TY - JOUR A1 - Arinchtein, A. A1 - Schnack, R. A1 - Kraffert, K. A1 - Radnik, Jörg A1 - Dietrich, P. A1 - Sachse, René A1 - Krähnert, R. T1 - Role of Water in Phase Transformations and Crystallization of Ferrihydrite and Hematite N2 - The oxides, hydroxides, and oxo-hydroxides of iron belong to the most abundant materials on earth. They also feature a wide range of practical applications. In many environments, they can undergo facile phase transformations and crystallization processes. Water appears to play a critical role in many of these processes. Despite numerous attempts, the role of water has not been fully revealed yet. We present a new approach to study the influence of water in the crystallization and phase transformations of iron oxides. The approach employs model-type iron oxide films that comprise a defined homogeneous nanostructure. The films are exposed to air containing different amounts of water reaching up to pressures of 10 bar. Ex situ analysis via scanning electron microscopy, Transmission electron microscopy, selected area electron diffraction, and X-ray diffraction is combined with operando near-ambient pressure X-ray photoelectron spectroscopy to follow water-induced changes in hematite nd ferrihydrite. Water proves to be critical for the nucleation of ematite domains in ferrihydrite, the resulting crystallite orientation, and the underlying crystallization mechanism. KW - Iron oxide KW - Ferrihydrite KW - Hematite KW - Water KW - NAP-XPS KW - High pressure PY - 2020 DO - https://doi.org/10.1021/acsami.0c05253 VL - 12 SP - 38714 EP - 38722 PB - ACS Publication AN - OPUS4-51201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Scattering is a powerful tool to follow nucleation and growth of minerals from solutions N2 - In recent years, we have come to appreciate the astounding intricacy of the processes leading to the formation of minerals from ions in aqueous solutions. The original, and rather naive, ‘textbook’ image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species. These include solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc.. Does it, however, mean that all the minerals grow through intermediate phases, following a non-classical pathway? In general, the precursor or intermediate species constitute different, often short-lived, points along the pathway from dissolved ions to the final solids (typically crystals in this context). In this regard synchrotron-based scattering (SAXS/WAXS/total scattering) appears to be the perfect tool to follow in situ and in a time-resolved manner the crystallization pathway because of the temporal and spatial length scales that can be directly accessed with these techniques. In this presentation we show how we used scattering to probe the crystallisation mechanisms of calcium sulfate, This system contains minerals that are widespread in diverse natural environments, but they are also important in various industrial settings. Our data demonstrate that calcium sulfate precipitation involves formation and aggregation of sub-3 nm anisotropic primary species. The actual crystallisation and formation of imperfect single crystals of calcium sulfate phases, takes place from the inside of the in itial aggregates. Hence, calcium sulfate follows a non-classical pathway. T2 - X-ray Powder Diffraction at DESY - new opportunities for research and industry CY - Online meeting DA - 22.06.2020 KW - Nucleation KW - Calcium sulfate KW - Diffraction KW - Scattering KW - Synchrotron KW - SAXS/WAXS PY - 2020 AN - OPUS4-50943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Das, S. A1 - Lal, G. A1 - Soni, S. R. A1 - Ghosh, A. A1 - Reddy, C. M. A1 - Ghosh, S. T1 - Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine N2 - Multidrug solids have a potential use to efficiently treat and control a superfluity of medical conditions. To address the current drawbacks of drug development in R&D, it was targeted to achieve new pharmaceutical solid forms of fenamic acids having improved solubility and thermal stability. Subsequently, five new multicomponent solids consisting of three salt hydrates of trimethoprim (TMP) with mefenamic acid (TMP-MFA-H2O), tolfenamic acid (TMP-TFA-H2O) and flufenamic acid (TMP-FFA-H2O), and two cocrystals of sulfamethazine (SFZ) with flufenamic acid (SFZ-FFA) and niflumic acid (SFZ-NFA) were prepared by liquid assisted grinding. Looking at the structures of active pharmaceutical ingredient (API) molecules, it was quite expected that a wide range of supramolecular synthons would lead to cocrystallization. New forms were characterized thoroughly by various solid-state techniques, including single crystal X-ray diffraction (SCXRD), which provided details of hydrogen bonding, molecular packing and interactions between drug and coformer. Kinetic solubility at pH 7.4 buffer study has been carried out and a comparison is made with respect to the parent drugs. A significant enhancement of NSAIDs solubility was observed in all salt hydrate systems of TMP. Thus with increasing physicochemical properties such as improved solubility further leads to the enhancement of bioavailability, which has implications to overcoming the formulation related problems of active pharmaceutical ingredients (APIs). KW - Cocrystals KW - Crystal engineering KW - Solubility PY - 2020 DO - https://doi.org/10.1016/j.molstruc.2019.127028 SN - 0022-2860 VL - 1199 SP - 127028 PB - Elsevier B.V. AN - OPUS4-49873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schaepe, Kaija A1 - Jungnickel, H. A1 - Heinrich, Thomas A1 - Tentschert, J. A1 - Luch, A. A1 - Unger, Wolfgang ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Secondary ion mass spectrometry N2 - This chapter provides an introduction in secondary ion mass spectrometry as one of the leading surface chemical analysis and imaging techniques with molecular specificity in the field of material sciences. The physical basics of the technique are explained along with a description of the typical instrumental setups and their modes of operation. The application paragraph specifically focuses on nanoparticle analysis by SIMS in terms of surface spectrometry, imaging, analysis in organic and complex media, and depth profiling. A review of the existing literature is provided, and selected studies are showcased. Limitations and pitfalls as well as current technical developments of SIMS application in nanoparticle surface chemical analysis are equally discussed. KW - Time-of-flight secondary ion mass spectrometry KW - Surface chemical analysis KW - Imaging KW - Nanomaterials KW - Nanoparticles KW - Core-shell PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00025-0 SP - 481 EP - 509 PB - Elsevier CY - Amsterdam AN - OPUS4-50187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donskyi, Ievgen A1 - Chen, Y. A1 - Nickl, Philip A1 - Guday, G. A1 - Qiao, H. A1 - Achasi, K. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Böttcher, C. A1 - Chen, W. A1 - Adeli, M. A1 - Haag, R. T1 - Self-degrading graphene sheets for tumor therapy N2 - Low biodegradability of graphene derivatives and related health risks are the main limiting factors for their in vivo biomedical applications. Here, we present the synthesis of enzyme-functionalized graphene sheets with self-degrading properties under physiological conditions and their applications in Tumor therapy. The synergistic enzyme cascade glucose oxidase and myeloperoxidase are covalently conjugated to the surface of graphene sheets and two-dimensional (2D) platforms are obtained that can produce sodium hypochlorite from glucose. The enzyme-functionalized graphene sheets with up to 289 nm average size are degraded into small pieces (≤40 nm) by incubation under physiological conditions for 24 h. Biodegradable graphene sheets are further loaded with doxorubicin and their ability for Tumor therapy is evaluated in vitro and in vivo. The laser-triggered release of doxorubicin in combination with the enzymatic activity of the functionalized graphene sheets results in a synergistic antitumor activity. Taking advantage of their neutrophil-like activity, fast biodegradability, high photo- and chemotherapeutic effects, the novel two-dimensional nanoplatforms can be used for tumor therapeutic applications. KW - Graphene KW - Self-degrading KW - Thumor therapy KW - XPS KW - NEXAFS PY - 2020 DO - https://doi.org/10.1039/d0nr02159h SP - 1 EP - 12 PB - The Royal Society of Chemistry AN - OPUS4-50978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Separation of polysterene nanoparticles with different coatings using 2D off-line coupling of asymmetrical flow field flow fractionation and capillary electrophoresis N2 - The successful off-line coupling of asymmetrical flow field flow fractionation (AF4) and capillary electrophoresis (CE) for Separation of nanoparticles (NPs) with different surface coatings was shown. Two mixtures of polystyrene nanoparticles (PS-NPs) with comparable core sizes (20 nm and 50 nm) but different coatings (no coating/carboxyl-coated) were studied. Separation in either method resulted in non-baseline resolved or non-separated peaks. In contrast, two-dimensional off-line coupling of AF4 and CE resulted in clearly separated regions in their 2 D plots and can obviouly improve separation resolution. T2 - FFF 2020 CY - Wien, Austria DA - 23.02.2020 KW - Capillary electrophoresis KW - Nanoparticle PY - 2020 AN - OPUS4-50487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Separation of polystyrene nanoparticles bearing different carboxyl group densities and functional groups quantification with capillary electrophoresis and asymmetrical flow field flow fractionation N2 - Two sets of polystyrene nanoparticles (PSNPs) with comparable core sizes but different carboxyl group densities were made and separated using asymmetric flow field flow fractionation (AF4), capillary electrophoresis (CE), and the off-line hyphenation of both methods. Our results revealed the significant potential of two-dimensional off-line AF4-CE hyphenation to improve the separation and demonstrated for the first time, the applicability of CE to determine the functional group density of nanoparticles (NPs). Compared to the result acquired with conductometric titration, the result obtained with synthesized 100 nm sized PSNPs revealed only a slight deviation of 1.7%. Commercial 100 nm sized PSNPs yielded a deviation of 4.6 %. For 60 nm sized PSNPs, a larger deviation of 10.6 % between both methods was observed, which is attributed to the lower separation resolution. KW - Nanoparticle KW - A4F KW - Capillary electrophoresis KW - Carboxyl group PY - 2020 DO - https://doi.org/10.1016/j.chroma.2020.461392 VL - 1626 SP - 461392 PB - Elsevier B.V. AN - OPUS4-51080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Setup of a Particle Scattering Simulation environment N2 - A step by step introduction to the setup of a particle scattering simulation is given. Followed by an installation session. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Columbia DA - 12.02.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Scattering KW - Simulations KW - Debian KW - Linux KW - Topas KW - C++ KW - Topas-nbio KW - Git KW - Cmake PY - 2020 AN - OPUS4-50366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Simulaciónes de Montecarlo II: El scoring en las superficies N2 - En esta presentación desarrollaremos un ejemplo de aplicación para la dispersión de partículas utilizando el método de simulación de Monte- Carlo. Se discutirá el caso de las nanopartículas de oro radiactivo y como obtener informacions sobre diferente tipos de particulas pasando las superfices. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Colombia DA - 16.03.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Particle scattering simulation KW - Particle scattering simulations KW - Radioactive decay KW - Radioactive nanoparticle KW - Desintegracion radioactiva KW - Geant4 KW - Monte-Carlo simulations KW - Método de Montecarlo KW - Topas KW - nanoparticula PY - 2020 AN - OPUS4-50564 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Falkenhagen, Jana A1 - Panne, Ulrich A1 - Hiller, W. A1 - Gruendling, T. A1 - Staal, B. A1 - Lang, C. A1 - Lamprou, A. T1 - Simultaneous characterization of poly(acrylic acid) andpolysaccharide polymers and copolymers N2 - Copolymer products that result from grafting acrylic acid and other hydrophilicmonomers onto polysaccharides have recently gained significant interest in researchand industry. Originating from renewable sources, these biodegradable, low toxicity,and polar copolymer products exhibit potential to replace polymers from fossil sourcesin several applications and industries. The methods usually employed to character-ize these copolymers are, however, quite limited, especially for the measurement ofbulk properties. With more sophisticated applications, for example, in pharmaceu-tics requiring a more detailed analysis of the chemical structure, we describe a newapproach for this kind of complex polymers. Our approach utilizes chromatographyin combination with several detection methods to separate and characterize reactionproducts of the copolymerization of acrylic acid and chemically hydrolyzed starch.These samples consisted of a mixture of homopolymer poly (acrylic acid), homopoly-mer hydrolyzed starch, and – in a lower amount – the formed copolymers. Several chro-matographic methods exist that are capable of characterizing either poly (acrylic acid)or hydrolyzed starch. In contrast, our approach offers simultaneous characterization ofboth polymers. The combination of LC and UV/RI offered insight into the compositionand copolymer content of the samples. Size exclusion chromatography experimentsrevealed the molar mass distribution of homopolymers and copolymers. FTIR inves-tigations confirmed the formation of copolymers while ESI-MS gave more details onthe end groups of hydrolyzed starches and poly (acrylic acids). Evidence of copolymerstructures was obtained through NMR measurements. Finally, two-dimensional chro-matography led to the separation of the copolymers from both homopolymers as wellas the additional separation of sodium clusters. The methods described in this work area powerful toolset to characterize copolymerization products of hydrolyzed starch andpoly(acrylic acid). Together, our approach successfully correlates the physicochemicalproperties of such complex mixtures with their actual composition. KW - 2D chromatography KW - LC-MS KW - SEC KW - Renewable copolymers KW - Grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508873 DO - https://doi.org/10.1002/ansa.202000044 SP - 1 EP - 12 PB - Wiley-VCH Verlag-GmbH&Co. KGaA CY - Weinheim AN - OPUS4-50887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill T1 - Single-source precursors strategy to access refractory high-entropy alloys for electrocatalytic applications N2 - High-entropy alloys containing up to 6 platinum group metals can be prepared by thermal decomposition of single-source precursors non requiring high temperature. We prepare the first example of a single-phase hexagonal high-entropy alloy. Heat treat- ment up to 1500 K and compression up to 45 GPa do not result in phase changes, a record temperature and pres- sure stability for a single-phase high-entropy alloy. The alloys show pronounced electrocatalytic activity in methanol oxidation, which opens a route for the use of high-entropy alloys as materials for sustainable energy conversion. T2 - HEA2020: first international virtual workshop on high-entropy alloy and complex solid solution nanoparticles for electrocatalysis CY - Online meeting DA - 06.10.2020 KW - High-entropy alloys KW - Single-source precursors PY - 2020 AN - OPUS4-54013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy and Corresponding Nanocomposites by Broadband Dielectric Spectroscopy and Hyphenated Calorimetry N2 - Polymer nanocomposites (PNCs) with inorganic nanofillers dispersed in a polymer matrix have been widely studied from the 1990s, since the pioneering work by Toyota Central Research. The possibility of producing advanced tailor-made, light weight and low-cost materials, inspired academic and commercial research towards numerous potential applications, facilitating PNCs to become a billion-dollar global industry. The introduction of nanoparticles (NPs) to a polymer matrix is expected to result in improved properties. The outstanding performance of PNCs is determined not only by the characteristics of the used components but also by their phase morphology, including the dispersion of NPs and interfacial properties. Understanding of structure-property relationships is particularly important for polymer nanocomposites with high industrial significance, such as epoxy-based materials reinforced with inorganic nanofillers. These PNCs have been successfully adopted by the marine, automotive and aerospace industries, although they are still rarely studied on a fundamental level. Therefore, this thesis aims for a detailed understanding of the structure, molecular mobility and vitrification kinetics first, of two epoxy-based materials with different network structures and second, of the corresponding nanocomposites with different alumina-based nanofillers. The first system considered (EP/T-LDH) was based on bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) and taurine-modified layered double hydroxide (T-LDH) NPs. The taurine molecule bears additional functionalities that could enhance the interactions between the matrix and the nanofiller, improving the interphase formation. The seconds system (EP/BNP) was based on DGEBA and methyl tetrahydrophtalic acid anhydride (MTHPA) as a hardener, reinforced with boehmite nanoparticles (BNPs). The comparison of the two systems enables for a comparative study on the effect of different hardeners and the morphology and modification of the alumina-based nanofillers on the material behavior. The materials were investigated employing complementary techniques with different sensitivities and frequency windows. The following methodology was used: transmission electron microscopy (TEM), small – and wide – angle X-ray scattering (SAXS/WAXS), broadband dielectric spectroscopy (BDS), calorimetry in a form of conventional DSC and fast scanning calorimetry (FSC), as well as specific heat spectroscopy (SHS) in a form of temperature modulated DSC, temperature modulated FSC and static FSC by calculating the thermal relaxation rates from the cooperativity approach. The FSC method (based on adiabatic chip calorimetry to probe micrometer-sized samples) was successfully employed in this work, exploiting all its possibilities for the first time in literature for a PNC. Moreover, a systematic analysis technique was established to overcome the problem of vague glass transition regions observed for highly loaded PNCs in the heat flow and heat capacity curves. First, TEM, SAXS/WAXS and indirectly BDS and SHS were employed to obtain the information about the approximate morphology of the PNCs. It was found that epoxy-based materials exhibit a structural heterogeneity in a form of regions with different average crosslinking density. This was indicated by multiple-peak scattering pattern of the polymer matrix and two distinct α-processes (dynamic glass transition) related to the cooperative fluctuation of the epoxy network found by BDS and SHS. This was described for the first time for epoxy-based materials. The two α-relaxations were evidenced differently for the two systems, which is related to different network structures and dipole moments due to the employed hardeners. Nevertheless, structural heterogeneity is an intrinsic feature of these materials, independent of the type of hardener used for the network formation and nanofiller. In addition, matrix inhomogeneities were more pronounced with increasing nanoparticle content. Furthermore, a powerful new technique was applied for X-ray scattering data, using Monte Carlo fits, to describe the NPs dispersion throughout the whole sample volume (as opposed to the local investigations performed by most researches). Additional structural information of the two systems was extracted by BDS and SHS, such as qualitative and quantitative estimation of polymer segments physically adsorbed and/or chemically bonded onto the nanoparticles. Due to the immobilized character of this interphase with respect to the cooperative segmental motions, it is denoted as a rigid amorphous fraction (RAF). For instance, on the contrary to EP/BNP, for EP/T-LDH a dielectrically active process was found, related to the localized fluctuations within RAF. Moreover, the amount of RAF in EP/T-LDH was reaching up to 40 wt % of the system, whereas in EP/BNP it ranged between 1-7 wt %. In the latter case the presence of NPs was found to simultaneously increase and decrease the number of mobile segments, due to the interphase formation and changes in crosslinking density. The difference between the two systems was ascribed to the presence of additional amine functionalities in the T-LDH nanofiller. Second, employing BDS and SHS, a systematic study on the effect of NPs on the segmental dynamics was performed. For example, depending on the nanofiller, the α-processes related to regions with higher crosslinking density was found to shift to higher and lower temperatures with increasing T-LDH and BNPs concentration, respectively. The observed difference is due to the different synergism of the polymer matrix with the nanofiller. Third, a detailed investigation of the vitrification kinetics was performed with DSC and FSC. The concentration dependence of the glass transition temperature was found, similar to the behavior of the α-processes. It was shown that, in parallel to the detected main glass transition, epoxy-based materials can exhibit an additional low temperature vitrification mechanism. As expected from the two distinct α-processes, this behavior was however not discussed in prior studies for an unfilled network former. This finding was correlated to the structural heterogeneity evidenced by other techniques. This thesis, dealing with an in-depth research on the epoxy-based materials that are already successfully employed in numerous applications underlines the necessity of more fundamental research in this field. It shines light on the complexity of these systems and contributes to defining how the structure-property relationships can be determined by combining multiple experimental techniques and analytical methodology. T2 - PhD defense CY - Online meeting DA - 18.12.2020 KW - Interfaces KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - BDS PY - 2020 AN - OPUS4-52035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Stawski, Tomasz ED - Van Driessche, A. E. S. T1 - Special issue "Formation of sulfate minerals in natural and industrial environments" N2 - Sulfate is abundant in the environment and, as a result, sulfate-containing minerals constitute a large and important focus of research. These minerals play an important role in many geochemical and industrial processes, including the sulfur cycle, the construction industry (e.g., plaster of Paris), fault tectonics, acid mine drainage, and even rare biominerals. Important to note are the abundant amounts of sulfate (minerals) located on the surface of Mars, and in meteorites, extending the relevance of this mineral group beyond the realm of our planet. In geological systems, sulfate minerals such as barite are also important for indicating certain sedimentation environments. In this regard, sulfate deposits can be used to evaluate the redox state of ancient oceans during early Earth time periods. KW - Calcium sulfate KW - Sulfates PY - 2020 UR - https://www.mdpi.com/journal/minerals/special_issues/FSMNIE SN - 2075-163X VL - 10(9)-12(3) SP - 10-812-1 EP - 12-299-3 PB - MDPI CY - Basel AN - OPUS4-54700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Bonse, Jörn ED - Spaltmann, Dirk T1 - Special issue: Laser-induced periodic surface nano- and microstructures for tribological applications N2 - Laser material processing is an emerging technology that generates surface functionalities on the basis of optical, mechanical, or chemical properties. In the form of laser surface texturing (LST), it has attracted a remarkable amount of research to tailor surface properties towards various tribological applications. The main advantages of this single-step, laser-based technology are the contactless machining, featuring a high flexibility, efficiency, and speed, along with the excellent quality of the processed products. LST can be applied precisely localized to sub-micrometric areas, but, via laser beam scanning, it is also feasible for structuring large surface areas at the square meter size. This Special Issue focuses on the latest developments concerning the tribological performance of laser-generated periodic surface nano- and microstructures and their applications. This includes the laser-based processing of different surface patterns, such as “self-organized” laser-induced periodic surface structures (LIPSS, ripples), grooves, micro-spikes, hierarchical hybrid nano-/micro-structures, microfeatures generated by direct laser interference patterning (DLIP), or even dimples or other topographic geometries shaped by direct laser modification or ablation. The applications of these periodically nano- and micro-patterned surfaces may improve the lubricated or non-lubricated tribological performance of surfaces in conformal and even non-conformal contact through a reduction of wear, a variation of the coefficient of friction, altered load carrying capacity, etc., resulting in energy saving, improved reliability, increased lifetimes as well as durability, leading in turn to extended maintenance intervals/reduced down-time. This can be beneficial in terms of bearings, gears, engines, seals, cutting tools, or other tribological components. Fundamental aspects addressed may involve the investigation of the relevant physical and chemical effects accompanying the laser-generated nano- and microscale topographies, such as alterations of the material structures, the hardness, superficial oxidation, the role of additives contained in lubricants, surface wettability, micro-hydrodynamic effects, etc. For this Special Issue we aim to attract both academic and industrial researchers and would like to provide a bridge between research in the fields of tribology and laser material processing in order to foster the current knowledge and present new ideas for future applications and new technologies. KW - Applications KW - Friction KW - Laser-induced periodic surface structures (LIPSS) KW - Tribology KW - Wear PY - 2020 UR - https://www.mdpi.com/journal/lubricants/special_issues/laser_periodic SN - 2075-4442 VL - 8 IS - 3 SP - Article 1 EP - Article 10 PB - MDPI CY - Basel AN - OPUS4-50914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Goedecke, Caroline A1 - Wiesner, Yosri A1 - Jekel, M A1 - Ruhl, A S A1 - Braun, Ulrike T1 - Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine N2 - The adsorption of organic micropollutants onto activated carbon is a favourable solution for the treatment of drinking water and wastewater. However, these adsorption processes are not sufficiently understood to allow for the appropriate prediction of removal processes. In this study, thermogravimetric analysis, alongside evolved gas analysis, is proposed for the characterisation of micropollutants adsorbed on activated carbon. Varying amounts of carbamazepine were adsorbed onto three different activated carbons, which were subsequently dried, and their thermal decomposition mechanisms examined. The discovery of 55 different pyrolysis products allowed differentiations to be made between specific adsorption sites and conditions. However, the same adsorption mechanisms were found for all samples, which were enhanced by inorganic constituents and oxygen containing surface groups. Furthermore, increasing the loadings led to the evolution of more hydrated decomposition products, whilst parts of the carbamazepine molecules were also integrated into the carbon structure. It was also found that the chemical composition, especially the degree of dehydration of the activated carbon, plays an important role in the adsorption of carbamazepine. Hence, it is thought that the adsorption sites may have a higher adsorption energy for specific adsorbates, when the activated carbon can then potentially increase its degree of graphitisation. KW - Aktivkohle KW - TED-GC/MS KW - Adsorption KW - Thermoanalytik PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506946 DO - https://doi.org/10.1038/s41598-020-63481-y VL - 10 IS - 1 SP - 6695 PB - Nature Publishing Group AN - OPUS4-50694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agostini, G. A1 - Radnik, Jörg T1 - Spectroscopy in Catalysis N2 - Knowledge-based catalyst development is always an interaction between preparation, analysis and catalytic testing. Only if these three factors fit together can success be expected. For the analytic side of this triangle, spectroscopic methods play a crucial role. Whereas with diffraction, scattering and microscopy, decisive insights into the structure and morphology of the catalysts can be obtained, spectroscopy produces new knowledge about the chemical nature of the catalyst, e.g., its bonding and valence states. KW - Spectroscopy KW - Catalysis KW - Operando KW - In situ PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506507 DO - https://doi.org/10.3390/catal10040408 VL - 10 IS - 4 SP - 408 PB - MDPI CY - Basel AN - OPUS4-50650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana T1 - SRXRF examples from the BAMline N2 - Synchrotron radiation sources with their unique properties in terms of intensity, polarization and adjustability offer a wide range of possibilities in materials research. A basic introduction about the creation and special properties of synchrotron radiation will be given. Examples of current work at BAMline, the high-energy measuring facility of the Federal Institute for Materials Research and Testing at the synchrotron BESSY, are used to illustrate the possibilities and limitations of existing measuring methods. T2 - Better with Scattering CY - Online meeting DA - 16.03.2020 KW - Synchrotron KW - BAMline KW - XRF PY - 2020 AN - OPUS4-51895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Xu, W. A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Structure and properties of fluorinated and non-fluorinated Ba-coordination polymers - the position of fluorine makes the difference N2 - As the most electronegative element, fluorine has a strong influence on material properties such as absorption behaviour or chemical and thermal stability. Fluorine can be easily integrated into coordination polymers (CPs) via a fluorinated acetate, here trifluoroacetate in Ba(CF3COO)2, or directly via a metal fluorine bond (BaF(CH3COO)). In the present study both possibilities of fluorine integration were tested and their effect on structure and properties of barium coordination polymers was investigated in comparison with the non-fluorinated barium acetate (Ba(CH3COO)2). In addition to the study of their thermal behaviour and their decomposition temperature, the CPs structures were tested for their application as possible anode materials in lithium ion batteries and for their sorption of water and ammonia. The properties of the CPs can be traced back to the individual structural motifs and could thus trigger new design ideas for CPs in LIBs and/or catalysis. KW - Alkaline earth metal coordination polymers KW - Lithium-ion battery KW - Water stability KW - Fluorine coordination PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524041 DO - https://doi.org/10.1002/zaac.202000360 SN - 0044-2313 VL - 647 IS - 9 SP - 1014 EP - 1024 PB - Wiley-VCH GmbH AN - OPUS4-52404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Bertmer, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Dietzel, M. A1 - Ukrainczyk, N. A1 - Grengg, C. T1 - Sulfuric acid resistance of copper-doped and plain metakaolin-based alkali-activated materials studied by 29Si, 27Al and 1H MAS NMR, and Cu K-edge XANES spectroscopy N2 - Alkali-activated materials have been repeatedly reported to exhibit high acid resistance, but no generally accepted hypothesis regarding the underlying mechanisms has emerged yet. To contribute to this issue, K-waterglass-activated metakaolin specimens, with and without the addition of CuSO4·5H2O in the starting mix, were exposed to either a chemically aggressive sewer environment (mortars) or sulfuric acid (pastes). The mode of copper incorporation in the materials and the formation of copper phases in the corroded layers were studied by XANES at the Cu K-edge, and 29Si, 27Al and 1H MAS NMR was employed to understand the processes during acid attack. Copper was found as a spertiniite-like phase in the as-cured materials, while in the deterioration layers of the pastes it was present as copper sulfate. In the corroded regions of the mortars, unequivocal identification of Cu phases was not possible, but the results were reconcilable with the presence of copper carbonate hydroxide. The solid-state NMR results revealed virtually complete dissolution of the K-A-S-H gel and the formation of silica gel, interpreted to be a central mechanism determining the acid resistance. No significant differences between the microstructural alterations of the pastes with and without Cu addition on (chemical) sulfuric acid attack were observed. T2 - 74th RILEM Annual Week & 40th Cement and Concrete Science Conference CY - Online meeting DA - 31.08.2020 KW - Alkali-activated materials KW - Sulfuric acid resistance KW - Sewer structures PY - 2020 AN - OPUS4-51198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aratsu, K. A1 - Takeya, R. A1 - Pauw, Brian Richard A1 - Hollamby, M.J. A1 - Kitamoto, Y. A1 - Shimizu, N. A1 - Takagi, H. A1 - Haruki, R. A1 - Adachi, S. A1 - Yagai, S. T1 - Supramolecular copolymerization driven by integrative self-sorting of hydrogen-bonded rosettes N2 - Molecular recognition to preorganize noncovalently polymerizable supramolecular complexes is a characteristic process of natural supramolecular polymers, and such recognition processes allow for dynamic self-alteration, yielding complex polymer systems with extraordinarily high efficiency in their targeted function. We herein show an example of such molecular recognition-controlled kinetic assembly/disassembly processes within artificial supramolecular polymer systems using six-membered hydrogen-bonded supramolecular complexes (rosettes). Electron-rich and poor monomers are prepared that kinetically coassemble through a temperature-controlled protocol into amorphous coaggregates comprising a diverse mixture of rosettes. Over days, the electrostatic interaction between two monomers induces an integrative self-sorting of rosettes. While the electron-rich monomer inherently forms toroidal homopolymers, the additional electrostatic interaction that can also guide rosette association allows helicoidal growth of supramolecular copolymers that are comprised of an alternating array of two monomers. Upon heating, the helicoidal copolymers undergo a catastrophic transition into amorphous coaggregates via entropy-driven randomization of the monomers in the rosette. KW - Self-assembly KW - Coaggregation KW - Scattering KW - Simulation KW - AFM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506555 DO - https://doi.org/10.1038/s41467-020-15422-6 VL - 11 IS - 1 SP - Article number: 1623 PB - Springer Nature AN - OPUS4-50655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Kjaervik, Marit A1 - Unger, Wolfgang T1 - Surface chemical analysis surface chemical analysis of cells and biofilms N2 - The status of the planned technical report "Surface characterization of biomaterials" will be presented. T2 - ISO TC201 Meeting CY - Online meeting DA - 05.09.2020 KW - X-ray photoelectron spectroscopy KW - X-ray spectroscopy KW - Biomaterials KW - Standardization PY - 2020 AN - OPUS4-51197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface functionalization by laser-induced periodic surface structures N2 - In recent years, the improved understanding of the formation of laser-induced periodic surface structures (LIPSS) has led to an emerging variety of applications that modify the optical, mechanical, and chemical properties of many materials. Such structures strongly depend on the laser beam polarization and are formed usually after irradiation with ultrashort linearly polarized laser pulses. The most accepted explanation for the origin of the structures is based on the interference of the incident laser radiation with electromagnetic surface waves that propagate or scatter at the surface of the irradiated materials. This leads to an intensity modulation that is finally responsible for the selective ablation in the form of parallel structures with periods ranging from hundreds of nanometers up to some micrometers. The versatility when forming such structures is based on the high reproducibility with different wavelengths, pulse durations and repetition rate laser sources, customized micro- and nanometric spatial resolutions, and compatibility with industrially relevant processing speeds when combined with fast scanning devices. In this contribution, we review the latest applications in the rapidly emerging field of surface functionalization through LIPSS, including biomimetic functionalities on fluid transport, control of the wetting properties, specific optical responses in technical materials, improvement of tribological performance on metallic surfaces, and bacterial and cell growth for medical devices, among many others. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Surface functionalization KW - Applications PY - 2020 DO - https://doi.org/10.2351/7.0000103 SN - 1938-1387 VL - 32 IS - 2 SP - 022063 PB - Laser Institute of America AN - OPUS4-50780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface superconductivity changes of niobium sheets by femtosecond laser-induced periodic nanostructures N2 - Irradiation with ultra-short (femtosecond) laser beams enables the generation of sub-wavelength laser-induced periodic surface structures (LIPSS) over large areas with controlled spatial periodicity, orientation, and depths affecting only a material layer on the sub-micrometer scale. This study reports on how fs-laser irradiation of commercially available Nb foil samples affects their superconducting behavior. DC magnetization and AC susceptibility measurements at cryogenic temperatures and with magnetic fields of different amplitude and orientation are thus analyzed and reported. This study pays special attention to the surface superconducting layer that persists above the upper critical magnetic field strength Hc2, and disappears at a higher nucleation field strength Hc3. Characteristic changes were distinguished between the surface properties of the laser-irradiated samples, as compared to the corresponding reference samples (non-irradiated). Clear correlations have been observed between the surface nanostructures and the nucleation field Hc3, which depends on the relative orientation of the magnetic field and the surface patterns developed by the laser irradiation. KW - Niobium KW - Surface superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Nanostructures PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518462 DO - https://doi.org/10.3390/nano10122525 SN - 2079-4991 VL - 10(12) IS - Special issue "Laser-generated periodic nanostructures" SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-51846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cant, D. J. H. A1 - Minelli, C. A1 - Sparnacci, K. A1 - Müller, Anja A1 - Kalbe, H. A1 - Stoger-Pollach, M. A1 - Unger, Wolfgang A1 - Werner, W. S. M. A1 - Shard, A. G. T1 - Surface-Energy Control and Characterization of Nanoparticle Coatings N2 - Accurate and reproducible measurement of the structure and properties of high-value nanoparticles is extremely important for their commercialization. A significant proportion of engineered nanoparticle systems consist of some form of nominally core-shell structure, whether by design or unintentionally. Often, these do not form an ideal core-shell structure, with typical deviations including polydispersity of the core or shell, uneven or incomplete shells, noncentral cores, and others. Such systems may be created with or without intent, and in either case an understanding of the conditions for formation of such particles is desirable. Precise determination of the structure, composition, size, and shell thickness of such particles can prove challenging without the use of a suitable range of characterization techniques. Here, the authors present two such polymer core-shell nanoparticle systems, consisting of polytetrafluoroethylene cores coated with a range of thicknesses of either polymethylmethacrylate or polystyrene. By consideration of surface energy, it is shown that these particles are expected to possess distinctly differing coating structures, with the polystyrene coating being incomplete. A comprehensive characterization of these systems is demonstrated, using a selection of complementary techniques including scanning electron microscopy, scanning transmission electron microscopy, thermogravimetric analysis, dynamic light scattering, differential centrifugal sedimentation, and X-ray photoelectron spectroscopy. By combining the results provided by these techniques, it is possible to achieve superior characterization and understanding of the particle structure than could be obtained by considering results separately. KW - Nanoparticles KW - Core-shell KW - XPS KW - Size KW - Thickness KW - Damage PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c02161 VL - 124 IS - 20 SP - 11200 EP - 11211 PB - ACS CY - Washington DC AN - OPUS4-50899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulka, M.W. A1 - Nie, C. A1 - Nickl, P. A1 - Kerkhoff, Y. A1 - Garg, A. A1 - Salz, D. A1 - Radnik, Jörg A1 - Grunwald, I. A1 - Haag, R. T1 - Surface-Initiated Grafting of Dendritic Polyglycerol from Mussel-Inspired Adhesion-Layers for the Creation of Cell-Repelling Coatings N2 - Biofouling is a major challenge in the application of textiles, biosensors, and biomedical implants. In the current work, a straightforward method for the solvent-free polymerization of antifouling dendritic polyglycerol (dPG) from mussel-inspired dendritic polyglycerol (MI-dPG) coatings on hydrophilic titanium dioxide (TiO2) and hydrophobic polydimethylsiloxane (PDMS) is reported. Surface characterization is performed by static water contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Significant lower CA values are obtained after dPG grafting from MI-dPG-coated TiO2 and MI-dPG coated PDMS. Furthermore, XPS shows a time-dependent increase of the CO bond content upon dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. Analysis of the surface morphology by SEM shows a clear time-dependent increase in the surface roughness upon dPG grafting from MI-dPG-coated TiO2 and MIdPG-coated PDMS. When the viability of two adhesive cell types is studied via LIVE/DEAD staining, a strong reduction in the cell density is observed after the dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS (a decrease of >95% in all cases). The combined results show that biocompatible but highly cell-repelling surfaces are efficiently constructed via the grafting of dPG from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. KW - Repelling surface coatings KW - Dendritic polyglycerol KW - Mussel-inspired adhesives KW - Surface-initated grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516590 DO - https://doi.org/10.1002/admi.202000931 SN - 2196-7350 VL - 7 IS - 24 SP - 931 PB - Wiley VCH AN - OPUS4-51659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Sukhikh, A. A1 - Kraus, Werner A1 - Gromilov, S. T1 - Synthesis and Crystal Chemistry of Octahedral Rhodium(III) Chloroamines N2 - Rhodium(III) octahedral complexes with amine and chloride ligands are the most common starting compounds for preparing catalytically active rhodium(I) and rhodium(III) species. Despite intensive study during the last 100 years, synthesis and crystal structures of rhodium(III) complexes were described only briefly. Some [RhClx(NH3)6-x] compounds are still unknown. In this study, available information about synthetic protocols and the crystal structures of possible [RhClx(NH3)6−x] octahedral species are summarized and critically analyzed. Unknown crystal structuresof(NH4)2[Rh(NH3)Cl5],trans–[Rh(NH3)4Cl2]Cl·H2O,andcis–[Rh(NH3)4Cl2]Clarereported based on high quality single crystal X-ray diffraction data. The crystal structure of [Rh(NH3)5Cl]Cl2 was redetermined. All available crystal structures with octahedral complexes [RhClx(NH3)6-x] were analyzed in terms of their packings and pseudo-translational sublattices. Pseudo-translation lattices suggest face-centered cubic and hexagonal closed-packed sub-cells, where Rh atoms occupy nearly ideal lattices. KW - Pseudo-translationalsublattices KW - Rhodiumcomplexes KW - Ligandsubstitution KW - Crystalstructure PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508194 DO - https://doi.org/10.3390/molecules25040768 VL - 25 IS - 4 SP - 768 PB - MDPI CY - Basel AN - OPUS4-50819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Medeiros, V.L. A1 - Goulart de Araujo, L. A1 - Ratero, D.R. A1 - Paula, A.S. A1 - Ferreira Molina, E. A1 - Jaeger, Christian A1 - Takehiro Marumo, J. T1 - Synthesis and physicochemical characterization of a novel adsorbent based on yttrium silicate: A potential material for removal of lead and cadmium from aqueous media N2 - A new metallosilicate based on yttrium was synthesized and characterized by XRD, FT-IR, 29Si MAS-NMR, and 89Y MAS-NMR. The mixed framework of the material was confirmed by the detection of distinct chemical shift groups using 29Si MAS-NMR (at -82 to -87 ppm, -91 to -94 ppm, -96 to -102 ppm, and -105 to -108 ppm), as well as four distinct chemical shifts in the 89Y MAS-NMR spectrum (at -89, -142, -160, and -220 ppm). Adsorption and kinetic analyses indicated the potential of the new material for the removal of lead and cadmium from aqueous media. The adsorption results for lead indicated that dynamic equilibrium was reached after five hours, with total lead removal of around 94 %, while for cadmium it was reached in the first hour, with total Cadmium removal of around 74 %. The adsorptions of lead and cadmium were modeled using pseudo-first order (PFO) and pseudo-second order (PSO) kinetic models. Although both models provided high R2 values (0.9903 and 0.9980, respectively), the PSO model presented a much lower χ2 red value (4.41×10−4), compared to the PFO model (2.12×10−3), which indicated that the rate-limiting step was probably due to the chemisorption of lead from the solution onto the yttrium-based metallosilicate. KW - Yttrium silicates KW - 29Si KW - 89Y MAS-NMR KW - Adsorption KW - Chemisorption KW - Cadmium and lead remediation PY - 2020 DO - https://doi.org/10.1016/j.jece.2020.103922 VL - 8 SP - 103922 PB - Elsevier Ltd. AN - OPUS4-51292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Kulla, Hannes A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Marquardt, Julien A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Synthesis of Bimetallic Nickel Nanoparticles as Catalysts for the Sabatier Reaction N2 - Nanoparticles (NP) have become important materials for a variety of chemical technologies. The enhance surface-area-to-volume ratio of NPs is very high, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni nanoparticles were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the catalytically active sites are accessible. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - Joint Polish-German Crystallographic Meeting CY - Wroclaw, Poland DA - 24.02.2020 KW - Nanoparticles KW - Synthesis KW - Catalysis PY - 2020 AN - OPUS4-51663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baláž, M. A1 - Tešinský, M. A1 - Marquardt, Julien A1 - Škrobian, M. A1 - Daneu, N. A1 - Rajňák, M. A1 - Baláž, P. T1 - Synthesis of copper nanoparticles from refractory sulfides using a semi-industrial mechanochemical approach N2 - The large-scale mechanochemical reduction of binary sulfides chalcocite (Cu2S) and covellite (CuS) by elemental iron was investigated in this work. The reduction of Cu2S was almost complete after 360 min of milling, whereas in the case of CuS, a significant amount of non-reacted elemental iron could still be identified after 480 min. Upon application of more effective laboratory-scale planetary ball milling, it was possible to reach almost complete reduction of CuS. Longer milling leads to the formation of ternary sulfides and oxidation product, namely cuprospinel CuFe2O4. The rate constant calculated from the magnetometry measurements using a diffusion model for Cu2S and CuS reduction by iron in a large-scale mill is 0.056 min−0.5 and 0.037 min−0.5, respectively, whereas for the CuS reduction in a laboratory-scale mill, it is 0.1477 min−1. The nanocrystalline character of the samples was confirmed by TEM and XRD, as the produced Cu exhibited sizes up to 16 nm in all cases. The process can be easily scaled up and thus copper can be obtained much easier from refractory minerals than in traditional metallurgical approaches. KW - Mechanochemistry KW - Copper sulfides KW - Copper nanoparticles KW - Magnetometry KW - Oxidation PY - 2020 DO - https://doi.org/10.1016/j.apt.2019.11.032 VL - 31 IS - 2 SP - 782 EP - 791 PB - Elsevier B.V. AN - OPUS4-50665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Synthesis of cyclic polymers and flaws of the Jacobson–Stockmayer theory N2 - Cyclic poly(L-lactide)s were prepared by ring-opening polymerization combined with simultaneous polycondensation (ROPPOC) in bulk at 160 ° with dibutyltin bis(4-cyanophenoxide) as catalyst. It is demonstrated by MALDI TOF mass spectrometry and 1H NMR end group analyses that cycles are formed by endto-end cyclization in addition to “back-biting” transesterification. Formation of high molar mass cyclic poly L-lactide)s by means of several more reactive ROPPOC catalysts presented previously and in new experiments is discussed. These experimental results, together with theoretical arguments, prove that part of the Jacobson–Stockmayer theory is wrong. The critical monomer concentration, above which end-toend cyclization is seemingly impossible, does not exist and reversible like irreversible polycondensations can theoretically proceed up to 100% conversion, so that finally all reaction products will necessarily adopt a cyclic architecture. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506419 DO - https://doi.org/10.1039/d0py00226g VL - 11 IS - 14 SP - 2595 EP - 2604 PB - Royal Society for Chemistry AN - OPUS4-50641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Olivera, Paulo A1 - Michalchuk, Adam A1 - de Oliveira Guilherme Buzanich, Ana A1 - Bienert, Ralf A1 - Torresi, R. A1 - Camargo, P. A1 - Emmerling, Franziska T1 - Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis N2 - Current time-resolved in situ approaches limit the scope of mechanochemical investigations possible. Here we develop a new, general approach to simultaneously follow the evolution of bulk atomic and electronic structure during a mechanochemical synthesis. This is achieved by coupling two complementary synchrotron-based X-ray methods: X-ray absorption spectroscopy (XAS) and X-ray diffraction. We apply this method to investigate the bottom-up mechanosynthesis of technologically important Au micro and nanoparticles in the presence of three different reducing agents, hydroquinone, sodium citrate, and NaBH4. Moreover, we show how XAS offers new insight into the early stage generation of growth species (e.g. monomers and clusters), which lead to the subsequent formation of nanoparticles. These processes are beyond the detection capabilities of diffraction methods. This combined X-ray approach paves the way to new directions in mechanochemical research of advanced electronic materials. KW - Mechanochemistry KW - XANES KW - X-ray diffraction KW - Nano particles PY - 2020 DO - https://doi.org/10.1039/d0cc03862h SN - 1364-548X VL - 56 SP - 10329 EP - 10332 PB - Royal Society of Chemistry AN - OPUS4-51760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Braun, Ulrike A1 - Bannick, C.-G. A1 - Bednarz, M. A1 - Herper, D. A1 - Knefel, M. T1 - TED-GC/MS: Schnelle Bestimmung von Mikroplastik-Massegehalten in verschiedenen Proben N2 - Zur Ermittlung von Mikroplastik-Gehalten in verschiedenen Umweltmatrices ist ein schnelles Detektionsverfahren für die Routineanalytik notwendig. Ein solches Verfahren wird hier in Form der ThermoExtraktion/Desorption-GasChromatographie/ MassenSpektroskopie (TED-GC/MS) vorgestellt. Neben grundlegenden verfahrensspezifischen Erläuterungen zur Identifizierung und Quantifizierung von Mikroplastik werden auch exemplarische Beispiele aus unterschiedlichen Umweltkompartimenten und Produkten dargestellt. Neu vorgestellt wird ein neues Verfahren zur Analytik von Flaschenwasser. Dazu wurde ein Messfiltertiegel entwickelt, der besonders für Proben mit geringen Gehalten an abfiltrierbaren Stoffen geeignet ist KW - Mikroplasik KW - Mikroplastik-Analyse KW - TED-GC/MS KW - Thermoanalytische Verfahren KW - Mikroplastik-Massengehalte PY - 2020 VL - 2020 IS - 02 SP - 55 EP - 57 PB - Gesellschaft Deutscher Chemiker (GDCh) CY - Frankfurt am Main AN - OPUS4-50835 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - Temperature effects in the Object Oriented Micromagnetic Framework (OOMMF) - OOMMF input parameter files for Tc determination N2 - To simulate the movement of the macroscopic magnetic moment in ferromagnetic systems under the influence of elevated temperatures, the stochastic version of the Landau-Lifshitz (LL) or the Landau-Lifshitz-Gilbert equation with a spin density of one per unit cell has to be used. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion has to be performed. OOMMF sample files MIF) are provided which can be used to determine the Curie temperature for the classical bulk magnets, iron, nickel and cobalt. KW - OOMMF KW - Temperature KW - Micromagnetism KW - Thetaevolve KW - Ferromagnetism KW - Exchange interaction KW - LLG KW - Landau Lifshitz equation KW - Magnetic moment KW - Magnetic nanoparticles KW - Object oriented micromagnetic framework KW - Stochastic Landau Lifshitz Gilbert equation KW - Temperature scaling PY - 2020 DO - https://doi.org/10.26272/opus4-51169 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Haas, S. A1 - Kropf, H. A1 - Duarte, J. A1 - Cakir, Cafer Tufan A1 - Dubois, F. A1 - Többens, D. A1 - Glatzel, U. T1 - Temperature evolution of lattice misfit in Hf and Mo variations of the Al 10 Co 25 Cr 8 Fe 15 Ni 36 Ti 6 compositionally complex alloy N2 - Misfits of γ- γ’ based Al10Co25Cr8Fe15Ni36Ti6 and its Mo- and Hf-variations are studied up to a temperature of 980 °C and compared with Ni- and Co-based superalloys. The trace elements decrease (Hf) or increase (Mo) the edge radii of the γ’ cuboids without changing their sizes. Atom probe measurements revealed that the Hf alloy prefers the γ’ phase while Mo prefers the γ matrix, leading to a lattice parameters enhancement of both phases, as could be revealed by synchrotron X-ray diffraction. The misfit is influenced in opposite ways: Hf increases the positive misfit, while Mo reduces it at all investigated temperatures. KW - Metal and alloys KW - Transmission electron microscopy KW - X-ray diffraction KW - Atom probe tomography KW - High entropy alloy PY - 2020 DO - https://doi.org/10.1016/j.scriptamat.2020.07.013 VL - 188 SP - 74 EP - 79 PB - Elsevier Ltd. AN - OPUS4-51025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin M. A1 - Plarre, Rüdiger A1 - Hübert, Thomas A1 - Kemnitz, E. ED - Richter, K. ED - Van de Kulien, J.-W. T1 - Termite resistance of pine wood treated with nano metal fluorides N2 - Fluorides are well-known as wood preservatives. One of the limitations of fluoride-based wood preservatives is their high leachability. Alternative to current fluoride salts such as NaF used in wood protection are low water-soluble fluorides. However, impregnation of low water-soluble fluorides into wood poses a challenge. To address this challenge, low water-soluble fluorides like calcium fluoride (CaF2) and magnesium fluoride (MgF2) were synthesized as nanoparticles via the fluorolytic sol−gel synthesis and then impregnated into wood specimens. In this study, the toxicity of nano metal fluorides was assessed by termite mortality, mass loss and visual analysis of treated specimens after eight weeks of exposure to termites, Coptotermes formosanus. Nano metal fluorides with sol concentrations of 0.5 M and higher were found to be effective against termites resulting in 100% termite mortality and significantly inhibited termite feeding. Among the formulations tested, the least damage was found for specimens treated with combinations of CaF2 and MgF2 with an average mass loss less than 1% and visual rating of “1”. These results demonstrate the efficacy of low water-soluble nano metal fluorides to protect wood from termite attack. KW - Holzschutzmittel KW - Nanoparticles KW - Fluorides KW - Termites PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514325 DO - https://doi.org/10.1007/s00107-020-01522-z VL - 78 SP - 493 EP - 499 PB - Springer CY - Berlin AN - OPUS4-51432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Marcoulaki, E. A1 - van Duuren, B A1 - Kunz, Valentin A1 - Unger, Wolfgang A1 - Shandilya, N. T1 - Testing and benchmarking nanosafety services N2 - One of the objectives of the EU Project EC4SafeNano (European Centre for Risk Management and Safe Innovation in Nanomaterials & Nanotechnologies) was to test and benchmark the services in order to check their relevance to address identified stakeholder needs, but also to evaluate the governance of the structure delivering the proposed services. The aim is to demonstrate the technical relevance of the services and the overall open structure organisation, including governance rules and operating procedures, by answering relevant identified questions (case studies) selected by a panel of stakeholders. Therefore, a significant part of the project will be devoted to this demonstration of the operational and functional basis of the organized network. T2 - Review Meeting EC4SafeNano CY - Brussels, Belgium DA - 16.01.2020 KW - Nanosafety KW - EC4SafeNano KW - Nanosafety services KW - EU KW - Case studies PY - 2020 AN - OPUS4-50273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Kranjc, E. A1 - Bohmer, N. A1 - Drobne, D. A1 - Hodoroaba, Vasile-Dan T1 - Testing the quality of nanomaterial properties data for nano-risk assessment – towards guidance for all types of users N2 - Data quality is a vast term, which comprises the completeness, relevance (adequacy), and reliability of data. So far, many attempts to assure data quality have been pursued, and evaluation criteria for data quality have been established. One relatively novel but already well-known aspect of data quality refers to the concept of data FAIRness, which states that data should be: findable, accessible, interoperable and re-usable. In order to find, use, and access data, a user has to be guided properly. Such guidelines already exist for regulators and the scientific community. However, a ‘simple’ non-academic user from general society is very unlikely to be able to access or understand such data. Our objective in the H2020 project NANORIGO is to help and guide all types of users (i.e., scientists, regulators, industry workers, citizens, etc.) to access and make use of high-quality data and information from available and suitable data repositories in order to increase the transparency of and trust in nanotechnology. T2 - nanoSAFE 2020 CY - Online Meeting DA - 16.11.2020 KW - Nano-related data KW - Nanomaterial properties KW - Nano-risk assessment PY - 2020 AN - OPUS4-51701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Müller, Bernd R. A1 - Prinz, Carsten A1 - Stroh, Julia A1 - Feldmann, Ines A1 - Bruno, Giovanni T1 - The correlation between porosity characteristics and the crystallographic texture in extruded stabilized aluminium titanate for diesel particulate filter applications N2 - Porous ceramic diesel particulate filters (DPFs) are extruded products that possess macroscopic anisotropic mechanical and thermal properties. This anisotropy is caused by both morphological features (mostly the orientation of porosity) and crystallographic texture. We systematically studied those two aspects in two aluminum titanate ceramic materials of different porosity using mercury porosimetry, gas adsorption, electron microscopy, X-ray diffraction, and X-ray refraction radiography. We found that a lower porosity content implies a larger isotropy of both the crystal texture and the porosity orientation. We also found that, analogous to cordierite, crystallites do align with their axis of negative thermal expansion along the extrusion direction. However, unlike what found for cordierite, the aluminium titanate crystallite form is such that a more pronounced (0 0 2) texture along the extrusion direction implies porosity aligned perpendicular to it. KW - Preferred orientation KW - X-ray refraction KW - Pore orientation KW - Crystal structure KW - Extrusion KW - Microstructure-property relations PY - 2020 DO - https://doi.org/10.1016/j.jeurceramsoc.2019.11.076 SN - 0955-2219 VL - 40 IS - 4 SP - 1592 EP - 1601 PB - Elsevier Ltd. AN - OPUS4-50325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The dark side of science N2 - This talk explores the various ways in which bad science can proliferate in the current academic environment, and what can be done to recognize and (maybe) correct it. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Scientific rigor KW - Academic fraud KW - Academic metrics PY - 2020 AN - OPUS4-51017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark Side of Science N2 - An overview of the dark side of science: what it is, how it occurs, and what you can do to understand it and fight for the light side. T2 - First training event of the ITN-Project GW4SHM CY - Online meeting DA - 23.11.2020 KW - Scientific rigor KW - Scientific misconduct KW - Data manipulation KW - Image manipulation PY - 2020 AN - OPUS4-51830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lumpe, H. A1 - Menke, Annika A1 - Haisch, C. A1 - Mayer, P. A1 - Kabelitz, Anke A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Block, T. A1 - Pöttgen, R. A1 - Emmerling, Franziska A1 - Daumann, L. T1 - The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone N2 - Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled plasma mass spectrometry (ICP‐MS), infrared (IR) spectroscopy, 151Eu‐Mössbauer spectroscopy, X‐ray total scattering, and extended X‐ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent. KW - PQQ KW - Lanthanoide KW - Coordination chemistry KW - Rare earth elements separations PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512707 DO - https://doi.org/10.1002/chem.202002653 VL - 26 IS - 44 SP - 10133 EP - 10139 AN - OPUS4-51270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lumpe, H. A1 - Menke, A. A1 - Haisch, C. A1 - Mayer, P. A1 - Kabelitz, Anke A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Block, T. A1 - Pöttgen, R. A1 - Emmerling, Franziska A1 - Daumann, L. J. T1 - The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone N2 - Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol Dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled Plasma mass spectrometry (ICP-MS), infrared (IR) spectroscopy, 151Eu-Mössbauer spectroscopy, X-ray total scattering, and Extended X-ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve Separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent. KW - Lanthanides KW - Structural Analysis KW - Separation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510821 DO - https://doi.org/10.1002/chem.202002653 SN - 0947-6539 VL - 26 SP - 1 EP - 8 PB - WILEY-VCH Verlag GmbH & co. KGaA AN - OPUS4-51082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hunter, R. D. A1 - Rowlandson, J. L. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Ting, V. P. A1 - Kulak, A. A1 - Schnepp, Z. T1 - The effect of precursor structure on porous carbons produced by iron-catalyzed graphitization of biomass N2 - This paper reports a systematic study into the effect of different biomass-derived precursors on the structure and porosity of carbons prepared via catalytic graphitization. Glucose, starch and cellulose are combined with iron nitrate and heated under a nitrogen atmosphere to produce Fe3C nanoparticles, which catalyze the conversion of amorphous carbon to graphitic nanostructures. The choice of organic precursor provides a means of controlling the catalyst particle size, which has a direct effect on the porosity of the material. Cellulose and glucose produce mesoporous carbons, while starch produces a mixture of micro- and mesopores under the same conditions and proceeds via a much slower graphitization step, generating a mixture of graphitic nanostructures and turbostratic carbon. Porous carbons are critical to energy applications such as batteries and electrocatalytic processes. For These applications, a simple and sustainable route to those carbons is essential. Therefore, the ability to control the precise structure of a biomass-derived carbon simply through the choice of precursor will enable the production of a new generation of energy materials. KW - SAXS KW - Porous carbons KW - Graphitization KW - Iron nanoparticles KW - Catalysis KW - Gas sorption PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515531 DO - https://doi.org/10.1039/d0ma00692k VL - Royal Society of Chemistry SP - 1 EP - 11 AN - OPUS4-51553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chowdhary, S. A1 - Moschner, J. A1 - Mikolajczak, D. J. A1 - Becker, M. A1 - Thünemann, Andreas A1 - Kästner, Claudia A1 - Klemczak, D. A1 - Stegemann, A.-K. A1 - Böttcher, C. A1 - Metrangolo, P. A1 - Netz, R. R. A1 - Koksch, B. T1 - The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation N2 - The hexapeptide hIAPP22–27 (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild‐type hIAPP′s toxicity to β‐cell death. In amyloid research, the role of hydrophobic and aromatic‐aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic‐aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues. We used thioflavin T staining, transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS) to study the impact of side‐chain halogenation on NFGAIL amyloid formation kinetics. Our data revealed a synergy between aggregation behavior and hydrophobicity of the phenylalanine residue. This study introduces systematic fluorination as a toolbox to further investigate the nature of the amyloid self‐assembly process. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nanostructure KW - Peptide KW - Amyloid PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518632 DO - https://doi.org/10.1002/cbic.202000373 VL - 21 IS - 24 SP - 3544 EP - 3554 PB - Wiley CY - Weinheim AN - OPUS4-51863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Friedrich, C. M. A1 - Weigel, S. A1 - Marvin, H. A1 - Rauscher, H. A1 - Wohlleben, W. A1 - Babick, F. A1 - Löschner, K. A1 - Mech, A. A1 - Brüngel, R. A1 - Hodoroaba, Vasile-Dan A1 - Gilliland, D. A1 - Rasmussen, K. A1 - Ghanem, A. T1 - The NanoDefine Methods Manual N2 - This document is a collection of three JRC Technical Reports that together form the “NanoDefine Methods Manual”, which has been developed within the NanoDefine project ‘Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial’, funded by the European Union’s 7th Framework Programme, under grant agreement 604347. The overall goal of the NanoDefine project was to support the implementation of the European Commission Recommendation on the definition of nanomaterial (2011/696/EU). The project has developed an integrated empirical approach, which allows identifying a material as a nano- or not a nanomaterial according to the EC Recommendation. The NanoDefine Methods Manual consists of three parts: Part 1: The NanoDefiner Framework and Tools, which covers the NanoDefiner framework, general information on measurement methods and performance criteria, and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2: Evaluation of Methods, which discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3: Standard Operating Procedures (SOPs), which presents the 23 Standard Operating Procedures developed within the NanoDefine project. In this combined document, these three parts are included as stand-alone reports, each having its own abstract, table of contents, page, table and figure numbering, and references. KW - Nanomaterial KW - Particle size distribution KW - Nanoparticles KW - NanoDefine KW - Nanomaterial classification PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504250 SN - 978-92-76-12335-4 DO - https://doi.org/10.2760/79490 VL - JRC117501 SP - 1 EP - 451 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mech, A. A1 - Rauscher, H. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Wohlleben, W. A1 - Marvin, H. A1 - Weigel, S. A1 - Brüngel, R. A1 - Friedrich, C. M. T1 - The NanoDefine Methods Manual - Part 1: The NanoDefiner Framework and Tools N2 - The present series of reports, the NanoDefine Methods Manual, has been developed within the NanoDefine project 'Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial', funded by the European Union's 7th Framework Programme, under grant agreement 604347. In 2011 the European Commission (EC) published a recommendation for a definition of the term 'nanomaterial', the EC NM Definition, as a reference to determine whether an unknown material can be considered as a 'nanomaterial' for regulatory purposes1. One challenge is the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substances and in various products and matrices. The overall goal of NanoDefine was to support the implementation of the EC NM Definition. It can also support the implementation of any NM definition based on particle size. The project has developed an integrated approach, which allows identifying any material as a nano- or not a nanomaterial according to the EC NM Definition. NanoDefine explicitly supported the governance challenges associated with the implementation of legislation concerning nanomaterials by: - addressing the issues on availability of suitable measuring techniques, reference materials, validated methods, acceptable to all stakeholders (authorities, policy makers, commercial firms), - developing an integrated and interdisciplinary approach and a close international co-operation and networking with academia, commercial firms and standardization bodies. Thus, the NanoDefine Methods Manual provides guidance on practical implementation of the EC NM Definition throughout the nanomaterial characterization process, and on the characterization techniques employed as well as their application range and limits. It assists the user in choosing the most appropriate measurement method(s) to identify any substance or mixture for a specific purpose, according to the EC NM Definition of a nanomaterial. The NanoDefine project also explored how to assess a material against the criteria of the definition through proxy solutions, i.e. by applying measurement techniques that indirectly determine the x50. Those findings were developed through empirically based scientific work and are included in Part 1 of this Manual. As they go beyond the text of the EC NM Definition, they may be used as practical approach to indicate whether a material is a nanomaterial or not, but keeping in mind that they should not be taken as recommendation for the implementation of the EC NM Definition in a regulatory context. The NanoDefine Methods Manual consists of the following three parts:  Part 1: The NanoDefiner Framework and Tools  Part 2: Evaluation of Methods  Part 3: Standard Operating Procedures (SOPs) Part 1 covers the NanoDefiner framework, general information on measurement methods and performance criteria and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2 discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3 presents the 23 Standard Operating Procedures developed within the NanoDefine project. The current document is part 1. KW - Nanomaterial KW - Nanoparticles KW - NanoDefine KW - Nanoparticle size distribution KW - Nanomaterial classification KW - Framework KW - Tools PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503699 SN - 978-92-76-11950-0 DO - https://doi.org/10.2760/55181 SN - 1831-9424 SP - 1 EP - 89 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mech, A. A1 - Rauscher, H. A1 - Rasmussen, K. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Ghanem, A. A1 - Wohlleben, W. A1 - Marvin, H. A1 - Brüngel, R. A1 - Friedrich, C. M. T1 - The NanoDefine Methods Manual - Part 2: Evaluation of methods N2 - The present series of reports, the NanoDefine Methods Manual, has been developed within the NanoDefine project 'Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial', funded by the European Union's 7th Framework Programme, under grant agreement 604347. In 2011 the European Commission (EC) published a recommendation for a definition of the term 'nanomaterial', the EC NM Definition, as a reference to determine whether an unknown material can be considered as a 'nanomaterial' for regulatory purposes1. One challenge is the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substances and in various products and matrices. The overall goal of NanoDefine was to support the implementation of the EC NM Definition. It can also support the implementation of any NM definition based on particle size. The project has developed an integrated approach, which allows identifying any material as a nano- or not a nanomaterial according to the EC NM Definition. NanoDefine explicitly supported the governance challenges associated with the implementation of legislation concerning nanomaterials by: - addressing the issues on availability of suitable measuring techniques, reference materials, validated methods, acceptable to all stakeholders (authorities, policy makers, commercial firms), - developing an integrated and interdisciplinary approach and a close international co-operation and networking with academia, commercial firms and standardization bodies. Thus, the NanoDefine Methods Manual provides guidance on practical implementation of the EC NM Definition throughout the nanomaterial characterization process, and on the characterization techniques employed as well as their application range and limits. It assists the user in choosing the most appropriate measurement method(s) to identify any substance or mixture for a specific purpose, according to the EC NM Definition of a nanomaterial. The NanoDefine project also explored how to assess a material against the criteria of the definition through proxy solutions, i.e. by applying measurement techniques that indirectly determine the x50. Those findings were developed through empirically based scientific work and are included in Part 1 of this Manual. As they go beyond the text of the EC NM Definition, they may be used as practical approach to indicate whether a material is a nanomaterial or not, but keeping in mind that they should not be taken as recommendation for the implementation of the EC NM Definition in a regulatory context. The NanoDefine Methods Manual consists of the following three parts:  Part 1: The NanoDefiner Framework and Tools  Part 2: Evaluation of Methods  Part 3: Standard Operating Procedures (SOPs) Part 1 covers the NanoDefiner framework, general information on measurement methods and performance criteria and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2 discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3 presents the 23 Standard Operating Procedures developed within the NanoDefine project. The current document is part 2. KW - Nanomaterial KW - Nanoparticles KW - NanoDefine KW - Particle size distribution KW - Nanomaterial classification PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503708 SN - 978-92-76-11953-1 DO - https://doi.org/10.2760/071877 SN - 1831-9424 VL - JRC117501 SP - 1 EP - 133 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mech, A. A1 - Rauscher, H. A1 - Rasmussen, K. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Ghanem, A. A1 - Wohlleben, W. A1 - Marvin, H. A1 - Brüngel, R. A1 - Friedrich, C. M. A1 - Löschner, K. A1 - Gilliland, D. T1 - The NanoDefine Methods Manual - Part 3: Standard Operating Procedures (SOPs) N2 - The present series of reports, the NanoDefine Methods Manual, has been developed within the NanoDefine project 'Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial'1 funded by the European Union's 7th Framework Programme, under grant agreement 604347. In 2011 the European Commission (EC) published the recommendation (2011/696/EU) for a definition of the term 'nanomaterial'1, the EC NM Definition, as a reference to determine whether an unknown material can be considered as a 'nanomaterial' for regulatory purposes. One challenge is the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substances and in various products and matrices. The overall goal of NanoDefine was to support the implementation of the EC NM Definition. It can also support the implementation of any NM definition based on particle size. The project has developed an integrated approach, which allows identifying any material as a nano or non-nano material according to the EC NM Definition. NanoDefine explicitly supported the governance challenges associated with the implementation of legislation concerning nanomaterials by: - addressing the issues on availability of suitable measuring techniques, reference materials, validated methods, acceptable to all - developing an integrated and interdisciplinary approach and a close international co-operation and networking with academia, commercial firms and standardization bodies. Thus, the NanoDefine Methods Manual provides guidance on practical implementation of the EC NM Definition throughout the nanomaterial characterization process, and on the characterization techniques employed as well as their application range and limits. It assists the user in choosing the most appropriate measurement method(s) to identify any substance or mixture for a specific purpose, according to the EC NM Definition of a nanomaterial. The NanoDefine project also explored how to assess a material against the criteria of the definition through proxy solutions, i.e. by applying measurement techniques that indirectly determine the D50. Those findings were developed through empirically based scientific work and are included in Part 1 of this Manual. As they go beyond the text of the EC NM Definition, they may be used as practical approach to indicate whether a material is a nanomaterial or not, but keeping in mind that they should not be taken as recommendation for the implementation of the EC NM Definition in a regulatory context. The NanoDefine Methods Manual consists of the following three parts:  Part 1: The NanoDefiner Framework and Tools  Part 2: Evaluation of Methods  Part 3: Standard Operating Procedures (SOPs) Part 1 covers the NanoDefiner framework, general information on measurement methods and performance criteria and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2 discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3 presents the 23 Standard Operating Procedures developed within the NanoDefine project. The current document is part 3. KW - Nanomaterial KW - Nanoparticles KW - Particle size distribution KW - NanoDefine KW - Standard Operation Procedures KW - Nanomaterial classification KW - SOP PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503710 SN - 978-92-76-11955-5 DO - https://doi.org/10.2760/02910 SN - 1831-9424 VL - JRC117501 SP - 1 EP - 215 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Hsiao, I-L. A1 - Ebisch, Maximilian A1 - Vidmar, J. A1 - Dreiack, N. A1 - Böhmert, L. A1 - Stock, V. A1 - Braeuning, A. A1 - Loeschner, K. A1 - Laux, P. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - The presence of iron oxide nanoparticles in the food pigment E172 N2 - Iron oxides used as food colorants are listed in the European Union with the number E172. However, there are no specifications concerning the fraction of nanoparticles in these pigments. Here, seven E172 products were thoroughly characterized. Samples of all colors were analyzed with a Broad spectrum of methods to assess their physico-chemical properties. Small-Angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), zeta-potential, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), X-ray diffraction (XRD), Brunauer-Emmett-Teller analysis (BET), Asymmetric Flow Field-Flow Fractionation (AF4) and in vitro cell viability measurements were used. Nanoparticles were detected in all E172 samples by TEM or SAXS measurements. Quantitative results from both methods were comparable. Five pigments were evaluated by TEM, of which four had a size median below 100 nm, while SAXS showed a size median below 100 nm for six evaluated pigments. Therefore, consumers May be exposed to iron oxide nanoparticles through the consumption of food pigments. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1016/j.foodchem.2020.127000 VL - 327 SP - 127000 PB - Elsevier Ltd. AN - OPUS4-50810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - The Ring-Opening Polymerisation-Polycondensation (ROPPOC) Approach to cyclic Polymers N2 - A new concept called “Ring-Opening Polymerization (ROP) combined with simultaneous POlyCondensation” (ROPPOC) is presented and discussed. This synthetic strategy is based on the intermediate formation of chains having two end groups that can react with each other. The ROPPOC syntheses are subdivided into three groups according to the nature of the chain ends: two ionic end groups, one ionic and one covalent chain end and a combination of two reactive covalent end groups may be involved, depending on the catalyst. The usefulness for the preparation of cyclic polymers is discussed with a review of numerous previously published examples. These examples concern to following classes of cyclic polymers: polypeptides, polyamides, polyesters, including polycarbonates, and cyclic polysiloxanes. It is demonstrated, that the results of certain ROPPOC syntheses are in contradiction to the Jacobson-Stockmayer theory. Finally, the usefulness of ROPPOCs for the detection of polydisperse catenanes is discussed. KW - Ring-opening Polymerisation KW - MALDI-TOF MS KW - ROPPOC KW - Cyclic PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508509 DO - https://doi.org/10.1002/marc.202000152 SP - 2000152 PB - Wiley AN - OPUS4-50850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rudenko, A. A1 - Déziel, J.-L. A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Colombier, J.-P. T1 - The role of scattering in the formation of laserinduced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon that is accompanying laser materials processing. These surface nanostructures pave a simple way for surface functionalization with numerous applications in optics, fluidics, tribology, medicine, etc. This contribution reviews the current view on the role of electromagnetic scattering in the formation of LIPSS. T2 - Workshop on Theoretical and Numerical Tools for Nanophotonics (TNTN 2020) CY - Berlin, Germany DA - 12.02.2020 KW - Laser-induced periodic surface structures, LIPSS KW - Electromagnetic scattering KW - Finite-difference time-domain calculations PY - 2020 AN - OPUS4-50399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Déziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - The role of the laser-induced oxide layer in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are often present when processing solid targets with linearly polarized ultrashort laser pulses. The different irradiation parameters to produce them on metals, semiconductors and dielectrics have been studied extensively, identifying suitable regimes to tailor its properties for applications in the fields of optics, medicine, fluidics and tribology, to name a few. One important parameter widely present when exposing the samples to the high intensities provided by these laser pulses in air environment, that generally is not considered, is the formation of a superficial laser-induced oxide layer. In this paper, we fabricate LIPSS on a layer of the oxidation prone hard-coating material chromium nitride in order to investigate the impact of the laser-induced oxide layer on its formation. A variety of complementary surface analytic techniques were employed, revealing morphological, chemical and structural characteristics of well-known high-spatial frequency LIPSS (HSFL) together with a new type of low-spatial frequency LIPSS (LSFL) with an anomalous orientation parallel to the laser polarization. Based on this input, we performed finite-difference time-domain calculations considering a layered system resembling the geometry of the HSFL along with the presence of a laser-induced oxide layer. The simulations support a scenario that the new type of LSFL is formed at the interface between the laser-induced oxide layer and the non-altered material underneath. These findings suggest that LSFL structures parallel to the polarization can be easily induced in materials that are prone to oxidation. KW - Laser-induced oxide layer KW - Laser-induced periodic surface structures (LIPSS) KW - Surface chemistry KW - Femtosecond laser processing KW - Nanostructuring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502530 DO - https://doi.org/10.3390/nano10010147 SN - 2079-4991 VL - 10(1) IS - Special issue "Laser-generated periodic nanostructures" SP - 147-1 EP - 147-18 PB - MDPI CY - Basel AN - OPUS4-50253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Breßler, Ingo T1 - The SPONGE N2 - This software tool is intended to calculate X-ray scattering patterns from 3D objects described by an STL file. The fundamentals and use example(s) are shown. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Software KW - Simulation PY - 2020 AN - OPUS4-51020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tantardini, C. A1 - Michalchuk, Adam A1 - Samtsevich, A. A1 - Rota, C. A1 - Kvashnin, A. G. T1 - The Volumetric Source Function: Looking Inside van der Waals Interactions N2 - The study of van der Waals interactions plays a central role in the understanding of bonding across a range of biological, chemical and physical phenomena. The presence of van der Waals interactions can be identified through analysis of the reduced density gradient, a fundamental parameter at the core of Density Functional Theory. An extension of Bader’s Quantum Theory of Atoms in Molecules is developed here through combination with the analysis of the reduced density gradient. Through this development, a new quantum chemical topological tool is presented: the volumetric source function. This technique allows insight into the atomic composition of van der Waals interactions, offering the first route towards applying the highly successful source function to these disperse interactions. A new algorithm has been implemented in the open-source code, CRITIC2, and tested on acetone, adipic and maleic acids molecular crystals, each stabilized by van der Waals interactions. This novel technique for studying van der Waals interactions at an atomic level offers unprecedented opportunities in the fundamental study of intermolecular interactions and molecular design for crystal engineering, drug design and bio-macromolecular processes. KW - Noncovalent interactions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507911 DO - https://doi.org/10.1038/s41598-020-64261-4 VL - 10 IS - 1 SP - 7816 AN - OPUS4-50791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Grevel, K.-D. A1 - Emmerling, Franziska A1 - Dachs, E. A1 - Benisek, A. A1 - Adam, Christian A1 - Majzlan, J. T1 - Thermodynamic properties of calcium alkali phosphates Ca(Na,K)PO4 N2 - Calcium alkali phosphates Ca(Na,K)PO4 are main constituents of bioceramics and thermochemically produced phosphorus fertilizers because of their bioavailability. Sparse thermodynamic data are available for the endmembers CaNaPO4 and CaKPO4. In this work, the missing data were determined for the low-temperature phase modifications of the endmembers CaNaPO4 and CaKPO4 and three intermediate Ca(Na,K)PO4 compositions. Standard enthalpy of formation ranges from - 2018.3 ± 2.2 kJ mol-1 to - 2030.5 ± 2.1 kJ mol-1 and standard entropy from 137.2 ± 1.0 J mol-1 K-1 to 148.6 ± 1.0 J mol-1 K-1 from sodium endmember b-CaNaPO4 to potassium endmember b0-CaKPO4. Thermodynamic functions are calculated up to 1400 K for endmembers and the sodium-rich intermediate phase b-Ca(Na0.93K0.07)PO4. Functions above 640 K are extrapolated because of the phase transition from low- to high-temperature phase. Impurities in the synthesized intermediate phases c-Ca(Na0.4K0.6)PO4 and c-Ca Na0.35K0.65)PO4 and one additional phase transition around 500 K impeded the determination of high-temperature thermodynamic functions. In general, data for phase transition temperatures agree with the previously reported phase diagrams. KW - Formation enthalpy KW - Heat capacity KW - Phase transformation KW - Bioceramics KW - Phosphorus fertilizer KW - Entropy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507640 DO - https://doi.org/10.1007/s10853-020-04615-5 VL - 55 SP - 8477 EP - 8490 PB - Springer AN - OPUS4-50764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Campbell, C. G. A1 - Jordon Astorga, D. A1 - Dümichen, Erik A1 - Celina, M. T1 - Thermoset materials characterization by thermal desorption or pyrolysis based gas chromatography-mass spectrometry methods N2 - Thermoset materials characterization is often limited to solid state analytical techniques such as IR, NMR, DSC, TGA and mechanical testing. Alternatively, their off-gassing behavior can also be evaluated using GC based techniques such as TD-GC-MS, allowing this method to be applied to thermoset materials analyses such as identification, aging characterization, and formulation optimization. As an overview, common thermoset materials were evaluated by analyzing their gaseous degradation products via TGA-based pyrolysis and subsequent TD-GC-MS for the identification of representative volatile signatures. It is thereby possible to distinguish different classes of phenolic materials or cured epoxy resins, as well as their amine or anhydride curatives. Additionally, this method enabled quantification of a volatile fragment (bisphenol A, BPA) which is associated with oxidation of epoxy/amine thermoset materials. The amount of evolved BPA increased linearly with aging time and this trend exhibits linear Arrhenius behavior over the temperature range (80–125 °C) studied, in agreement with oxidation sensitivies based on oxygen consumption data. Further, TD-GC-MS was used to explore how off-gassing of residual anhydride curative from an epoxy/anhydride material depends on formulation stoichiometry. Even in formulations that theoretically contained enough epoxy to consume all anhydride (1:1 stoichiometry), an imperfect final cure state resulted in residual anhydride which could evolve from the material. For such materials, a slightly epoxy-rich formulation is required to ensure that the material contains no residual unreacted anhydride. Analysis of volatiles generated by thermal exposure is an attractive characterization approach enabling compositional analysis as well as complementary diagnostics for materials degradation. KW - Polymer analysis/characterization KW - Thermal desorption mass spectrometry KW - Thermoset composition KW - Volatiles from thermosets KW - Degradation signatures PY - 2020 DO - https://doi.org/10.1016/j.polymdegradstab.2019.109032 VL - 174 SP - 109032 PB - Elsevier Ltd. AN - OPUS4-50435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Czuban, M. A1 - Kulka, M. W. A1 - Wang, L. A1 - Koliszak, A. A1 - Achazi, K. A1 - Schlaich, C. A1 - Donskyi, Ievgen A1 - Di Luca, M. A1 - Mejia Oneto, J. M. A1 - Royzen, M. A1 - Haag, R. A1 - Trampuz, A. T1 - Titanium coating with mussel inspired polymer and bio-orthogonal chemistry enhances antimicrobial activity against Staphylococcus aureus N2 - Implant-associated infections present severe and difficult-to-treat complications after surgery, related to implant biofilm colonization. Systemic administration of antibiotics cannot reach sufficient concentrations at the infected site and may be toxic. Here we describe how mussel-inspired dendritic material coated on a titanium surface can locally activate a prodrug of daptomycin (pro-dapto) to treat methicillin-resistant Staphylococcus aureus. The mechanism of the prodrug activation is based on bio-orthogonal click chemistry between a tetrazine (Tz) and trans-cyclooctene (TCO). The former is attached to the dendritic polymer, while the later converts daptomycin into a prodrug. Characterization of the material's properties revealed that it is hydrophobic, non-toxic, and stable for a prolonged period of time. We envision that the titanium coated dendritic material will be able to improve the treatment of implant-associated infections by concentrating systemically administered antibiotic prodrugs, thus converting them into active localized medicines. KW - Bio-orthogonal chemistry KW - Antimicrobial titanium coating KW - Prodrug antibiotic KW - Antibiotic delivery KW - Antibiotic release KW - XPS PY - 2020 DO - https://doi.org/10.1016/j.msec.2020.111109 VL - 116 SP - 111109 PB - Elsevier B.V. AN - OPUS4-51204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - TOPAS cell model with nanoparticles N2 - These files contain cell models for TOPAS/Geant4 and the inclusion of nano particles in particle scattering simulations. A simple spherical cell with nanoparticles can be generated in a fast manner. The user has the option to include the following organelles: nucleus, mitochondria, cell membrane. Additionally nanoparticles can be included in the cytosol and at the surface of the nucleus and/or the mitochondria. The C++ classes in this repository extend the functionality of the TOPAS (http://www.topasmc.org/) Monte-Carlo program, which is itself a wrapper of the Geant4 MCS Toolkit (http://geant4.org). The sourcecode together with examples and scorers are provided. "If you use this extension please cite the following literature: Hahn, M.B., Zutta Villate, J.M. "Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles." Sci Rep 11, 6721 (2021). https://doi.org/10.1038/s41598-021-85964-2 " KW - Monte-Carlo simulation KW - MCS KW - Geant4 KW - TOPAS KW - TOPAS-nBio KW - Dosimetry KW - Nanoparticles KW - Nanoparticle KW - AuNP KW - Gold KW - Microdosimetry KW - Targeted nanoparticle KW - Simulation KW - Particle scattering KW - Cell KW - Nucleus KW - Mitochondria KW - Cancer therapy KW - Radiation therapy PY - 2020 UR - https://github.com/BAMresearch/TOPAS-CellModels UR - https://github.com/MarcBHahn/TOPAS-CellModels DO - https://doi.org/10.26272/opus4-51150 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Pfeffer, M. ED - Bonse, Jörn ED - Lasagni, A. F. T1 - Topical issue: Laser micro- and nano-material processing - Part 1 N2 - This special issue of Advanced Optical Technologies (AOT) is dedicated to the field of laser-based micro- and nanostructuring methods. KW - Laser processing KW - Microstructures KW - Nanostructures KW - Applications PY - 2020 UR - https://www.degruyter.com/view/journals/aot/9/1-2/aot.9.issue-1-2.xml SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 1-2 SP - 7 EP - 110 PB - De Gruyter CY - Berlin AN - OPUS4-50798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Pfeffer, M. ED - Bonse, Jörn ED - Lasagni, A. F. T1 - Topical issue: Laser micro- and nano-material processing - Part 2 N2 - This special issue of Advanced Optical Technologies (AOT) is dedicated to the field of laser-based micro- and nanostructuring methods. KW - Applications KW - Laser processing KW - Microstructures KW - Nanostructures PY - 2020 UR - https://www.degruyter.com/view/journals/aot/9/3/aot.9.issue-3.xml SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 3 SP - 111 EP - 153 PB - De Gruyter CY - Berlin AN - OPUS4-50997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Halisch, M. A1 - Dlugosch, R. A1 - Prinz, Carsten T1 - Toward a better understanding of low-frequency electrical relaxation - An enhanced pore space characterization N2 - Relaxation phenomena observed in the electrical low-frequency range (approximately 1 mHz-10 kHz) of natural porous media like sandstones is often assumed to be directly related to the dominant (modal) pore throat sizes measured, for instance, with mercury intrusion porosimetry. Attempts to establish a universally valid relationship between pore size and peak Spectral Induced Polarization (SIP) relaxation time have failed, considering sandstones from very different origins and featuring great variations in textural and chemical compositions as well as in geometrical pore space properties. In addition working with characteristic relaxation times determined in Cole-Cole or Debye decomposition fits to build the relationship have not been successful. In particular, samples with narrow pore throats are often characterized by long SIP relaxation times corresponding to long “characteristic length scales” in these media, assuming that the diffusion coefficients along the electrical double layer were constant. Based on these observations, three different types of SIP relaxation can be distinguished. We present a new way of assessing complex pore spaces of very different sandstones in a multi-methodical approach to combine the benefits of mercury intrusion porosimetry, micro-computed tomography, and nuclear magnetic resonance. In this way, we achieve much deeper insight into the pore space due to the different resolutions and sensitivities of the applied methods to both pore constrictions (throats) and wide pores (pore bodies). We experimentally quantify pore aspect ratios and volume distributions within the two pore regions. We clearly observe systematic differences between three SIP relaxation types identified previously and can attribute the SIP peak relaxation times to measured characteristic length scales within our materials. We highlight selected results for a total of nine sandstones. It seems that SIP relaxation behavior depends on the size difference of the narrow pore throats to the wide pore bodies, which increases from SIP Type 1 to Type 3. KW - µ-CT KW - Spectral induced polarization KW - Nuclear magnetic resonance KW - Pore space PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509763 DO - https://doi.org/10.1190/GEO2019-0074.1 SN - 0016-8033 VL - 85 IS - 4 SP - MR257 EP - MR270 PB - Society of Exploration Geophysicists AN - OPUS4-50976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D understanding of non spherical nanoparticles by Transmission Kikuchi Diffraction (TKD) for improved particle size distribution by electron microscopy N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - TiO2 KW - 3D KW - Electron microscopy PY - 2020 AN - OPUS4-51113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D Understanding of Non-spherical Nanoparticles by Transmission Kikuchi Diffraction (TKD) for Improved Particle Size Distribution by Electron Microscopy N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Electron microscopy KW - TiO2 KW - 3D PY - 2020 DO - https://doi.org/10.1017/S1431927620013999 VL - 26 IS - S2 SP - 260 EP - 261 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stuff, Maria A1 - Rübner, Katrin A1 - Prinz, Carsten A1 - Rische, N. A1 - Chronz, M. A1 - Kühne, Hans-Carsten ED - Siegesmund, S. ED - Middendorf, B. T1 - Towards a better understanding of tuff stone deterioration N2 - Stone deterioration is the result of a complex interaction of external physical, chemical and biological forces with the mineralogical-petrophysical properties of the stone. With a better understanding of how these properties are linked to material behavior and durability, more effective measures for stone conservation can be developed. Studying these interactions in tuff is particularly complex due to the naturally high heterogeneity of tuff rocks. The first aim of a current research project is to combine the results of recent and older studies on tuff deterioration. Furthermore, the literature overview is complemented by our own investigation of Weibern and Ettringen tuff, with a focus on pore structure characteristics. T2 - STONE - 14th international congress on the deterioration and conservation of stone CY - Meeting was canceled DA - 07.09.2020 KW - Pore structure KW - Weathering KW - Weibern tuff KW - Ettringen tuff PY - 2020 SN - 978-3-96311-172-3 SP - 805 EP - 810 PB - Mitteldeutscher Verlag CY - Halle (Saale) AN - OPUS4-51549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticles in suspension via Microprinting and SEM analysis N2 - A series of different nanoparticle suspensions (Gold, Latex, and SiO2 in varying concentrations) were microprinted onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 NP/mL and imaged with SEM and TSEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee ring effect. T2 - nanoSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - Nanoparticles KW - Microprinting KW - Image analysis PY - 2020 AN - OPUS4-51699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rühle, Bastian T1 - Towards automated electron microscopy image segmentation for nanoparticles of complex shape by convolutional neural networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Automatisation KW - Image segmentation KW - Convolutional neural networks KW - Electron microscopy PY - 2020 AN - OPUS4-51114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Towards Automated Electron Microscopy Image Segmentation for Nanoparticles of Complex Shape by Convolutional Neural Networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. KW - Nanoparticles KW - Convolutional neural networks KW - Image segmentation KW - Electron microscopy KW - Automatisation PY - 2020 DO - https://doi.org/10.1017/S1431927620017262 VL - 26 IS - S2 SP - 1188 EP - 1189 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René T1 - Towards hydrogen economy: correlative ex-situ ellipsometric analysis and operando investigation during oxygen evolution reaction of mesoporous iridium oxides films N2 - In the face of rising energy demand and the impending climate change the development of a sustainable, fossil-free fuel and chemical production is of global importance. One possible goal is the development of electrochemical conversion processes using catalysts. Porous materials play an important role in such energy applications. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physico-chemical properties. However, the complex morphology of such catalysts constitutes a challenge even for modern analytical techniques. Spectroscopic ellipsometry (SE) is a versatile method for studying material properties by using appropriate models (e.g. film thickness, optical and electronic properties). The fact that the material properties cannot be taken directly from the measured spectra, the developed models have to be validated. In a first step, the model for the ellipsometric fit studies of a calcination series of mesoporous iridium oxide films (300 – 600 °C) was investigated and validated with respect to their material properties. Moreover, the electronic structures of the catalysts reveal a direct correlation with electrochemical activities. The development of an environmental cell offers the possibility of investigations under real conditions. This will allow changes in the optical and electronic properties during the electrocatalytic oxygen evolution reaction. T2 - Colloquium Department Seminar 6. CY - BAM, Berlin, Germany DA - 03.03.2020 KW - Hydrogen economy KW - Correlative ex-situ ellipsometric analysis KW - Ellipsometric operando investigation KW - Oxygen evolution reaction KW - Mesoporous iridium oxides films PY - 2020 AN - OPUS4-51215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Krähnert, R. T1 - Towards hydrogen economy: multimethod analysis and operando investigation of mesoporous iridium oxides films for electrocatalysis, EMPIR/EURAMET Project HyMet 16ENG03 N2 - In the face of rising energy demand and the impending climate change the development of a sustainable, fossil-free fuel and chemical production is of global importance. One possible goal is the development of electrochemical conversion processes using catalysts. Porous materials play an important role in such energy applications. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physico-chemical properties. However, the complex morphology of such catalysts constitutes a challenge even for modern analytical techniques. Spectroscopic ellipsometry (SE) is a versatile method for studying material properties by using appropriate models (e.g. film thickness, optical and electronic properties). The fact that the material properties cannot be taken directly from the measured spectra, the developed models have to be validated. In a first step, the model for the ellipsometric fit studies of a calcination series of mesoporous iridium oxide films (300 – 600 °C) was investigated and validated with respect to their material properties. Moreover, the electronic structures of the catalysts reveal a direct correlation with electrochemical activities. The development of an environmental cell offers the possibility of investigations under real conditions. This will allow changes in the optical and electronic properties during the electrocatalytic oxygen evolution reaction. T2 - HyMet dissemination event CY - Online meeting DA - 17.11.2020 KW - Correlative ex-situ ellipsometric analysis KW - Ellipsometric operando investigation KW - Hydrogen economy KW - Mesoporous iridium oxides films KW - Oxygen evolution reaction PY - 2020 AN - OPUS4-51629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana T1 - Trace element analysis with synchrotron radiation N2 - Trace elements are chemical elements whose concentration in a material is very low. The exact definition depends on the application and varies for example between 100 micrograms per gram in analytical chemistry and 1000 micrograms per gram in geology. The ability to detect trace elements fast and quantitatively is of great importance in many areas of science and technology. With its high brilliance and flexibility in the excitation conditions, synchrotron radiation is an ideal tool for detecting traces even in small sample quantities. In this contribution I will report about the use of X-ray fluorescence(XRF)for qualitative and quantitative element sensitiveanalysis. In addition to the fundamentals of XRF and its quantification methods, the advantages and problems of different geometries like e.g. microXRF, Total Reflection X-ray Fluorescence (TXRF)or Double Dispersive XRF (D²XRF) will be discussed. Practical examples from BAMline from the research fields of medicine, geology and archaeometry will complete the lecture. T2 - Denver X-Ray Conference CY - Online meeting DA - 03.08.2020 KW - Synchrotron KW - BAMline KW - XRF PY - 2020 AN - OPUS4-51890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Schütter, J. D. A1 - Wagner, R. A1 - Dimper, M. A1 - Lützenkirchen-Hecht, D. A1 - Özcan Sandikcioglu, Özlem T1 - Trained to corrode: Cultivation in the presence of Fe(III) increases the electrochemical activity of iron reducing bacteria – An in situ electrochemical XANES study N2 - This paper reports results from in situ electrochemical X-ray absorption near-edge spectroscopy (XANES) studies of the corrosion processes on model thin iron films in the presence of iron reducing bacteria Shewanella putrefaciens. Here we investigate the electrochemical activity of two cultures grown in the presence and absence of Fe(III) citrate in the culture medium. The XANES spectra and the OCP data of the Fe sample incubated with the culture grown in absence of Fe(III) did not show any significant changes during twenty hours of monitoring. In the case of the culture grown in Fe(III) containing medium, an accelerated dissolution of the iron film was observed together with the formation of a mixed Fe(II)-Fe(III) hydroxide surface layer. The open circuit potential (OCP) steadily approached the free corrosion potential of iron in neutral chloride containing electrolytes, indicating a continuous dissolution process without passivation. KW - Microbiologically influenced corrosion KW - XANES KW - Electrochemistry KW - Iron reducing bacteria PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505732 DO - https://doi.org/10.1016/j.elecom.2020.106673 VL - 112 SP - 106673 PB - Elsevier B.V. AN - OPUS4-50573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunz, C. A1 - Bonse, Jörn A1 - Spaltmann, Dirk A1 - Neumann, C. A1 - Turchanin, A. A1 - Bartolomé, J. F. A1 - Müller, F. A. A1 - Gräf, S. T1 - Tribological performance of metal-reinforced ceramic composites selectively structured with femtosecond laser-induced periodic surface structures N2 - The impact of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on tribological properties was investigated for metal-reinforced ceramic composites (Al2O3-ZrO2-Nb). For this purpose, the metallic niobium (Nb) phase was selectively structured with LIPSS in an air environment with different values of the fs-laser peak fluence by near-infrared fs-laser radiation (λ = 1025 nm, τ = 300 fs, frep = 1 kHz), taking advantage of the different light absorption behavior of ceramic and metal. The tribological performance was evaluated by reciprocating sliding tests in a ball-on-disc configuration using Ringer's solution as lubricant. The surfaces were characterized before and after laser irradiation by optical microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and by measuring the contact angle with Ringer's solution. The LIPSS formation resulted in an increased wetting of the surface with the lubricant. Moreover, the selectively structured composite surfaces revealed a coefficient of friction significantly reduced by a factor of ~3 when compared to the non-irradiated surface. Furthermore, the formation of a laser-induced oxidation layer was detected with NbO as the most prominent oxidation state. Selectively structured composites with outstanding mechanical properties and enhanced tribological performance are of particular interest for biomedical applications. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Ceramic matrix composites KW - Tribology PY - 2020 DO - https://doi.org/10.1016/j.apsusc.2019.143917 SN - 0169-4332 SN - 1873-5584 VL - 499 IS - 1 SP - 143917 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-49255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Lucke, T. A1 - Ruhl, A. S. A1 - Winzenbacher, R. A1 - Jekel, M. A1 - Braun, Ulrike T1 - Untersuchungen zu biologischen, organischen und anorganischen Veränderungen granulierter Aktivkohlen während der Trinkwasseraufbereitung N2 - Untersuchungen zu biologischen, organischen und anorganischen Veränderungen granulierter Aktivkohlen während der Trinkwasseraufbereitung des Landeswasserversorgers Langenau. KW - Thermogravimetrie KW - Trinkwasser KW - Wasseraufbereitung KW - Aktivkohle PY - 2020 SN - 0083-6915 VL - 118 IS - 2 SP - 47 EP - 50 PB - Wiley-VCH Verlag GmbH & Co. KGaA AN - OPUS4-51434 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B. P. A1 - Cant, D.J.H. A1 - Spencer, J. A1 - Carmona-Carmona, A. J. A1 - Bushell, A. A1 - Herrara-Gómez, A. A1 - Kurokawa, A. A1 - Thissen, A. A1 - Thomas, A.G. A1 - Britton, A.J. A1 - Bernasik, A. A1 - Fuchs, A. A1 - Baddorf, A. P. A1 - Bock, B. A1 - Thellacker, B. A1 - Cheng, B. A1 - Castner, D.G. A1 - Morgan, D.J. A1 - Valley, D. A1 - Willneff, E.A. A1 - Smith, E.F. A1 - Nolot, E. A1 - Xie, F. A1 - Zorn, G. A1 - Smith, G.C. A1 - Yasukufu, H. A1 - Fenton, J. L. A1 - Chen, J. A1 - Counsell, J..D.P. A1 - Radnik, Jörg A1 - Gaskell, K.J. A1 - Artyushkova, K. A1 - Yang, L. A1 - Zhang, L. A1 - Eguchi, M. A1 - Walker, M. A1 - Hajdyla, M. A1 - Marzec, M.M. A1 - Linford, M.R. A1 - Kubota, N. A1 - Cartazar-Martínez, O. A1 - Dietrich, P. A1 - Satoh, R. A1 - Schroeder, S.L.M. A1 - Avval, T.G. A1 - Nagatomi, T. A1 - Fernandez, V. A1 - Lake, W. A1 - Azuma, Y. A1 - Yoshikawa, Y. A1 - Shard, A.G. T1 - Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene N2 - We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration. KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Intensity scale calibration KW - Reference spectra KW - Low-density polyethylene (LDPE) PY - 2020 DO - https://doi.org/10.1116/6.0000577 VL - 38 IS - 6 SP - 063208 AN - OPUS4-51655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gibson, N. A1 - Kuchenbecker, Petra A1 - Rasmussen, K. A1 - Hodoroaba, Vasile-Dan A1 - Rauscher, H. ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A.G. T1 - Volume-specific surface area by gas adsorption analysis with the BET method N2 - This chapter first gives an introduction to the concepts of SSA and volume-specific surface area (VSSA) and an outline of the BET method. It continues with a discussion of the relationship between particle size, shape, and the VSSA, followed by an overview of instrumentation, experimental methods, and standards. Finally, sections on the use of the VSSA as a tool to identify nanomaterials and non-nanomaterials and its role in a regulatory context provide some insight on the importance of VSSA in the current Regulation of nanomaterials. KW - Nanomaterials KW - Volume specific surface area PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00017-1 SP - 265 EP - 293 PB - Elsevier CY - Amsterdam AN - OPUS4-49572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Von Ägypten bis Hiddensee Analyse von Gold mit Synchrotronstrahlung III N2 - Gold ist eines der sieben schon im Altertum bekannten Metalle und wurde wg. seines Glanzes und seiner Seltenheit von alters her als Tauschmittel und zur Herstellung von Schmuck benutzt. Außerdem ist es einfach bearbeitbar und weitestgehend gegen chemische Einflüsse resistent. Die Untersuchungen von Gold mit synchrotronstrahlungsangeregter Röntgenfluoreszenzanalyse sind zerstörungsfrei und geben Auskunft über die in der untersuchten Probe vorhandenen chemischen Elemente. Bei den hier vorgestellten Untersuchungen an der BAMline stehen Fragestellungen wie Herkunft, Herstellungsverfahren und Zusammengehörigkeit von Goldfunden im Vordergrund. Die verschiedenen Fragestellungen werden an einer Reihe von Beispielen erläutert die vom Wikingerschatz aus Hiddensee über die Himmelsscheibe von Nebra bis hin zu Funden aus Ägypten langen. Der Fund von Bernstorf wird ausführlich diskutiert. T2 - Vorlesung FU Berlin Einführung in die Archäometrie CY - Berlin, Germany DA - 06.11.2020 KW - Synchrotron KW - BAMline KW - XRF KW - Gold KW - Archäometrie PY - 2020 AN - OPUS4-51893 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Nietzke, Jonathan A1 - Richter, Tim A1 - Schröpfer, Dirk T1 - Wasserstoffdiffusion und lokale Volta-Potentiale in Hoch- und Mittelentropie-Legierungen N2 - Hochentropie-Legierungen (HEAs) zeichnen sich durch einen Mischkristall-System aus mindestens fünf und Mittelentropie-Legierungen (MEAs) durch mindestens drei Hauptlegierungselemente aus, in äquiatomarer Zusammensetzung. Sie zeigen außergewöhnliche Anwendungseigenschaften, wie z.B. hohe Festigkeit, Duktilität oder Korrosionsbeständigkeit. Zukünftige HEA/MEA-Komponenten aufgrund ihrer Eigenschaften für wasserstoffhaltige Umgebungen (wie Behälter für kryogene oder Hochdruckspeicherung) von Interesse. Daher ist die Bewertung der Wasserstoffabsorption und die Diffusion in diesen Materialien von großer Bedeutung. Dazu wurden in unserer Studie eine CoCrFeMnNi-HEA und eine CoCrNi-MEA untersucht. Die Proben wurden elektrochemisch mit Wasserstoff beladen. Für die Ermittlung des Wasserstoffdiffusionsverhaltens wurde die thermische Desorptionsanalyse (TDA) mit unterschiedlichen Heizraten bis zu 0,250 K/s angewandt. Die nachfolgende Peakentfaltung der Signale führte zu Hochtemperatur-Desorptionsspitzen und Wasserstofftrapping auch über 280°C. Eine resultierende Gesamtwasserstoffkonzentration > 40 ppm wurde für den MEA ermittelt und > 100 ppm für den HEA. Dies deutet auf zwei wichtige Effekte hin: (1) verzögerte Wasserstoffdiffusion und (2) eine beträchtliche Menge an getrapptem Wasserstoff auch bei hoher Temperatur. Beide Effekte können hinsichtlich einer wasserstoffunterstützten Rissbildung kritisch werden, dies erfordert jedoch weitere Untersuchungen. Zusätzlich erfolgte die Bestimmung des lokalen Volta-Potentials mittels hochauflösender Kelvin-Sonden-Kraft-Mikroskopie (SKPFM). Die ermittelten Scans zeigen einen bestimmten Einfluss der Wasserstoffbeladung auf die Potentiale. T2 - Symposium on Materials and Joining Technology CY - Online meeting DA - 07.09.2020 KW - Wasserstoff KW - High-entropy alloy KW - Diffusion KW - Scanning kelvin probe force microscopy KW - Thermal desorption analysis PY - 2020 AN - OPUS4-51187 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - X-Ray fluorescence with synchrotron radiation basics and applications N2 - In this talk, the features of X-ray fluorescence analysis with synchrotron radiation will be presented. First, the basics of the origin of synchrotron radiation and X-ray fluorescence analysis and the experimental setup will be discussed. Then, examples of trace element detection, micrometer resolution, and application of the X-ray color camera will be shown. T2 - HZB Photon school 2020 CY - Berlin, Germany DA - 09.03.2020 KW - Synchrotron KW - BAMline KW - XRF KW - Machine learning PY - 2020 AN - OPUS4-51894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - X-ray generation N2 - This talk was recorded during the 2020 Better with Scattering workshop held at BAM in Berlin. This educational talk explains the various ways in which X-rays can be generated in the lab as well as at the synchrotron, with benefits and drawbacks for all. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - X-ray instrumentation KW - X-ray generation PY - 2020 UR - https://www.youtube.com/watch?v=Hze3PvcK7es AN - OPUS4-51016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Hohendorf, Stefan A1 - Onel, Yener A1 - Redmer, Bernhard T1 - X-ray Non-destructive testing of materials and composites N2 - Functional materials for energy conversion are important technology drivers needed for the implementation of low carbon energy. Therefore, researchers commonly focus on improving the intrinsic properties of a functional material. However, for applications, the extrinsic properties are at least as important as the intrinsic ones. Consequently, it is important to investigate and understand the external and internal structure of semi-finished products and especially defect dependent properties. The extrinsic properties may change during application and the life cycle of the material as well as through processing and molding steps. Our studies show how X-ray tomographic (XCT) investigations can contribute to structure investigations in composites and massive samples using the example of magnetic materials for energy conversion. T2 - Ruhr Universität Bochum - Seminar materials science and technology CY - Online meeting DA - 12.11.2020 KW - X-ray imaging KW - Non-destructuve testing KW - Functional materials PY - 2020 AN - OPUS4-51905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray radiation protection aspects during ultrashort laser processing N2 - Ultrashort pulse laser processing of materials allows for precise machining with high accuracy. By increasing the repetition rate to several 100 kHz, laser machining becomes quick and cost-effective. Ultrafast laser processing at high repetition rates and peak intensities above 10^13 W/cm^2 can cause a potential hazard by generation of unwanted x-ray radiation. Therefore, radiation protection must be considered. For 925 fs pulse duration at a center wavelength of 1030 nm, the x-ray emission in air at a repetition rate of 400 kHz was investigated up to a peak intensity of 2.6 × 10^14 W/cm^2. Based on the presented measurements, the properties of potential shielding materials will be discussed. By extending our previous works, a scaling of the x-ray radiation emission to higher peak intensities up to 10^15 W/cm^2 is described, and emitted x-ray doses are predicted. KW - Laser ablation KW - Ultrashort pulse laser processing KW - Laser-induced x-ray emission KW - Radiation protection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505677 DO - https://doi.org/10.2351/1.5134778 VL - 32 IS - 2 SP - 022004 AN - OPUS4-50567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - You Ask – ACEnano Replies N2 - The workshop starts with introductory information about the workshop and the H2020 project ACEnano, followed by two expert round tables, focussing on how the project could address regulator and industry needs, respectively. This is be followed by parallel sessions on tools (based on preferences expressed by those registered to attend, see “Questions”) and finally a question-and-answer session with the attendees. The experts invited in Round Table 1 have been prepared to answer to questions related to obstacles and advantages for stakeholders such as SMEs to use the ACEnano approaches/tools. Standardisation needs are discussed. T2 - nanoSafety Cluster Training (NSC) Day @ NanoSAFE 2020: ACEnano users’ workshop “You Ask – ACEnano Replies” CY - Online meeting DA - 23.11.2020 KW - ACEnano KW - Standardisation KW - Nanomaterials KW - Nano-characterisation PY - 2020 UR - https://www.nanosafetycluster.eu/ SP - 1 EP - 2 AN - OPUS4-51693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Kubitzki, Jan A1 - Lerche, D. A1 - Rietz, U. T1 - Zentrifugentechnologie zur statistischen Untersuchung von Stumpfklebungen: Ergebnisse ZENSUS-Ringversuchs N2 - Der Vortrag widmet sich der „Zentrifugentechnologie zur statistischen Untersuchung von Stumpfklebungen“ und beschreibt drei wesentlich verschiedene Realsysteme (Fügefläche 1/Klebstoff/ Fügefläche 2), um die Statistik ZPM (wiederholte Ein-Proben-Prüfung) vs. CAT (Mehr-Proben-Prüfung) zu vergleichen. Dazu wurden drei unterschiedliche Klebstoff-klassen mit typischen Fügeteilmaterialkombinationen ausgewählt und in einem Vorversuch mit jeweils 3 unterschiedlichen Prüfgeschwindigkeiten sowohl im Weg-geregelten als auch Kraft-geregelten Mode beansprucht. Die Ergebnisse ZPM vs. CAT und Kraft- vs. Weg-Regelung des Vorversuches zeigten keinerlei Unterschiede auf. Im Ergebnis wurde ein Ringversuch im Kraft-geregelten Mode (6xZPM vs. 8xCAT) für ein Referenzsystem durchgeführt, der nachwies, dass die CAT-Technologie statistisch relevante Prüfergebnisse zur Klebfestigkeit bereitstellt. Es zeigte sich, dass für zwei ZPM-Teilnehmer im Vertrauensbereich 99% statistisch signifikant etwas kleinere Werte der Klebfestigkeit bestimmt wurden, was auf geringfügige Abweichungen von der axialen Ausrichtung des eingespannten Prüflings bei der Ein-Proben-ZPM-Zugprüfung zurückgeführt wird. T2 - VCI CY - Frankfurt/Main, Germany DA - 10.03.2020 KW - Zentrifugentechnologie KW - Statistischen Untersuchung KW - Normung KW - Prüfgeschwindigkeiten KW - Stumpfklebungen PY - 2020 AN - OPUS4-50581 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Smales, Glen Jacob A1 - Clark, Adam H. A1 - Thünemann, Andreas T1 - Zinc Phosphate Nanoparticles Produced in Saliva N2 - This paper reports the formation of zinc phosphate nanoparticles from the artificial digestion of zinc chloride. Initially, the formation of amorphous primary particles with a mean radius of 1.1 nm is observed, alongside the formation of larger, protein stabilized aggregates. These aggregates, with a radius of gyration of 37 nm, are observed after 5 minutes of exposure to artificial saliva and are shown to be colloidally stable for a minimum time of two weeks. The initially formed primary particles are thought to consist of amorphous zinc phosphate, which is then transformed into crystalline Zn3(PO4)2·4H2O over the course of two weeks. Our results demonstrate that the interaction of inorganic salts with bodily fluids can induce the formation of de novo nanoparticles, which in turn, provides insights into how zinc‐enriched foods may also facilitate the formation of nanoparticles upon contact with saliva. As such, this may be considered as an undesirable (bio)mineralization. KW - SAXS KW - Digestion KW - Zinc phosphate PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514239 DO - https://doi.org/10.1002/ejic.202000521 IS - 38 SP - 3654 EP - 3661 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-51423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -