indicated that the rate-limiting step was probably due to the chemisorption of lead from the solution onto the yttrium-based metallosilicate. KW - Yttrium silicates KW - 29Si KW - 89Y MAS-NMR KW - Adsorption KW - Chemisorption KW - Cadmium and lead remediation PY - 2020 DO - https://doi.org/10.1016/j.jece.2020.103922 VL - 8 SP - 103922 PB - Elsevier Ltd. AN - OPUS4-51292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiffmann, J. A1 - Emmerling, Franziska A1 - Martins, Ines A1 - Van Wüllen, L. T1 - In-situ reaction monitoring of a mechanochemical ball mill reaction with solid state NMR N2 - We present an approach towards the in situ solid state NMR monitoring of mechanochemical reactions in a ball mill. A miniaturized vibration ball mill is integrated into the measuring coil of a home-built solid state NMR probe, allowing for static solid state NMR measurements during the mechanochemical reaction within the vessel. The setup allows to quantitatively follow the product evolution of a prototypical mechanochemical reaction, the formation of zinc phenylphosphonate from zinc acetate and phenylphosphonic acid. MAS NMR investigations on the final reaction mixture confirmed a reaction yield of 89% in a typical example. Thus, NMR spectroscopy may in the future provide complementary information about reaction mechanisms of mechanochemical reactions and team up with other analytical methods which have been employed to follow reactions in situ, such as Raman spectroscopy or X-ray diffraction. KW - Mechanochemistry KW - Solid state NMR KW - NMR probe Development PY - 2020 DO - https://doi.org/10.1016/j.ssnmr.2020.101687 VL - 109 SP - 101687 PB - Elsevier Inc. AN - OPUS4-51283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weise, Matthias T1 - Characterization of Surface Topometry and Determination of Layer Thickness by Scanning White Light Interference Microscopy N2 - 3D coherence scanning interferometry (CSI) is an optical, non-contact and rapide measurement technique using a defined bandwidth of white light at normal incidence. Based on this operational principle, white light interference microscopy (WLIM) provides three-dimensional surface topometry data up to a resolution of 0.4 μm lateral and 0.1 nm vertical. Three operating modi, i.e. surface, films and advanced films, enable measurements of step heights, roughness, wear volume, cone angle, surface pattern and layer thickness of transparent coatings. The determination of layer thickness by WLIM requires the knowledge of optical constants, i.e.the refractive index n and the extinction coefficient k. For technical surfaces, data base values - if available at all - have to be determined or validated by spectroscopic ellipsometry (SE). From this oblique incidence technique both optical constants and layer thickness can be derived based on a model for at least semi-transparent coatings. For different layer thicknesses, a comparison is made between WLIM and SE. Measurement uncertainty is discussed for both topometric features and layer thickness for different use cases. Traceability to SI system is ensured by certified standards (PTB/NIST) within a DAkkS DIN EN ISO/IEC 17025:2018 accredited lab. T2 - 17th International Conference on Plasma Surface Engineering (PSE) CY - Erfurt, Germany DA - 07.09.2020 KW - Rroughness and step heights KW - Lateral surface pattern KW - Layer thickness of transparent coatings KW - Scanning white light interferometry KW - Spectroscopic ellipsometry PY - 2020 AN - OPUS4-51301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klöckner, P. A1 - Seiwert, B. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Reemtsma, T. A1 - Wagner, S. T1 - Characterization of tire and road wear particles from road runoffindicates highly dynamic particle properties N2 - Tire and road wear particles (TRWPs) are heteroagglomerates of tire rubber and other particles deposited on the road surface and one of the main contributors to non-exhaust emissions of automobile traffic. In this study, samples from road environments were analyzed for their TRWP contents and concentra- tions of eight organic tire constituents. TRWP concentrations were determined by quantifying Zn in the density fraction < 1.9 g/cm ³and by thermal extraction desorption-gas chromatography-mass spectrometry (TED-GC/MS) and the concentrations ranged from 3.7 to 480 mg TRWP/g. Strong and statistically signif- icant correlations with TRWPs were found for 2-hydroxybenzothiazole and 2-aminobenzothiazole, indi- cating that these substances may be suitable markers of TRWPs. The mass distribution of TRWPs in road dust suggests that the main mass fraction formed on roads consists of coarse particles ( > 100 μm). Data for a sedimentation basin indicate that the fine fraction ( < 50 μm) is preferentially transported by road runoffinto receiving waters. The size distribution and density data of TRWP gathered by three different quantitation approaches also suggest that aging of TRWPs leads to changes in their particle density. An improved understanding of the dynamics of TRWP properties is essential to assess the distribution and dissipation of this contaminant of emerging concern in the environment. KW - Tire Wear KW - Density separation KW - Microplastic KW - Urban PY - 2020 DO - https://doi.org/10.1016/j.watres.2020.116262 VL - 185 SP - 116262 PB - Elsevier Ltd. AN - OPUS4-51256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Beck, Uwe A1 - Fischer, Daniel T1 - MISTRAL-Müller-Matrix-basierte Identifizierung von Inhomogenitäten und strukturellen Anomalien N2 - Mit abbildender Ellipsometrie (imaging ellipsometry: IE) können Nanometer-Beschichtungen/ Degradationen visualisiert und bezüglich Brechungsindex n, Extinktionskoeffizient k und Schichtdicke d charakterisiert werden. Materialseitig werden lokal Homogenität und Isotropie innerhalb eines/mehrerer Bildpunkte (field of analysis: FOA) und messtechnisch global die Ebenheit der Proben bezüglich aller Bildpunkte des Messfeldes vorausgesetzt. Für die Müller-Matrix-basierte abbildende Ellipsometrie (MM-IE), die den optischen Response anisotroper Materialien in jedem Bildpunkt über die bis zu 16 Müller-Matrix-Elemente erfasst, ist dies von besonderer Relevanz. Reale Substrate sind aber oft nicht eben, können lokal Noppen/Mulden (im FOA) aufweisen oder sind global konvex/ konkav im möglichen Messfeld (field of view: FOV) gekrümmt. Diese lokalen/globalen strukturellen Anomalien des Substrats werden schon für die IE messtechnisch/modellseitig oft nicht beherrscht und sind für die MM-IE in der Wirkung auf die MM-Elemente unbekannt. Diese Defizite sollen messtechnisch bzw. modellmäßig behoben und somit die Messung lokal/global gekrümmter Oberflächen ermöglicht werden (MM-CSIE, CS curved surface). KW - Abbildende Ellipsometrie (IE) KW - Müller-Matrix Ellipsometrie (MM-IE) KW - Gekrümmte Oberflächen KW - Schichtdicke KW - Optische Konstanten PY - 2020 SP - 1 EP - 7 AN - OPUS4-51574 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Microstructure characterization of oligomers by analysis of UPLC / ESI-TOF-MS reconstructed ion chromatograms N2 - It is a well-known story that copolymers beside their molar mass distribution (MMD) can exhibit a functionality type distribution (FTD), a copolymer composition distribution (CCD), a monomer sequence distribution (MSD) and additionally different topologies within one sample. Small, often isobaric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector. Nowadays a wide range of different analytical separation techniques and multi-detection possibilities are available. The challenge consists in a clever combination of these techniques with a specific approach of data analysis. In this presentation different liquid chromatographic separation modes were combined with Electrospray Time-of-Flight mass spectrometry. The online coupling allows the analysis of reconstructed ion chromatograms (RIC) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities in microstructure or topology, that are otherwise inaccessible This method is suitable to detect small differences in e. g. branching, topology, monomer sequence or tacticity and could potentially be used in production control of oligomeric products or other routinely done analyses to quickly indicate deviations from set parameters. Based on a variety of examples e.g. the topology elucidation of branched EO-PO copolymers, the possibilities and limitations of this approach were demonstrated. T2 - Analyticon 2020 CY - Online meeting DA - 05.11.2020 KW - Microstructure KW - Copolymer KW - LC-MS PY - 2020 AN - OPUS4-51540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn T1 - Quo vadis LIPSS? - Recent and future trends on laser-induced periodic surface structures N2 - Nanotechnology and lasers are among the most successful and active fields of research and technology that have boomed during the past two decades. Many improvements are based on the controlled manufacturing of nanostructures that enable tailored material functionalization for a wide range of industrial applications, electronics, medicine, etc., and have already found entry into our daily life. One appealing approach for manufacturing such nanostructures in a flexible, robust, rapid, and contactless one-step process is based on the generation of laser-induced periodic surface structures (LIPSS). This Perspectives article analyzes the footprint of the research area of LIPSS on the basis of a detailed literature search, provides a brief overview on its current trends, describes the European funding strategies within the Horizon 2020 programme, and outlines promising future directions. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser interference patterning (DLIP) KW - Surface functionalization KW - Literature survey KW - European funding strategies PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513530 DO - https://doi.org/10.3390/nano10101950 SN - 2079-4991 VL - 10 IS - 10 SP - 1950-1 EP - 1950-19 PB - MDPI CY - Basel AN - OPUS4-51353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Gräf, S. T1 - Maxwell Meets Marangoni — A Review of Theories on Laser‐Induced Periodic Surface Structures N2 - Surface nanostructuring enables the manipulation of many essential surface properties. With the recent rapid advancements in laser technology, a contactless large‐area processing at rates of up to m2 s−1 becomes feasible that allows new industrial applications in medicine, optics, tribology, biology, etc. On the other hand, the last two decades enable extremely successful and intense research in the field of so‐called laser‐induced periodic surface structures (LIPSS, ripples). Different types of these structures featuring periods of hundreds of nanometers only—far beyond the optical diffraction limit—up to several micrometers are easily manufactured in a single‐step process and can be widely controlled by a proper choice of the laser processing conditions. From a theoretical point of view, however, a vivid and very controversial debate emerges, whether LIPSS originate from electromagnetic effects or are caused by matter reorganization. This article aims to close a gap in the available literature on LIPSS by reviewing the currently existent theories of LIPSS along with their numerical implementations and by providing a comparison and critical assessment of these approaches. KW - Laser-induced periodic surface structures (LIPSS) KW - Electromagnetic theories KW - Matter reorganization theories KW - Surface plasmon polaritons KW - Self-organization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514089 DO - https://doi.org/10.1002/lpor.202000215 SN - 1863-8899 VL - 14 IS - 10 SP - 2000215-1 EP - 2000215-25 PB - Wiley CY - Berlin AN - OPUS4-51408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Kolmangadi, Mohamed Aejaz A1 - Bühlmeyer, A. A1 - Huber, P. A1 - Laschat, S. A1 - Schönhals, Andreas T1 - Electrical conductivity and multiple glassy dynamics of crow-ether based columnar liquid crystals N2 - The phase behavior of two unsymmetrical triphenylene crown ether-based columnar liquid crystals (CLCs) bearing different lengths of alkyl chains, KAL465 and KAL468, was investigated using differential scanning calorimetry (DSC). A plastic crystalline (Cry), columnar liquid crystalline (Colh) and an isotropic phase were observed along with two glass transitions in the Cry phase. The molecular mobility of the KAL compounds was further studied by a combination of broadband dielectric spectroscopy (BDS) and advanced calorimetric techniques. By the BDS investigations, three dielectric active relaxation processes were observed for both samples. At low temperatures, a γ-process in the Cry state was detected and is assigned to the localized fluctuations taking place in the alkyl chains. An α2-process takes place at higher temperatures in the Cry phase. An α3 process was found in the Colh mesophase. The advanced calorimetric techniques consist of fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS) employing temperature modulated DSC and FSC (TMDSC and TMFSC). The advanced calorimetric investigations revealed that besides the α2 process in agreement with BDS, a second dynamic glass transition (α1-process) is present which is not observed by dielectric spectroscopy. The results are in good agreement with the glass transitions detected by DSC for this process. The temperature dependences of the relaxation rates of the α1 , α2 and α3 processes are all different. Therefore, different molecular assignments for the relaxation processes are proposed. In addition to the relaxation processes, a conductivity contribution was explored by BDS for both KAL compounds. The conductivity contribution appears in both Cry and Colh phases, where the conductivity increases by ca. one order of magnitude at phase transition from the crystalline to the hexagonal phase. KW - Columnar Liquid Crystal PY - 2020 DO - https://doi.org/10.1021/acs.jpcb.0c06854 VL - 124 IS - 39 SP - 8728 EP - 8739 PB - ACS AN - OPUS4-51374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin M. A1 - Plarre, Rüdiger A1 - Hübert, Thomas A1 - Kemnitz, E. ED - Richter, K. ED - Van de Kulien, J.-W. T1 - Termite resistance of pine wood treated with nano metal fluorides N2 - Fluorides are well-known as wood preservatives. One of the limitations of fluoride-based wood preservatives is their high leachability. Alternative to current fluoride salts such as NaF used in wood protection are low water-soluble fluorides. However, impregnation of low water-soluble fluorides into wood poses a challenge. To address this challenge, low water-soluble fluorides like calcium fluoride (CaF2) and magnesium fluoride (MgF2) were synthesized as nanoparticles via the fluorolytic sol−gel synthesis and then impregnated into wood specimens. In this study, the toxicity of nano metal fluorides was assessed by termite mortality, mass loss and visual analysis of treated specimens after eight weeks of exposure to termites, Coptotermes formosanus. Nano metal fluorides with sol concentrations of 0.5 M and higher were found to be effective against termites resulting in 100% termite mortality and significantly inhibited termite feeding. Among the formulations tested, the least damage was found for specimens treated with combinations of CaF2 and MgF2 with an average mass loss less than 1% and visual rating of “1”. These results demonstrate the efficacy of low water-soluble nano metal fluorides to protect wood from termite attack. KW - Holzschutzmittel KW - Nanoparticles KW - Fluorides KW - Termites PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514325 DO - https://doi.org/10.1007/s00107-020-01522-z VL - 78 SP - 493 EP - 499 PB - Springer CY - Berlin AN - OPUS4-51432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dittmann, Daniel T1 - Aktivkohlecharakterisierung von GAK-Filtern bei unterschiedlichen Laufzeiten N2 - Eine umfangreich ausgestaltete Trinkwasseraufbereitung als Multibarrieren-System ist notwendig, wenn das Rohwasser direkt aus Fließgewässern entnommen wird (z. B. für das Mülheimer Verfahren). Eine der Barrieren wird, als gezielte Behandlungs- oder Sicherheitsstufe, oft als Filter mit granulierter Aktivkohle (GAK-Filter) realisiert. Ihre Standzeit kann bei geringer Wasserbelastung (DOC < 2 mg/L), z. B. bei der Landeswasserversorgung Langenau, bis zu 5 Jahre betragen. Bei Rohwasser mit höherem Organikgehalt (DOC > 7 mg/L), wie bei der Nordwasser in Rostock, wird hingegen mindestens alle drei Jahre die GAK in den Filterkolonnen ausgetauscht. Die Rest-Adsorptionskapazität der GAK kann durch verschiedene Verfahren abgeschätzt werden, ist aber nach wie vor Gegenstand aktueller Forschung. Die weitergehende Charakterisierung der beladenen GAK kann hierbei helfen. Auf dem Poster sollen erste Ergebnisse zu den in Langenau und Rostock eingesetzten Aktivkohlen präsentiert werden. Hierzu wurden die frischen und nach unterschiedlichen Laufzeiten beladenen GAK untersucht. Die Zusammensetzung der Anorganik und der adsorbierten Organik, welche mittels Zersetzungs¬gasanalyse charakterisiert wurde, zeigt deutliche Unterschiede. Bspw. nimmt der Calcium-Gehalt der GAK in Langenau kontinuierlich zu, wohingegen dieser in den Proben aus Rostock mit zunehmender Laufzeit zurückgeht. Umgekehrt verhält es sich mit der Organik: Die GAK aus Rostock zeigen Hinweise auf biologische Besiedelung, während diese in Langenau trotz längerer Filterlaufzeit auszubleiben scheint. T2 - 4. Mülheimer Wasseranalytisches Seminar (MWAS2020) CY - Mülheim an der Ruhr, Germany DA - 16.09.2020 KW - Thermogravimetrie KW - Trinkwasser KW - Wasseraufbereitung KW - Aktivkohle PY - 2020 AN - OPUS4-51433 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Lucke, T. A1 - Ruhl, A. S. A1 - Winzenbacher, R. A1 - Jekel, M. A1 - Braun, Ulrike T1 - Untersuchungen zu biologischen, organischen und anorganischen Veränderungen granulierter Aktivkohlen während der Trinkwasseraufbereitung N2 - Untersuchungen zu biologischen, organischen und anorganischen Veränderungen granulierter Aktivkohlen während der Trinkwasseraufbereitung des Landeswasserversorgers Langenau. KW - Thermogravimetrie KW - Trinkwasser KW - Wasseraufbereitung KW - Aktivkohle PY - 2020 SN - 0083-6915 VL - 118 IS - 2 SP - 47 EP - 50 PB - Wiley-VCH Verlag GmbH & Co. KGaA AN - OPUS4-51434 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Stockmann, Jörg M. A1 - Senoner, Mathias A1 - Weimann, T. A1 - Bütefisch, S. A1 - Passiu, C. A1 - Spencer, N. D. A1 - Rossi, A. T1 - Introduction to lateral resolution and analysis area measurements in XPS N2 - Imaging and small-spot (small area) XPS have become increasingly important components of surface chemical analysis during the last three decades, and its use is growing. Some ambiguity in the use of terminology, understanding of concepts, and lack of appropriate reference materials leads to confusing and not always reproducible data. In this paper, it is shown that by using existing knowledge, appropriate test specimens, and standardized approaches, problems of comparability and such reproducibility issues recently observed for XPS data reported in the scientific literature can be overcome. The standardized methods of ISO 18516:2019, (i) the straight-edge, (ii) the narrow-line, and (iii) the grating method, can be used to characterize and compare the lateral resolution achieved by imaging XPS instruments and are described by reporting examples. The respective measurements are made using new test specimens. When running an XPS instrument in the small-spot (small area) mode for a quantitative analysis of a feature of interest, the question arises as to what contribution to the intensity originates from outside the analysis area. A valid measurement approach to control the intensity from outside the nominal analysis area is also described. As always, the relevant resolution depends on the specific question that needs to be addressed. The strengths and limitations of methods defining resolution are indicated. KW - Imaging XPS KW - Lateral resolution KW - Analysis area measurements KW - Small-spot XPS PY - 2020 DO - https://doi.org/10.1116/6.0000398 VL - 38 IS - 5 SP - 053206 AN - OPUS4-51394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe T1 - Adhesion of Coatings vs. Strength of Composite Materials – A Review of Applications Evaluated by Centrifugal Adhesion Testing (CAT) N2 - Sufficient adhesion/tensile strength are basic requirements for any coating/composite material. For coatings, adhesive strength in N/mm2 is of Major interest for various applications such as decorative and water-repellent coatings on wood (paints and varnishes), optical coatings on glass and polymers (reflectors and filters), electrical coatings on semiconductors, glass and polymers (conducting and bondable layers), mechanical coatings on metals and polymers (wear-reduction, scratch-resistance) and adhesion-promoting layers. For composite materials, tensile strength in N/mm2 is also a key quantity for carbon fiber reinforced composites (CFC), laminates and adhesive-bonded joints. Centrifugal adhesion testing (CAT) transfers the single-sample tensile test from a tensile or universal testing machine into an analytical centrifuge as multiple-sample test of up to eight test pieces. The one-sided sample support instead of a two-sided sample clamping and the absence of mounting- and testing-correlated shear forces provides fast and reliable results both for adhesive strength and bonding strength by means of bonded test stamps. For bonding strength, the evaluation of failure pattern from microscopic inspection is required in order to determine the failure pattern according to ISO 10365 such as adhesive failure (AF), delamination failure (DF) and cohesive failure (CF). Hence, one test run by CAT-technology provides either statistics or ranking of up to eight samples at once. For adhesive strength of coatings, a variety of examples is discussed such as ALD-Al203 layers as adhesion promoters, evaporated Ag-layers on N-BK7 glass, sputtered Cr- and Al-layers on Borofloat 33 glass, evaporated Au-films on N-BK7 glass and sputtered SiO2 -layers on CR39 Polymer. Provided adhesive or bonding strength are high enough, the substrate or the joining part may also fail. T2 - Special PSE 2020 CY - Online meeting DA - 07.09.2020 KW - Centrifugal adhesion testing (CAT) KW - Adhesive strength KW - Pull-off test KW - Failure pattern KW - Compound strength PY - 2020 AN - OPUS4-51231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hielscher-Bofinger, Stefan A1 - Beck, Uwe T1 - Multiple-sample Testing: Adhesive Strength of Coatings and Bonding Strength of Adhesives evaluated by Centrifugal Adhesion Testing (CAT) N2 - The quantitative determination of adhesion and cohesion properties is a key requirement for adhesive-bonded joints and coated components in both R&D and Quality assurance. Because of the huge variety of layer/substrate Systems in terms of materials and large thickness range, adhesion tests display the same diversity as layer/substrate systems. There are only two tensile testing procedures available, that determine adhesive strength in terms of force per area (N/mm²), the single-sample pull-off test in a tensile testing machine and the multiple-sample-test using the Centrifugal Adhesion Testing (CAT) Technology. The CAT Technology is a testing method which uses centrifugal force as tensile testing force in a multiple-sample arrangement within a drum rotor of a Desktop centrifuge. Hence, the adhesive/bonding strength A/B can be determined on a statistical basis under identical testing conditions for up to eight samples. A variety of examples for bonding strength of adhesives, adhesive strength of coatings and compound strength of composite materials is discussed such as metalto-metal and glass-to-metal bonding, sputtered SiO2-layers on CR39 Polymer and carbon fiber reinforced polymer. T2 - Colloquium Department 6. CY - Berlin, BAM, Germany DA - 03.09.2020 KW - Centrifugal Adhesion Testing (CAT) KW - Adhesive strength KW - Bonding strength KW - Composite strength KW - Interlaboratory comparision PY - 2020 AN - OPUS4-51178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The dark side of science N2 - This talk explores the various ways in which bad science can proliferate in the current academic environment, and what can be done to recognize and (maybe) correct it. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Scientific rigor KW - Academic fraud KW - Academic metrics PY - 2020 AN - OPUS4-51017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - McSAS for SAS analysis: Usage, Benefits and Potential Pitfalls N2 - This talk introduces McSAS, code for analysis of scattering patterns to extract particle size distributions. It highlights how it works, how it should be used, and when it may (not) be applied T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Software KW - Analysis PY - 2020 AN - OPUS4-51019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Bhattacharya, Biswajit A1 - Akhmetova, Irinia A1 - Emmerling, Franziska T1 - Mechanochemical and solution syntheses of two novel cocrystals of orcinol with two N,N0-Dipyridines: Structural diversity with varying ligand flexibility N2 - We studied the influence of coformers flexibility on the supramolecular assembly of 5-substituted resorcinol. Two cocrystals of orcinol (ORL) with two dipyridine molecules, i.e. 1,2-di(4-pyridyl)ethane (ORLeBPE) and 1,2-di(4-pyridyl)ethylene (ORLeBPY), were prepared by mechanochemical synthesis and slow evaporation of solvent. The new crystalline solids were thoroughly characterized by single crystal Xray diffraction (SCXRD), powder X-ray diffraction analysis (PXRD), Fourier-transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), and thermogravimetric analysis (TGA). Structural determination reveals that in both cocrystals, the phenolepyridine, i.e. OeH/N(py) heterosynthon takes the main role in the formation of cocrystals. In ORLeBPE, the components form infinite 1D zig-zag chains, which are extended to 2D layer structure by inter-chain CeH/O interactions between BPE hydrogen atoms and hydroxyl oxygen atoms of ORL. In ORLeBPY, the components form a 0D fourcomponent complex. Formation of the discrete assemblies is attributed to the comparative rigid nature of BPY, which restricts the formation of an extended network. KW - Cocrystal KW - Single crystal KW - X-ray diffraction KW - Mechanochemistry PY - 2020 DO - https://doi.org/10.1016/j.molstruc.2020.128303 SN - 0022-2860 VL - 1217 SP - 128303 PB - Elsevier B.V. AN - OPUS4-51023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lone, S. A. A1 - Muck, M. A1 - Fosodeder, P. A1 - Mardare, C.C. A1 - Florian, Camilo A1 - Weth, A. A1 - Krüger, Jörg A1 - Steinwender, C. A1 - Baumgartner, W. A1 - Bonse, Jörn A1 - Heitz, J. A1 - Hassel, A.W. T1 - Impact of Femtosecond Laser Treatment Accompanied with Anodization of Titanium Alloy on Fibroblast Cell Growth N2 - Herein, Ti6Al4V alloy is surface modified by femtosecond laser ablation. The microstructure image obtained by secondary electron microscopy reveals a combination of micrometer spikes or cones superimposed by nanoripples (laser‐induced periodic surface structures). To make the surface hydrophilic, anodization is performed resulting in further smoothness of microstructure and a final thickness of 35 ± 4 nm is estimated for oxide produced after anodization at 10 V (scan rate = 0.1 V s−1) versus standard hydrogen electrode. The obtained electrochemically active surface area (ECSA) is approximately 8 times larger compared with flat mirror polished Ti6Al4V surface. Combined chemical analysis by Pourbaix diagram and X‐ray photoelectron spectroscopy (XPS) analyses reveal that titanium and aluminum are passivating into TiO2 and Al2O3, but the dissolution of aluminum in the form of solvated ion is inevitable. Finally, cell seeding experiments on anodized and laser‐treated titanium alloy samples show that the growth of murine fibroblast cells is significantly suppressed due to unique surface texture of the laser‐treated and anodized titanium alloy sample. KW - Anodization KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Ti6Al4V alloys KW - X-ray photoelectron spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510263 DO - https://doi.org/https://doi.org/10.1002/pssa.201900838 SN - 1862-6300 SN - 1862-6319 VL - 217 IS - 13 SP - 1900838-1 EP - 1900838-9 PB - WILEY-VCH Verlag CY - Weinheim, Germany AN - OPUS4-51026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Opitz, P. A1 - Besch, L. A1 - Panthöfer, M. A1 - Kabelitz, Anke A1 - Unger, R. A1 - Emmerling, Franziska A1 - Mondeshki, M. A1 - Tremel, W. T1 - Insights into the In Vitro Formation of Apatite from Mg‐Stabilized Amorphous Calcium Carbonate N2 - A protein‐free formation of bone‐like apatite from amorphous precursors through ball‐milling is reported. Mg2+ ions are crucial to achieve full amorphization of CaCO3. Mg2+ incorporation generates defects which strongly retard a recrystallization of ball‐milled Mg‐doped amorphous calcium carbonate (BM‐aMCC), which promotes the growth of osteoblastic and endothelial cells in simulated body fluid and has no effect on endothelial cell gene expression. Ex situ snapshots of the processes revealed the reaction mechanisms. For low Mg contents (<30%) a two phase system consisting of Mg‐doped amorphous calcium carbonate (ACC) and calcite “impurities” was formed. For high (>40%) Mg2+ contents, BM‐aMCC follows a different crystallization path via magnesian calcite and monohydrocalcite to aragonite. While pure ACC crystallizes rapidly to calcite in aqueous media, Mg‐doped ACC forms in the presence of phosphate ions bone‐like hydroxycarbonate apatite (dahllite), a carbonate apatite with carbonate substitution in both type A (OH−) and type B (PO43−) sites, which grows on calcite “impurities” via heterogeneous nucleation. This process produces an endotoxin‐free material and makes BM‐aMCC an excellent “ion storage buffer” that promotes cell growth by stimulating cell viability and metabolism with promising applications in the treatment of bone defects and bone degenerative diseases. KW - Total Scattering KW - XRD KW - Mechanochemistry PY - 2020 DO - https://doi.org/10.1002/adfm.202007830 VL - 31 IS - 3 SP - 7830 PB - Wiley VHC-Verlag AN - OPUS4-51761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Surov, A. A1 - Vasilev, N. A1 - Voronin, A. A1 - Churakov, A. A1 - Emmerling, Franziska A1 - Perlovich, G. T1 - Ciprofloxacin salts with benzoic acid derivatives: structural aspects, solid-state properties and solubility performance N2 - n this work, three new pharmaceutical hydrated salts of ciprofloxacin with selected derivatives of benzoic acid, namely 4-hydroxybenzoic acid, 4-aminobenzoic acid and gallic acid, were obtained and systematically investigated by several solid-state analytical techniques. In situ Raman spectroscopy was applied to elucidate the alternative pathways of the solid forms' formation under mechanochemical conditions. Crystal structure analysis and a CSD survey allowed us to establish a distinct supramolecular motif formed by infinite columnar stacks of ciprofloxacin dimers arranged in the “head-to-tail” manner. An alternative “head-to-head” packing arrangement was only observed in the crystal of the hydrated ciprofloxacin salt with 4-aminobenzoic acid. In addition, the pH-solubility behavior of the solid forms was thoroughly investigated. Furthermore, a distinct structure–property relationship between the specific features of the supramolecular organization of the hydrated salts and their solubility was observed and discussed. KW - Mechanochemistry KW - XRD PY - 2020 DO - https://doi.org/10.1039/D0CE00514B VL - 22 IS - 25 SP - 4238 EP - 4249 AN - OPUS4-51818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Opitz, P. A1 - Asta, M. A1 - Fernandez-Martinez, A. A1 - Panthöfer, M. A1 - Kabelitz, Anke A1 - Emmerling, Franziska A1 - Mondeshki, M. A1 - Tremel, W. T1 - Monitoring a Mechanochemical Syntheses of Isostructural Luminescent Cocrystals of 9-Anthracenecarboxylic Acid with two Dipyridines Coformers N2 - Amorphous calcium carbonate (ACC) is an important precursor in the biomineralization of crystalline CaCO3. In nature, it serves as a storage material or as a permanent structural element, whose lifetime is regulated by an organic matrix. The relevance of ACC in materials science is primarily related to our understanding of CaCO3 crystallization pathways and CaCO3/(bio)polymer nanocomposites. ACC can be synthesized by liquid–liquid phase separation, and it is typically stabilized with macromolecules. We have prepared ACC by milling calcite in a planetary ball mill. Phosphate “impurities” were added in the form of monetite (CaHPO4) to substitute the carbonate anions, thereby stabilizing ACC by substitutional disorder. The phosphate anions do not simply replace the carbonate anions. They undergo shear-driven acid/base and condensation reactions, where stoichiometric (10%) phosphate contents are required for the amorphization to be complete. The phosphate anions generate a strained network that hinders ACC recrystallization kinetically. The amorphization reaction and the structure of BM-ACC were studied by quantitative Fourier transform infrared spectroscopy and solid state 31P, 13C, and 1H magic angle spinning nuclear magnetic resonance spectroscopy, which are highly sensitive to symmetry changes of the local environment. In the first—and fast—reaction step, the CO32– anions are protonated by the HPO42– groups. The formation of unprecedented hydrogen carbonate (HCO3–) and orthophosphate anions appears to be the driving force of the reaction, because the phosphate group has a higher Coulomb energy and the tetrahedral PO43– unit can fill space more efficiently. In a competing second—and slow—reaction step, pyrophosphate anions are formed in a condensation reaction. No pyrophosphates are formed at higher carbonate contents. High strain leads to such a large energy barrier that any reaction is suppressed. Our findings aid in the understanding of the mechanochemical amorphization of calcium carbonate and emphasize the effect of impurities for the stabilization of the amorphous phases in general. Our approach allowed the synthesis of new amorphous alkaline earth defect variants containing the unique HCO3– anion. Our approach outlines a general strategy to obtain new amorphous solids for a variety of carbonate/phosphate systems that offer promise as biomaterials for bone regeneration. KW - Crystallization KW - Mechanochemistry KW - PDF PY - 2020 DO - https://doi.org/10.1021/acs.cgd.0c00912 VL - 20 IS - 10 SP - 6831 EP - 6846 PB - American Chemical Society AN - OPUS4-51819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Szymoniak, Paulina T1 - Dataset and Jupyter worksheet interpreting the (results from) small- and wide-angle scattering data from a series of boehmite/epoxy nanocomposites. Accompanies the publication "Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite" N2 - Dataset and Jupyter worksheet interpreting the (results from) small- and wide-angle scattering data from a series of boehmite/epoxy nanocomposites. Accompanies the publication "Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite", by Paulina Szymoniak, Brian R. Pauw, Xintong Qu, and Andreas Schönhals. Datasets are in three-column ascii (processed and azimuthally averaged data) from a Xenocs NanoInXider SW instrument. Monte-Carlo analyses were performed using McSAS 1.3.1, other analyses are in the Python 3.7 worksheet. Graphics and result tables are output by the worksheet. KW - Small angle scattering KW - X-ray scattering KW - Nanocomposite KW - Polymer nanocomposite KW - Boehmite KW - Analysis KW - SAXS/WAXS PY - 2020 DO - https://doi.org/10.5281/zenodo.4321087 PB - Zenodo CY - Geneva AN - OPUS4-51829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark Side of Science N2 - An overview of the dark side of science: what it is, how it occurs, and what you can do to understand it and fight for the light side. T2 - First training event of the ITN-Project GW4SHM CY - Online meeting DA - 23.11.2020 KW - Scientific rigor KW - Scientific misconduct KW - Data manipulation KW - Image manipulation PY - 2020 AN - OPUS4-51830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dittmann, Daniel T1 - Experimental raw data for "Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine" N2 - This is the repository of all experimental raw data used in the Scientific Reports publication "Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine" by Daniel Dittmann, Paul Eisentraut, Caroline Goedecke, Yosri Wiesner, Martin Jekel, Aki Sebastian Ruhl, and Ulrike Braun. It includes - overview_measurements.xlsx and overview_measurements.ods containing a list of all TGA experiments (TGA, TGA-FTIR, TED-GC-MS, and ramp-kinetics) - TED-GC-MS.zip containing gas chromatography-mass spectrometry experimtent files for the Chemstation and OpenChrom - TGA.zip containing thermogravimetric analyses raw data on evolved gas analyses experiments (TGA-FTIR and TED-GC-MS) - TGA_kinetics.zip containing thermogravimetric analyses raw data on decomposition kinetic experiments (ramp-kinetics) - TGA-FTIR.zip containing Fourier-transform infrared spectroscopy series files for OMNIC - XRF.zip containing x-ray flourescence data on elemental composition KW - Adsorption KW - Aktivkohle KW - TED-GC/MS KW - Thermoanalytik PY - 2020 DO - https://doi.org/10.5281/zenodo.3716316 PB - Zenodo CY - Geneva AN - OPUS4-51902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - X-ray Non-destructive testing of materials and composites N2 - Functional materials for energy conversion are important technology drivers needed for the implementation of low carbon energy. Therefore, researchers commonly focus on improving the intrinsic properties of a functional material. However, for applications, the extrinsic properties are at least as important as the intrinsic ones. Consequently, it is important to investigate and understand the external and internal structure of semi-finished products and especially defect dependent properties. The extrinsic properties may change during application and the life cycle of the material as well as through processing and molding steps. Our studies show how X-ray tomographic (XCT) investigations can contribute to structure investigations in composites and massive samples using the example of magnetic materials for energy conversion. T2 - Ruhr Universität Bochum - Seminar materials science and technology CY - Online meeting DA - 12.11.2020 KW - X-ray imaging KW - Non-destructuve testing KW - Functional materials PY - 2020 AN - OPUS4-51905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juds, Carmen A1 - Schmidt, J. A1 - Weller, Michael G. A1 - Lange, Thorid A1 - Beck, Uwe A1 - Conrad, T. A1 - Boerner, H. G. T1 - Combining phage display and next-generation sequencing for materials sciences: A case study on probing polypropylene surfaces N2 - Phage display biopanning with Illumina next-generation sequencing (NGS) is applied to reveal insights into peptide-based adhesion domains for polypropylene (PP). One biopanning round followed by NGS selects robust PP-binding peptides that are not evident by Sanger sequencing. NGS provides a significant statistical base that enables motif analysis, statistics on positional residue depletion/enrichment, and data analysis to suppress false-positive sequences from amplification bias. The selected sequences are employed as water-based primers for PP-metal adhesion to condition PP surfaces and increase adhesive strength by 100% relative to nonprimed PP. KW - Polymers KW - Polypropylene KW - Glue KW - Plastics KW - Surface Activation KW - Primer KW - Peptide Library KW - Epoxy KW - Solid-binding Peptides KW - Functionalization KW - Polymer-binding Peptides KW - Adhesion KW - Material-binding Peptides KW - Adhesives PY - 2020 DO - https://doi.org/10.1021/jacs.0c03482 SN - 0002-7863 SN - 1520-5126 VL - 142 IS - 24 SP - 10624 EP - 10628 PB - ACS CY - Washington, DC, USA AN - OPUS4-51123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, Caroline A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Wiesner, Yosri A1 - Schartel, Bernhard A1 - Klack, Patrick A1 - Braun, Ulrike T1 - Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples N2 - Microplastic particles are currently detected in almost all environmental compartments. The results of detection vary widely, as a multitude of very different methods are used with very different requirements for analytical validity. In this work four thermoanalytical methods are compared and their advantages and limitations are discussed. One of them is thermal extraction-desorption gas chromatography mass spectrometry (TED-GC/MS), an analysis method for microplastic detection that has become established in recent years. In addition, thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS) were applied, two methods that are less common in this field but are still used in other research areas. Finally, microscale combustion calorimeter (MCC) was applied, a method not yet used for microplastic detection. The presented results are taken from a recently published interlaboratory comparison test by Becker et al. (2020). Here a reference material consisting of suspended matter and specified added polymer masses was examined, and only the results of the recoveries were presented. In the present paper, however, the results for the individual polymers are discussed in detail and individual perspectives for all instruments are shown. It was found that TED-GC/MS is the most suitable method for samples with unknown matrix and unknown, variable kinds and contents of microplastic. TGA-FTIR is a robust method for samples with known matrix and with defined kinds of microplastic. TGA-MS may offer a solution for the detection of PVC particles in the future. MCC can be used as a very fast and simple screening method for the identification of a potential microplastic load of standard polymers in unknown samples. KW - Microplastic KW - TED-GC/MS KW - TGA-MS KW - TGA-FTIR KW - MCC KW - Thermal analysis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516687 DO - https://doi.org/10.1016/j.jaap.2020.104961 VL - 152 SP - 104961 PB - Elsevier B.V. AN - OPUS4-51668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kulow, Anicó T1 - Spatial Resolved Dispersive X-Ray Absorption Spectroscopy and Coded Aperture X-Ray Fluorescence Imaging N2 - One aim of this work was the development of a new setup for time- and laterally resolved XAFS measurements, based on the pronciple of dispersive XAFS. This setup is scanning free, stable, inexpensive, and straightforward to adjust for probing different elements. The second part of this work describes the impelemntation of a method for full-field X-ray fluorescence imaging with coded apertures. Expensive and complicated X-ray otpics, that are usually used for full-field imaging, are replaced with a coded aperture that consists of many pinholes drilled in an X-ray opaque material. Coded apertures are inexpensive to fabricate, energy independent and easy to use. The working principle is the same as with a pinhole camera, but the multiple holes allow a higher photon flux compared to a single pinhole or even a polycalippary optic, thus alowwing the reduction of measurement time. KW - X-ray fluorescence imaging KW - Coded Apertures KW - X-ray absorption spectroscopy KW - Synchrotron PY - 2021 SP - 1 EP - 175 CY - Berlin AN - OPUS4-52054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Reference Materials at BAM N2 - A introduction into reference materials, the certification process and brief over current reference projects at BAM is given. T2 - AK-Postdoc seminar CY - BAM Berlin, Germany DA - 02.02.2021 KW - Referenzmaterialien KW - Reference material KW - Homogeneity KW - Stability KW - Quality testing KW - Analytic KW - DNA KW - Dosimetry KW - Certification PY - 2021 AN - OPUS4-52060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A1 - Garwek, Marcel A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Do Interfacial Layers in Thin Films Act as an Independent Layer Within Thin Films? N2 - The thermodynamic behavior of thin PVME films including the irreversible adsorbed layer on the substrate is investigated. In a first step, the growth kinetics of the adsorbed layer was studied combining a leaching technique and atomic force microscopy. Further, it was shown that there is a critical initial film thickness for the formation of a surface-filling adsorbed layer. Additionally, spectroscopic ellipsometry measurements were carried out to investigate the influence of the adsorbed layer on the glass transition temperature of the thin films. For 30 nm films and below, the influence of the adsorbed layer percolates strongly to the bulk-like layer of the film. Finally, the molecular dynamics of the adsorbed layer was studied by broadband dielectric spectroscopy, employing nanostructured-electrode systems. One process was revealed, which was assigned either to molecular fluctuations taking place in a loosely-bounded the part of the adsorbed layer, or to the desorption/adsorption of segments at the substrate. KW - Thin polymer films PY - 2021 DO - https://doi.org/10.1021/acs.macromol.0c02149 VL - 54 IS - 1 SP - 509 EP - 519 PB - ACS Publications AN - OPUS4-52037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz, J. A1 - de Oliveira, P. F. M. A1 - Shetty, S. A1 - Oropeza, F. A1 - Peña O’Shea, V. A1 - Rodrigues, L. A1 - Rodrigues, M. A1 - Torresi, R. A1 - Emmerling, Franziska A1 - Camargo, P. T1 - Bringing earth-abundant plasmonic catalysis to light: Gram-scale mechanochemical synthesis and tuning of activity by dual excitation of antenna and reactor sites N2 - The localized surface plasmon resonance (LSPR) excitation in plasmonic nanoparticles (NPs) in the visible and near-infrared ranges is currently at the forefront of improving photocatalytic performances via plasmonic photocatalysis. One bottleneck of this field is that the NPs that often display the best optical properties in the visible and near-infrared ranges are based on expensive noble metals such as silver (Ag) and gold (Au). While earth-abundant plasmonic materials have been proposed together with catalytic metals in antenna–reactor systems, their performances remain limited by their optical properties. Importantly, the synthesis of plasmonic photocatalysts remains challenging in terms of scalability while often requiring several steps, high temperatures, and special conditions. Herein, we address these challenges by developing a one-pot, gram-scale, room-temperature synthesis of earth-abundant plasmonic photocatalysts while improving their activities beyond what has been dictated by the LSPR excitation of the plasmonic component. We describe the mechanochemical synthesis of earth-abundant plasmonic photocatalysts by using MoO3 (antenna) and Au (reactor) NPs as a proof-of-concept example and demonstrate that the dual plasmonic excitation of antenna and reactor sites enables the tuning of plasmonic photocatalytic performances toward the reductive coupling of nitrobenzene to azobenzene as a model reaction. In addition to providing a pathway to the facile and gram-scale synthesis of plasmonic photocatalysts, the results reported herein may open pathways to improved activities in plasmonic catalysis. KW - MoO3 KW - Au nanoparticles KW - Localized surface plasmon resonance KW - Plasmonic photocatalysis KW - Nitrobenzene reduction PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532089 DO - https://doi.org/10.1021/acssuschemeng.1c02063 VL - 9 IS - 29 SP - 9750 EP - 9760 PB - American Chemical Society CY - Washington, DC AN - OPUS4-53208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena T1 - Development of a standard series for ellipsometry N2 - Ellipsometry is a powerful tool, which allows the investigation of material properties over a broad spectral range. Over the course of several years, the ellipsometry lab at BAM has become an accredited testing lab according to ISO/IEC 17025 laying bare the need of better methods for accuracy and traceability. Despite its wide range of application in both research and development as well as industry, there have been no generally accepted standards dealing with model validation and measurement uncertainties. Based on the first German standard DIN 50989 – 1: 2018 Ellipsometry - Part 1: Principles (currently international standard ISO 23131: 2021) and under consideration of GUM [1] a series of standards for ellipsometry was developed. The entire 6-part series covers several model-based application cases. This standards series avoids having narrow and material specific application cases but instead classifies applications of ellipsometry according to the sample complexity. The concept of ellipsometric transfer quantities (Ψ and Δ or alternatively the elements of transfer matrices) is implemented in the series. For each application case a model-based validation strategy was developed. Thus, the standards are applicable to all materials, instruments and measuring principles. The uniform structure concept of the series facilitates its practical applicability for users. The standards include the model-based GUM-compliant determination/estimation of the measurement uncertainties. In addition, the appendices of the documents contain numerous measurement and simulation examples as well as recommendations for measuring practice. In this contribution we present the application cases and basic structure of the standards developed in collaboration with Accurion GmbH and SENTECH Instruments GmbH in the project SNELLIUS. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Standardization of ellipsometry KW - DIN 50989 Parts 1 – 6 KW - ISO 23131: 2021 KW - Validation concepts of ellipsometric measurements KW - Uncertainty budgets KW - GUM-compliance PY - 2021 AN - OPUS4-53250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - Accuracy, traceability, and standardization in spectroscopic ellipsometry N2 - Ellipsometry has been an extremely successful and fast expanding method in the past decades along with other related techniques using polarisation sensitive measurements. Opening new fields of application for a successful measurement technique brings some requirements and issues that have to be solved. From a metrological point of view, ellipsometry has the problem that uncertainties are difficult to determine for model-based analysis techniques in general. In this presentation, we will explore how the usefulness of polarimetric methods like ellipsometry can be increased. Ellipsometry as a method could profit from several current developments which will be discussed in this presentation: • Standardisation initiatives on national and international level developing standards for best practice when using ellipsometry. A series of at least six standards is currently developed on national German and international level covering different levels of sample complexity. • Projects on traceability of ellipsometry and structured surface spectrometry as well as new dielectric function database initiatives. • Metadata handling and data ontology providing a better framework for exchange and collaborative use of research data. We will also explore the quantification of measurement uncertainty using examples from projects in which BAM is involved. Examples will be presented of multilayer and non-ideal materials as well as the determination of layer properties for technical applications such as thin layer catalysts and complex polymers. The definition of reference materials will be discussed. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Ellipsometry KW - Uncertainty KW - Surface analytics KW - Data science PY - 2021 AN - OPUS4-53295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark side of Science N2 - We all may have started out as bright-eyed students trying to do science to the best of our abilities, but over time, some of us have gradually drifted to the dark side. The dark side of science has an impressive publication rate in high-ranking journals, good success with funding agencies, and rocks the world with stellar findings. Unfortunately, these findings aren't real, either by accident or on purpose. As the presenter and his colleagues found, trying to correct or even dispute any of these findings in literature is a supremely complex and time-consuming effort. With no recent reduction in the frequency of such false findings, it is up to us to try to stem the flow. Besides looking at examples, we need to understand the underlying driving forces behind this dark scientific movement. By combining this understanding with a refresher of the core scientific principles, we can then develop the necessary argumentative tools and mechanisms that may prevent our own slide down the slippery slope. This talk will therefore start out with several entertaining examples of probably accidental, as well as definitely deliberate, false scientific findings in literature (and in particular in the field of materials research). We will then take a brief look at the possible causes for these developments, after which some tools will be presented that can help both the fresh as well as the well-seasoned scientist to rise up against the dark side. T2 - DGM special event (invited lecture) CY - Online meeting DA - 23.06.2021 KW - Scientific fraud KW - Reproducibility crisis KW - Bad science KW - Scientific method KW - Publication pressure PY - 2021 AN - OPUS4-53274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linberg, Kevin T1 - Taking Fluorine Interaction to the Extremes using XRD and DFT Simulations N2 - This work aims to investigate the role of F-F and F-π interactions in dictating structural and mechanical properties, through a combination of X-ray powder diffraction and dispersion-corrected density functional. As no benchmarking data exist for F-dominating organic system, we first assess how different functionals affect the mechanical properties of the material. T2 - CRC 1349 Fluorine-Specific Interactions Symposium CY - Online meeting DA - 27.09.2021 KW - High Pressure KW - Fluorine Interaction KW - Hexafluorobenzen KW - Density Functional Theory PY - 2021 AN - OPUS4-53654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Simões, R. G. A1 - Bernardes, C. E. S. A1 - Ramisch, Yen A1 - Bienert, Ralf A1 - Röllig, Matthias A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Real-Time In situ XRD Study of Simvastatin Crystallization in Levitated Droplets N2 - Simvastatin (SV) is an important active pharmaceutical ingredient (API) for treatment of hyperlipidemias, which is known to exist in different crystalline and amorphous phases. It is, therefore, an interesting model to investigate how the outcome of evaporative crystallization in the contactless environment of an acoustically levitated droplet may be influenced by key experimental conditions, such as temperature, solvent properties (e.g., polarity and hygroscopicity), and dynamics of the evaporation process. Here, we describe a real-time and in situ study of simvastatin evaporative crystallization from droplets of three solvents that differ in volatility, polarity, and protic character (acetone, ethanol, and ethyl acetate). The droplet monitorization relied on synchrotron X-ray diffraction (XRD), Raman spectroscopy, imaging, and thermographic analysis. A pronounced solvent-dependent behavior was observed. In ethanol, a simvastatin amorphous gel-like material was produced, which showed no tendency for crystallization over time; in ethyl acetate, a glassy material was formed, which crystallized on storage over a two-week period to yield simvastatin form I; and in acetone, form I crystallized upon solvent evaporation without any evident presence of a stable amorphous intermediate. The XRD and Raman results further suggested that the persistent amorphous phase obtained from ethanol and the amorphous precrystallization intermediate formed in ethyl acetate were similar. Thermographic analysis indicated that the evaporation process was accompanied by a considerable temperature decrease of the droplet surface, whose magnitude and rate correlated with the solvent volatility (acetone > ethyl acetate > ethanol). The combined thermographic and XRD results also suggested that, as the cooling effect increased, so did the amount of residual water (most likely captured from the atmosphere) remaining in the droplet after the organic solvent was lost. Finally, the interpretation of the water fingerprint in the XRD time profiles was aided by molecular dynamics simulations, which also provided insights into the possible role of H2O as an antisolvent that facilitates simvastatin crystallization. KW - Simvastatin KW - In-situ KW - API KW - Crystallization PY - 2021 DO - https://doi.org/10.1021/acs.cgd.1c00509 SN - 1528-7483 VL - 21 IS - 8 SP - 4665 EP - 4673 PB - ACS Publications AN - OPUS4-53663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - The structure of amorphous calcium sulfate and its role in the nucleation pathway and final mesostructure of CaSO 4 phases N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. In this context, a number of studies have already revealed that nucleation in the CaSO4-H2O system is non-classical, where the formation of the different crystalline phases involves several steps including a common amorphous precursor. In this contribution a holistic view of the formation mechanism of gypsum and bassanite from solution will be presented. In short, our in situ and time-resolved scattering data demonstrate that calcium sulfate precipitation starts with the formation and aggregation of well-defined sub-3 nm primary species. These species constitute building “bricks'' of an amorphous precursor phase. We characterised the “bricks” by combining information obtained at different length-scales accessible at the mesoscale (from small-angle scattering) and at the atomic-length-scale (wide-angle scattering and high-energy diffraction). From these scattering data we derived pair distribution functions of the clusters and restricted their external shapes and dimensions. This allowed us to propose a structure of the primary species and to explore their dynamic properties with unbiased MD simulations using polarizable force fields. The formation of the amorphous phase involves the aggregation of these small primary species into larger disordered aggregates exhibiting “brick-in-the-wall” structure. The actual crystallisation occurs by the restructuring and coalescence of the “bricks” into a given calcium sulfate phase depending on the thermodynamic conditions of the solution. Importantly, these rearrangement processes by no means continue until a (nearly-)perfect homogeneous single crystal is obtained. Instead they come to a stop or at least significantly slow down. Such a process thus yields a final imperfect mesocrystal, composed of smaller domains rather than a continuous crystal structure, within which the domains are separated by an amorphous calcium sulfate phase. T2 - Goldschmidt Virtual 2021 CY - Online meeting DA - 04.07.2021 KW - Amorphous calcium sulfate KW - Scattering KW - SAXS/WAXS PY - 2021 UR - https://2021.goldschmidt.info/goldschmidt/2021/meetingapp.cgi/Paper/3847 AN - OPUS4-53621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Senoner, M. A1 - Stockmann, Jörg Manfred A1 - Fernandez, V. A1 - Fairley, N. A1 - Passiu, C. A1 - Spencer, N. D. A1 - Rossi, A. T1 - Summary of ISO/TC 201 International Standard ISO 18516:2019 Surface chemical analysis - Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres and its implementation for imaging laboratory X-ray photoelectron spectrometers (XPS) N2 - ISO 18516:2019 Surface chemical analysis—Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres revises ISO 18516:2006 Surface chemical analysis—Auger electron spectroscopy and X-ray photoelectron spectroscopy—Determination of lateral resolution. It implements three different methods delivering parameters useful to express the lateral resolution: (1) the straight edge method, (2) the narrow line method and (3) the grating method. The theoretical background of these methods is introduced in ISO/TR 19319:2013 Surface chemical analysis—Fundamental approaches to determination of lateral resolution and sharpness in beam-based methods. The revised International Standard ISO 18516 delivers standardized procedures for the determination of the (1) effective lateral resolution by imaging of square-wave gratings, the (2) lateral resolution expressed as the parameter D12–88 characterizing the steepness of the sigmoidal edge spread function (ESF) determined by imaging a straight edge and (3) the lateral resolution expressed as the full width of half maximum of the line spread function (LSF), wLSF, determined by imaging a narrow line. The last method also delivers information on the shape of the LSF, which characterizes an individual imaging instrument. Finally, the implementation of all three standardized methods in the field of imaging laboratory X-ray photoelectron spectroscopy (XPS) is shortly presented. This part of the letter is based on the use of a new test sample developed at ETH Zurich, Switzerland. This test sample displays a micrometre scaled pattern motivated by the resolving power of recent imaging XPS instruments. KW - Grating method KW - Imaging AES KW - Imaging SIMS KW - Imaging XPS KW - Lateral resolution KW - Narrow line method KW - Noise in image KW - Resolution criterion KW - Straight edge method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536330 DO - https://doi.org/10.1002/sia.7025 SN - 1096-9918 VL - 54 IS - 4 SP - 320 EP - 327 PB - Wiley CY - Chichester AN - OPUS4-53633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisentraut, Paul T1 - Microplastic analysis using TED-GC/MS: H/D-Exchange of decomposition products of D-marked polystyrene as an internal standard N2 - Deuterated polystyrene (D-PS) improves microplastic detection with TED-GC / MS, among other things through higher reproducibility. It is inexpensive (0.1 ct / analysis) and can be dosed quickly and reproducibly thanks to its good solubility (e.g. in toluene). However, certain matrices lead to an exchange of the deuterium with hydrogen. The poster shows the measuring principle, in which matrices H/D-exchange takes place, the results of kinetic studies and ways of preventing or circumventing the H/D-exchange. T2 - SALSA MAKE AND MEASURE 2021 CY - Online meeting DA - 16.09.2021 KW - Microplastic KW - H/D-Exchange KW - Internal Standard KW - TED-GC/MS KW - Thermoanalytic PY - 2021 AN - OPUS4-53681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René T1 - Towards hydrogen economy: correlative ex-situ ellipsometric analysis and operando investigation during oxygen evolution reaction of mesoporous iridium oxides films N2 - In the face of rising energy demand and the impending climate change the development of a sustainable, fossil-free fuel and chemical production is of global importance. One possible goal is the development of electrochemical conversion processes using catalysts. Porous materials play an important role in such energy applications. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physico-chemical properties. However, the complex morphology of such catalysts constitutes a challenge even for modern analytical techniques. Spectroscopic ellipsometry (SE) is a versatile method for studying material properties by using appropriate models (e.g. film thickness, optical and electronic properties). The fact that the material properties cannot be taken directly from the measured spectra, the developed models have to be validated. In a first step, the model for the ellipsometric fit studies of a calcination series of mesoporous iridium oxide films (300 – 600 °C) was investigated and validated with respect to their material properties. Moreover, the electronic structures of the catalysts reveal a direct correlation with electrochemical activities. The development of an environmental cell offers the possibility of investigations under real conditions. This will allow changes in the optical and electronic properties during the electrocatalytic oxygen evolution reaction. T2 - Colloquium Department Seminar 6. CY - BAM, Berlin, Germany DA - 03.03.2020 KW - Hydrogen economy KW - Correlative ex-situ ellipsometric analysis KW - Ellipsometric operando investigation KW - Oxygen evolution reaction KW - Mesoporous iridium oxides films PY - 2020 AN - OPUS4-51215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Ghasem Zadeh Khorasani, Media A1 - Cano Murillo, Natalia A1 - Elert, Anna Maria A1 - Sturm, Heinz ED - Glatzel, T. T1 - Bulk chemical composition contrast from attractive forces in AFM force spectroscopy N2 - A key application of atomic force microscopy (AFM) is the measurement of physical properties at sub-micrometer resolution. Methods such as force–distance curves (FDCs) or dynamic variants (such as intermodulation AFM (ImAFM)) are able to measure mechanical properties (such as the local stiffness, kr) of nanoscopic heterogeneous materials. For a complete structure–property correlation, these mechanical measurements are considered to lack the ability to identify the chemical structure of the materials. In this study, the measured attractive force, Fattr, acting between the AFM tip and the sample is shown to be an independent measurement for the local chemical composition and hence a complete structure–property correlation can be obtained. A proof of concept is provided by two model samples comprised of (1) epoxy/polycarbonate and (2) epoxy/boehmite. The preparation of the model samples allowed for the assignment of material phases based on AFM topography. Additional chemical characterization on the nanoscale is performed by an AFM/infrared-spectroscopy hybrid method. Mechanical properties (kr) and attractive forces (Fattr) are calculated and a structure–property correlation is obtained by a manual principle component analysis (mPCA) from a kr/Fattr diagram. A third sample comprised of (3) epoxy/polycarbonate/boehmite is measured by ImAFM. The measurement of a 2 × 2 µm cross section yields 128 × 128 force curves which are successfully evaluated by a kr/Fattr diagram and the nanoscopic heterogeneity of the sample is determined. KW - AFM force spectroscopy KW - Composites KW - Principle component analysis KW - Structure–property correlation KW - Van der Waals forces PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520175 DO - https://doi.org/10.3762/bjnano.12.5 SN - 2190-4286 VL - 12 IS - 5 SP - 58 EP - 71 PB - Beilstein Institute CY - Frankfurt am Main AN - OPUS4-52017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chewle, Surahit A1 - Emmerling, Franziska A1 - Weber, M. T1 - Effect of choice of solvent on crystallization pathway of paracetamol: An experimental and theoretical case study N2 - The choice of solvents influences crystalline solid formed during the crystallization of active pharmaceutical ingredients (API). The underlying effects are not always well understood because of the complexity of the systems. Theoretical models are often insufficient to describe this phenomenon. In this study, the crystallization behavior of the model drug paracetamol in different solvents was studied based on experimental and molecular dynamics data. The crystallization process was followed in situ using time-resolved Raman spectroscopy. Molecular dynamics with simulated annealing algorithm was used for an atomistic understanding of the underlying processes. The experimental and theoretical data indicate that paracetamol molecules adopt a particular geometry in a given solvent predefining the crystallization of certain polymorphs KW - Crystallization KW - Nucleation KW - Polymorphism KW - Raman spectroscopy KW - Cassical nucleation theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520052 DO - https://doi.org/10.3390/cryst10121107 SN - 2073-4352 VL - 10 IS - 12 SP - 1 EP - 10 PB - MDPI CY - Basel AN - OPUS4-52005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musl, O. A1 - Sulaeva, I. A1 - Sumerskii, I. A1 - Mahler, A.K. A1 - Rosenau, T. A1 - Falkenhagen, Jana A1 - Potthast, A. T1 - Mapping of the Hydrophobic Composition of Lignosulfonates N2 - Lignosulfonates are industrial biorefinery products that are characterized by significant variability and heterogeneity in their structural composition. Typically, they exhibit high dispersities in molar mass (molar mass distribution-MMD) and in functionalities (functionality-type distribution - FTD), which crucially affect their material usage. In terms of FTD, state-of-the-art Lignin analytics still rely mainly on the determination of functional group contents, which are statistical averages with limited explanatory power. In contrast, our online hydrophobic interaction chromatography−size-exclusion chromatography 2D-LC approach combines the determination of both MMD and FTD in a single measurement to provide a comprehensive picture of the characteristic composition of industrial lignosulfonates information hitherto inaccessible by state-of-the-art lignin analytics. In this way, the complex inter - relationships between these two important structural parameters can be studied in an unprecedented manner. In this study, we reveal the considerable differences in terms of hydrophobic composition and its dispersity present in a range of different industrial lignosulfonates - data desperately needed in tailoring and refining of lignosulfonate composition for material usage. KW - Lignosulfonates KW - Amphiphilicity KW - Hydrophobic interaction chromatography KW - Two-dimensional chromatography (2D-LC) KW - Charge-to-size-ratio PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538612 DO - https://doi.org/10.1021/acssuschemeng.1c06469 VL - 9 IS - 49 SP - 16786 EP - 16795 PB - ASC Publications AN - OPUS4-53861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe T1 - Uncertainty budgets in surface technology: stepheigt, layerthickness, indentation hardness, adehesive strength N2 - The object (sample) and the measurement/testing procedure may always have unknown degrees of freedom, i.e. instead of 𝐯 ≥ n – 1 in many cases 𝐯 ≫ n - 1 may apply, in particular in the micro- and nano-world! T2 - 10. VDI-Fachtagung, Messunsicherheit und Prüfprozesse CY - Erfurt, Germany DA - 10.11.2021 KW - Methodology in metrology KW - Methodology in testing KW - Spectroscopic Ellipsometry KW - Instrumented Indentation Testing (IIT) KW - Centrifugal Adhesion Testing (CAT) PY - 2021 AN - OPUS4-53986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe T1 - Functional coatings for mechanical applications: characterization and standardization N2 - The paper addresses the “Functional coatings for mechanical applications: characterization and standardization” and the following points are discussed in more detail: 1. Mechanic alapplications (coatings for tools and components, system features vs. material parameters) 2. Mechanical characterization (instrumented indentation testing (IIT), centrifugal adhesion testing (CAT), state of standardization) 3. Topometric characterization (white light interference microscopy (WLIM, 3D), mechanical stylus (MS, 2D), state of standardization) 4. Optical characterization (spectroscopic ellipsometry (SE), inter-laboratory comparison, state of standardization) T2 - IC-CMTP6 CY - Miskolc, Hungary DA - 04.10.2021 KW - Spectroscopic Ellipsometry KW - White Light Interference Microscopy KW - Instrumented Indentation Testing KW - Functional coatings KW - Mechanical characterization KW - Optical characterization KW - Topometric characterization KW - Standardization PY - 2021 AN - OPUS4-53987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reetz, U. T1 - Load- and path-controlled determination of bonding strength of butt joints - Comparison between tensile testing machine and centrifuge technology N2 - The round robin test proves that the CAT-Technology provides statistically indistinguishable test results compared to TTM. A supplement to DIN EN 15870 taking into account CAT-Technology (with reference to equivalent increases of load and displacement) as second normative test method appears to make sense. A presentation of a revision proposal at CEN TC 193 has been introduced with the decision to conduct a survey using the unchanged German revision proposal. T2 - EURADH 2021 - 13 th European Adhesion Conference CY - Online meeting DA - 11.10.2021 KW - CAT – Technology KW - Tensile testing machine (TTM) KW - Round robin test KW - Validation PY - 2021 AN - OPUS4-53948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Katsikini, M. A1 - Filintoglou, K. A1 - Pinakidou, F. A1 - Pilatsikas, N. A1 - Arvanitidis, J. A1 - Christofilos, D. A1 - Paloura, E.C. A1 - Ves, S. A1 - Reinholz, Uwe A1 - Papadomanolaki, E. A1 - Lliopoulos, E. T1 - Scaling of phonon frequencies and electron binding energies with interatomic distances in InxGa1−xN N2 - In-K-edge x-ray absorption fine structure (EXAFS), x-ray photoelectron, and Raman spectroscopy results are combined for a comprehensive study of InxGa1−xN layers with energy gaps extending over nearly the whole visible spectrum. The In–N and In–(In,Ga) distances determind by EXAFS are used for the derivation of the In–N bond ionicity as well as for the phonon frequency dependence of the LO and B21 modes, assessed by Raman, and the N 1s, In 3d5/2, Ga 3s, and Ga 2p1/2 electron binding energies on those distances. Phonon confinement due to perturbation of the periodic potential caused by the alloying is also quantified. KW - Band gap KW - Phonons KW - Epitaxy KW - Electronic structure KW - X-ray photoelectron KW - Nitrides PY - 2021 DO - https://doi.org/10.1063/5.0069359 VL - 130 IS - 20 SP - 205706 - 1 EP - 205706 - 9 PB - AIP Publishing AN - OPUS4-53956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joubert, J.M. A1 - Crivello, J.C. A1 - Yusenko, Kirill T1 - Modification of Lu's (2005) high pressure model for improved high pressure/high temperature extrapolations. Part II: Modeling of osmium-platinum system at high pressure/high temperature N2 - In Part I of this paper, we have described a modification brought to the model of Lu (X.-G. Lu et al., Comput. Coupling Phase Diagr. Thermochem. 29 (2005) 49–55) in order to avoid extrapolation problems at high pressure and temperature. We now extend this approach to the study of a binary system: Os–Pt. For this, a complete description (equation of state) of Os at high pressure/high temperature is provided including the liquid phase. The thermodynamic assessment of the system Os–Pt has been carried out at ambient pressure by the Calphad method. All this study has been supported by first principles, special quasi-random structure (including under high pressure) and phonon calculations. Finally, using the high pressure description of metastable structures (hcp Pt and fcc Os), we have been able to obtain by extrapolation a complete description of Os–Pt system up to 500 GPa. Recent experimental data for Os–Pt system obtained up to 50 GPa at various temperatures up to 2300 °C may us allow to validate our modeling approach. KW - Phase diagrams KW - High-pressure PY - 2021 DO - https://doi.org/10.1016/j.calphad.2021.102311 VL - 74 SP - 102311 PB - Elsevier AN - OPUS4-54005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fedorova, E.A. A1 - Asanov, Igor A1 - Yusenko, Kirill A1 - Asanova, T.I. A1 - La Fontaine, Camille A1 - Roudenko, olga A1 - Gerasimov, E.Y. A1 - Vasilchenko, D A1 - Korenev, S.V. T1 - Time-resolved study of thermal decomposition process of (NH4)(2) PtCl6 : Intermediates and Pt nucleation N2 - Evolution in crystal, electronic and local atomic structures of Pt in ammonium hexachloroplatinate in the course of thermal decomposition in inert and reducing atmospheres have been studied by Powder X-Ray Diffraction (PXRD) and Quick X-ray Absorption Fine Structure (QXAFS) at Pt L3-edge for deeper understanding the thermally-induced solid state reaction and the formation of metallic nanoparticles. A three-step thermal decomposition mechanism of (NH4)2[PtCl6] in the inert atmosphere with the intermediate products Pt(NH3)2Cl2 and PtCl2 has been found instead one-[G.Meyer, A.Möller, J. Less. Common. Met. 170 (1991) 327–331] and two-step one [Q.Kong, F.Baudelet, J.Han, S.Chagnot, L.Barthe, J.Headspith, R. Goldsbrough, F.E.Picca, O.Spalla, Sci. Rep. 2 (2012) 1018–1025] considered early. In the reducing atmosphere, the thermal decomposition is a two-step process with the formation of the intermediate PtCl2. The best approach to determining the number of thermal decomposition steps turned out to be the express-analysis of QXAFS spectra offered in the papers, based on the simultaneous presentation of the most important parameters extracted from X-ray Absorption Near Edge Structure (XANES) and Fourier transformed Extended XAFS (EXAFS). This express-analysis was tested by comparison with results of various approaches such as conventional EXAFS fitting, linear combination fit (LCF), Multivariate Curve Resolution Alternating Least Squares method (MCR ALS). KW - Platinum KW - Quick-EXAFS PY - 2021 DO - https://doi.org/10.1016/j.vacuum.2021.110590 VL - 194 SP - 110590 PB - Elsevier AN - OPUS4-54008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asanova, T.I. A1 - Asanov, Igor A1 - Yusenko, Kirill A1 - Le Fontane, Camille A1 - Gerasimov, E.Y. A1 - Zadesenetz, A.V. A1 - Korenev, S.V. T1 - Time-resolved study of Pd-Os and Pt-Os nanoalloys formation through thermal decomposition of Pd(NH3)(4) OsCl6 and Pt(NH3)(4) OsCl6 complex salts N2 - The formation mechanisms of Pd-Os and Pt-Os alloys in the course of thermal decomposition of iso-formular and isostructural complex salts [Pd(NH3)4][OsCl6] and [Pt(NH3)4][OsCl6] in an inert atmosphere have been studied by in-situ QXAFS, XPS and PXRD. The mechanisms of thermal decomposition of the precursors are found to differ from each other, but the detected intermediate products show no significant effect on the local atomic structure around Os, Pt/Pd in their final products. A crystalline beta-trans-[Pd(NH3)2Cl2] intermediate of the first step of thermal decomposition of [Pd(NH3)4][OsCl6] makes the anion [OsCl6]2− transform differently than that of [Pt(NH3)4][OsCl6]. It transforms into a short-lived [Os(NH3)xCl6-x] (2≤x≤4), and then to a distorted octahedron [OsCl6]2−, similar to the high-temperature modification of OsCl4. In case of [Pt(NH3)4][OsCl6], the intermediate [Os(NH3)2Cl4] modifies into four chlorine coordinated Os,{OsCl4}0/1−. Consecutive reduction of Pd(II)/Pt(II) and Os(IV) to the metals defines the homophilic atomic order with the fcc-Pd covered by a random Pd-Os alloy layer and Os on the surface, that is supported by High-Resolution Transmission Electron Mictroscopy (HRTEM) and Scanning TEM (STEM) energy dispersive X-ray (EDX) data, and the diffusion direction going from the surface (hcp-Os) to bulk (fcc-Pd/Pt). As a result, the heterogeneous alloys are formed with a very similar electronic and local atomic structure of Os and Pd/Pt. Upon alloying, the Os 5d5/2,3/2 and Pt 5d5/2,3/2 levels are depleted in the Pt-Os alloys compared to dispersed hcp-Os, fcc-Pt, and Pt foil. This is an unusual behaviour for Os and Pt, calling into question the versatility of d-band theory in bimetallic Os-alloys. The spin-orbit effect at the Os site has been found for both the Pd-Os and Pt-Os alloys, but it is about 4 times less compared to the complex salts. The obtained values for the complex compounds are comparable with those for the iridates, proposed as materials with spin-orbit-induced properties. KW - Thermal decomposition KW - Quick-EXAFS PY - 2021 DO - https://doi.org/10.1016/j.materresbull.2021.111511 VL - 144 SP - 111511 PB - Elsevier Ltd. AN - OPUS4-54010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serebrennikova, P. A1 - Komarov, V. A1 - Sukhikh, A. A1 - Khranenko, S. A1 - Zadesenetz, A. A1 - Gromilov, S A1 - Yusenko, Kirill T1 - [NiEn3](MoO4)0.5(WO4)0.5 co-crystals as single-source precursors for ternary refractory Ni-Mo-W alloys N2 - The co-crystallisation of [NiEn3](NO3)2 (En = ethylenediamine) with Na2MoO4 and Na2WO4 from a water solution results in the formation of [NiEn3](MoO4)0.5(WO4)0.5 co-crystals. According to the X-ray diffraction analysis of eight single crystals, the parameters of the hexagonal unit cell (space group P–31c, Z = 2) vary in the following intervals: a = 9.2332(3)–9.2566(6); c = 9.9512(12)–9.9753(7) Å with the Mo/W ratio changing from 0.513(3)/0.487(3) to 0.078(4)/0.895(9). The thermal decomposition of [NiEn3](MoO4)0.5(WO4)0.5 individual crystals obtained by co-crystallisation was performed in He and H2 atmospheres. The ex situ X-ray study of thermal decomposition products shows the formation of nanocrystalline refractory alloys and carbide composites containing ternary Ni–Mo–W phases. The formation of carbon–nitride phases at certain stages of heating up to 1000 °C were shown. KW - Single source precursors KW - Phase diagrams PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540123 DO - https://doi.org/10.3390/nano11123272 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill T1 - Single-source precursors strategy to access refractory high-entropy alloys for electrocatalytic applications N2 - High-entropy alloys containing up to 6 platinum group metals can be prepared by thermal decomposition of single-source precursors non requiring high temperature. We prepare the first example of a single-phase hexagonal high-entropy alloy. Heat treat- ment up to 1500 K and compression up to 45 GPa do not result in phase changes, a record temperature and pres- sure stability for a single-phase high-entropy alloy. The alloys show pronounced electrocatalytic activity in methanol oxidation, which opens a route for the use of high-entropy alloys as materials for sustainable energy conversion. T2 - HEA2020: first international virtual workshop on high-entropy alloy and complex solid solution nanoparticles for electrocatalysis CY - Online meeting DA - 06.10.2020 KW - High-entropy alloys KW - Single-source precursors PY - 2020 AN - OPUS4-54013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill A1 - Smekhova, A. A1 - Kuzmin, A. T1 - Extended X-Ray absorption fine structure (exafs) to study local constitution of high-entropy alloys N2 - Modern design of superior multi-functional alloys composed of several principal components requires in-depth studies of their local structure for developing desired macroscopic properties. Herein, peculiarities of atomic arrangements on the local scale and electronic states of constituent elements in the single-phase face-centered cubic (fcc)- and body-centered cubic (bcc)-structured high-entropy Alx-CrFeCoNi alloys (x = 0.3 and 3, respectively) are explored by element-specific X-ray absorption spectroscopy in hard and soft X-ray energy ranges. Simulations based on the reverse Monte Carlo approach allow to perform a simultaneous fit of extended X-ray absorption fine structure spectra recorded at K absorption edges of each 3d constituent and to reconstruct the local environment within the first coordination shells of absorbers with high precision. T2 - SPP2006: ordering in high-entropy alloys CY - Online meeting DA - 05.10.2021 KW - EXAFS KW - High-entropy alloys PY - 2021 AN - OPUS4-54015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas T1 - Thermal behavior of high preformance polymers - Fast Scanning Calorimetry and more N2 - The glass tranistion behavior of polymers of intrinsic microporosity and polynornornes is discussed. T2 - Flash DSC Conference 2021 CY - Online meeting DA - 06.12.2021 KW - Polymer of Intrisic Maicroporosity KW - Highly permeable polynorbornenes PY - 2021 AN - OPUS4-53938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Shaken not stirred: enhancing the flavor of mechanochemistry N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals.1 The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms.2-4 We recently introduced different setups enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy and thermography. The presented setup allows the detection of crystalline, amorphous, eutectic, and liquid intermediates. Furthermore, the chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. In this contribution, we will discuss our recent results investigating the formation of (polymorphic) cocrystals and coordination polymers.2,3,5 Our results indicate that in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemical syntheses. T2 - BCA/BACG joint spring meeting CY - Online meeting DA - 29.03.2021 KW - Mechanochemistry KW - Cocrystals KW - Crystal Engineering PY - 2021 AN - OPUS4-53995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Shaken not stirred: in situ investigations of mechanochemical processes N2 - Mechanochemistry has emerged as one of the most interesting synthetic protocols to produce new materials. The development of mechanochemistry as a synthetic method is supported by excellent research by many groups worldwide in a wide range of applications. The potential of mechanochemistry is also reflected in the inclusion in IUPAC’s 10 chemical innovations that will change our world’.[1] Solvent-free methodologies lead to unique chemical processes during synthesis with the consequent formation of martials with new properties.2 In this contribution, we will discuss our recent results investigating the formation of (polymorphic) cocrystals, coordination polymers, metal oxides and metal nanoparticles.[3-8] We introduced different setups enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy and thermography. T2 - Deutsche Kristallzüchtertagung CY - Berlin, Germany DA - 06.10.2021 KW - Mechanochemistry KW - In situ real-time monitoring KW - Crystal PY - 2021 AN - OPUS4-53996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Scientific Writing - best practice tools N2 - Personal view of an experienced writer on how to write a paper. T2 - MatchingCamp 2021 CY - Bad Belzig, Germany DA - 08.11.2021 KW - Writing PY - 2021 AN - OPUS4-53999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reetz, U. T1 - CAT -Technologie (CentrifugalAdhesionTesting) im Standardisierungsprozess N2 - Der DIN Ringversuch weist nach, dass die CAT Technologie zur ZPM Prüfung statistisch nicht unterscheidbare Prüfergebnisse liefert, so dass lediglich eine Ergänzung der DIN EN 15870 unter Berücksichtigung der CAT-Technologie (mit Bezug auf äquivalente Kraft und Weg zunahmen) als zweiter normativer Prüfmethode sinnvoll erscheint. Vorstellung des Revisionsvorschlages im CEN TC 193 am 08.04.2021 mit dem Beschluss, eine Umfrage unter Verwendung des unveränderten deutschen Revisionsvorschlages durchzuführen. T2 - SKZ-Expertenkreis „Kleben und Oberflächentechnik für Kunststoffe“ 2021 CY - Online meeting DA - 22.09.2021 KW - Centrifugal Adhesion Testing (CAT) KW - Zweistichproben t Test: (ZPM) KW - Ringversuch KW - Validierung KW - DIN EN 15870 PY - 2021 AN - OPUS4-53964 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lagleder, Michaela T1 - Materialographische Untersuchungen an Bauteilen N2 - Eine Grundanforderung an Bauteile ist deren mechanische Integrität, die als Festigkeit (globale Bauteilbeanspruchung) bzw. Tragfestigkeit (lokale Beanspruchung) zu verstehen ist. Die Bauteilfestigkeit wird wesentlich durch das Materialgefüge bestimmt und kann über die Prüfung der Härte des Grundwerkstoffes lokal erfasst werden. Bei Bauteilverbindungen (z.B. Schweißnähte) ist zudem der Übergangsbereich zwischen den Fügeteilen von besonderem Interesse, bei Passungen oder Gleitlagern sind zudem geringe Rauheiten erforderlich, die oft durch mechanische Oberflächen-bearbeitung realisiert werden. Leichtbauweisen können sowohl über hochfeste Stahllegierungen bei geringem Materialeinsatz als auch über Aluminiumlegierungen realisiert werden. Für unterschied-liche Grundwerkstoffe (X2CrNiMo18-14-3, Co-Cr-W-Ni, AlSi10Mg, X5CrNi1810, ferritische Schweiß-nähte) werden an Quer- und Oberflächenschliffen Änderungen im Gefüge, morphologische Besonderheiten, Härteverläufe sowie Änderungen in den Rauheitskennwerten betrachtet, wie sie im Ergebnis mechanischer Oberflächenbearbeitung, bedingt durch den Herstellungsprozess, die Beanspruchung oder den Fügeprozess auftreten. Zur Validierung der Härtebestimmung wurde ein Laborvergleichsversuch an einer MPA-zertifizierten Härtevergleichsplatte und einer 100Cr6 Referenzprobe durchgeführt, den drei bzw. fünf der insgesamt fünf Teilnehmer bestanden. T2 - 55. Materialographie-Tagung CY - Online meeting DA - 29.09.2021 KW - Gleitlinien KW - Rauheit KW - Härteverlauf Schweißnaht KW - Laborvergleich Härte KW - Aluminium PY - 2021 AN - OPUS4-53503 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Netzband, Olivia T1 - Materialographische Untersuchungen an Funktionsschichten N2 - Oberflächenmodifizierte Grundwerkstoffe, insbesondere solche mit funktionellen Schichten, sind in unterschiedlichsten Branchen und Anwendungen anzutreffen. Es werden Quer- und Kalottenschliffe von Einfach- und Mehrschichtsystemen mit Beispielen aus dem Bereich des Korrosions- und Verschleißschutzes sowie dekorativer Anwendungen auf unterschiedlichsten Grundwerkstoffen (X5CrNi1810 Stahl, 100Cr6 Stahl, Hartmetall, ABS und Pappe) vorgestellt. Ebenso vielfältig wie die Grundwerkstoffe sind die Oberflächenmodifizierungen mit Funktionsschichten auf Basis von Nitrierungen, Hartstoffen, diamantähnlichem Kohlenstoff, Metallisierungen und Lackschichten mit Interferenzpigmenten. Neben der Identifikation von Schichtdefekten gilt das Hauptaugenmerk der materialographischen Analyse der Erfüllung der Schichtdickenspezifikation und der Bewertung der Homogenität der Schichtdicke auch bei kritischen Geometrien. Zur Validierung der Schichtdicken- bzw. Längenbestimmung im Querschliff wurde ein Laborvergleichsversuch mit einem Nickel-beschichteten Kupferdraht durchgeführt, den alle der 10 Teilnehmer bestanden. T2 - 55. Materialographie-Tagung CY - Online meeting DA - 29.09.2021 KW - Metallographie KW - Schichtdicken KW - Korrosion KW - Kalottenverfahren PY - 2021 AN - OPUS4-53504 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gernhard, M. A1 - Rautenberg, Max A1 - Hörner, G. A1 - Weber, B. A1 - Emmerling, Franziska A1 - Roth, C. T1 - Mechanochemical Synthesis as a Greener Way to ProduceIron-based Oxygen Reduction Catalysts N2 - Iron-based catalysts have been reported manifold and studied as platinum group metal (PGM) free alternatives for the catalysis of the oxygen reduction reaction (ORR). However, their sustainable preparation by greener synthesis approaches is usually not discussed. In this work, we propose a new method for the sustainable preparation of such catalysts by using a mechanochemical approach, with no solvents and non-toxic chemicals. The materials obtained from low temperature carbonization (700 °C) exhibit considerable and stable catalytic performance for ORR in alkaline medium. A catalyst obtained from iron hydroxide, tryptophan, dicyandiamide, and ammonium nitrate shows the best electrocatalytic Performance with an overpotential of 921 mV vs. RHE at 0.1 mA/cm2 and an electron transfer number of 3.4. KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - AEMFC KW - Mössbauer Spectroscopy KW - Sustainable Synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535326 DO - https://doi.org/10.1002/zaac.202100194 VL - 647 IS - 22 SP - 2080 EP - 2087 PB - Weinheim-VCH GmbH AN - OPUS4-53532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max T1 - The Effect of Fluorine on Catalysts for the Oxygen Reduction Reaction obtained from Metal Organic Frameworks N2 - The oxygen reduction reaction (ORR) – an important reaction in electrochemical devices, such as fuel cells - is characterized by its sluggish kinetics and therefore requires catalysis. The industry currently relies on platinum as a catalyst, although it is scarce and expensive, hindering the commercial breakthrough of fuel cells in automotive applications. Platinum-free catalysts on basis of nitrogen- and metal doped carbons (NMCs) and fluorinated carbons are promising materials to replace platinum-based catalysts for the ORR. In this work we prepared six metal-organic frameworks (MOFs) by mechanical ball mill grinding and studied their formation by in-situ powder X-ray diffraction. Furthermore, the samples were carbonized under controlled conditions (900°C, 1h, N2-atmosphere) to yield carbon materials, that were employed in ORR-electrocatalysis. The effect of Co-doping and fluorination was systematically studied and outstanding ORR activity was found for the catalyst prepared from the Co-doped fluorinated ZIF-8. T2 - International Symposium on Fluorine-specific interactions CY - Berlin, Germany DA - 27.09.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs PY - 2021 AN - OPUS4-53533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max T1 - Fluorination and co-doping of ZIF-8 by ball mill grinding for efficient oxygen reduction electrocatalysis N2 - The oxygen reduction reaction (ORR) is a common process in a variety of electrochemical devices, like fuel cells and metal air batteries. The sluggish kinetics of the ORR require an electrocatalyst to pass this bottleneck.[1] Currently, the most used catalytical systems are platinum-based, with several drawbacks, such as the high cost, low availability, and deactivation by CO poisoning.[2] Efforts are made to develop efficient, durable and low cost catalysts to promote the commercialization of fuel cells. Non-precious metal catalysts are promising candidates for efficient ORR catalysis. It has been shown that pyrolyzing metal organic frameworks (MOFs) under inert conditions yields carbon-rich materials, with evenly distributed metal sites, which possess promising electrocatalytic activity.[3] One widely used type of MOF as ORR catalyst precursors is the zeolitic imidazole framework (ZIF) where metal cations are linked through imidazole-based ligands. Their porous nature is partially retained after carbonization, making MOFs very suitable precursor materials. Herein we report the mechanochemical synthesis and structural analysis of Co-doped ZIF-8 (Zn), as well as two polymorphs (dense and prorous) of fluorinated Co-doped CF3-ZIF-8 (Zn). The samples showed electrochemical performance comparable to platinum after carbonization for 1 h at temperatures ranging between 850 – 1000°C. T2 - XXV General Assembly and Congress of the International Union of Crystallography - IUCr 2021 CY - Prague, Czech Republic DA - 14.08.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs PY - 2021 AN - OPUS4-53535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max T1 - Coordination Polymers for the Applications in Electrochemical Devices N2 - Coordination polymers can be used as sacrificial templates to prepare nitrogen- and metal doped carbons (NMCs), which are promising catalysts for the oxygen reduction reaction. We at BAM employ mechanochemistry as a "green" synthetic approach to coordiantion polymers, which are throroughly characterized by methods such as XRD, XPS and sorption studies. Our collaborators can prepare NMCs from our coordination polymers and assess the catalytic activity thereof. T2 - 3rd Training School: "Mechanochemistry: from supramolecular to covalent bonds - synthesis and strctural characterization CY - Lisbon, Portugal DA - 22.03.2021 KW - PGM-free catalyst KW - Mechanochemistry KW - MOFs KW - Electrocatalysis KW - Oxygen reduction reaction (ORR) PY - 2021 AN - OPUS4-53536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max T1 - Fluorine Modified ZIF 8 for Electrochemical Catalysis: Where does the Fluorine go? N2 - Carbonization of fluorinated metal-organic frameworks (MOFs) should yield fluorinated nitrogen- and metal-doped carbons (F-NMCs), which are a combination of NMCs and fluorinated carbons, each promising electrocatalysts on their own. We synthesized two polymorphs of a fluorinated MOF by mechanical ball mill grinding, and carbonized them to yield potential electrocatalyt materials. The catalytical activity towards the oxygen reduction reaction (ORR) was examined, finding good activites. Simulations from a theoretic model helped assesing the stability of proposed catalytic sites and understanding the measured activites towards the ORR catalysis. T2 - Online symposium of the CRC 1349 "fluorine-specific interactions" CY - Online meeting DA - 29.06.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs KW - Computational chemistry PY - 2021 AN - OPUS4-53538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max T1 - Synthesis and characterization of fluorinated Co-Zn-Zeolitic imidazole frameworks for catalysis of the oxygen reduction reaction N2 - The oxygen reduction reaction (ORR) is a common process in a variety of electrochemical devices, like fuel cells and metal air batteries. The sluggish kinetics of the ORR require an electrocatalyst to pass this bottleneck.[1] Currently, the most used catalytical systems are platinum-based, with several drawbacks, such as the high cost, low availability, and deactivation by CO poisoning.[2] Efforts are made to develop efficient, durable and low cost catalysts to promote the commercialization of fuel cells. Non-precious metal catalysts are promising candidates for efficient ORR catalysis. It has been shown that pyrolyzing metal organic frameworks (MOFs) under inert conditions yields carbon-rich materials, with evenly distributed metal sites, which possess promising electrocatalytic activity.[3] One widely used type of MOF as ORR catalyst precursors is the zeolitic imidazole framework (ZIF) where metal cations are linked through imidazolebased ligands. Herein we report the mechanochemical synthesis, structural analysis and of Co-doped ZIF-8 (Zn), as well as its fluorinated counterpart Co-doped CF3 -ZIF-8 (Zn). The samples showed electrochemical performance comparable to platinum after carbonization for 1h at temperatures ranging between 850 – 1000°C. T2 - 15th International conference on materials chemistry (MC15) CY - Online meeting DA - 12.07.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs PY - 2021 AN - OPUS4-53539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, I. A1 - Carta, M. A1 - Haferkamp, Sebastian A1 - Feiler, Torvid A1 - Delogu, F. A1 - Colacino, E. A1 - Emmerling, Franziska T1 - Mechanochemical N‑Chlorination Reaction of Hydantoin: In Situ Real-Time Kinetic Study by Powder X‑ray Diffraction and Raman Spectroscopy N2 - Mechanochemistry has become a valuable tool for the synthesis of new molecules, especially in the field of organic chemistry. In the present work, we investigate the kinetic profile of the chlorination reaction of N-3-ethyl-5,5-dimethylhydantoin (EDMH) activated and driven by ball milling. The reaction has been carried out using 2 mm, 4 mm, 5 mm, 6 mm, and 8 mm ball sizes in a new small custom-made Perspex milling jar. The Crystal structure of the starting material EDMH and the 1-chloro-3-ethyl5,5′-dimethyl hydantoin (CEDMH) chlorination product was solved by single-crystal X-ray diffraction. The reaction was monitored, in situ and in real time, by both powder X-ray diffraction (PXRD) and Raman spectroscopy. Our kinetic data show that the reaction progress to equilibrium is similar at all milling ball sizes. The induction period is very short (between 10 and 40 s) when using 4 mm, 5 mm, 6 mm, and 8 mm balls. For the reaction performed with a 2 mm ball, a significantly longer induction period of 9 min was observed. This could indicate that an initial energy accumulation and higher mixing efficiency are necessary before the reaction starts. Using different kinetic models, we found that the amount of powder affected by critical loading conditions during individual impacts is significantly dependent on the ball size used. An almost linear correlation between the rate of the chemical transformations and the ball volume is observed. KW - Mechanochemistry KW - In situ real-time monitoring KW - N-Chlorination KW - Kinetics KW - Hydantoin KW - Powder X-ray diffraction KW - Raman spectroscopy PY - 2021 DO - https://doi.org/10.1021/acssuschemeng.1c03812 VL - 9 IS - 37 SP - 12591 EP - 12601 AN - OPUS4-53541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Souza, B. A1 - Chauque, S. A1 - de Oliveira, P. A1 - Emmerling, Franziska A1 - Torresi, R. T1 - Mechanochemical optimization of ZIF-8/Carbon/S8 composites for lithium-sulfur batteries positive electrodes N2 - The application of lithium-sulfur (Li-S) batteries is still limited by their rapid capacity fading. The pulverization of the sulfur positive electrode after the lithiation and the consequence dissolution of long chain polysulfides in organic solvents lead to the shuttle effect. To address these issues, here we report the mechanochemical preparation of ZIF-8 (Zeolitic Imidazole Framework-8)-based composites as sulfur hosts for positive electrodes in Li-S batteries. We studied different methods for the incorporation of conductive carbon. Also, the replacement of Zn2+ metal centers by other bivalent metals (Cu2+, Co2+ and Ni2+), enabled the preparation of other ZIF-8-based materials. The positive electrode ZIF-8/C/S8 showed initial discharges of 772 mA h g−1 while the pristine one, ZIF-8/S8, displayed 502 mA h g−1. The enhanced performance of 54% for ZIF-8/C/S8 indicates that the direct mechanochemical synthesis of ZIF-8 with conductive carbon is beneficial at initials charge/discharge process in comparison to traditional slurry preparation (ZIF-8/S8). Also, the Li2S6 absorption tests shows 87% of discoloration with ZIF-8/C/S8, confirming the better polysulfides absorption. KW - Lithium-sulfur battery KW - Metal organic frameworks KW - ZIF-8 KW - Mechanochemistry PY - 2021 DO - https://doi.org/10.1016/j.jelechem.2021.115459 VL - 896 SP - 115459 PB - Elsevier B.V. AN - OPUS4-53542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stolzenberg, U. A1 - Schmitt Rahner, M. A1 - Pullner, B. A1 - Legall, Herbert A1 - Bonse, Jörn A1 - Kluge, M. A1 - Ortner, A. A1 - Hoppe, B. A1 - Krüger, Jörg T1 - X-ray emission hazards from ultrashort pulsed laser material processing in an industrial setting N2 - Interactions between ultrashort laser pulses with intensities larger than 10^13 W/cm^2 and solids during material processing can lead to the emission of X-rays with photon energies above 5 keV, causing radiation hazards to operators. A framework for inspecting X-ray emission hazards during laser material processing has yet to be developed. One requirement for conducting radiation protection inspections is using a reference scenario, i.e., laser settings and process parameters that will lead to an almost constant and high level of X-ray emissions. To study the feasibility of setting up a reference scenario in practice, ambient dose rates and photon energies were measured using traceable measurement equipment in an industrial setting at SCHOTT AG. Ultrashort pulsed (USP) lasers with a maximum average power of 220 W provided the opportunity to measure X-ray emissions at laser peak intensities of up to 3.3 × 10^15 W/cm^2 at pulse durations of ~1 ps. The results indicate that increasing the laser peak intensity is insufficient to generate high dose rates. The investigations were affected by various constraints which prevented measuring high ambient dose rates. In this work, a list of issues which may be encountered when performing measurements at USP-laser machines in industrial settings is identified. KW - X-ray emission hazards KW - Ultrashort pulsed laser KW - Radiation protection KW - Industrial applications KW - Protection housing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538632 DO - https://doi.org/10.3390/ma14237163 SN - 1996-1944 VL - 14 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-53863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -