TY - JOUR A1 - Dittrich, Maria A1 - Paulo, Carlos A1 - Knabe, Nicole A1 - Sturm, Heinz A1 - Zaitsev, Vladimir A1 - Gorbushina, Anna T1 - Microscopic Raman study of fungal pigment using the genetically amenable rock inhabitant Knufia petricola as a model organism N2 - Fungal pigments such as melanin and carotenoids are distinctive markers of animal and plant pathogenic fungi as well as their environmental relatives. These complex pigments play important roles in pathogenicity and stress tolerance while also being useful as biomarkers. Accordingly, it is important to be able to identify in situ the pigments in black fungi, a group of clinical and environmental importance. In this study, wild-type and genetically modified strains of Knufia petricola A95 and wild fungal cells attached to ancient rock were investigated for their spectroscopic and microscopic Raman features and morphological appearance. Knockout mutants of melanin synthesis genes pks1 (polyketide synthase), sdh1 (scytalone dehydratase), and both pks1 and the carotenoid synthesis gene phd1 (phytoene desaturase) were studied We applied two different Raman microscopes using two lasers, with 633 nm and 488 nm wavelengths. We analyzed and compared Raman spectra between the measured reference substances and the mutant and wild-type strains. In the wild strain WT:A95, the peaks close to melanin peals were found at 1353 cm−1 and 1611 cm−1. There are no characteristic melanin peaks at 1580–1600 cm−1 and around 1350 cm−1 at the spectrum of the Δpks1/Δphd1 mutant and the Δsdh1 mutant. The Δpks1 mutant spectrum has the peaks at the beta-carotene v2 C-C in-plane stretch at 1155 cm−1 and v3 C-CH3 deformation at 1005 cm−1. The peaks of carotenoids and melanin were found in all mutants and the wild strain, except the Δpks1/Δphd1 mutant. Raman spectra allow for discrimination between the various pigments. Hence, interactions between natural fungal melanin, as well as other protective pigments, and complex environmental matrices can be characterized on a range of spatial and temporal scales. KW - Raman Spectroscopy KW - Instrumentation KW - Analytical Chemistry KW - Knufia petricola KW - Confocal microscopy KW - Atomic and Molecular Physics and Optics PY - 2023 DO - https://doi.org/10.1016/j.saa.2023.123250 SN - 1386-1425 VL - 303 SP - 1 EP - 11 PB - Elsevier BV AN - OPUS4-58792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Monikh, F. A. A1 - Baun, A. A1 - Hartmann, N. B. A1 - Kortet, R. A1 - Akkanen, J. A1 - Lee, J.-S. A1 - Shi, H. A1 - Lahive, E. A1 - Uurasjärvi, E. A1 - Tufenkji, N. A1 - Altmann, Korinna A1 - Wiesner, Yosri A1 - Grossart, H.-P. A1 - Peijnenburg, W. A1 - Kukkonen, J. V. K. T1 - Exposure protocol for ecotoxicity testing of microplastics and nanoplastics N2 - Despite the increasing concern about the harmful effects of micro- and nanoplastics (MNPs), there are no harmonized guidelines or protocols yet available for MNP ecotoxicity testing. Current ecotoxicity studies often use commercial spherical particles as models for MNPs, but in nature, MNPs occur in variable shapes, sizes and chemical compositions. Moreover, protocols developed for chemicals that dissolve or form stable dispersions are currently used for assessing the ecotoxicity of MNPs. Plastic particles, however, do not dissolve and also show dynamic behavior in the exposure medium, depending on, for example, MNP physicochemical properties and the medium’s conditions such as pH and ionic strength. Here we describe an exposure protocol that considers the particle-specific properties of MNPs and their dynamic behavior in exposure systems. Procedure 1 describes the top-down production of more realistic MNPs as representative of MNPs in nature and particle characterization (e.g., using thermal extraction desorption-gas chromatography/mass spectrometry). Then, we describe exposure system development for short- and long-term toxicity tests for soil (Procedure 2) and aquatic (Procedure 3) organisms. Procedures 2 and 3 explain how to modify existing ecotoxicity guidelines for chemicals to target testing MNPs in selected exposure systems. We show some examples that were used to develop the protocol to test, for example, MNP toxicity in marine rotifers, freshwater mussels, daphnids and earthworms. The present protocol takes between 24 h and 2 months, depending on the test of interest and can be applied by students, academics, environmental risk assessors and industries. KW - Microplastics KW - TED-GC/MS KW - Cryo milling PY - 2023 DO - https://doi.org/10.1038/s41596-023-00886-9 SN - 1754-2189 SP - 1 EP - 38 PB - Nature Protocols AN - OPUS4-58557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Annadurai, V. A1 - Balazs, D. M. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Del Giudice, A. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Garcia, P. R. A. F. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, M. A1 - Hollamby, M. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, Patrick E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Spiering, G. A. A1 - Stawski, Tomasz M. A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor - Results of a small-angle scattering data analysis round robin N2 - A round-robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5% and half of the population width entries within 40%. Due to the added complexity of the structure factor, far fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 and 86%, respectively. This round-robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round Robin KW - Data analysis KW - Small-angle scattering KW - Nanomaterials KW - Interlaboratory comparability KW - Nanostructure quantification KW - Methodology KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587091 DO - https://doi.org/10.1107/S1600576723008324 SN - 1600-5767 VL - 56 IS - 6 SP - 1618 EP - 1629 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-58709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kittner, Maria A1 - Kerndorff, A. A1 - Ricking, M. A1 - Bednarz, M. A1 - Obermaier, N. A1 - Lukas, M. A1 - Asenova, M. A1 - Bordós, G. A1 - Eisentraut, Paul A1 - Hohenblum, P. A1 - Hudcova, H. A1 - Humer, F. A1 - István, T. G. A1 - Kirchner, M. A1 - Marushevska, O. A1 - Nemejcová, D. A1 - Oswald, P. A1 - Paunovic, M. A1 - Sengl, M. A1 - Slobodnik, J. A1 - Spanowsky, K. A1 - Tudorache, M. A1 - Wagensonner, H. A1 - Liska, I. A1 - Braun, U. A1 - Bannick, C. G. T1 - Microplastics in the Danube River Basin: A First Comprehensive Screening with a Harmonized Analytical Approach N2 - In this study, carried out within the Joint Danube Survey 4, a comprehensive microplastic screening in the water column within a large European river basin from its source to estuary, including major tributaries, was realized. The objective was to develop principles of a systematic and practicable microplastic monitoring strategy using sedimentation boxes for collection of suspended particulate matter followed by its subsequent analysis using thermal extraction desorption-gas chromatography/mass spectrometry. In total, 18 sampling sites in the Danube River Basin were investigated. The obtained suspended particulate matter samples were subdivided into the fractions of >100 μm and <100 μm and subsequently analyzed for microplastic mass contents. The results showed that microplastics were detected in all samples, with polyethylene being the predominant polymer with maximum contents of 22.24 μg/mg, 3.23 μg/mg for polystyrene, 1.03 μg/mg for styrene-butadiene-rubber, and 0.45 μg/mg for polypropylene. Further, polymers such as different sorts of polyester, polyacrylates, polylactide, and natural rubber were not detected or below the detection limit. Additional investigations on possible interference of polyethylene signals by algae-derived fatty acids were assessed. In the context of targeted monitoring, repeated measurements provide more certainty in the interpretation of the results for the individual sites. Nevertheless, it can be stated that the chosen approach using an integrative sampling and determination of total plastic content proved to be successful. KW - Thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS), monitoring KW - Microplastics KW - River KW - Suspended particulate matter (SPM) KW - Sedimentation box (SB) PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551444 DO - https://doi.org/10.1021/acsestwater.1c00439 VL - 2 IS - 7 SP - 1174 EP - 1181 PB - ACS Publications AN - OPUS4-55144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zutta Villate, J. M. A1 - Viviana Rojas, J. A1 - Hahn, Marc Benjamin A1 - Anselmo Puerta, J. T1 - Synthesis of 198Au nanoparticles sub 10 nm due optimization on local dose by Monte Carlo simulations for cancer treatment N2 - To enhance the biological effects of radiation damage in cancerous cells, we present an alternative approach to the use of gold nanoparticles (AuNP), focusing on the synthesis and characterization of highly monodisperse, spherical radioactive gold nanoparticles 198AuNP. The size of the AuNP size was optimized with the help of Geant4/TOPAS particle scattering simulations, and energy deposition per nm3 per decay for varying radii (2–10 nm) was evaluated. This work is the foundation for ongoing experimental work to evaluate cell death induced by 198AuNP which aims for the use of radioactive gold nanoparticles in cancer treatment. KW - AuNP KW - Beta decay KW - Beta particle KW - Brachytherapy KW - Cancer treatment KW - Nanoparticles KW - Nanoparticle KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Gamma ray KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - Synthesis KW - TEM KW - OH radicals KW - Particle scattering KW - Radiation damage KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio PY - 2022 DO - https://doi.org/10.1007/s10967-022-08355-5 SN - 1588-2780 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-55132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A. A1 - Juranyi, Fanni A1 - Böhning, Martin A1 - Zorn, Reiner A1 - Schönhals, Andreas T1 - Low-Frequency Vibrational Density of State of Janus-Polynorbornenes: The Dependence of the Boson Peak on the Nanophase-Separated Structure N2 - Inelastic incoherent neutron time-of-flight scattering was employed to investigate the low-frequency vibrational density of states (VDOSs) for a series of glassy Janus-poly(tricyclononenes), which consist of a rigid main chain and flexible alkyl side chains. Here, the length of the flexible side chains was systematically varied from propyl to octyl. Such materials have potential applications as active separation layers in gas separation membranes as a green future technology, especially for the separation of higher hydrocarbons. From the morphological point of view, the Janus polynorbornenes undergo a nanophase separation into alkyl side chain-rich nanodomains surrounded by a rigid polynorbornene matrix. Here, the influence of the nanophase-separated structure on the low-frequency VDOS is investigated from a fundamental point of view. The low-frequency VDOSs of these Janus polynorbornene show excess contributions to the Debye type VDOS known as the Boson peak (BP) for all side chain lengths. Due to the high incoherent scattering cross-section of hydrogen, most of the scattering comes from the alkyl side chain-rich domains. Compared to conventional glass-forming materials, in the considered Janus polynorbornenes, the BP has a much lower intensity and its frequency position is shifted to higher values. These experimental results are discussed in terms of the nanophase-separated structure where the alkyl chain-rich domains were constrained by the surrounding matrix dominated by the rigid backbone. With increasing alkyl chain length, the size of the alkyl chain-rich domains increases. The frequency position of the BP shifts linearly to lower frequencies with the size of these nanodomains estimated from X-ray measurements. The obtained results support the sound wave interpretation to the BP KW - Inelastic neutron scattering PY - 2023 DO - https://doi.org/10.1021/acs.macromol.3c00913 SN - 0024-9297 SP - 1 EP - 10 PB - ACS AN - OPUS4-57972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Friedrich, J. T1 - Structure of plasma deposited acrylic acid‐allyl alcohol copolymers N2 - Copolymer thin films with two types of functional groups have excellent performance as sensors, for example. The formation and deposition of allyl alcohol‐acrylic acid copolymer films by pulsed high frequency plasma is a complex process. As usual, the chemical composition of the top surface of the films was investigated by XPS and FTIR measurements. Furthermore, contact angle measurements with water were used to characterise the hydrophilicity and wettability of the polymer films. After plasma deposition, a significant decrease in functional groups (OH and COOH) was observed compared to the classically copolymerised equivalent. The remaining functional groups, i.e. the majority of these groups, were sufficient for application as sensor layers. Segmental mobility and conductivity, important for sensor applications, were analysed by broadband dielectric spectroscopy. KW - Plasma Polymerization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578349 DO - https://doi.org/10.1002/ppap.202300071 SN - 1612-8850 SP - 1 EP - 14 PB - Wiley online library AN - OPUS4-57834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A. L. A1 - Silbernagl, Dorothee A1 - Yasuda, N. A1 - Feiler, Torvid A1 - Sturm, Heinz A1 - Emmerling, Franziska T1 - An atomistic mechanism for elasto-plastic bending in molecular crystals N2 - Mechanically flexible single crystals of molecular materials offer potential for a multitude of new directions in advanced materials design. Before the full potential of such materials can be exploited, insight into their mechanisms of action must be better understood. Such insight can be only obtained through synergistic use of advanced experimentation and simulation. We herein report the first detailed mechanistic study of elasto-plastic flexibility in a molecular solid. An atomistic origin for this mechanical behaviour is proposed through a combination of atomic force microscopy, μ-focus synchrotron X-ray diffraction, Raman spectroscopy, ab initio simulation, and computed elastic tensors. Our findings suggest that elastic and plastic bending are intimately linked and result from extensions of the same molecular deformations. The proposed mechanism bridges the gap between contested mechanisms, suggesting its applicability as a general mechanism for elastic and plastic bending in organic molecular crystals. KW - Mechanical property KW - Mechanical flexibility KW - Organic crystal PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577722 DO - https://doi.org/10.1039/D2SC06470G SN - 2041-6520 VL - 14 IS - 13 SP - 3441 EP - 3450 PB - Royal Society of Chemisty (RSC) CY - London/Cambridge AN - OPUS4-57772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Bednarz, Marius A1 - Braun, Ulrike A1 - Bannick, Claus Gerhard A1 - Ricking, Mathias A1 - Altmann, Korinna T1 - A promising approach to monitor microplastic masses in composts N2 - Inputs of plastic impurities into the environment via the application of fertilizers are regulated in Germany and the EU by means of ordinances. Robust and fast analytical methods are the basis of legal regulations. Currently, only macro- and large microplastic contents (>1 mm) are measured. Microplastics (1–1,000 µm), are not yet monitored. Thermal analytical methods are suitable for this purpose, which can determine the mass content and can also be operated fully automatically in routine mode. Thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS) allows the identification of polymers and the determination of mass contents in solid samples from natural environments. In accordance with the German or European Commission (EC) Fertiliser Ordinance, composting plants should be monitored for microplastic particles with this method in the future. In this context a compost plant was sampled. At the end of the rotting process, the compost was sieved and separated in a coarse (>1 mm) and a fine fraction (<1 mm). The fine fraction was processed using density separation comparing NaCl and NaI as possible salt alternative and screened for microplastic masses by TED-GC/MS with additional validation and quality assurance experiments. With TED-GC/MS total microplastics mass contents of 1.1–3.0 μg/mg in finished compost could be detected with polyethylene mainly. What differs much to the total mass of plastics in the coarse fraction with up to 60 μg/mg, which were visually searched, identified via ATR-FTIR and gravimetrically weighted. KW - Microplastics KW - TED-GC/MS KW - Compost KW - Monitoring KW - Soil PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586688 DO - https://doi.org/10.3389/fenvc.2023.1281558 SN - 2673-4486 VL - 4 SP - 1 EP - 12 PB - Frontiers Media CY - Lausanne AN - OPUS4-58668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A. A1 - Gawek, Marcel A1 - Penner, P. A1 - Paneff, F. A1 - Zhang, X. A1 - Gölzhäuser, A. A1 - Schönhals, Andreas T1 - Can Polymers be Irreversibly Adsorbed on Carbon Nanomembranes? A Combined XPS, AFM, and Broadband Dielectric Spectroscopy Study N2 - Carbon nanomembranes are synthetic two-dimensional sheets with nanometer thickness, macroscopic lateral dimensions, and high structural homogeneity. They have great application potential in various branches of nanotechnology. Because of their full carbon structure, it is not clear whether macromolecules like poly(methyl methacrylate) (PMMA) can be irreversibly adsorbed on their surface. Here, irreversible adsorption means that the polymer chains cannot be removed by a leaching process, which is assumed in technological transfer processes. However, if polar defects are present on the carbon nanomembranes (CNMs), it may occur that polymers can be irreversibly adsorbed. To address this question, PMMA was spin-coated on top of CNMs, annealed for a specific time at different temperatures, and then tried to be removed by a acetone treatment in a leaching approach. The samples were investigated in detail by atomic force microscopy, X-ray photoelectron spectroscopy, and broadband dielectric spectroscopy, where the latter method has been applied to CNMs for the first time. Unambiguously, it was shown that PMMA can be adsorbed on the surface of CNMs after annealing the sample above the glasstransition temperature of PMMA. The general occurrence of polar defects on the surface of CNMs and the adsorption of polymers open opportunities for advanced innovative hybrid materials combining the properties of the CNM with those of the polymer. KW - Carbon Nanomembranes KW - Irreversible adsorption KW - Broadband dielectric spectroscopy KW - XPS spctroscopy KW - Atomic force microscopy PY - 2022 DO - https://doi.org/10.1021/acsapm.2c01320 SN - 2637-6105 VL - 4 IS - 11 SP - 8377 EP - 8385 PB - ACS AN - OPUS4-56067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Jaenisch, Gerd-Rüdiger A1 - Pavasaryte, Lina A1 - Funk, Alexander T1 - XCT and DLW: Synergies of Two Techniques at Sub-Micrometer Resolution N2 - Direct Laser Writing (DLW) and X-ray computed tomography (XCT) both offer unique possibilities in their respective fields. DLW produces full three-dimensional (3D) polymer structures on the microscale with resolutions below 100 nm. The fabricated structures can be analysed by XCT or X-ray microscopy (XRM), which incorporates additional X-ray lenses, in three dimensions down to a minimal basic spatial resolution of about 500 nm or 50 nm, respectively. In this work, two different DLW structures are analysed via XCT. Internal defects are detected and analysed for the purpose of quality control. Defects and structures with sizes down to 1.5 µm are successfully analysed. A 3D reconstruction and internal, hidden features of the fabricated structures are shown and discussed. In a first-of-its-kind study, we demonstrate the detectability of a single-voxel line inside a fabricated structure that would not be detectable with SEM or light microscopy. Furthermore, the direct fabrication on a PET substrate is shown to overcome the high X-ray absorbance of commonly used glass substrates. Attenuation spectra of SZ2080 and glass substrates are compared to a fabrication route direct on a 170 µm PET foil. The practical aspects of XCT measurements for DLW structures on different substrates will be discussed. KW - Non-destructive testing KW - Two-photon polymerization KW - X-ray microscopy KW - XCT KW - 2PP KW - Direct laser writing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560525 DO - https://doi.org/10.3390/app122010488 VL - 12 IS - 20 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-56052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bauer, J. A1 - Miclea, P.-T. A1 - Braun, U. A1 - Altmann, Korinna A1 - Turek, M. A1 - Hagendorf, C. T1 - Microplastic detection and analysis in water samples N2 - Microplastic detection in water samples becomes important for tracing microplastic sources. Microplastic may harm desalination facilities by blocking filters and disturbing the marine food chain. Thermo analytical methods such as pyrolysis gas chromatography mass spectroscopy, and spectroscopic methods like (micro) Raman spectroscopy or (micro) Fouriertransform infrared spectroscopy in combination with appropriate filters and sample preparation are suitable for analyzing microplastics on a scale from 1 µm to 1000 µm fast and unambiguous. While the thermo analytical methods are suitable for larger sample volumes, Raman spectroscopy and Fouriertransform infrared spectroscopy are able to detect and analyze single microplastic particles for instance in bottled water. Machine learning algorithms ensure a reliable classification of different plastic materials. T2 - International Conference on Sustainable Energy-Water-Environment Nexus in Desert Climate 2019 CY - Ar-Rayyan, Qatar DA - 02.12.2019 KW - Microplastics KW - Water samples PY - 2022 SP - 111 EP - 113 PB - Springer AN - OPUS4-56240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cordsmeier, Leo A1 - Hahn, Marc Benjamin T1 - DNA Stability in Biodosimetry, Pharmacy and DNA Based Data-Storage: Optimal Storage and Handling Conditions N2 - DNA long-term stability and integrity is of importance for applications in DNA based bio-dosimetry, data-storage, pharmaceutical quality-control, donor insemination and DNA based functional nanomaterials. Standard protocols for these applications involve repeated freeze-thaw cycles of the DNA, which can cause detrimental damage to the nucleobases, as well as the sugar-phosphate backbone and therefore the whole molecule. Throughout the literature three hypotheses can be found about the underlying mechanisms occurring during freeze-thaw cycles. It is hypothesized that DNA single-strand breaks during freezing can be induced by mechanical stress leading to shearing of the DNA molecule, by acidic pH causing damage through depurination and beta elimination or by the presence of metal ions catalyzing oxidative damage via reactive oxygen species (ROS). Here we test these hypotheses under well defined conditions with plasmid DNA pUC19 in high-purity buffer (1xPBS) at physiological salt and pH 7.4 conditions, under pH 6 and in the presence of metal ions in combination with the radical scavengers DMSO and Ectoine. The results show for the 2686 bp long plasmid DNA, that neither mechanical stress, nor pH 6 lead to degradation during repeated freeze-thaw cycles. In contrast, the presence of metal ions (Fe2+) leads to degradation of DNA via the production of radical species. KW - DNA KW - DNA stability KW - Pharmacy KW - Reference material KW - pUC19 KW - Strand break KW - SSB KW - Dosimetry KW - Biodosimetry KW - Biologisches Dosimeter KW - DNA Dosimeter KW - Quality control KW - Plasmid DNA KW - DNA data storage KW - Nucleobase KW - Base damage KW - Base loss KW - DNA degradation KW - Metal ions KW - ROS KW - OH radical KW - Fenton Reaction KW - H2O2 KW - DNA based data storage KW - Freezing KW - Thawing KW - Mechanical stress KW - pH KW - Beta elimination KW - Ectoine KW - Ectoin KW - THP(B) KW - Radical scavenger KW - DMSO KW - Buffer KW - lN2 KW - DNA vortexing KW - AGE KW - SYBR Gold KW - Gel electrophoresis KW - DNA long term storage KW - DNA reference material PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557148 DO - https://doi.org/10.1002/cbic.202200391 SP - 1 EP - 9 PB - Wiley-VCH GmbH AN - OPUS4-55714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klöckner, P. A1 - Seiwert, B. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Reemtsma, T. A1 - Wagner, S. T1 - Characterization of tire and road wear particles from road runoffindicates highly dynamic particle properties N2 - Tire and road wear particles (TRWPs) are heteroagglomerates of tire rubber and other particles deposited on the road surface and one of the main contributors to non-exhaust emissions of automobile traffic. In this study, samples from road environments were analyzed for their TRWP contents and concentra- tions of eight organic tire constituents. TRWP concentrations were determined by quantifying Zn in the density fraction < 1.9 g/cm ³and by thermal extraction desorption-gas chromatography-mass spectrometry (TED-GC/MS) and the concentrations ranged from 3.7 to 480 mg TRWP/g. Strong and statistically signif- icant correlations with TRWPs were found for 2-hydroxybenzothiazole and 2-aminobenzothiazole, indi- cating that these substances may be suitable markers of TRWPs. The mass distribution of TRWPs in road dust suggests that the main mass fraction formed on roads consists of coarse particles ( > 100 μm). Data for a sedimentation basin indicate that the fine fraction ( < 50 μm) is preferentially transported by road runoffinto receiving waters. The size distribution and density data of TRWP gathered by three different quantitation approaches also suggest that aging of TRWPs leads to changes in their particle density. An improved understanding of the dynamics of TRWP properties is essential to assess the distribution and dissipation of this contaminant of emerging concern in the environment. KW - Tire Wear KW - Density separation KW - Microplastic KW - Urban PY - 2020 DO - https://doi.org/10.1016/j.watres.2020.116262 VL - 185 SP - 116262 PB - Elsevier Ltd. AN - OPUS4-51256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Kolmangadi, Mohamed Aejaz A1 - Bühlmeyer, A. A1 - Huber, P. A1 - Laschat, S. A1 - Schönhals, Andreas T1 - Electrical conductivity and multiple glassy dynamics of crow-ether based columnar liquid crystals N2 - The phase behavior of two unsymmetrical triphenylene crown ether-based columnar liquid crystals (CLCs) bearing different lengths of alkyl chains, KAL465 and KAL468, was investigated using differential scanning calorimetry (DSC). A plastic crystalline (Cry), columnar liquid crystalline (Colh) and an isotropic phase were observed along with two glass transitions in the Cry phase. The molecular mobility of the KAL compounds was further studied by a combination of broadband dielectric spectroscopy (BDS) and advanced calorimetric techniques. By the BDS investigations, three dielectric active relaxation processes were observed for both samples. At low temperatures, a γ-process in the Cry state was detected and is assigned to the localized fluctuations taking place in the alkyl chains. An α2-process takes place at higher temperatures in the Cry phase. An α3 process was found in the Colh mesophase. The advanced calorimetric techniques consist of fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS) employing temperature modulated DSC and FSC (TMDSC and TMFSC). The advanced calorimetric investigations revealed that besides the α2 process in agreement with BDS, a second dynamic glass transition (α1-process) is present which is not observed by dielectric spectroscopy. The results are in good agreement with the glass transitions detected by DSC for this process. The temperature dependences of the relaxation rates of the α1 , α2 and α3 processes are all different. Therefore, different molecular assignments for the relaxation processes are proposed. In addition to the relaxation processes, a conductivity contribution was explored by BDS for both KAL compounds. The conductivity contribution appears in both Cry and Colh phases, where the conductivity increases by ca. one order of magnitude at phase transition from the crystalline to the hexagonal phase. KW - Columnar Liquid Crystal PY - 2020 DO - https://doi.org/10.1021/acs.jpcb.0c06854 VL - 124 IS - 39 SP - 8728 EP - 8739 PB - ACS AN - OPUS4-51374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Famy, A. A1 - Agudo Jácome, Leonardo A1 - Schönhals, Andreas T1 - Effect of Silver Nanoparticles on the Dielectric Properties and the Homogeneity of Plasma Poly(acrylic acid) Thin Films N2 - For the first time, structure−electrochemical relationships of thin films of a plasma-polymerized acrylic acid/carbon dioxide AA/CO2 (75/25%) copolymer modified by implanted silver nanoparticles are discussed. The pulsed plasma polymerization of AA/CO2 was utilized and adjusted to obtain a maximal amount of COOH Groups forming an almost uncross-linked polymer structure. The prepared polymer layer is rinsed by a silver nitrate solution to impregnate Ag+ ions. This step is followed by its reduction of Ag+ with NaBH4 as a chemical route in comparison to the reduction by sunlight as an ecofriendly photoreduction method. The chemical composition and morphology of the topmost surface layer of the AA/CO2 polymer thin film were investigated by X-ray photoelectron spectroscopy and atomic force microscopy. Moreover, the molecular mobility, conductivity, and thermal stability of the polymer layer were analyzed using broadband dielectric spectroscopy. The dielectric properties of the AA/ CO2 polymer thin film were studied in the presence of Ag+ ions or Ag0. It was found that a cross-linked polymer layer with a smooth surface and high conductivity was obtained in the presence of Ag+/ Ag0. KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c06712 SN - 1932-7447 VL - 124 IS - 41 SP - 22817 EP - 22826 PB - ACS AN - OPUS4-51468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Smales, Glen Jacob A1 - Henning, S. A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Calorimetric and Dielectric Investigations of Epoxy-Based Nanocomposites with Halloysite Nanotubes as Nanofillers N2 - Epoxy nanocomposites are promising materials for industrial applications (i.e., aerospace, marine and automotive industry) due to their extraordinary mechanical and thermal properties. Here, the effect of hollow halloysite nanotubes (HNT) on an epoxy matrix (Ep) was the focus of the study. The structure and molecular mobility of the nanocomposites were investigated using a combination of X-ray scattering, calorimetry (differential (DSC) and fast scanning calorimetry (FSC)) and dielectric spectroscopy. Additionally, the effect of surface modification of HNT (polydopamine (PDA) and Fe(OH)3 nanodots) was considered. For Ep/HNT, the glass transition temperature (Tg) is was de-creased due to a nanoparticle-related decrease of the crosslinking density. For the modified system, Ep/m-HNT, the surface modification resulted in enhanced filler–matrix interactions leading to higher Tg values than the pure epoxy in some cases. For Ep/m-HNT, the amount of interface formed between the nanoparticles and the matrix ranged from 5% to 15%. Through BDS measurements, localized fluctuations were detected as a β- and γ-relaxation, related to rotational fluctuations of phenyl rings and local reorientations of unreacted components. A combination of calorimetry and BDS dielectric spectroscopy revealed a dynamic and structural heterogeneity of the matrix, as confirmed by two glassy dynamics in both systems, related to regions with different crosslinking densities. KW - Rigid amorphous fraction KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526668 DO - https://doi.org/10.3390/polym13101634 VL - 13 IS - 10 SP - 1634 PB - MDPI AN - OPUS4-52666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - Saied, M. A. A. A1 - Morgan, N. A1 - Abdelbary, H. A1 - Bahy, S. M. A1 - Schönhals, Andreas A1 - Friedrich, J. F. T1 - Modified polyvinyl chloride membrane grafted with an ultra-thin polystyrene film: structure and electrochemical properties N2 - The work explores the synthesis and the properties of a novel composite membrane System based on modified polystyrene (PS) grafted onto a polyvinyl chloride (PVC) membrane. PVC membranes were prepared by solution-casting followed by exposure to an atmospheric pressure dielectric barrier discharge (DBD) with O2 to obtain an activated Surface for grafting PS to it. Moreover, the thus prepared membranes were chemically modified furthermore by amination with polyethyleneimine or sulfonation with 4 M sulfuric acid. The membrane surface characteristics such as wettability, structure and morphology were investigated using water contact angle measurements, attenuated total reflection Fourier transform infrared spectroscopy and scanning electron microscopy experiments. The thermogravimetric stability and electrolytic responses of the membranes were studied utilizing TGA, ion exchange capacity (IEC), and solvent uptake. A significant result of plasma and chemical modification was to produce a membrane material with low permeability. Thus, the methanol permeability of the sulfonated membranes measured for 12 h was measured to 2.34$10� 8 cm2 s� 1 compared to 177.00$10� 8 cm2 s� 1 of Nafion 117®which is considered as a benchmark. This result indicates that the prepared sulfonated samples are an innovative and effective material for decreasing the methanol crossover in fuel cells to a great extent. This makes the PVC-g-St membranes are promising and attractive as new materials for polyelectrolyte membrane for fuel cells. KW - Electrolyte membrane KW - Fuell cells PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526794 DO - https://doi.org/10.1016/j.jmrt.2021.04.018 VL - 12 SP - 2273 EP - 2284 PB - Elsevier B.V. AN - OPUS4-52679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed Aejaz A1 - Szymoniak, Paulina A1 - Smales, Glen Jacob A1 - Alentiev, D. A1 - Bermeshev, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Molecular Dynamics of Janus Polynorbornenes: Glass Transitions and Nanophase Separation N2 - For the first time, dielectric and calorimetric investigations of an homologous series of Janus polynorbornenes with rigid main backbones and flexible -Si(OR)3 side groups, of differing length alkyl chains (R = Propyl, Butyl, Hexyl, Octyl, Decyl) is reported. Generally, this class of polymers has some potential for applications in the field of gas separation membranes. Two dielectrically active processes are observed at low temperatures, denoted as β- and α- relaxation. The former can be assigned to localized fluctuations, whilst the latter is related to the glassy dynamics of the flexible -Si(OR)3 side groups, creating a nanophase separation in both the alkyl chain rich and backbone rich domains. This is confirmed through temperature modulated DSC measurements and X-ray scattering experiments. The glass transition temperatures of the backbone rich domains, which are beyond or near to their degradation temperatures in terms of conventional DSC, are determined for the first time using Fast Scanning Calorimetry employing both fast heating and cooling rates. This is complimented with scattering experiments that show how the size of the alkyl chain rich domains increases with chain length. Alongside these results, a significant conductivity contribution was observed for all poly(tricyclononenes) with -Si(OR)3 side groups, which is interpreted in terms of a percolation model. KW - Polynorbornenes KW - Broadband Dielectric Spectrscopy KW - Advanced calorimetry PY - 2020 DO - https://doi.org/10.1021/acs.macromol.0c01450 VL - 53 IS - 17 SP - 7410 EP - 7419 PB - ACS AN - OPUS4-51196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Sobol, Oded A1 - Altmann, Korinna A1 - Radnik, Jörg A1 - Özcan Sandikcioglu, Özlem T1 - Preconditioning of AISI 304 stainless steel surfaces in the presence of flavins—Part I: Effect on surface chemistry and corrosion behavior N2 - Stainless steel AISI 304 surfaces were studied after a mild anodic polarization for oxide growth in the presence and absence of two derivatives of vitamin B2 (riboflavin and flavin mononucleotide) that can be secreted by metal‐reducing bacteria and act as a chelating agent for iron species. The alterations in oxide chemistry were studied by means of surface‐sensitive techniques such as X‐ray photoelectron spectroscopy and time‐of‐flight secondary ion mass spectrometry analysis. The complementary electrochemical characterization revealed a preferential growth of an oxide/hydroxide iron‐rich film that is responsible for an altered pit initiation and nucleation behavior. These findings suggest that as the corrosion behavior is determined by the interplay of the chemical and electronic properties, only a mild anodic polarization in the presence of redox‐active molecules is able to alter the chemical and electronic structure of the passive film formed on stainless steel AISI 304. This helps to achieve a profound understanding of the mechanisms of microbially influenced corrosion (MIC) and especially the possible effects of the redox‐active biomolecules, as they may play an important role in the corrosion susceptibility of stainless steel surfaces. KW - Corrosion KW - Stainless steel KW - Surface analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528117 DO - https://doi.org/10.1002/maco.202012191 VL - 72 IS - 6 SP - 974 EP - 982 PB - Wiley AN - OPUS4-52811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waniek, Tassilo A1 - Braun, U. A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - The impact of water released from boehmite nanoparticles during curing in epoxy-based nanocomposites N2 - The enhancing effect on mechanical properties of boehmite (γ-AlOOH) nanoparticles (BNP) in epoxy-based nanocomposites on the macroscopic scale encouraged recent research to investigate the micro- and nanoscopic properties. Several studies presented different aspects relatable to an alteration of the epoxy polymer network formation by the BNP with need for further experiments to identify the mode of action. With FTIR-spectroscopic methods this study identifies interactions of the BNP with the epoxy polymer matrix during the curing process as well as in the cured nanocomposite. The data reveals that not the BNP themselves, but the water released from them strongly influences the curing process by hydrolysis of the anhydride hardener or protonation of the amine accelerator. The changes of the curing processes are discussed in detail. The changes of the curing processes enable new explanation for the changed material properties by BNP discussed in recent research like a lowered glass transition temperature region (Tg) and an interphase formation. KW - Spectroscopy KW - Aluminium oxide hydroxide KW - Glass transition temperature KW - Material chemistry KW - Nanocomposites KW - Structure-property relationship PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527202 DO - https://doi.org/10.1002/app.51006 VL - 138 IS - 39 SP - 51006 PB - Wiley Periodicals LLC CY - Hoboken AN - OPUS4-52720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Emamverdi, Farnaz A1 - Cacua, K. A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Carrier Fibers for the Safe Dosage of Nanoparticles in Nanocomposites: Nanomechanical and Thermomechanical Study on Polycarbonate/Boehmite Electrospun Fibers Embedded in Epoxy Resin N2 - The reinforcing effect of boehmite nanoparticles (BNP) in epoxy resins for fiber composite lightweight construction is related to the formation of a soft but bound interphase between filler and polymer. The interphase is able to dissipate crack propagation energy and consequently increases the fracture toughness of the epoxy resin. Usually, the nanoparticles are dispersed in the resin and then mixed with the hardener to form an applicable mixture to impregnate the fibers. If one wishes to locally increase the fracture toughness at particularly stressed positions of the fiber-reinforced polymer composites (FRPC), this could be done by spraying nanoparticles from a suspension. However, this would entail high costs for removing the nanoparticles from the ambient air. We propose that a fiber fleece containing bound nanoparticles be inserted at exposed locations. For the present proof-of-concept study, an electrospun polycarbonate nonwoven and taurine modified BNP are proposed. After fabrication of suitable PC/EP/BNP composites, the thermomechanical properties were tested by dynamic mechanical analysis (DMA). Comparatively, the local nanomechanical properties such as stiffness and elastic modulus were determined by atomic force microscopy (AFM). An additional investigation of the distribution of the nanoparticles in the epoxy matrix, which is a prerequisite for an effective nanocomposite, is carried out by scanning electron microscopy in transmission mode (TSEM). From the results it can be concluded that the concept of carrier fibers for nanoparticles is viable. KW - Advanced materials KW - Electrospun nanocomposite fiber KW - Nanomechanical charecteisation KW - Nanosafety KW - Epoxy nanocomposites PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528265 DO - https://doi.org/10.3390/nano11061591 VL - 11 IS - 6 SP - 1591 PB - MDPI CY - CH - 4020 Basel, Switzerland AN - OPUS4-52826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Dietrich, P. M. A1 - Radnik, Jörg T1 - In situ monitoring of the influence of water on DNA radiation damage by near-ambient pressure X-ray photoelectron spectroscopy N2 - Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS xperiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. KW - DNA KW - XPS KW - NAP-XPS KW - Radiation damage KW - Single-strand break (SSB) KW - Double-strand break (DSB) KW - Xray KW - OH radical KW - Hydroxyl radical KW - LEE KW - Low energy electrons KW - Dosimetry KW - Geant4 KW - Geant4-DNA KW - TOPAS KW - TOPAS-nbio KW - Microdosimetry KW - DNA radiation damage KW - Direct damage KW - Indirect damage KW - Quasi-direct damage KW - Hydration shell KW - Dry DNA KW - Hydrated DNA KW - ROS KW - Radical KW - Reactive oxygen species KW - Net-ionization reaction KW - Radiation therapy KW - Cancer therapy KW - Xray photo electron spectrocopy KW - Near ambient pressure xray photo electron spectroscopy KW - Base damage KW - Base loss KW - Dissociative electron transfer (DET) KW - Dissociative electron attachment (DEA) KW - Hydrated electron KW - Prehydrated electron KW - Ionization KW - PES PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524060 DO - https://doi.org/10.1038/s42004-021-00487-1 SN - 2399-3669 VL - 4 IS - 1 SP - 50 PB - Springer Nature CY - London AN - OPUS4-52406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knelles, J. A1 - Wanner, C. A1 - Schulz, F. A1 - Freund, M. A1 - Kolmangadi, Mohamed Aejaz A1 - Baro, A. A1 - Huber, P. A1 - Schönhals, Andreas A1 - Lachat, S. T1 - Liquid crystalline hydrazones revisited: dipolar interactions vs hydrogen bonding affecting mesomorphic properties N2 - In order to understand the role of dipolar interactions vs. H-bonding, a series of hydrazones were synthesised from 4-alkoxy-, 3,4-dialkoxy- or 3,4,5-trialkoxybenzaldehydes and phenyl, bromo- or nitrophenylhydrazine, respectively. Their mesomorphic properties were investigated by differential scanning calorimetry (DSC), polarising optical microscopy (POM), X-ray diffraction (WAXS, SAXS) and compared with known members. Only those hydrazones derived from 3,4,5-trisalkoxybenzaldehyde and either meta, meta-dinitro- or ortho, para-dinitrophenylhydrazine displayed hexagonal columnar mesophases. All other derivatives were non-mesomorphic, even when H-bonds were present. Dipole moments of the various nitro-substituted hydrazones were experimentally determined by dielectric measurements and supported by theoretical DFT calculations, which indicated that the mesophase formation is mostly governed by strong dipole moment and further enforced by intramolecular H-bonding. KW - Discotic liquid crystals PY - 2021 DO - https://doi.org/10.1080/02678292.2021.1873438 VL - 48 IS - 10 SP - 1382 EP - 1391 PB - Taylor & Francis AN - OPUS4-52409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed Aejaz A1 - Smales, Glen Jacob A1 - ZhuoQing, Li A1 - Yildirim, Arda A1 - Wuckert, E. A1 - Eutionnat, S. A1 - Demel, F. A1 - Huber, P A1 - Lasachat, S. A1 - Schönhals, Andreas T1 - Side Chain Length-Dependent Dynamics and Conductivity in Self-Assembled Ion N2 - We study the molecular mobility and electrical conductivity of a homologous series of linear shaped columnar ionic liquid crystals ILCn, (n = 8, 10, 12, 14, 16) using broadband dielectric spectroscopy (BDS), specific heat spectroscopy (SHS), and X-ray scattering. We aim to understand how the alkyl chain length influences the dynamics and electric conductivity in this system. Two dielectrically active relaxation modes are observed, the γ and the αcore process, that correspond to the localized fluctuations of the alkyl chains and cooperative motions of the aromatic core in the columns, respectively. Both the γ relaxation and the αcore process slow down with increasing alkyl chain length. SHS reveals one relaxation process, the αalkyl process that has a similar temperature dependence as that of the αcore process for ILC12, 14, and 16 but shifts to higher temperature for ILC8 and 10. For ILC12, 14, and 16, the absolute values of DC conductivity increase by 4 orders of magnitude at the transition from the plastic crystalline to hexagonal columnar phase. For ILC8 and 10, the DC conductivity behavior is similar to ionic liquids, where the conductivity is coupled with structural relaxation. Small-angle X-ray investigations reveal that both the intercolumnar distance and the disorder coherence length increase with alkyl chain length; conversely, the DC conductivity decreases monotonically. KW - Ionic Liquid Crystals PY - 2022 DO - https://doi.org/10.1021/acs.jpcc.2c03023 SN - 1932-7447 VL - 126 IS - 27 SP - 10995 EP - 11006 PB - ACS AN - OPUS4-55194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Plajer, A. J. T1 - Thioanhydride/isothiocyanate/epoxide ring-opening terpolymerisation: sequence selective enchainment of monomer mixtures and switchable catalysis N2 - We report a new sequence selective terpolymerisation in which three monomers (butylene oxide (BO) A, PhNCS B and phtalic thioanhydride (PTA) C) are selectively enchained into an (ABA′C)n sequence. PTA/PhNCS/BO ring-opening terpolymerisation ROTERP can be coupled with CS2 ROTERP to generate tetrapolymers and with εDL ROP in switchable catalysis for blockpolymer synthesis. KW - Blockcopolymer KW - 1H-NMR KW - TGA KW - DSC KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552339 DO - https://doi.org/10.1039/d2py00629d SP - 1 EP - 5 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-55233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, A. A1 - Saeed, A. A1 - Dawood, U. A1 - Abdelbary, H. A1 - Altmann, Korinna A1 - Schönhals, Andreas T1 - Nano-MnO2/xanthan gum composite films for NO2 gas sensing N2 - Nowadays, sensors based on polymers/nanostructured metal oxide composites have been investigated exten-sively because of their sensitivity to NO2 gas at ambient temperature. In this work, nanocomposite membranes of xanthan gum (XG) with different contents of MnO2 nanoparticles were prepared as a potential NO2 gas sensor operating at room temperature by a simple one-step oxidation-reduction reaction. The structural, morphological, thermal, and electrical properties of the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO2 through the oxidation of XG by KMnO4 and reveal further the structural changes of the XG/MnO2 nanocomposite upon its exposure to NO2 gas. The capping of the synthesized MnO2 nano-particles by XG, the surface composition of the XG/MnO2 nanocomposite membranes, and the effect of NO2 gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of the nanocomposites XG/MO-4, XG/MO-4/ low NO2, and XG/MO-4/high NO2 composites are half, one, and three orders of magnitude higher than that for pure XG revealing a transition from insulating to conductive properties. The results demonstrated that XG/MnO2 nanocomposite membranes are promising for potential applications in NO2 gas sensing. KW - Gas sensors KW - Membranes KW - Metal oxides KW - Nanocomposites KW - Semiconductors PY - 2022 DO - https://doi.org/10.1016/j.matchemphys.2022.127277 SN - 0254-0584 VL - 296 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-56769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frunza, L. A1 - Zgura, I A1 - Ganea, C. P. A1 - Schönhals, Andreas T1 - Molecular dynamics of alkyl benzoate liquid crystals in the bulk state and in the surface layer of their composites with oxide nanopowders N2 - This paper presents the results concerning monotropic nematic liquid crystals 4-pentylphenyl 40-alkyl benzoate (5PnB) (n = 3 or 5 carbon atoms in the alkyl chain). Their mesophase properties were supported by images of the polarized optical microscopy. Molecular dynamics in the bulk samples or in the composites prepared with aerosil A380 was investigated by broadband dielectric spectroscopy in a large temperature range, appropriately chosen. Thermo gravimetric and infrared investigations were additionally performed. The data were compared with those of structurally related nematics like cyanophenyl pentyl benzoates, which have a cyan group instead of the pentyl chain. The dielectric spectra of the bulk 3P5B and 5P5B demonstrate a dielectric behavior with several relaxation processes as expected for nematic liquid crystals. The temperature dependence of the relaxation rates (and of the dielectric strength) seems to have two distinguished regimes. Thus, in the isotropic state, at higher temperatures the data obey the Vogel–Fulcher–Tammann law, whereas an Arrhenius law is fitted at lower temperature, in a close similarity to the behavior of a constrained dynamic glass transition. Samples with a high density of silica (larger than 7 g aerosil/1 g of 5PnB) were prepared to observe a thin layer adsorbed on the particle surface; it was estimated that almost each guest 5PnB molecule interacts with the aerosil surface. For the composites only one main relaxation process is observed at frequencies much lower than those for the corresponding bulk, which was assigned to the dynamics of the molecules in the surface layer. Infrared spectroscopy shows that these molecules interact with the surface by the ester carbonyl group leading to the monolayer self-assembly at liquid–solid interface. We note once more the importance of the functional unit(s) for the interaction with the hydroxyl groups on the aerosil surface. KW - Liquid crystals PY - 2022 DO - https://doi.org/10.1016/j.molliq.2022.119374 SN - 0167-7322 VL - 359 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-54867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Altmann, Korinna A1 - Sommerfeld, Thomas A1 - Braun, Ulrike T1 - Quantification of microplastics in a freshwater suspended organic matter using different thermoanalytical methods – outcome of an interlaboratory comparison N2 - A sedimented freshwater suspended organic matter fortified with particles of polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) was employed in an interlaboratory comparison of thermoanalytical methods for microplastics identification and quantification. Three laboratories performed pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), three others provided results using thermal extraction desorption followed by gas chromatography coupled to mass spectrometry (TED-GC-MS). One participant performed thermogravimetry-infrared spectroscopy (TGA-FTIR) and two participants used thermogravimetry coupled to mass spectrometry (TGA-MS). Further participants used differential scanning microscopy (DSC), a procedure based on micro combustion calorimetry (MCC) and a procedure based on elemental analysis. Each participant employed a different combination of sample treatment, calibration and instrumental Settings for polymer identification and quantification. Though there is obviously room for improvements regarding the between-laboratory reproducibility and the harmonization of procedures it was seen that the participants Performing Py-GC-MS, TED-GC-MS, and TGA-FTIR were able to correctly identify all polymers and to report reasonable quantification results in the investigated concentration range (PE: 20.0 μg/mg, PP: 5.70 μg/mg; PS: 2.20 μg/mg, PET: 18.0 μg/mg). Although for the other methods limitations exists regarding the detection of specific polymers, they showed potential as alternative approaches for polymer quantification in solid environmental matrices. KW - Interlaboratory comparison KW - Microplastics KW - Suspended organic matter KW - Pyrolysis PY - 2020 DO - https://doi.org/10.1016/j.jaap.2020.104829 VL - 148 SP - 1 EP - 6 PB - Elsevier B.V. AN - OPUS4-50977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pleskunov, P. A1 - Nikitin, D. A1 - Tafiichuk, R. A1 - Shlemin, A. A1 - Hanus, J. A1 - Kousal, J. A1 - Krtous, Z. A1 - Khalakhan, I. A1 - Kus, P. A1 - Nasu, T. A1 - Nagahama, T. A1 - Funaki, C. A1 - Sato, H. A1 - Gawek, Marcel A1 - Schönhals, Andreas A1 - Choukourov, A. T1 - Plasma polymerization of acrylic acid for the tunable synthesis of glassy abd carboxylated nanoparticle N2 - Polymer nanoparticles (NPs) can be highly attractive in numerous applications including biomedicine where the use of inorganic matter may be detrimental for living tissues. In conventional wet chemistry, polymerization and functionalization of NPs with specific chemical groups involves complex and often numerous reactions. Here, we report on a solvent-free, single-step, low temperature plasma-based synthesis of carboxylated NPs produced by polymerization of acrylic acid under the conditions of a glow discharge. In a monomer-deficient regime, strong fragmentation of the monomer molecules by electron impact results in the formation of 15 nm-sized NPs with <1% retention of the carboxyl groups. In an energy-deficient regime, larger 90 nm-sized NPs are formed with better retention of the carboxyls that reaches 16 %. All types of the NPs exhibit the glass transition above the room temperature which makes them highly stable under aqueous environment with no dissolution or swelling. They are also found to degrade thermally when heated above 150 °C with a decrease of the mean NP size, yet with the retention of the chemical composition. Thus, plasma polymerization proves to be a versatile approach for the production of polymer NPs with tuneable size distribution, chemical composition and physical properties. KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acs.jpcb.9b08960 VL - 124 SP - 668 EP - 678 PB - ACS AN - OPUS4-50351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Krause, Christina A1 - Zorn, R. A1 - Lohstroh, W. A1 - Schneider, G. J. A1 - Zamponi, M. A1 - Holerer, O. A1 - Frick, B. A1 - Schönhals, Andreas T1 - Complex molecular dynamics of a symmetric model discotic liquid crystal revealed by broadband dielectric, thermal and neutron spectroscopy N2 - The molecular dynamics of the triphenylene-based discotic liquid crystal HAT6 is investigated by broadband dielectric spectroscopy, advanced dynamical calorimetry and neutron scattering. Differential scanning calorimetry in combination with X-ray scattering reveals that HAT6 has a plastic crystalline phase at low temperatures, a hexagonally ordered liquid crystalline phase at higher temperatures and undergoes a clearing transition at even higher temperatures. The dielectric spectra show several relaxation processes: a localized gamma-relaxation a lower temperature and a so called alpha-2-relaxation at higher temperatures. The relaxation rates of the alpha-2-relaxation have a complex temperature dependence and bear similarities to a dynamic glass transition. The relaxation rates estimated by hyper DSC, Fast Scanning calorimetry and AC Chip calorimetry have a different temperature dependence than the dielectric alpha-2-relaxation and follows the VFT-behavior characteristic for glassy dynamics. Therefore, this process is called alpha-1-relaxation. Its relaxation rates show a similarity with that of polyethylene. For this reason, the alpha-1-relaxation is assigned to the dynamic glass transition of the alkyl chains in the intercolumnar space. Moreover, this process is not observed by dielectric spectroscopy which supports its assignment. The alpha-2-relaxation was assigned to small scale translatorial and/or small angle fluctuations of the cores. The neutron scattering data reveal two relaxation processes. The process observed at shorter relaxation times is assigned to the methyl group rotation. The second relaxation process at longer time scales agree in the temperature dependence of its relaxation rates with that of the dielectric gamma-relaxation. KW - Discotic Liquid Crystals PY - 2020 DO - https://doi.org/10.1039/c9sm02487e VL - 16 IS - 8 SP - 2005 EP - 2016 PB - Royal Chemical Society AN - OPUS4-50466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wander, Lukas A1 - Vianello, A. A1 - Vollertsen, J. A1 - Westad, F. A1 - Braun, Ulrike A1 - Paul, Andrea T1 - Exploratory analysis of hyperspectral FTIR data obtained from environmental microplastics samples N2 - Hyperspectral imaging of environmental samples with infrared microscopes is one of the preferred methods to find and characterize microplastics. Particles can be quantified in terms of number, size and size distribution. Their shape can be studied and the substances can be identified. Interpretation of the collected spectra is a typical problem encountered during the analysis. The image datasets are large and contain spectra of countless particles of natural and synthetic origin. To supplement existing Analysis pipelines, exploratory multivariate data analysis was tested on two independent datasets. Dimensionality reduction with principal component analysis (PCA) and uniform manifold approximation and projection (UMAP) was used as a core concept. It allowed for improved visual accessibility of the data and created a chemical two-dimensional image of the sample. Spectra belonging to particles could be separated from blank spectra, reducing the amount of data significantly. Selected spectra were further studied, also applying PCA and UMAP. Groups of similar spectra were identified by cluster analysis using k-means, density based, and interactive manual clustering. Most clusters could be assigned to chemical species based on reference spectra. While the results support findings obtained with a ‘targeted analysis’ based on automated library search, exploratory analysis points the attention towards the group of unidientified spectra that remained and are otherwise easily overlooked. KW - Microplastics KW - FTIR KW - Exploratory analysis PY - 2020 DO - https://doi.org/10.1039/c9ay02483b VL - 12 IS - 6 SP - 781 EP - 791 PB - Royal Society of Chemistry AN - OPUS4-50396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Silbernagl, Dorothee A1 - Rautenberg, Max A1 - Schmid, Thomas A1 - Feiler, Torvid A1 - Reimann, K. A1 - Ghalgaoui, A. A1 - Sturm, Heinz A1 - Paulus, B. A1 - Emmerling, Franziska T1 - A Mechanistic Perspective on Plastically Flexible Coordination Polymers N2 - Mechanical flexibility in single crystals of covalently bound materials is a fascinating and poorly understood phenomenon. We present here the first example of a plastically flexible one-dimensional (1D) coordination polymer. The compound [Zn(m-Cl)2(3,5-dichloropyridine)2]n is flexible over two crystallographic faces. Remarkably, the single crystal remains intact when bent to 1808. A combination of microscopy, diffraction, and spectroscopic studies have been used to probe the structural response of the crystal lattice to mechanical bending. Deformation of the covalent polymer chains does not appear to be responsible for the observed macroscopic bending. Instead, our results suggest that mechanical bending occurs by displacement of the coordination polymer chains. Based on experimental and theoretical evidence, we propose a new model for mechanical flexibility in 1D coordination polymers. Moreover, our calculations propose a cause of the different mechanical properties of this compound and a structurally similar elastic material KW - Coordination polymer KW - Flexible crystals KW - Mechanical properties KW - Plastic deformation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504755 DO - https://doi.org/10.1002/anie.201914798 VL - 59 IS - 14 SP - 5557 EP - 5561 PB - Wiley-VCH AN - OPUS4-50475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Campbell, C. G. A1 - Jordon Astorga, D. A1 - Dümichen, Erik A1 - Celina, M. T1 - Thermoset materials characterization by thermal desorption or pyrolysis based gas chromatography-mass spectrometry methods N2 - Thermoset materials characterization is often limited to solid state analytical techniques such as IR, NMR, DSC, TGA and mechanical testing. Alternatively, their off-gassing behavior can also be evaluated using GC based techniques such as TD-GC-MS, allowing this method to be applied to thermoset materials analyses such as identification, aging characterization, and formulation optimization. As an overview, common thermoset materials were evaluated by analyzing their gaseous degradation products via TGA-based pyrolysis and subsequent TD-GC-MS for the identification of representative volatile signatures. It is thereby possible to distinguish different classes of phenolic materials or cured epoxy resins, as well as their amine or anhydride curatives. Additionally, this method enabled quantification of a volatile fragment (bisphenol A, BPA) which is associated with oxidation of epoxy/amine thermoset materials. The amount of evolved BPA increased linearly with aging time and this trend exhibits linear Arrhenius behavior over the temperature range (80–125 °C) studied, in agreement with oxidation sensitivies based on oxygen consumption data. Further, TD-GC-MS was used to explore how off-gassing of residual anhydride curative from an epoxy/anhydride material depends on formulation stoichiometry. Even in formulations that theoretically contained enough epoxy to consume all anhydride (1:1 stoichiometry), an imperfect final cure state resulted in residual anhydride which could evolve from the material. For such materials, a slightly epoxy-rich formulation is required to ensure that the material contains no residual unreacted anhydride. Analysis of volatiles generated by thermal exposure is an attractive characterization approach enabling compositional analysis as well as complementary diagnostics for materials degradation. KW - Polymer analysis/characterization KW - Thermal desorption mass spectrometry KW - Thermoset composition KW - Volatiles from thermosets KW - Degradation signatures PY - 2020 DO - https://doi.org/10.1016/j.polymdegradstab.2019.109032 VL - 174 SP - 109032 PB - Elsevier Ltd. AN - OPUS4-50435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stajanca, Pavol A1 - Topolniak, Ievgeniia A1 - Pötschke, Samuel A1 - Krebber, Katerina ED - Kalli, K. ED - Mendez, A. ED - Bunge, C.-A. T1 - Solution doping of commercial plastic optical fibers N2 - Solution doping of off-the-shelf plastic optical fibers (POFs) represents rather simple and cheap way for preparing custom cladding-doped POFs (CD-POFs) with short to medium lengths. CD-POFs are especially attractive for environmental sensing applications, but might be of interest for illumination task as well. In this work, the proposed doping technique is tested with three different commercial low-cost polymethyl methacrylate (PMMA) POFs; Eska CK-40 and Eska GK-40 from Mitsubishi Rayon and Raytela PGU-FB1000 from Toray. The aim of the work is to aid the selection of the most suitable fiber yielding highest optical quality of prepared CD-POFs. Firstly, the optimal doping times are determined for the individual fiber types using short fiber samples. Secondly, longer 10 m CD-POFs are prepared from all tested fibersusing the optimized doping procedure. Finally, attenuation of pristine POFs and prepared CD-POFs is measured using optical time domain reflectometry in order to characterize the impacts of the doping on fiber optical properties. In addition, the importance of post-doping drying procedure for CD-POF optical performance is investigated as well. The results suggest that, although doping of all tested fibers is generally feasible, Eska CK-40 is the most suitable candidate with regard to the Doping efficiency and fiber post-doping performance. T2 - SPIE Photonics Europe 2018 CY - Strasbourg, France DA - 22.04.2018 KW - Plastic optical fibers KW - Solution doping KW - Polzmethyl methacrylate KW - PMMA KW - Rhodamine B KW - Fluorescent optical fibers KW - Cladding-doped fibers PY - 2018 DO - https://doi.org/10.1117/12.2315619 SN - 0277-786X VL - 10681 SP - 106810O-1 EP - 106810O-7 AN - OPUS4-44907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chua, Y. Z. A1 - Yang, B. A1 - Schick, C. A1 - Harrison, W. A1 - Budd, P. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - First clear cut experimental evidence for a glass transition in a polymer with intrinsic microporosity: PIM-1 N2 - Polymers with intrinsic microporosity (PIMs) represent a novel, innovative class of materials with great potential in various applications from high-performance gas separation membranes to electronic devices. Here for the first time, for PIM-1, as the archetypal PIM, fast scanning calorimetry provides definitive evidence for a glass transition (Tg=715 K, heating rate 3·10^4 K/s) by decoupling the time-scales responsible for glass transition and decomposition. As the rigid molecular structure of PIM-1 prevents any conformational changes, small-scale bend and flex fluctuations must be considered the origin of its glass transition. This result has strong implications for the fundamental understanding of the glass transition and for the physical aging of PIMs and other complex polymers, both topical problems of materials science. KW - Polymers with intrinsic microporosity KW - Fast Scanning Calorimetry PY - 2018 DO - https://doi.org/10.1021/acs.jpclett.8b00422 SN - 1948-7185 VL - 9 IS - 8 SP - 2003 EP - 2008 PB - ACS AN - OPUS4-44683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Ectoine interaction with DNA: Influence on ultraviolet radiation damage N2 - Ectoine is a small zwitterionic osmolyte and compatible solute, which does not interfere with cell metabolism even at molar concentrations. Plasmid DNA (pUC19) was irradiated with ultraviolet radiation (UV-C at 266 nm) under quasi physiological conditions (PBS) and in pure water in the presence and absence of ectoine (THP(B)) and hydroxyectoine (THP(A)). Different types of UV induced DNA damage were analysed: DNA single-strand breaks (SSBs), abasic sites and cyclobutane pyrimidine dimers (CPDs). A complex interplay between these factors was observed with respect to the nature and occurrence of DNA damage with 266 nm photons. In PBS, the cosolutes showed efficient protection against base damage, whilst in pure water, a dramatic shift from SSB damage to base damage was observed when cosolutes were added. To test whether these effects are caused by ectoine binding to DNA, further experiments were conducted: small-angle X-ray scattering (SAXS), surface-plasmon resonance (SPR) measurements and Raman spectroscopy. The results show, for the first time, a close interaction between ectoine and DNA. This is in stark contrast to the assumption made by preferential exclusion models, which are often used to interpret the behaviour of compatible solutes within cells and with biomolecules. It is tentatively proposed that the alterations of UV damage to DNA are attributed to ectoine influence on nucleobases through the direct interaction between ectoine and DNA. KW - Ectoine KW - DNA KW - Radiation damage KW - Radiation protection KW - SSB KW - DNA damage KW - DNA protection KW - Compatible solute KW - Zwitterion KW - Hydroxyectoine KW - Salt KW - PBS KW - UV absorption KW - DNA strand-break KW - DNA base damage KW - Ectoine UV absorption KW - Ectoine DNA protection KW - Excited states KW - UV irradiation KW - UV-A KW - UV-B KW - UV-C KW - 266nm KW - UV photons KW - Ectoine-DNA binding KW - Raman spectroscopy KW - UV-Vis KW - Radical scavenger KW - OH scavenger KW - Hydroxyl radicals KW - CPD KW - Abasic site KW - Agarose gel electrophorese KW - SYBR gold KW - DNA melting temperature KW - Counterions KW - Preferential exclusion KW - Cancer KW - Therapy KW - UV protection KW - Sunscreen PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505772 DO - https://doi.org/10.1039/d0cp00092b SN - 1463-9076 SN - 1463-9084 VL - 22 IS - 13 SP - 6984 EP - 6992 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-50577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Hahn, Marc Benjamin A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Nanomechanical study of polycarbonate/boehmite nanoparticles/epoxy ternary composite and their interphases N2 - Thermoplastic modified thermosets are of great interest especially due to their improved fracture toughness. Comparable enhancements have been achieved by adding different nanofillers including inorganic particles such as nanosized boehmite. Here, we present a nanomechanical study of two composite systems, the first comprising a polycarbonate (PC) layer in contact with epoxy resin (EP) and the second consisting of a PC layer containing boehmite nanoparticles (BNP) which is also in contact with an EP layer. The interaction between PC and EP monomer is tested by in situ Fourier transformed infrared (FT-IR) analysis, from which a reaction induced phase separation of the PC phase is inferred. Both systems are explored by atomic force microscopy (AFM) force spectroscopy. AFM force-distance curves (FDC) show no alteration of the mechanical properties of EP at the interface to PC. However, when a PC phase loaded with BNP is put in contact with an epoxy system during curing, a considerable mechanical improvement exceeding the rule of mixture was detected. The trend of BNP to agglomerate preferentially around EP dominated regions and the stiffening effect of BNP on EP shown by spatial resolved measurements of Young's modulus, suggest the effective presence of BNP within the EP phase. KW - Composites KW - Mechanical properties KW - Nanoparticles KW - Thermoplastics KW - Thermosets PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515965 DO - https://doi.org/10.1002/app.50231 SN - 0021-8995 SN - 1097-4628 VL - 138 IS - 12 SP - 1 EP - 11 PB - Wiley CY - New York, NY AN - OPUS4-51596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sentker, K. A1 - Yildirim, Arda A1 - Lippmann, M. A1 - Zantop, A. W. A1 - Bertram, F. A1 - Hofmann, T. A1 - Seeck, O. H. A1 - Kityk, A. A1 - Mazza, M. G. A1 - Schönhals, Andreas A1 - Huber, P. T1 - Self-assembly of liquid crystals in nanoporous solids for adaptive photonic metamaterials N2 - Nanoporous media exhibit structures significantly smaller than the wavelengths of visible light and can thus act as photonic metamaterials. Their optical functionality is not determined by the properties of the base materials, but rather by tailored, multiscale structures, in terms of precise pore shape, geometry, and orientation. Embedding liquid crystals in pore space provides additional opportunities to control light–matter interactions at the single-pore, meta-atomic scale. Here, we present temperature-dependent 3D reciprocal space mapping using synchrotron-based X-ray diffraction in combination with high-Resolution birefringence experiments on disk-like mesogens (HAT6) imbibed in self-ordered arrays of parallel cylindrical pores 17 to 160 nm across in monolithic anodic aluminium oxide (AAO). In agreement with Monte Carlo computer simulations we observe a remarkably rich self-assembly behaviour, unknown from the bulk state. It encompasses transitions between the isotropic liquid state and discotic stacking in linear columns as well as circular concentric ring formation perpendicular and parallel to the pore axis. These textural transitions underpin an optical birefringence functionality, tuneable in magnitude and in sign from positive to negative via pore size, pore surface-grafting and temperature. Our study demonstrates that the advent of large-scale, self-organised nanoporosity in monolithic solids along with confinement-controllable phase behaviour of liquid-crystalline matter at the single-pore scale provides a reliable and accessible tool to design materials with adjustable optical anisotropy, and thus offers versatile pathways to finetune polarisation-dependent light propagation speeds in materials. Such a tailorability is at the core of the emerging field of transformative optics, allowing, e.g., adjustable light absorbers and extremely thin metalenses. KW - Discotic Liquid Crystals PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499601 DO - https://doi.org/10.1039/c9nr07143a SP - 1 EP - 14 PB - RSC Royal Society of Chemistry AN - OPUS4-49960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - Mohamed, T. A. A1 - Abu-Saied, M. A1 - Helaly, H. A1 - El-Desouky, F. T1 - Structure/property relationship of polyvinyl alcohol/ dimethoxydimethylsilane composite membrane: Experimental and theoretical studies N2 - A novel mixed matrix composite has been prepared using solution-casting method at different volume concentrations of polyvinyl alcohol; PVA (50, 67, 75 and 80 %) and fixed amount of Dimethoxydimethylsilane in air atmosphere. The hydrolyzed dimethyldisilanol acts as in-situ cross linker through a wet-out condensation between the hydroxyl moieties of SiOH and PVAOH. Such process improves the mechanical properties of composite membranes as compared to pristine PVA which has been determined as function of varied membrane components to evaluate the structure/property relationships. Furthermore, DFT (B3LYP)/6-31G(d) geometry and frequency computations were carried out for the suggested dimeric PVA structures via 1,3-diol linkage followed by condensation and hydrogen bonding interaction. Vibrational interpretations of composite membranes were proposed based on the computed wavenumbers, Cartesian coordinates displacements for the suggested hydrolyzed products involving the dominant PVA/SiOH/SiOC/SiOSi functional groups compared with those given in literatures. FTIR and EDX provide clear evidences for incorporating silicon to 3D network. Meanwhile, the infrared de-convoluted spectral interpretations ensure 17-30% cross-linked SiOC within the network of Composite membranes. KW - Polyvinyl alcohol KW - Polymer composites PY - 2019 DO - https://doi.org/10.1016/j.saa.2019.117810 SP - 117810 PB - Elsevier AN - OPUS4-49967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frunza, S. A1 - Ganea, C. P. A1 - Zgura, I. A1 - Frunza, L. A1 - Schönhals, Andreas T1 - Molecular dynamics in bulk and surface species of cyanophenyl alkyl benzoates with 2, 3 and 7 carbon atoms in the alkyl chain: comparison in the whole homologous series N2 - Molecular mobility of cyanophenyl alkylbenzoates (CPnBs) (n = 2, 3, 7 – number of carbon atoms in the alkyl chain) in the bulk and in composites with aerosil A380 is investigated by broadband dielectric spectroscopy, while thermal analysis and infrared spectroscopy were applied to characterise the molecular species. The work completes preliminary results obtained for the members with n = 4 … 6. An interaction by hydrogen bonding, between aerosil surface – OH groups and – CN or ester groups of the CPnB molecules takes place. It slows down the relaxation process as observed for related composites in comparison to the pure materials. The existence of two types of bonding might be the reason that Vogel temperature for the relaxation process in the surface layer does not show the odd-even effect. Temperature dependence of the relaxation rates for composites shows a crossover behaviour from a high to a low temperature regime. Moreover, the temperature dependence of the dielectric strength is unusual. As the loading degree is similar, comparison of the dielectric, spectroscopic and thermal data obtained here and with the results obtained for the composites with n = 4 … 6 can be directly done. Increasing the number of the members of the homologous series confirms and hardens the preliminary conclusions. KW - Liquid crystals PY - 2019 DO - https://doi.org/10.1080/02678292.2019.1687768 SP - 1 EP - 10 PB - Taylor & Francis AN - OPUS4-49924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Ciftci, G. C. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - High precision micropatterning of polydopamine by Multiphoton Lithography N2 - Mussel-inspired polydopamine (PDA) initiated a multifunctional modification route that leads to the generation of novel advanced materials and their applications. However, existing PDA deposition techniques still exhibit poor spatial control, have a very limited capability of micropatterning and do not allow to locally tune PDA topography. Herein, we demonstrate PDA deposition based on Multiphoton Lithography (MPL) that enables full spatial and temporal control with nearly total freedom of patterning design. Using MPL, we achieve 2D microstructures of complex design with pattern precision of 0.8 μm without the need of a photomask or stamp. Moreover, this approach permits adjusting the morphology and thickness of the fabricated microstructure within one deposition step, resulting in a unique tunability of materials properties. The chemical composition of PDA is confirmed and its ability for protein enzyme immobilization is demonstrated. This work presents a new methodology for high precision and complete control of PDA deposition, enabling PDA incorporation in applications where fine and precise local surface functionalization is required. Possible applications include multicomponent functional elements and devices in microfluidics or lab-on-a-chip systems. KW - Multiphoton lithography KW - Polydopamine KW - Micropatterning PY - 2022 DO - https://doi.org/10.1002/adma.202109509 VL - 34 IS - 18 SP - e2109509 PB - Wiley online library AN - OPUS4-54535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas A1 - Friedrich, J. T1 - Structure of plasma‐deposited copolymer films preparedfrom acrylic acid and styrene: Part III sulfonation andelectrochemical properties N2 - Acrylic acid-styrene copolymer films were deposited plasma-chemically more gently using the pulsed plasma mode instead of the continuous mode, with linear and some slightly branched chains and marginal crosslinking. Then, the styrene unit of copolymers was wet-chemically sulfonated by chlorosulfuric acid. On exposure to air, the formed 4-chlorosulfonic acid groups hydrolyze to sulfonic acid groups (-SO3H). FTIR, XPS and broadband dielectric spectroscopy were employed to characterize the composition, the structure, the functional groups, and the electrochemical performance for the copolymers. A high concentration of sulfonic acid-containing groups was obtained in the sulfonated PS sample. The values of the DC conductivity DC for the sulfonated sample of the AA/S copolymer are ca. five orders of magnitude higher than that of the not-sulfonated copolymer materials. KW - Plasma Polymers KW - Electrolyte membrane PY - 2022 DO - https://doi.org/10.1002/ppap.202100222 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-54539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lackmann, C. A1 - Velki, M. A1 - Šimić, A. A1 - Müller, Axel A1 - Braun, U. A1 - Ečimović, S. A1 - Hollert, H. T1 - Two types of microplastics (polystyrene-HBCD and car tire abrasion) affect oxidative stress-related biomarkers in earthworm Eisenia andrei in a time-dependent manner N2 - Microplastics are small plastic fragments that are widely distributed in marine and terrestrial environments. While the soil ecosystem represents a large reservoir for plastic, research so far has focused mainly on the impact on aquatic ecosystems and there is a lack of information on the potentially adverse effects of microplastics on soil biota. Earthworms are key organisms of the soil ecosystem and are due to their crucial role in soil quality and fertility a suitable and popular model organism in soil ecotoxicology. Therefore, the aim of this study was to gain insight into the effects of environmentally relevant concentrations of microplastics on the earthworm Eisenia andrei on multiple levels of biological organization after different exposure periods. Earthworms were exposed to two types of microplastics: (1) polystyrene-HBCD and (2) car tire abrasion in natural soil for 2, 7, 14 and 28 d. Acute and chronic toxicity and all subcellular investigations were conducted for all exposure times, avoidance behavior assessed after 48 h and reproduction after 28 d. Subcellular endpoints included enzymatic biomarker responses, namely, carboxylesterase, glutathione peroxidase, acetylcholinesterase, glutathione reductase, glutathione S-transferase and catalase activities, as well as fluorescence-based measurements of oxidative stress-related markers and multixenobiotic resistance activity. Multiple biomarkers showed significant changes in activity, but a recovery of most enzymatic activities could be observed after 28 d. Overall, only minor effects could be observed on a subcellular level, showing that in this exposure scenario with environmentally relevant concentrations based on German pollution levels the threat to soil biota is minimal. However, in areas with higher concentrations of microplastics in the environment, these results can be interpreted as an early warning signal for more adverse effects. In conclusion, these findings provide new insights regarding the ecotoxicological effects of environmentally relevant concentrations of microplastics on soil organisms. KW - Microplastics KW - Earthworms KW - Toxicity KW - Biomarker KW - oxidative stress PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545423 DO - https://doi.org/10.1016/j.envint.2022.107190 VL - 163 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-54542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - MacLean, J. A1 - Mayanna, S. A1 - Benning, L. G. A1 - Horn, F. A1 - Bartholomäus, A. A1 - Wiesner, Yosri A1 - Wagner, D. A1 - Liebner, S. T1 - The terrestrial plastisphere: Diversity and polymer-colonizing potential of plastic-associated microbial communities in soil N2 - The concept of a ‘plastisphere microbial community’ arose from research on aquatic plastic debris, while the effect of plastics on microbial communities in soils remains poorly understood. Therefore, we examined the inhabiting microbial communities of two plastic debris ecosystems with regard to their diversity and composition relative to plastic-free soils from the same area using 16S rRNA amplicon sequencing. Furthermore, we studied the plastic-colonizing potential of bacteria originating from both study sites as a measure of surface adhesion to UV-weathered polyethylene (PE) using high-magnification field emission scanning electron microscopy (FESEM). The high plastic content of the soils was associated with a reduced alpha diversity and a significantly different structure of the microbial communities. The presence of plastic debris in soils did not specifically enrich bacteria known to degrade plastic, as suggested by earlier studies, but rather shifted the microbial community towards highly abundant autotrophic bacteria potentially tolerant to hydrophobic environments and known to be important for biocrust formation. The bacterial inoculates from both sites formed dense biofilms on the surface and in micrometer-scale surface cracks of the UV-weathered PE chips after 100 days of in vitro incubation with visible threadlike EPS structures and cross-connections enabling surface adhesion. High-resolution FESEM imaging further indicates that the microbial colonization catalyzed some of the surface degradation of PE. In essence, this study suggests the concept of a ‘terrestrial plastisphere’ as a diverse consortium of microorganisms including autotrophs and other pioneering species paving the way for those members of the consortium that may eventually break down the plastic compounds. KW - Soil microbial community KW - Polyethylene colonization KW - Plastic pollution PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542790 DO - https://doi.org/10.3390/microorganisms9091876 VL - 9 IS - 9 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-54279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Axel A1 - Altmann, Korinna A1 - Kocher, B. A1 - Braun, U. T1 - Determination of tire wear markers in soil samples and their distribution in a roadside soil N2 - Tire wear (TW) constitutes a significant source of microplastic in terrestrial ecosystems. It is known that particles emitted by roads can have an effect up to 100 m into adjacent areas. Here, we apply for the first-time thermal extraction desorption gas chromatography-mass spectrometry (TED-GC/MS) to determine TW in soil samples by detection of thermal decomposition products of styrene-butadiene rubber (SBR), without additional enrichment. Additionally, zinc contents were determined as an elemental marker for TW. Mixed soil samples were taken along three transects along a German motorway in 0.3, 2.0, and 5.0 m distance from the road. Sampling depths were 0–2, 2–5, 5–10, and 10–20 cm. Four fine fractions, 1 000–500, 500–100, 100–50, and <50 μm, were analyzed. TW contents based on SBR ranged from 155 to 15 898 mg kg−1. TW contents based on zinc were between 413 and 44 812 mg kg−1. Comparison of individual values of SBR and zinc reveals SBR as a more specific marker. Results confirm that most TW ends up in the topsoil within a 2 m distance. The sampling strategy resulted in representative data for a larger area. Standard deviations of quadruple TED-GC/MS determination of SBR were <10% for all grain size fractions. TED-GC/MS is a suitable analytical tool for determining TW in soil samples without the use of toxic chemicals, enrichment, or special sample preparation. KW - Microplastic KW - TED-GC/MS KW - Tire wear PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543344 DO - https://doi.org/10.1016/j.chemosphere.2022.133653 VL - 294 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-54334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, W. A. A. A1 - Famy, Alaa A1 - Helal, A. A1 - Ahmed, E. A. E. A1 - Elsayed, B. A. A1 - Kamoun, E. A. A1 - Gad, E. A. M. T1 - Degradation of local Brilliant Blue R dye in presence of polyvinylidene fluoride/MWCNs/TiO2 as photocatalysts and plasma discharge N2 - The need of clean water and the water-poor are increasing daily in the world. In addition, we are facing a dramatic increase in the industrial pollutions of rivers and groundwater, which led us to find a new way to treat industrial pollutants. The plasma discharge technique is one of the important, safe, and applicable for industrial wastewater decontamination. Decolorization of Brilliant Blue R (BBR) dye as a hazard material was noticed when the contaminated solution was exposed to the plasma discharge technique. The combination between the nonthermal plasma and catalysts was evaluated in this work to optimize the degradation efficiency. The PVDF/(MWCNTs/TiO2) as three system composites was employed to enhance the nonthermal plasma performance. The surface area, phase purity, shape, and photonic efficiency were characterized employing XRD, FTIR, SEM, DSC, and UV–Vis. techniques. The obtained results of degradation using NTP technique in presence of the PVDF/MWCNTs catalyst have been enhanced the BBR dye degradation by 19% than only plasma treatment for 20 min. The durability processes of prepared PVDF/(MWCNTs/TiO2) was investigated and evaluated until 8 solar photocatalytic process repeating times. KW - Brilliant Blue R KW - MWCNT KW - PVDF PY - 2022 DO - https://doi.org/10.1016/j.jece.2021.106854 VL - 10 IS - 1 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-54386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Topolniak, Ievgeniia A1 - Silbernagl, Dorothee A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Long-time behavior of surface properties of microstructures fabricated by multiphoton lithography N2 - The multiphoton lithography (MPL) technique represents the future of 3D microprinting, enabling the production of complex microscale objects with high precision. Although the MPL fabrication parameters are widely evaluated and discussed, not much attention has been given to the microscopic properties of 3D objects with respect to their surface properties and time-dependent stability. These properties are of crucial importance when it comes to the safe and durable use of these structures in biomedical applications. In this work, we investigate the surface properties of the MPL-produced SZ2080 polymeric microstructures with regard to the physical aging processes during the post-production stage. The influence of aging on the polymeric microstructures was investigated by means of Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). As a result, a time-dependent change in Young’s Modulus, plastic deformation, and adhesion and their correlation to the development in chemical composition of the surface of MPL-microstructures are evaluated. The results presented here are valuable for the application of MPL-fabricated 3D objects in general, but especially in medical technology as they give detailed information of the physical and chemical time-dependent dynamic behavior of MPL-printed surfaces and thus their suitability and performance in biological systems. KW - Multiphoton lithography KW - Additive manufacturing KW - Microfabrication KW - SZ2080 negative photo-resist KW - Young´s modulus KW - Aging KW - Surface properties KW - X-ray photoelectron spectroscopy KW - Atomic force microscopy KW - Force-distance-curve PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542166 DO - https://doi.org/10.3390/nano11123285 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emamverdi, Farnaz A1 - Yin, Huajie A1 - Smales, Glen Jacob A1 - Harrison, W. J. A1 - Budd, P. M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Polymers of intrinsic microporosity - Molecular mobility and physical aging revisited by dielectric spectroscopy and X‑ray scattering N2 - Polymers of intrinsic microporosity (PIMs) are promising candidates for the active layer in gas separation membranes due to their high permeability and reasonable permselectivity. These appealing properties originate from a microporous structure as a result of inefficient segment packing in the condensed state due to a combination of a ladder-like rigid backbone and sites of contortion. However, this class of polymers suffers from a significant decrease in the permeability with time due to physical aging, whereby typically, the permselectivity increases. The initial microporous structures approach a denser state via local rearrangements, leading to the reduction of the permeability. Hence, a detailed characterization of the molecular mobility in such materials can provide valuable information on physical aging. In this work, the dielectric behavior of PIM-1 films and their behavior upon heating (aging) were revisited by isothermal frequency scans during different heating/cooling cycles over a broad temperature range between 133 and 523 K (−140 to 250 °C). In addition, the obtained results were compared with data of samples that were annealed at ambient temperatures over different time scales. Multiple dielectric processes were observed: several relaxation processes due to local fluctuations and a Maxwell−Wagner−Sillars polarization effect related to the microporosity. The temperature dependence of the rates of all processes follows the Arrhenius law where the estimated activation energy depends on the nature of the process. The influence of the thermal history (aging) on the processes is discussed in detail. KW - Polymers of intrinsic microporosity PY - 2022 DO - https://doi.org/10.1021/acs.macromol.2c00934 VL - 55 SP - 7340 EP - 7350 PB - American Chemical Society CY - Washington, DC AN - OPUS4-55485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grunwald, M. A. A1 - Hagenlocher, S. E. A1 - Turkanovic, L. A1 - Bauch, S. M. A1 - Wachsmann, S. B. A1 - Altevogt, L. A. A1 - Ebert, M. A1 - Knöller, J. A. A1 - Raab, A. R. A1 - Schulz, F. A1 - Kolmangadi, Mohamed A. A1 - Zens, A. A1 - Huber, P. A1 - Schönhals, Andreas A1 - Bilitiewski, U. A1 - Laschat, S. T1 - Does thermotropic liquid crystalline self-assembly control biological activity in amphiphilic amino acids? – tyrosine ILCs as a case study N2 - Amphiphilic amino acids represent promising scaffolds for biologically active soft matter. In order to understand the bulk self-assembly of amphiphilic amino acids into thermotropic liquid crystalline phases and their biological properties a series of tyrosine ionic liquid crystals (ILCs) was synthesized, carrying a benzoate unit with 0–3 alkoxy chains at the tyrosine unit and a cationic guanidinium head group. Investigation of the mesomorphic properties by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (WAXS, SAXS) revealed smectic A bilayers (SmAd) for ILCs with 4-alkoxy- and 3,4-dialkoxybenzoates, whereas ILCs with 3,4,5-trisalkoxybenzoates showed hexagonal columnar mesophases (Colh ), while different counterions had only a minor influence. Dielectric measurements revealed a slightly higher dipole moment of non-mesomorphic tyrosine-benzoates as compared to their mesomorphic counterparts. The absence of lipophilic side chains on the benzoate unit was important for the biological activity. Thus, non-mesomorphic tyrosine benzoates and crown ether benzoates devoid of additional side chains at the benzoate unit displayed the highest cytotoxicities (against L929 mouse fibroblast cell line) and antimicrobial activity (against Escherichia coli DTolC and Staphylococcus aureus) and promising selectivity ratio in favour of antimicrobial activity. KW - Liquid Crystals PY - 2023 DO - https://doi.org/10.1039/d3cp00485f SN - 1463-9076 VL - 25 IS - 26 SP - 17639 EP - 17656 PB - RCS AN - OPUS4-57796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine N2 - Small-angle X-ray scattering (SAXS) can be used for structural determination of biological macromolecules and polymers in their native states (e.g. liquid phase). This means that the structural changes of (bio-)polymers, such as proteins and DNA, can be monitored in situ to understand their sensitivity to changes in chemical environments. In an attempt to improve the reliability of such experiments, the reduction of radiation damage occurring from exposure to X-rays is required. One such method, is to use scavenger molecules to protect macromolecules against radicals produced during radiation exposure, such as reactive oxygen species (ROS). In this study we investigate the feasibility of applying the compatible solute, osmolyte and radiation protector Ectoine (THP(B)), as a scavenger molecule during SAXS measurements of the single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). In this case, we monitor the radiation induced changes of G5P during bio-SAXS measurments and the resulting microscopic energy-damage relation was determined from microdosimetric calculations by Monte-Carlo based particle scattering simulations with TOPAS/Geant4 and a custom target-model. This resulted in a median-lethal energy deposit of pure G5P at 4 mg mL−1 of E1/2 = 7 ± 5 eV, whereas a threefold increase of energy-deposit was needed under the presence of Ectoine to reach the same level of damage. This indicates that Ectoine increases the possible exposure time before radiation-damage to G5P is observed. Furthermore, the dominant type of damage shifted from aggregation in pure solutions towards a fragmentation for solutions containing Ectoine as a cosolute. These results are interpreted in terms of indirect radiation damage by reactive secondary species, as well as post-irradiation effects, related to preferential-exclusion of the cosolute from the protein surface. Hence, Ectoine is shown to provide a non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies. KW - BioSAXS KW - Bio-SAXS KW - Cosolute KW - Ectoine KW - G5P KW - GVP KW - Radiation damage KW - Radical Scavenger KW - Single-stranded DNA-binding proteins KW - X-ray scattering KW - DNA KW - ssDNA KW - Protein KW - SAXS KW - Small-angle xray scattering KW - McSAS3 KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - Geant4-DNA KW - Topas KW - Topas-MC KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Topas-nBio KW - OH Radical KW - OH radical scavenger KW - LEE KW - Ionizing radiation damage KW - Protein unfolding KW - Ectoin PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568909 DO - https://doi.org/10.1039/d2cp05053f SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5372 EP - 5382 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Axel A1 - Goedecke, Caroline A1 - Eisentraut, Paul A1 - Piechotta, Christian A1 - Braun, Ulrike T1 - Microplastic analysis using chemical extraction followed by LC‑UV analysis: a straightforward approach to determine PET content in environmental samples N2 - Background: The ubiquitous occurrence of microplastic particles in marine and aquatic ecosystems was intensively investigated in the past decade. However, we know less about the presence, fate, and input paths of microplastic in terrestrial ecosystems. A possible entry path for microplastic into terrestrial ecosystems is the agricultural application of sewage sludge and solid bio-waste as fertilizers. Microplastic contained in sewage sludge also includes Polyethylene terephthalate (PET), which could originate as fiber from textile products or as a fragment from packaging products (foils, bottles, etc.). Information about microplastic content in such environmental samples is limited yet, as most of the used analytical methods are very time-consuming, regarding sample preparation and detection, require sophisticated analytical tools and eventually need high user knowledge. Results: Here, we present a simple, specific tool for the analysis of PET microplastic particles based on alkaline extraction of PET from the environmental matrix and subsequent determination of the monomers, terephthalic acid, using liquid chromatography with UV detection (LC-UV). The applicability of the method is shown for different types of PET in several soil-related, terrestrial environmental samples, e.g., soil, sediment, compost, fermentation residues, but also sewage sludge, suspended particles from urban water management systems, and indoor dust. Recoveries for model samples are between 94.5 and 107.1%. Limit of determination and limit of quantification are absolute masses of 0.031 and 0.121 mg PET, respectively. In order to verify the measured mass contents of the environmental samples, a method comparison with thermal extraction-desorption-gas chromatography–mass spectrometry (TED-GC/MS) was conducted. Both methods deliver similar results and corroborated each other. PET mass contents in environmental samples range from values below LOQ in agriculture soil up to 57,000 mg kg−1 in dust samples. Conclusions: We demonstrate the potential of an integral method based on chemical extraction for the Determination of PET mass contents in solid environmental samples. The method was successfully applied to various matrices and may serve as an analytical tool for further investigations of PET-based microplastic in terrestrial ecosystems. KW - Soil KW - Analysis KW - Microplastic KW - PET KW - LC-UV PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509060 DO - https://doi.org/10.1186/s12302-020-00358-x IS - 32 SP - 85 PB - Springer Open CY - Berlin AN - OPUS4-50906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezera, Marek A1 - Alamri, S. A1 - Hendriks, W. A. P. M. A1 - Hertwig, Andreas A1 - Elert, Anna Maria A1 - Bonse, Jörn A1 - Kunze, T. A1 - Lasagni, A. F. A1 - Römer, G. R. B. E. T1 - Hierarchical micro-/nano-structures on polycarbonate via UV pulsed laser processing N2 - Hierarchical micro/-nanostructures were produced on polycarbonate polymer surfaces by employing a two-step UV-laser processing strategy based on the combination of Direct Laser Interference Patterning (DLIP) of gratings and pillars on the microscale (3 ns, 266 nm, 2 kHz) and subsequently superimposing Laser-induced Periodic Surface Structures (LIPSS; 7–10 ps, 350 nm, 100 kHz) which adds nanoscale surface features. Particular emphasis was laid on the influence of the direction of the laser beam polarization on the morphology of resulting hierarchical surfaces. Scanning electron and atomic force microscopy methods were used for the characterization of the hybrid surface structures. Finite-difference time-domain (FDTD) calculations of the laser intensity distribution on the DLIP structures allowed to address the specific polarization dependence of the LIPSS formation observed in the second processing step. Complementary chemical analyzes by micro-Raman spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy provided in-depth information on the chemical and structural material modifications and material degradation imposed by the laser processing. It was found that when the linear laser polarization was set perpendicular to the DLIP ridges, LIPSS could be formed on top of various DLIP structures. FDTD calculations showed enhanced optical intensity at the topographic maxima, which can explain the dependency of the morphology of LIPSS on the polarization with respect to the orientation of the DLIP structures. It was also found that the degradation of the polymer was enhanced for increasing accumulated fluence levels. KW - Direct laser interference patterning KW - Laser-induced periodic surface structures (LIPSS) KW - Polycarbonate KW - Hierarchical structures KW - Surface functionalization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509101 DO - https://doi.org/10.3390/nano10061184 SN - 2079-4991 VL - 10(6) IS - Special issue "Laser-generated periodic nanostructures" SP - 1184-1 EP - 1184-19 PB - MDPI CY - Basel AN - OPUS4-50910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roszak, I. A1 - Oswald, L. A1 - Ouahabi, A. A. A1 - Bertin, Annabelle A1 - Laurent, E. A1 - Felix, O. A1 - Carvin-Sergent, I. A1 - Charles, L. A1 - Lutz, J.-F. T1 - Synthesis and sequencing of informational poly(amino phosphodiester)s N2 - Sequence-defined poly(amino phosphodiester)s containing main-chain tertiary amines were synthesized by automated solid-phase phosphoramidite chemistry. These polymers were prepared using four monomers with different substituents. The formed polymers were characterized by HPLC and mass spectrometry. These methods evidenced preparation of molecularly-defined polymers. Furthermore, the presence of tertiary amines in the polymer backbones facilitates sequencing by tandem mass spectrometry. KW - Poly(amino phosphodiester) KW - Synthesis KW - HPLC KW - Mass spectrometry PY - 2021 DO - https://doi.org/10.1039/d1py01052b SN - 1759-9954 VL - 12 IS - 37 SP - 5279 EP - 5282 PB - Royal Society of Chemistry AN - OPUS4-53732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Topolniak, Ievgeniia A1 - Weise, Matthias A1 - Sturm, Heinz T1 - Shape deviations of DLW microstructures in dependency of fabrication parameters N2 - Deep understanding of the effects associated with fabrication parameters and their influence on the resulting structures shape is essential for the further development of direct laser writing (DLW). In particular, it is critical for development of reference materials, where structure parameters are precisely fabricated and should be reproduced with use of DLW technology. In this study we investigated the effect of various fabrication and preparation parameters on the structural precision of interest for reference materials. A well-studied photo-curable system, SZ2080 negative photo-resist with 1 wt.% Michler's ketone (Bis) photo-initiator, was investigated in this work. The correlation between applied laser power, laser velocity, fabrication direction on the deviations in the structure shape were observed by means of white light interferometry microscopy. Moreover, influence of slicing and hatching distances as well as prebake time were studied as function of sample shape. Deviations in the structure form between the theoretically expected and the one detected after DLW fabrication were observed in the range up to 15%. The observed shape discrepancies show the essential importance of fine-tuning the fabrication parameter for reference structure production. KW - Direct laser writing KW - Fabrication parameters KW - Structural precision KW - SZ2080 negative photo-resist KW - White light interferometry microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535906 DO - https://doi.org/10.1088/1361-6439/ac2a14 VL - 31 IS - 12 SP - 1 EP - 8 PB - IOP Science AN - OPUS4-53590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Malpass-Evans, R. A1 - McKeown, N. A1 - Tyagi, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Low frequency vibrations and diffusion in disordered polymers bearing an intrinsic microporosity as revealed by neutron scattering N2 - The microscopic diffusion and the low frequency density of states (VDOS) of PIM-EATB(CH3) are investigated by inelastic and quasi-elastic neutron scattering where also the demethylated counterpart of PIM-EA-TB(H2) is considered. These intrinsic microporous polymers are characterized by large BET surface area values of several hundred m2/g and pore sizes between 0.5 and 2 nm. Detailed comparison is made to the archetype of polymers of intrinsic microporosity, PIM-1, and polynorbornenes also bearing a microporosity. Due to the wavelength of neutrons, the diffusion and vibrations can be addressed on microscopic length and time scales. From the inelastic neutron scattering experiments the low frequency density of states (VDOS) is estimated which shows excess contributions to the Debye-type VDOS known as Boson peak. It was found that the maximum frequency of the Boson peak decreases with increasing microporosity characterized by the BET surface area. However, besides the BET surface area, additional factors such as the backbone stiffness govern the maximum frequency of the Boson peak. Further the mean squared displacement related to microscopic motions was estimated from elastic fixed window scans. At temperatures above 175 K, the mean squared displacement PIM-EA-TB(CH3) is higher than that for the demethylated counterpart PIM-EA-TB(H2). The additional contribution found for PIM-EATB(CH3) is ascribed to the rotation of the methyl group in this polymer because the only difference between the two structures is that PIM-EA-TB(CH3) has methyl groups where PIM-EA-TB(H2) has none. A detailed comparison of the molecular dynamics is also made to that of PIM-1 and the microporous polynorbornene PTCNSi1. The manuscript focuses on the importance of vibrations and the localized molecular mobility characterized by the microscopic diffusion on the gas Transport in polymeric separation membranes. In the frame of the random gate model localized fluctuations can open or close bottlenecks between pores to enable the diffusion of gas molecules. KW - Polymer of intrisic microporosity KW - Neutron scattering KW - Boson peak KW - Methyl group rotation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538490 DO - https://doi.org/10.3390/cryst11121482 VL - 11 IS - 12 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-53849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Szymoniak, Paulina A1 - Smales, Glen Jacob A1 - Sturm, Heinz A1 - Schönhals, Andreas T1 - Electrospun nanocomposites fibers of polycarbonate and taurine modified boehmite nanoparticles - What can be learned from structural and thermal investigations N2 - Though the reinforcing properties of inorganic particles in thermosetting nanocomposites, has been exploited, the integration of nanoparticles continues to be challenging in terms of their homogeneous distribution and their manipulation which can contribute to occupational hazards. Due to a second encapsulations of nanoparticles, electrospun nanocomposite fibers containing nanoparticles might be an alternative for overcoming these issues, as the fiber nonwovens contains the nanoparticles allowing for safer manipulation. Here, the morphology, and the thermal properties of electrospun polycarbonate fibers containing taurine modified boehmite nanoparticles (BNP) are investigated by means of small and wide-angle X-ray scattering as well as fast scanning and temperature modulated fast scanning calorimetry for the first time. The latter techniques allow the investigation of the thermal properties of single fibers at heating rates up to 10^4 K s^-1 keeping its structure intact. A quantitative analysis of the scattering data reveals a porous structure of the fibers. The porous structure is quantified regarding the pore volume and the pore size. A constant amount of aggregation is found even for the highly BNP loaded fibers. Thermal analysis on the fibers reveals a rigid amorphous fraction (RAF) where it is known that RAF determinates the properties of a nanocomposite to a large extent. For the fibers RAF amounts up to 40 wt%, which is essential higher compared to equally formulated PC/BNP composite cast films. The RAF in the case of the fibers, is not only due to the presence of particles in the polymer but also due to orientation effects induced by the electrospinning process. KW - Nanocomposite fibers KW - Electrospinning KW - X-ray scattering KW - Fast scanning calorimetry KW - Rigid amorphous fraction PY - 2021 DO - https://doi.org/10.1021/acsapm.1c01265 VL - 3 IS - 12 SP - 6572 EP - 6585 PB - ACS AN - OPUS4-53871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed Aejaz A1 - Yildirim, Arda A1 - Sentker, K. A1 - Butschies, M. A1 - Bühlmeyer, A. A1 - Huber, P. A1 - Lachat, S. A1 - Schönhals, Andreas T1 - Molecular dynamics and electrical conductivity of Guanidinium based Ionic liquid crystals: Influence of cation headgroup configuration N2 - Molecular mobility and conductivity of four bent shaped tetramethylated guanidinium based ionic liquid crystals (ILCs) with varying head group configuration (cyclic or acyclic) and alkyl chain length is investigated by a combination of broadband dielectric spectroscopy (BDS) and specific heat spectroscopy (SHS). Two dielectrically active processes observed in the plastic crystalline phase at low and high temperatures are denoted as γ and α1 relaxation. The former is assigned to localized fluctuations of methyl groups including nitrogen atoms in the guanidinium head groups. SHS investigations reveal one calorimetrically active process termed as α2 relaxation process. The temperature dependencies of the relaxation rates of α1 and α2 are similar for the cyclic ILC while for the acyclic counterpart they are different. Possible molecular assignments for the α1 and α2 relaxation are discussed in detail. Alongside relaxation processes, a significant conductivity contribution was observed for all ILCs, where the absolute value of DC conductivity increases by 4 orders of magnitude at the transition from the crystalline to the hexagonal columnar phase. The increase is traced to the change in the underlying conduction mechanism from the delocalized electrical conduction in the Cry phase to ionic conduction in the quasi 1D ion columns formed in the hexagonal columnar mesophase. KW - Ionic liquid crystal PY - 2021 DO - https://doi.org/10.1016/j.molliq.2021.115666 VL - 330 SP - 115666 PB - Elsevier B.V. AN - OPUS4-52284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zosef, M. A1 - Fahmy, Alaa A1 - El Hotaby, W. A1 - Hassan, A. A1 - Khalil, A. A1 - Anis, B. T1 - High performance graphene-based PVF foam for lead removal from water N2 - The synthesis and optimization of superior and eco-friendly sorbents for Pb(II) pose a great challenge in the field of water treatment. The sorbent was developed by introducing graphene oxide (GO) into the matrix of polyvinyl formaldehyde (PVF) foam. The immobilization of GO in PVF results in significant increase in the maximum adsorption capacity (Qt) of GO powder for Pb(II), from ≈800 to ≈1730 mg g−1 in the case of GO/PVF foam. As compared with GO powder in Pb(II) aqueous solutions, PVF matrix keeps GO sheets stable without any agglomeration. The large surface area of GO sheet allows the abundant oxygenated functional groups on its surface to participate effectively in the Pb(II) adsorption process, leading to the huge increase of the Qt. Adsorption isotherms and kinetic studies indicated that the sorption process of Pb(II) on GO/PVF was done on heterogenous surface by ion-exchange reaction. The GO/PVF foam showed an excellent reusability for more than 10 cycles with almost the same efficiency and without any significant change in its physical properties. KW - Water treatment KW - Graphene oxide KW - Lead ions KW - Polyvinyl formaldehyde foam KW - Superior sorbent PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523013 DO - https://doi.org/10.1016/j.jmrt.2020.08.011 VL - 9 IS - 5 SP - 11861 EP - 11875 PB - Elsevier B.V. AN - OPUS4-52301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - Abou-Saied, M. A1 - Helaly, H. A1 - El-Dessoki, F. A1 - Mohamed, T. T1 - Novel PVA/Methoxytrimethylsilane elastic composite membranes: preparation, characterization and DFT computation N2 - A modified composite membranes (PVA/SiOH/SiOC) were made via solution-casting process using different 1:1, 1:2, 1:3 and 1:4 volume ratios of polyvinyl alcohol (PVA):methoxytrimethylsilane (MTMS). Moreover, FT-infrared and energy-dispersive X-ray spectroscopy (EDX) were mesured to account for the network structural rearrangements involving silicon within PVA matrices. The addition of MTMS has improved the thermal and mechanical properties of the composite membranes as compared to pristine PVA. In addition, the crystallinity and the morphological changes of PVA/MTMS composites was studied using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. Three structures were suggested based on trimethyl silanol (I) wet out condensation (II and III) with the dopped PVA followed by and H-bonding interactions (IV). The outcomes of B3LYP/6-31G(d) frequency calculations favors a three-dimensional SiOC linked network (III). Nevertheless, EDX reveals, the 3D SiOC links are not observed on the surface of composite membranes, however, is found dominant in the bulk, [(CH3)3SiOCH2CH2CH2O]n. Moreover, the solubility, density, and refractive index of the synthesized composites were measured and found depended on the ratio of PVA in the composite membranes. The current results are compared with that published earlier including dimethoxydimethylsilane at the same conditions. KW - Polymer composites KW - DFT calculations KW - Elastic membrane KW - Methoxytrimethlsilane KW - Polyvinyl alcohol PY - 2021 DO - https://doi.org/10.1016/j.molstruc.2021.130173 VL - 1235 SP - 130173 PB - Elsevier B.V. AN - OPUS4-52302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - El Sabbagh, M. A1 - Bedair, M. A1 - Gangan, A. A1 - El-Sabbah, M. A1 - El-Bahy, S. A1 - Friedrich, J. T1 - One-step plasma deposited thin SiOxCy films for corrosion resistance of low carbon steel N2 - Tetraethyl orthosilicate (TEOS) was used as a chemical precursor to deposit ultra-thin SiO x C y plasma polymer films onto mild steel surfaces for preventing the corrosion process. The structure–property relationships of the coatings were evaluated by X-ray Photo Spectroscopy (XPS), X-Ray Diffraction (XRD), Fourier Transform InfraRed spectroscopy (ATR-FTIR) and Energy Dispersive X-ray spectroscopy (EDX) completed with Scanning Electron Microscopy (SEM). The SEM micrographs confirmed a pinhole-free surface morphology of the low-pressure deposited plasma polymer films. The TEOS molecules become fragmented in the plasma by numerous collisions with energy-rich electrons and heavier particles. Recombination of fragments and condensation onto the steel substrate is responsible for the formation of organic SiO containing plasma polymer layers. Such thin layers consist of predominantly SiO x structures. Their properties are determined largely by the gap distance between the two samples used as electrodes in the plasma. The efficiency of the corrosion-protecting coating was compared with uncoated samples. The corrosion protection was determined by exposure of samples to 3.5% NaCl aqueous solutions. For this purpose, polarization and Electrochemical Impedance Spectroscopy (EIS) were used to monitor the corrosion. The optimal gap distance between the electrodes was determined for corrosion protection. The best protective efficiency reached more than 97% of the total protection as measured at room temperature. KW - Thin films KW - Corrosion resistance KW - Mild steel KW - Plasma treatments KW - Tetraethyl orthosilicate PY - 2020 DO - https://doi.org/10.1080/01694243.2020.1856539 VL - 35 IS - 16 SP - 1734 EP - 1751 PB - Taylor & Francis AN - OPUS4-52303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Ghasem Zadeh Khorasani, Media A1 - Cano Murillo, Natalia A1 - Elert, Anna Maria A1 - Sturm, Heinz ED - Glatzel, T. T1 - Bulk chemical composition contrast from attractive forces in AFM force spectroscopy N2 - A key application of atomic force microscopy (AFM) is the measurement of physical properties at sub-micrometer resolution. Methods such as force–distance curves (FDCs) or dynamic variants (such as intermodulation AFM (ImAFM)) are able to measure mechanical properties (such as the local stiffness, kr) of nanoscopic heterogeneous materials. For a complete structure–property correlation, these mechanical measurements are considered to lack the ability to identify the chemical structure of the materials. In this study, the measured attractive force, Fattr, acting between the AFM tip and the sample is shown to be an independent measurement for the local chemical composition and hence a complete structure–property correlation can be obtained. A proof of concept is provided by two model samples comprised of (1) epoxy/polycarbonate and (2) epoxy/boehmite. The preparation of the model samples allowed for the assignment of material phases based on AFM topography. Additional chemical characterization on the nanoscale is performed by an AFM/infrared-spectroscopy hybrid method. Mechanical properties (kr) and attractive forces (Fattr) are calculated and a structure–property correlation is obtained by a manual principle component analysis (mPCA) from a kr/Fattr diagram. A third sample comprised of (3) epoxy/polycarbonate/boehmite is measured by ImAFM. The measurement of a 2 × 2 µm cross section yields 128 × 128 force curves which are successfully evaluated by a kr/Fattr diagram and the nanoscopic heterogeneity of the sample is determined. KW - AFM force spectroscopy KW - Composites KW - Principle component analysis KW - Structure–property correlation KW - Van der Waals forces PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520175 DO - https://doi.org/10.3762/bjnano.12.5 SN - 2190-4286 VL - 12 IS - 5 SP - 58 EP - 71 PB - Beilstein Institute CY - Frankfurt am Main AN - OPUS4-52017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zarinwall, A. A1 - Waniek, Tassilo A1 - Saadat, R. A1 - Braun, U. A1 - Sturm, Heinz A1 - Garnweitner, G. T1 - Comprehensive Characterization of APTES Surface Modifications of Hydrous Boehmite Nanoparticles N2 - Hydrous boehmite (γ-AlOOH) nanoparticles (BNP) show great potential as nanoscale filler for the fabrication of fiber reinforced nanocomposite materials. Notably, the particle−matrix interaction has been demonstrated to be decisive for improving the matrix-dominant mechanical properties in the past years. Tailoring the surface properties of the nanofiller enables to selectively design the interaction and thus to exploit the benefits of the nanocomposite in an optimal way. Here, an extensive study is presented on the binding of (3-aminopropyl)triethoxysilane (APTES), a common silane surface modifier, on BNP in correlation to different process parameters (concentration, time, temperature, and pH). Furthermore, a comprehensive characterization of the modified BNP was performed by using elemental analysis (EA), thermogravimetric analysis (TGA) coupled with mass spectrometry (TGA-MS), and Kaiser’s test (KT). The results show an increasing monolayer formation up to a complete surface coverage with rising APTES concentration, time, and temperature, resulting in a maximal grafting density of 1.3 molecules/nm². Unspecific multilayer formation was solely observed under acidic conditions. Comparison of TGA-MS results with data recorded from EA, TGA, and KT verified that TGA-MS is a convenient and highly suitable method to elucidate the ligand binding in detail. KW - Boehmite KW - Nanoparticle KW - Surface KW - APTES KW - Functionalization KW - BET KW - TGA KW - Grafting KW - Nanocomposite KW - Silane PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.0c02682 VL - 37 IS - 1 SP - 171 EP - 179 PB - ACS Publications AN - OPUS4-51954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A1 - Garwek, Marcel A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Do Interfacial Layers in Thin Films Act as an Independent Layer Within Thin Films? N2 - The thermodynamic behavior of thin PVME films including the irreversible adsorbed layer on the substrate is investigated. In a first step, the growth kinetics of the adsorbed layer was studied combining a leaching technique and atomic force microscopy. Further, it was shown that there is a critical initial film thickness for the formation of a surface-filling adsorbed layer. Additionally, spectroscopic ellipsometry measurements were carried out to investigate the influence of the adsorbed layer on the glass transition temperature of the thin films. For 30 nm films and below, the influence of the adsorbed layer percolates strongly to the bulk-like layer of the film. Finally, the molecular dynamics of the adsorbed layer was studied by broadband dielectric spectroscopy, employing nanostructured-electrode systems. One process was revealed, which was assigned either to molecular fluctuations taking place in a loosely-bounded the part of the adsorbed layer, or to the desorption/adsorption of segments at the substrate. KW - Thin polymer films PY - 2021 DO - https://doi.org/10.1021/acs.macromol.0c02149 VL - 54 IS - 1 SP - 509 EP - 519 PB - ACS Publications AN - OPUS4-52037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Qu, Xintong A1 - Abbasi, M. A1 - Pauw, Brian Richard A1 - Henning, S. A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schick, C. A1 - Saalwächter, K. A1 - Schönhals, Andreas T1 - Spatial inhomogeneity, Interfaces and Complex Vitrification Kinetics in a Network Forming Nanocomposite N2 - A detailed calorimetric study on an epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) as the polymer matrix and taurine-modified MgAL layered double hydroxide (T-LDH) as nanofiller. The -NH2 group of taurine can react with DGEBA improving the interaction of the polymer with the filler. The combined X-ray scattering, and electron microscopy data showed that the nanocomposite has a partially exfoliated morphology. Calorimetric studies were performed with conventional DSC, temperature modulated DSC (TMDSC) and fast scanning calorimetry (FSC) in the temperature modulated approach (TMFSC) to investigate the vitrification and molecular mobility in dependence of the filler concentration. First, TMDSC and NMR were used to estimate the amount of the rigid amorphous fraction which consists of immobilized polymer segments at the nanoparticle surface. It was found to be 40 wt% for the highest filler concentration, indicating that the interface dominates the overall macroscopic properties and behavior of the material to a great extent. Second, the relaxation rates of the α-relaxation obtained by TMDSC and TMFSC were compared with the thermal and dielectric relaxation rates measured by static FSC. The investigation revealed that the system shows two distinct α-relaxation processes. Furthermore, also two separate vitrification mechanisms were found for a bulk network-former without geometrical confinement as also confirmed by NMR. This was discussed in terms of the intrinsic spatial heterogeneity on a molecular scale, which becomes more pronounced with increasing nanofiller content. KW - Polymer based Nanocomposites PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523199 DO - https://doi.org/10.1039/d0sm01992e SN - 1744-6848 VL - 17 IS - 10 SP - 2775 EP - 2790 PB - Royal Society of Chemistry AN - OPUS4-52319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Braun, U. A1 - Herper, D. A1 - Knefel, M. A1 - Bednarz, M. A1 - Bannick, C.-G. T1 - Smart filters for the analysis of microplastic in beverages filled in plastic bottles N2 - The occurrence of microplastic (MP) in food products, such as beverages in plastic bottles, is of high public concern. Existing analytical methods focus on the determination of particle numbers, requiring elaborate sampling tools, laboratory infrastructure and generally time-consuming imaging detection methods. A comprehensive routine analysis of MP in food products is still not possible. In the present work, we present the development of a smart filter crucible as sampling and detection tool. After filtration and drying of the filtered-off solids, a direct determination of the MP mass content from the crucible sample can be done by thermal extraction desorption gas chromatography mass spectroscopy (TED-GC/MS). The new filter crucible allows a filtration of MP down to particle sizes of 5 µm. We determined MP contents below 0.01 µg/L up to 2 µg/L, depending on beverages bottle type. This may be directly related to the bottle type, especially the quality of the plastic material of the screw cap. Dependent on the plastic material, particle formation increases due to opening and closing operations during the use phase. However, we have also found that some individual determinations of samples were subjected to high errors due to random events. A conclusive quantitative evaluation of the products is therefore not possible at present. KW - Microplastic KW - TED-GC/MS KW - Plastic bottles KW - Bbeverages KW - Filter crucible PY - 2021 DO - https://doi.org/10.1080/19440049.2021.1889042 SN - 1944-0057 VL - 38 IS - 4 SP - 691 EP - 700 PB - Taylor & Francis AN - OPUS4-52323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. ED - Zutta Villate, J. M. T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of Radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for future experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - Ectoine KW - OH radicals KW - Radiation damage KW - Radiationtherapy KW - Radioactive decay KW - Simulation KW - Beta particle KW - Clustered nanoparticles KW - Gamma ray KW - Low energy electrons KW - Particle scattering KW - Radiolysis KW - Livermore model KW - Penelope model KW - TOPAS KW - TOPAS-nbio PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523276 DO - https://doi.org/10.1038/s41598-021-85964-2 SN - 2045-2322 VL - 11 IS - 1 SP - 6721 PB - Springer Nature AN - OPUS4-52327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Bannick, C.G. A1 - Szewzyk, R. A1 - Ricking, M. A1 - Schniegler, S. A1 - Obermaier, N. A1 - Barthel, A. K. A1 - Altmann, Korinna A1 - Eisentraut, Paul T1 - Development and testing of a fractionated filtration for sampling of microplastics in water N2 - A harmonization of sampling, sample preparation and detection is pivotal in order to obtain comparable data on microplastics (MP) in the environment. This paper develops and proposes a suitable sampling concept for waterbodies that considers different plastic specific properties and influencing factors in the environment. Both artificial water including defined MP fractions and the discharge of a wastewater treatment plant were used to verify the derived sampling procedure, sample preparation and the subsequent analysis of MP using thermal extraction-desorption gas chromatography - mass spectrometry (TED-GC-MS). A major finding of this paper is that an application of various particle size classes greatly improves the practical handling of the sampling equipment. Size classes also enable the TED-GC-MS to provide any data on the MP size distribution, a substantial sampling property affecting both the necessary sampling volume and the optimal sampling depth. In the artificial water with defined MP fractions, the recovery rates ranged from 80 to 110%, depending on the different MP types and MP size classes. In the treated wastewater, we found both Polyethylene and polystyrene in different size classes and quantities. KW - Microplastics KW - Sampling KW - Sampling techniques KW - Water PY - 2019 DO - https://doi.org/10.1016/j.watres.2018.10.045 SN - 0043-1354 VL - 149 SP - 650 EP - 658 PB - Elsevier AN - OPUS4-47200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Bühlmeyer, A. A1 - Hayash, S A1 - Haenle, J. C. A1 - Sentker, K. A1 - Krause, Christina A1 - Huber, Patrick A1 - Laschat, Sabine A1 - Schönhals, Andreas T1 - Multiple glassy dynamics in dipole functionalized triphenylene-based discotic liquid crystals revealed by broadband dielectric spectroscopy and advanced calorimetry – assessment of the molecular origin N2 - A selected series of dipole functionalized triphenylene-based discotic liquid crystals (DLCs) was synthesized and investigated in a systematic way to reveal the phase behavior and molecular dynamics. The later point is of particular importance to understand the charge transport in such systems which is the key property for their applications such as organic field-effect transistors, solar cells or as nanowires in molecular electronics, and also to tune the properties of DLCs. The mesomorphic properties were studied by polarizing optical microscopy, X-ray diffraction, and differential scanning calorimetry, which were compared to the corresponding unfunctionalized DLC. The molecular dynamics were investigated by a combination of state-of-the-art broadband dielectric spectroscopy (BDS) and advanced calorimetry such as fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). Besides localized fluctuations, surprisingly multiple glassy dynamics were detected for all materials for the first time. Glassy dynamics were proven for both processes unambiguously due to the extraordinary broad frequency range covered. The a1-process is attributed to fluctuations of the alky chains in the intercolumnar space because a polyethylene-like glassy dynamics is observed. This corresponds to a glass transition in a confined three-dimensional space. The a2-process found at temperatures lower than a1-process, is assigned to small scale rotational and/or translational in plane fluctuations of the triphenylene core inside distorted columns. This can be considered as a glass transition in a one-dimensional fluid. Therefore, obtained results are of general importance to understand the glass transition, which is an unsolved problem of condensed matter science. KW - Discotic Liquid Crystals KW - Broadband dielectric spectroscopy KW - Flash DSC KW - Specific heat spectroscopy PY - 2019 DO - https://doi.org/10.1039/c9cp03499d SN - 1463-9076 VL - 21 IS - 33 SP - 18265 EP - 18277 PB - RSC AN - OPUS4-48739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Gawek, Marcel A1 - Madkour, S. A1 - Schönhals, Andreas T1 - Confinement and localization effects revealed for thin films of the miscible blend Poly(vinyl methyl ether) / Polystyrene with a composition of 25/75 wt% N2 - Thin films (200-7nm) of the asymmetric polymer blend poly(vinyl methyl ether) (PVME)/polystyrene (PS) (25/75wt%) were investigated by broadband dielectric spectroscopy (BDS). Thicker samples ([Formula: see text]37 nm) were measured by crossed electrode capacitors (CEC), where the film is capped between Al-electrodes. For thinner films ([Formula: see text]37 nm) nanostructured capacitors (NSC) were employed, allowing one free surface in the film. The dielectric spectra of the thick films showed three relaxation processes ( [Formula: see text] -, [Formula: see text] - and [Formula: see text] -relaxation), like the bulk, related to PVME fluctuations in local spatial regions with different PS concentrations. The thickness dependence of the [Formula: see text] -process for films measured by CECs proved a spatially heterogeneous structure across the film with a PS-adsorption at the Al-electrodes. On the contrary, for the films measured by NSCs a PVME segregation at the free surface was found, resulting in faster dynamics, compared to the CECs. Moreover, for the thinnest films ([Formula: see text]26 nm) an additional relaxation process was detected. It was assigned to restricted fluctuations of PVME segments within the loosely bounded part of the adsorbed layer, proving that for NSCs a PVME enrichment takes place also at the polymer/substrate interface. KW - Thin polymer films KW - Broadband dielectric spectroscopy PY - 2019 DO - https://doi.org/10.1140/epje/i2019-11870-3 SN - 1292-895X VL - 42 IS - 8 SP - 101, 1 EP - 11 PB - Springer AN - OPUS4-48651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Zutta Villate, Julian Mateo T1 - Radioactive gold nanoparticles for cancer treatment: Size and cluster dependent damage studied by Geant4 Monte-Carlo simulations N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive ¹⁹⁸Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply ¹⁹⁸AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. KW - Gold Nanoparticles KW - AuNP KW - Radioactive decay KW - Beta decay KW - DNA KW - DNA damage KW - Radiation damage KW - MCS KW - Monte-Carlo simulation KW - Geant4 KW - Dosimetry KW - Microdosimetry KW - Cancer treatment KW - Radiationtherapy KW - Brachytherapy KW - OH radicals KW - LEE KW - low energy electrons KW - gamma ray KW - beta particle KW - radiolysis KW - clustered nanoparticles KW - NP KW - Simulation KW - particle scattering KW - Geant4-DNA KW - Energy deposit PY - 2019 DO - https://doi.org/10.1140/epjd/e2019-90707-x SN - 1434-6060 SN - 1434-6079 VL - 73 IS - 5 SP - 95, 1 EP - 7 PB - Springer CY - Berlin Heidelberg AN - OPUS4-47952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dietmar A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Boehmite Nanofillers in Epoxy Oligosiloxane Resins: Influencing the Curing Process by Complex Physical and Chemical Interactions N2 - In this work, a novel boehmite (BA)-embedded organic/inorganic nanocomposite coating based on cycloaliphatic epoxy oligosiloxane (CEOS) resin was fabricated applying UV-induced cationic polymerization. The main changes of the material behavior caused by the nanofiller were investigated with regard to its photocuring kinetics, thermal stability, and glass transition. The role of the particle surface was of particular interest, thus, unmodified nanoparticles (HP14) and particles modified with p-toluenesulfonic acid (OS1) were incorporated into a CEOS matrix in the concentration range of 1–10 wt.%. Resulting nanocomposites exhibited improved thermal properties, with the glass transition temperature (Tg) being shifted from 30 °C for unfilled CEOS to 54 °C (2 wt.% HP14) and 73 °C (2 wt.% OS1) for filled CEOS. Additionally, TGA analysis showed increased thermal stability of samples filled with nanoparticles. An attractive interaction between boehmite and CEOS matrix influenced the curing. Real-time infrared spectroscopy (RT-IR) experiments demonstrated that the epoxide conversion rate of nanocomposites was slightly increased compared to neat resin. The beneficial role of the BA can be explained by the participation of hydroxyl groups at the particle surface in photopolymerization processes and by the complementary contribution of p-toluenesulfonic acid surface modifier and water molecules introduced into the system with nanoparticles. KW - Real-time infrared spectroscopy KW - Boehmite KW - Nanocomposite KW - Cationic photocuring KW - Cycloaliphatic epoxy oligosiloxane KW - Epoxy conversion degree PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479628 DO - https://doi.org/10.3390/ma12091513 VL - 12 IS - 9 SP - 1513 PB - MDPI AN - OPUS4-47962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Falkenhagen, Jana A1 - Becker, Roland A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tschiche, Harald A1 - Reinsch, Stefan A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions N2 - Polyether and -ester urethanes (PU) were exposed to artificial weathering at 40 °C and artificial UV radiation in a weathering chamber. In 3 parallel exposures, humidity was varied between dry, humid, and wet conditions. Material alteration was investigated by various analytical techniques like size exclusion chromatography (SEC), liquid chromatography-infrared spectroscopy (LC-FTIR), thermal-desorption gas chromatography-mass spectrometry (TD-GC-MS), fluorescence mapping and dynamic mechanical analysis (DMA). Our results show that depending on the weathering conditions, different degradation effects can be observed. By means of SEC an initial strong decrease of the molar masses and a broadening of the mass distributions was found. After a material dependent time span this was followed by a plateau where molar mass changes were less significant. A minor moisture-dependent degradation effect was only found for polyester PU. Fluorescence measurements on two materials revealed an increase in the luminescence intensity upon weathering process reaching a saturation level after about 500 h. The changes in the optical properties observed after different exposure conditions and times were very similar. The TD-GC-MS data showed the fate of the stabilizers and antioxidant in the course of weathering. LC-FTIR measurements revealed a change in peak intensities and the ratio of urethane and carbonyl bands. KW - Polyurethane KW - Artificial weathering KW - Moisture KW - Crosslinking KW - Degradation PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819303708 DO - https://doi.org/10.1016/j.polymertesting.2019.105996 SN - 0142-9418 VL - 78 SP - 105996, 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-48625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - B, Yang A1 - Chua, Y. Z. A1 - Szymoniak, Paulina A1 - Carta, M A1 - Malpass-Evans, R A1 - McKeown, N A1 - Harrison, W A1 - Budd, P A1 - Schick, C A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Effect of backbone rigidity on the glass transition of polymers of in-trinsic microporosity probed by fast scanning calorimetry N2 - Polymers of Intrinsic Microporosity (PIMs) of high performance have developed as materials with a wide application range in gas separation and other energy-related fields. Further optimization and long-term behavior of devices with PIMs require an understanding of the structure-property relationships including physical aging. In this context the glass transi-tion plays a central role, but with conventional thermal analysis a glass transition is usually not detectable for PIMs be-fore their thermal decomposition. Fast scanning calorimetry provides evidence of the glass transition for a series of PIMs, as the time scales responsible for thermal degradation and for the glass transition are decoupled by employing ultrafast heating rates of tens of thousands K s-1. The investigated PIMs were chosen considering the chain rigidity. The estimated glass transition temperatures follow the order of the rigidity of the backbone of the PIMs. KW - Polymers of intrinsic microporosity KW - Fast scanning calormetry PY - 2019 DO - https://doi.org/10.1021/acsmacrolett.9b00482 SN - 2161-1653 VL - 8 IS - 8 SP - 1022 EP - 1028 PB - ACS Publications AN - OPUS4-48617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Celina, M. A1 - Braun, Ulrike T1 - Automated thermal extraction-desorption gas chromatography mass spectrometry: A multifunctional tool for comprehensive characterization of polymers and their degradation products N2 - The TED-GC-MS analysis is a two-step method. A sample is first decomposed in a thermogravimetric analyzer (TGA) and the gaseous decomposition products are then trapped on a solid-phase adsorber. Subsequently, the solid-phase adsorber is analyzed with thermal desorption gas chromatography mass spectrometry (TDU-GC-MS). This method is ideally suited for the analysis of polymers and their degradation processes. Here, a new entirely automated System is introduced which enables high sample throughput and reproducible automated fractioned collection of decomposition products. Strengths and limitations of the system configuration are elaborated via three examples focused on practical challenges in materials analysis and identification: i) separate analysis of the components of a wood-plastic-composite material, ii) quantitative determination of weight concentration of the constituents of a polymer blend and iii) quantitative analysis of model samples of microplastics in suspended particulate matter. KW - Thermal extraction-desorption gas chromatography mass spectrometry KW - Analysis KW - Polymers KW - Microplastics KW - Automation PY - 2019 DO - https://doi.org/10.1016/j.chroma.2019.01.033 VL - 1592 SP - 133 EP - 142 PB - Elsevier CY - Amsterdam AN - OPUS4-48287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schoenhals, Andreas T1 - Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller N2 - Nanocomposites based on MgAL layered double hydroxides (LDH) and an epoxy resin were prepared and investigated by a combination of complementary methods. As epoxy resin Bisphenol A diglycidyl ether (DGEBA) was used with Diethylenetriamine as curing agent. The LDH was modified with taurine, which acts as an additional crosslinking agent due to its amine groups. The epoxy resin was cured in a presence of the nanofiller, which was added to the system in various concentrations. X-ray scattering, by combination of SAXS and WAXS was used to characterize the morphology of the obtained nanocomposites. These investigations show that the filler is distributed in the matrix as small stacks of ca. 10 layers. The molecular dynamics of the system, as probe for structure, was investigated by broadband dielectric spectroscopy. In addition to the - and -relaxation (dynamic glass transition), characteristic for the unfilled materials, a further process was found which was assigned to localized fluctuations of segments physically adsorbed or chemically bonded to the nanoparticles. The dielectric -relaxation is shifted to higher temperatures for the nanocomposites in comparison to the pure material but depends weakly on the content of nanoparticles. Further, for the first time Flash DSC was employed to a thermosetting system to investigate the glass transition behavior of the nanocomposites. The heating rates were converted in to relaxation rates. For low concentrations of the nanofiller the thermal data overlap more or less with that of the pure epoxy. For higher concentrations the thermal data are shifted significantly to higher temperatures. This is discussed in terms the cooperativity approach to the glass transition. KW - Nanocomposites KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2019 DO - https://doi.org/10.1016/j.tca.2019.01.010 SN - 0040-6031 VL - 677 SP - 151 EP - 161 PB - Elsevier AN - OPUS4-48218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elert, Anna Maria A1 - Kanerva, M A1 - Puolakka, A A1 - Takala, T.M. A1 - Mylläri, V A1 - Jönkkäri, I A1 - Sarlin, E A1 - Seitsonen, J A1 - Ruokolainen, J A1 - Saris, P A1 - Vuorinen, J T1 - Antibacterial polymer fibres by rosin compounding and melt-spinning N2 - The antibacterial features of natural pine/spruce rosin are well established, yet the functionality in various thermoplastics has not been surveyed. This work focuses on the processing of industrial grade purified rosin mixed with polyethylene (PE), polypropylene (PP), polylactic acid (PLA), polyamide (PA) and corn starch based biopolymer (CS). Homopolymer masterbatches were extrusion-compounded and melt-spun to form fibres for a wide range of products, such as filters, reinforcements, clothing and medical textiles. Due to the versatile chemical structure of rosin, it was observed compatible with all the selected polymers. In general, the rosin-blended systems were shear-thinning in a molten condition. The doped fibres spun of PE and PP indicated adequate melt-spinning capability and proper mechanical properties in terms of ultimate strength and Young's modulus. The antibacterial response was found dependent on the selected polymer. Especially PE with a 10 wt% rosin content showed significant antibacterial effects against Escherichia coli DH5α and Staphylococcus aureus ATCC 12598 when analysed in the Ringer's solution for 24 h. KW - Rosin KW - Antibacterial KW - Thermoplastics PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481785 DO - https://doi.org/10.1016/j.mtcomm.2019.05.003 SN - 2352-4928 VL - 20 SP - 527 EP - 527 PB - Elsevier AN - OPUS4-48178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zietzschmann, F. A1 - Dittmar, S. A1 - Splettstößer, L. A1 - Hunsicker, J. A1 - Dittmann, Daniel A1 - Meinel, F. A1 - Rößler, A. A1 - Metzger, S. A1 - Jekel, M. A1 - Ruhl, A. S. T1 - Fast empirical lab method for performance projections of large-scale powdered activated carbon re-circulation plants N2 - Powdered activated carbon (PAC) for organic micro-pollutant (OMP) removal can be applied effectively on wastewater treatment plant (WWTP) effluents by using re-circulation schemes, accumulating the PAC in the system. This technique is complex because several factors are unknown: (i) the PAC concentration in the system, (ii) specific and average contact times of PAC particles, and (iii) PAC particle loadings with target compounds/competing water constituents. Thus, performance projections (e.g. in the lab) are very challenging. We sampled large-scale PAC plants with PAC sludge re-circulation on eight different WWTPs. The PAC plant-induced OMP removals were notably different, even when considering PAC concentrations in proportion to background organic sum parameters. The variability is likely caused by differing PAC products, varying water composition, differently effective plant/re-circulation operation, and variable biodegradation. Plant PAC samples and parts of the PAC plant influent samples were used in laboratory tests, applying multiples (0.5, 1, 2, 4) of the respective large-scale “fresh” PAC doses, and several fixed contact times (0.5, 1, 2, 4, 48 h). The aimwas to empirically identify suitable combinations of lab PAC dose (as multiples of the plant PAC dose) and contact time, which represent the PAC plant performances in removing OMPs (for specific OMPs at single locations, and for averages of different OMPs at all locations). E.g., for five well adsorbing, little biodegradable OMPs, plant performances can be projected by using a lab PAC dose of twice the respective full-scale PAC dose and 4 h lab contact time (standard deviation of 13 %-points). KW - Adsorption KW - Powdered activated carbon KW - Organic micro-pollutant KW - Trace organic contaminant PY - 2019 DO - https://doi.org/10.1016/j.chemosphere.2018.10.055 VL - 215 SP - 563 EP - 573 PB - Elsevier Ltd. AN - OPUS4-46957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, R. A1 - Braun, Ulrike A1 - Fankhänel, J. A1 - Daum, B. A1 - Arash, B. A1 - Rolfes, R. T1 - Molecular modelling of epoxy resin crosslinking experimentally validated by near-infrared spectroscopy N2 - Reliable simulation of polymers on an atomistic length scale requires a realistic representation of the cured material. A molecular modelling method for the curing of epoxy systems is presented, which is developed with respect to efficiency while maintaining a well equilibrated system. The main criterion for bond formation is the distance between reactive groups and no specific reaction probability is prescribed. The molecular modelling is studied for three different mixing ratios with respect to the curing evolution of reactive Groups and the final curing stage. For the first time, the evolution of reactive groups during the curing process predicted by the molecular modelling is validated with near-infrared spectroscopy data, showing a good agreement between simulation results and experimental measurements. With the proposed method, deeper insights into the curing mechanism of epoxy systems can be gained and it allows us to provide reliable input data for molecular Dynamics simulations of material properties. KW - Epoxy KW - NIR spectroscopy KW - Modelling PY - 2019 DO - https://doi.org/10.1016/j.commatsci.2019.01.054 SN - 0927-0256 VL - 161 SP - 223 EP - 235 PB - Elsevier AN - OPUS4-47431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klöckner, P. A1 - Reemtsma, T. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Ruhl, A. S. A1 - Wagner, S. T1 - Tire and road wear particles in road environment e Quantification and assessment of particle dynamics by Zn determination after density separation N2 - In this study, a method for the determination of tire and road wear particle (TRWP) contents in particulate samples from road Environment was developed. Zn was identified as the most suitable elemental marker for TRWP, due to its high concentration in tire tread and the possibility of separation from other Zn sources. The mean concentration of 21 tire samples was 8.7 ± 2.0 mg Zn/g. Before quantification in samples from road environment, TRWP were separated from the particulate matrix by density separation. Method development was conducted using shredded tread particles (TP) as a surrogate for TRWP. Recovery of TP from spiked sediment was 95 ± 17% in a concentration range of 2 - 200 mg TP/g. TP determination was not affected by other Zn containing solids or spiked Zn-salts. By adjusting the density of the separation solution to 1.9 g/cm3, more than 90% of total TRWP were separated from the sample matrix. TRWP concentrations in particulate matter collected in two road runoff treatment Systems ranged from 0.38 to 150 mg TRWP/g. Differences in quantified TRWP contents of the two Systems indicate changes in particle dynamics due to ageing and aggregation processes. The developed method allows TRWP determination in road runoff and in environments that are influenced by road traffic. The validated separation procedure can also be applied for TRWP characterization in future studies. KW - Zinc analysis KW - Microplastics KW - Tire particles PY - 2019 VL - 222 SP - 714 EP - 721 PB - Elsevier AN - OPUS4-47433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm DO - https://doi.org/10.3390/nano9060853 SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. KW - Micromagnetism KW - LLG KW - LL equation KW - Landau Lifshitz equation KW - Landau Lifshitz Gilbert equation KW - Stochastic Landau Lifshitz equation KW - Stochastic Landau Lifshitz Gilbert equation KW - Curie temperature KW - Magnetic Nanoparticles KW - Thin film systems KW - Temeprature scaling KW - Phase transition KW - Magnet coupling KW - Ferromagnetism KW - Superparamagnetism KW - Paramagnetism KW - Ni KW - Co KW - Fe KW - Steel KW - Nickel KW - Cobalt KW - Iron KW - Temperature effects KW - Cell size KW - Damping factor KW - Gamma KW - Alpha KW - Spin KW - Magnetic moment KW - Magnetic interacion KW - Magnetization dynamics KW - Domain wall KW - Exchange length KW - temeprature dependent exchange length KW - Bloch wall KW - Neel wall KW - Exchange interaction KW - Magnetic anisotropy KW - Simulation KW - OOMMF KW - Object oriented micromagnetic framework PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484610 DO - https://doi.org/10.1088/2399-6528/ab31e6 VL - 3 IS - 7 SP - 075009-1 EP - 075009-8 PB - IOPscience CY - England AN - OPUS4-48461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -