TY - JOUR A1 - Zänker, Steffen A1 - Scholz, Gudrun A1 - Krahl, Thoralf A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - Luminescent properties of Eu3+/Tb3+ doped fluorine containing coordination polymers JF - Solid State Sciences N2 - Lanthanides doped coordination polymers (CPs) with different binding motifs were synthesized to investigate the influence of the different fluorine positions in the structure on the decay time τ of the excited states. Fluorine can be integrated into the network mechanochemically via a fluorinated organic linker, here barium tetrafluoroterephthalate Ba(p-BDC-F4)2 or directly via a metal-fluorine bond (barium terephthalate fluoride BaF(p-BDC)0.5). The CP with a metal-fluorine bond shows the highest lifetime of the excited states of lanthanides (Eu3+, Tb3+ or Eu3+& Tb3+). The excitation of the lanthanides can be performed directly via the excitation wavelength typical for lanthanides and via the excitation wavelength of the linker. This enabled the simultaneous excitation of Eu3+ and Tb3+ in one CP. In the emission spectra (λem = 393 nm) of the mixed doped CPs (Eu3+ and Tb3+) the bands of both lanthanides can be observed. The integration into the crystal lattice and the homogeneous distribution of the lanthanides in the CPs is shown by X-ray diffraction, TEM, STEM-EDS measurements and the long decay times. KW - Alkaline earth metal coordination polymers KW - Fluorine coordination polymers KW - Lanthanides doped coordination polymers KW - Luminescence PY - 2021 DO - https://doi.org/10.1016/j.solidstatesciences.2021.106614 VL - 117 SP - 106614 PB - Elsevier Masson SAS AN - OPUS4-52559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Xu, W. A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Structure and properties of fluorinated and non-fluorinated Ba-coordination polymers - the position of fluorine makes the difference JF - Journal of Inorganic and General Chemistry N2 - As the most electronegative element, fluorine has a strong influence on material properties such as absorption behaviour or chemical and thermal stability. Fluorine can be easily integrated into coordination polymers (CPs) via a fluorinated acetate, here trifluoroacetate in Ba(CF3COO)2, or directly via a metal fluorine bond (BaF(CH3COO)). In the present study both possibilities of fluorine integration were tested and their effect on structure and properties of barium coordination polymers was investigated in comparison with the non-fluorinated barium acetate (Ba(CH3COO)2). In addition to the study of their thermal behaviour and their decomposition temperature, the CPs structures were tested for their application as possible anode materials in lithium ion batteries and for their sorption of water and ammonia. The properties of the CPs can be traced back to the individual structural motifs and could thus trigger new design ideas for CPs in LIBs and/or catalysis. KW - Alkaline earth metal coordination polymers KW - Lithium-ion battery KW - Water stability KW - Fluorine coordination PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524041 DO - https://doi.org/10.1002/zaac.202000360 SN - 0044-2313 VL - 647 IS - 9 SP - 1014 EP - 1024 PB - Wiley-VCH GmbH AN - OPUS4-52404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction JF - Zeitschrift für anorganische und allgemeine Chemie N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547397 DO - https://doi.org/10.1002/zaac.202200026 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Heise, M. A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - New 2D layered structures with direct fluorine-metal bonds: MF(CH3COO) (M: Sr, Ba, Pb) JF - CrystEngComm N2 - New coordination polymers with 2D network structures with fluorine directly coordinated to the metal ion were prepared both via mechanochemical synthesis and fluorolytic sol–gel synthesis. Depending on the synthesis route, the samples show different particle sizes, according to SEM imaging. The crystal structures of barium acetate fluoride, strontium acetate fluoride, and lead acetate fluoride (BaFIJCH3COO), SrFIJCH3COO) and PbFIJCH3COO)) were solved from X-ray powder diffraction data. The structure solution is backed by the results from 19F MAS NMR, FT IR data, and thermal analysis. The calculated chemical shifts of the 19F MAS NMR spectra coincide well with the measured ones. It turns out that the grinding conditions have a remarkable influence on the mechanochemical synthesis and its products. Our systematic study also indicates a strong influence of the atomic radii of Ca, Sr, Ba, and Pb on the success of the syntheses. KW - Mechanochemistry KW - Coordination polymers PY - 2020 DO - https://doi.org/10.1039/d0ce00287a VL - 22 IS - 16 SP - 2772 EP - 2780 PB - Royal Society of Chemistry AN - OPUS4-50789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zuffa, Caterina A1 - Cappuccino, Chiara A1 - Casali, Lucia A1 - Emmerling, Franziska A1 - Maini, Lucia T1 - Liquid reagents are not enough for liquid assisted grinding in the synthesis of (AgBr)(n-pica) n JF - Physical Chemistry Chemical Physics N2 - This study investigates the mechanochemical reactions between AgBr 3-picolylamine and 4-picolylamine. The use of different stoichiometry ratios of the reagents allows [(AgBr)(n-pica)]n and [(AgBr)2(n-pica)]n to be obtained, and we report the new structures of [(AgBr)2(3-pica)]n and [(AgBr)2(4-pica)]n which are characterized by the presence of the following: (a) infinite inorganic chains, (b) silver atom coordinated only by bromide atoms and (c) argentophilic interactions. Furthermore, we studied the interconversion of [(AgBr)(n-pica)]n/[(AgBr)2(n-pica)]n by mechanochemical and thermal properties. The in situ experiments suggest that [(AgBr)(3-pica)]n is kinetically favoured while [(AgBr)2(3-pica)]n is converted into [(AgBr)(3-pica)]n only with a high excess of the ligand. Finally, the liquid nature of the ligands is not sufficient to assist the grinding process, and the complete reaction is observed with the addition of a small quantity of acetonitrile. KW - Mechanochemistry KW - Complex PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594755 DO - https://doi.org/10.1039/d3cp04791a SN - 1463-9076 SP - 1 EP - 10 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zauer, M. A1 - Prinz, Carsten A1 - Adolphs, J. A1 - Emmerling, Franziska A1 - Wagenführ, A. T1 - Sorption surfaces and energies of untreated and thermally modified wood evaluated by means of excess surface work (ESW) JF - Wood Science and Technology N2 - Water vapor sorption surface areas and sorption energies of untreated and thermally modified Norway spruce [Picea abies (L.) Karst.], sycamore maple (Acer pseudoplatanus L.) and European ash (Fraxinus excelcior L.) were investigated by means of dynamic vapor sorption (DVS) measurements and excess surface work (ESW) evaluation method, respectively. Adsorption and desorption experiments in the hygroscopic range and desorption tests from water saturation were conducted. Thermodynamically, ESW is the sum of the surface free energy and the isothermal isobaric work of sorption. From the amount adsorbed in the first Minimum a specific surface area similar to the BET surface area can be obtained. The results show that untreated spruce has a significantly higher specific water vapor Sorption surface and sorption energy compared to both hardwoods maple and ash. Thermal modification of the woods leads to a significant reduction of water vapor Sorption surface and sorption energy. The determined surface area and energy are higher in desorption direction than in adsorption direction, whereby the highest values in Desorption direction from water saturation, especially for maple and ash, were obtained. The surface areas calculated by means of the ESW method are similar to the surface areas calculated by means of the BET method, particularly in adsorption direction. KW - Excess surface work KW - Dynamic vapor sorption KW - Wood KW - BET PY - 2018 DO - https://doi.org/10.1007/s00226-018-1021-2 SN - 1432-5225 SN - 0043-7719 VL - 52 IS - 4 SP - 957 EP - 969 PB - Springer CY - Berlin Heidelberg AN - OPUS4-44975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Kabelitz, Anke A1 - Schokel, Alexander A1 - Wagner, Ralf A1 - Prinz, Carsten A1 - Kemnitz, E A1 - Emmerling, Franziska A1 - Krahl, Thoralf A1 - de Oliveira Guilherme Buzanich, Ana T1 - Local Structure of Europium-Doped Luminescent Strontium Fluoride Nanoparticles: Comparative X-ray Absorption Spectroscopy and Diffraction Study JF - ChemNanoMat N2 - Rare-earth based luminescent materials are key functional components for the rational design of light-conversion smart devices. Stable Eu3+-doped strontium fluoride (SrF2) nanoparticles were prepared at room temperature in ethylene glycol. Their luminescence depends on the Eu content and changes after heat treatment. The crystallinity of heat-treated material increases in comparison with as-synthesized samples. Particles were investigated in solution using X-ray diffraction, small-angle X-ray scattering, and X-ray spectroscopy. After heat treatment, the size of the disordered nanoparticles increases together with a change of their local structure. Interstitial fluoride ions can be localized near Eu3+ ions. Therefore, non-radiative relaxation from other mechanisms is decreased. Knowledge about the cation distribution is key information for understanding the luminescence properties of any material. KW - SrF2 KW - EXAFS KW - Eu PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540094 DO - https://doi.org/10.1002/cnma.202100281 VL - 7 IS - 11 SP - 1221 EP - 1229 PB - Wiley Online Library AN - OPUS4-54009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, J. A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - Towards automation of the polyol process for the synthesis of silver nanoparticles JF - Scientific Reports N2 - Metal nanoparticles have a substantial impact across diferent felds of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver nanoparticles are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize silver nanoparticles often do not result in well-defned products, the main obstacles being high polydispersity or a lack of particle size tunability. We describe an automated approach to on-demand synthesis of adjustable particles with mean radii of 3 and 5 nm using the polyol route. The polyol process is a promising route for silver nanoparticles e.g., to be used as reference materials. We characterised the as-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties. KW - Sillver KW - Nanoparticles KW - Automated synthesis KW - Chemputer KW - Scattering KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546803 DO - https://doi.org/10.1038/s41598-022-09774-w VL - 12 IS - 1 SP - 1 EP - 9 PB - Nature Springer AN - OPUS4-54680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Akhemtova, Irina A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of cerium(IV)-phosphonates JF - Journal of materials science N2 - The syntheses and crystal structures of two cerium(IV) phosphonates are presented. Cerium(IV) bis(phenylphosphonate) Ce(O3PC6H5)2 1 can be formed from precipitation and mechanochemical reaction, whereas cerium(IV) bis(carboxymethylphosphonate) monohydrate Ce(O3PCH2COOH)2 H2O 2 is only accessible via ball milling. All reactions proceed very fast and are completed within a short time span. In situ measurements for the syntheses of 1 show that the product occurs within seconds or a few minutes, respectively. The structures were solved from powder X-ray diffraction data. KW - In situ studies KW - Mechanochemistry KW - XRD PY - 2018 DO - https://doi.org/10.1007/s10853-018-2507-x SN - 0022-2461 SN - 1573-4803 VL - 53 IS - 19 SP - 13733 EP - 13741 PB - Springer Science + Business Media B.V. AN - OPUS4-45672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Häusler, I. A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan A1 - Emmerling, Franziska A1 - Reiss, P. A1 - Resch-Genger, Ute T1 - One-Pot Heat-Up Synthesis of ZnSe Magic-Sized Clusters Using Thiol Ligands JF - Inorganic Chemistry N2 - The synthesis of two new families of ZnSe magic-sized clusters (MSCs) is achieved using the thiol ligand 1-dodecanethiol in a simple one-pot heat-up approach. The sizes of the MSCs are controlled with the thiol ligand concentration and reaction temperature. KW - ZnSe KW - Magic-sized cluster KW - Dodecanethiol KW - Semiconductor nanocrystals KW - One-pot synthesis PY - 2022 DO - https://doi.org/10.1021/acs.inorgchem.2c00041 VL - 61 IS - 19 SP - 7207 EP - 7211 PB - ACS Publications CY - Washington, DC (USA) AN - OPUS4-54880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Bienert, M. A1 - Gugin, Nikita A1 - Emmerling, Franziska A1 - Maiwald, Michael T1 - A database to select affordable MOFs for volumetric hydrogen cryoadsorption considering the cost of their linkers JF - Materials advances N2 - Physical adsorption at cryogenic temperature (cryoadsorption) is a reversible mechanism that can reduce the pressure of conventional compressed gas storage systems. Metal–organic framework (MOF) materials are remarkable candidates due to the combination of high specific surface area and density which, in some cases, provide a high volumetric storage capacity. However, such extensive use of MOFs for this application requires the selection of affordable structures, easy to produce and made from feasible metallic and organic components. Herein, we introduce a MOF database detailing the crystallographic and porous properties of 3600 existing MOFs made from industrially relevant metals and their organic composition. The comparison of the available minimum costs of linkers allowed the creation of a database to select affordable structures with high potential for volumetric hydrogen storage by cryoadsorption, considering their composition based on individual or mixed building blocks. A user inter� face, available online, facilitates the selection of MOFs based on the properties or names of structures and linkers. KW - MOF´s PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583619 DO - https://doi.org/10.1039/d3ma00315a VL - 4 IS - 18 SP - 4226 EP - 4237 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tumanova, N. A1 - Tumanov, N. A1 - Robeyns, K. A1 - Fischer, Franziska A1 - Fusaro, L. A1 - Morelle, F. A1 - Ban, V. A1 - Hautier, G. A1 - Filinchuk, Y. A1 - Wouters, J. A1 - Leyssens, T. A1 - Emmerling, Franziska T1 - Opening Pandora’s Box: Chirality, Polymorphism, and Stoichiometric Diversity in Flurbiprofen/Proline Cocrystals JF - Crystal Growth & Design N2 - Proline has been widely used for various cocrystallization applications, including pharmaceutical cocrystals. Combining enantiopure and racemic flurbiprofen and proline, we discovered 18 new crystal structures. Liquid-assisted grinding proved highly efficient to explore all the variety of crystal forms. A unique combination of stateof-the-art characterization techniques, comprising variable temperature in situ X-ray diffraction and in situ ball-milling, along with other physicochemical methods and density functional theory calculations, was indispensable for identifying all the phases. Analyzing the results of in situ ball-milling, we established a stepwise mechanism for the formation of several 1:1 cocrystals via an intermediate 2:1 phase. The nature of the solvent in liquidassisted grinding was found to significantly affect the reaction rate and, in some cases, the reaction pathway. KW - Mechanochemistry KW - Polymorphs KW - In situ PY - 2018 UR - https://pubs.acs.org/doi/abs/10.1021/acs.cgd.7b01436 DO - https://doi.org/10.1021/acs.cgd.7b01436 VL - 18 IS - 2 SP - 954 EP - 961 PB - American Chemical Society AN - OPUS4-44365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Surov, Artem O. A1 - Vasilev, Nikita A. A1 - Churakov, Andrei V. A1 - Stroh, Julia A1 - Emmerling, Franziska A1 - Perlovich, German L. T1 - Solid Forms of Ciprofloxacin Salicylate: Polymorphism, Formation Pathways, and Thermodynamic Stability JF - Crystal Growth & Design N2 - The crystallization of ciprofloxacin - an antibacterial fluoroquinolone compound - with salicylic acid resulted in the isolation of five distinct solid forms of the drug, namely, an anhydrous salt, two polymorphic forms of the salt monohydrate, methanol and acetonitrile solvates, and the salt-cocrystal hydrate. The salicylate salts were investigated by different analytical techniques ranging from powder and single crystal X-ray diffractometry, differential scanning calorimetry, thermogravimetric analysis, variable temperature powder X-ray diffraction, dynamic vapor sorption analysis, dissolution, and solubility investigations. Real-time in situ Raman spectroscopy was used to investigate the mechanochemical formation pathways of the different solid polymorphs of ciprofloxacin salicylate. The mechanism of the phase transformation between the crystalline forms was evaluated under mechanochemical conditions. It was found that the formation pathway and kinetics of the grinding process depend on the form of the starting material and reaction conditions. The analysis of the solid-state thermal evolution of the hydrated salts revealed the two-step mechanism of dehydration process, which proceeds through a formation of the distinct intermediate crystalline products. KW - Cocrystal KW - Polymorphism KW - Ciprofloxacin KW - XRD KW - DSC PY - 2019 DO - https://doi.org/10.1021/acs.cgd.9b00185 SN - 1528-7483 VL - 19 IS - 5 SP - 2979 EP - 2990 PB - American Chemical Society AN - OPUS4-47903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Surov, A. A1 - Vasilev, N. A1 - Voronin, A. A1 - Churakov, A. A1 - Emmerling, Franziska A1 - Perlovich, G. T1 - Ciprofloxacin salts with benzoic acid derivatives: structural aspects, solid-state properties and solubility performance JF - Crystengcomm N2 - n this work, three new pharmaceutical hydrated salts of ciprofloxacin with selected derivatives of benzoic acid, namely 4-hydroxybenzoic acid, 4-aminobenzoic acid and gallic acid, were obtained and systematically investigated by several solid-state analytical techniques. In situ Raman spectroscopy was applied to elucidate the alternative pathways of the solid forms' formation under mechanochemical conditions. Crystal structure analysis and a CSD survey allowed us to establish a distinct supramolecular motif formed by infinite columnar stacks of ciprofloxacin dimers arranged in the “head-to-tail” manner. An alternative “head-to-head” packing arrangement was only observed in the crystal of the hydrated ciprofloxacin salt with 4-aminobenzoic acid. In addition, the pH-solubility behavior of the solid forms was thoroughly investigated. Furthermore, a distinct structure–property relationship between the specific features of the supramolecular organization of the hydrated salts and their solubility was observed and discussed. KW - Mechanochemistry KW - XRD PY - 2020 DO - https://doi.org/10.1039/D0CE00514B VL - 22 IS - 25 SP - 4238 EP - 4249 AN - OPUS4-51818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Feiler, Torvid A1 - Ali, N. Z. A1 - Minas da Piedade, M. E. A1 - Emmerling, Franziska T1 - Mechanistic Insights into a Sustainable Mechanochemical Synthesis of Ettringite JF - ChemistryOpen N2 - Mechanochemistry offers an environmentally benign and facile synthesis method for a variety of cement paste constituents. In addition, these methods can be used to selectively tune the properties of cement components. The mineral ettringite is an important component of cementitious materials and has additional technological potential due to its ion exchange properties. Synthesis of ettringite via mechanochemistry is an environmentally friendly alternative to conventional wet-chemical synthesis established in industry. This contribution explores the mechanism of a two-step mechanochemical synthesis of ettringite, which was previously found to greatly improve the reaction conversion as compared with one-pot synthesis. The crystallinity of Al(OH)3 was found to decrease during the first stage of this mechanochemical synthesis. This was correlated to a significant decrease in the particle size of Al(OH)3 in this stage. No other significant changes were found for the other components, suggesting that mechanochemical activation of Al(OH)3 is responsible for the enhanced formation of ettringite by the two-step approach. The environmentally friendly approach developed for ettringite synthesis offers a versatile synthetic strategy, which can be applied to synthesise further cementitious materials. KW - Ettringite KW - Mechanochemistry KW - Sustainability KW - X-ray diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489172 DO - https://doi.org/10.1002/open.201900215 VL - 8 IS - 7 SP - 1012 EP - 1019 PB - ChemPubSoc AN - OPUS4-48917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Ali, Naveed Zafar A1 - Maierhofer, Christiane A1 - Emmerling, Franziska T1 - Ettringite via Mechanochemistry: A Green and Rapid Approach for Industrial Application JF - ACS Omega N2 - Here, we report on a first mechanochemical synthesis of ettringite, an important cement hydrate phase. The mineral compound ettringite ([Ca3Al(OH)6]2·(SO4)3·26H2O) occurs rarely in nature, but is common for cement-based materials. Ettringite has wide technical application in the ceramic and paper industry. However, its typical wet-chemical synthesis is cumbersome and produces waste water and CO2 emissions. Here, we investigate the first mechanochemical synthesis of ettringite for developing an easy and sustainable alternative for industrial application. The mechanosynthesis was monitored in situ by coupled synchrotron X-ray diffraction (XRD) and infrared thermography (IRT). The consumption of the reactants and the formation of the reaction product were monitored with time-resolved XRD. IRT showed the temperature increase based on the exothermic reaction. The reaction conversion was significantly improved changing the strategy of the mechanosynthesis from a one- to a two-step process. The latter included neat pregrinding of solid reactants followed by a delayed addition of the stoichiometric amount of water. Thus, an increase of reaction conversion from 34 to 94% of ettringite could be achieved. KW - XRD KW - Mechanochemistry KW - Ettringite KW - In situ PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479016 DO - https://doi.org/10.1021/acsomega.9b00560 SN - 2470-1343 VL - 4 IS - 4 SP - 7734 EP - 7737 PB - ACS Publications CY - Washington, DC AN - OPUS4-47901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals JF - Proceedings of the National Academy of Sciences of the United States of America (PNAS) N2 - In recent years, we have come to appreciate the astounding intricacies associated with the formation of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that the nucleation of calcium sulfate systems occurs nonclassically, involving the aggregation and reorganization of nanosized prenucleation species. In recent work, we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant micrometer-sized CaSO4 crystals. This property of CaSO4 minerals provides us with the unique opportunity to search for evidence of nonclassical nucleation pathways in geological environments. In particular, we focused on large anhydrite Crystals extracted from the Naica Mine in Mexico. We were able to shed light on this mineral's growth history by mapping defects at different length scales. Based on this, we argue that the nanoscale misalignment of the structural subunits, observed in the initial calcium sulfate crystal seeds, propagates through different length scales both in morphological, as well as in strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nonclassical nucleation mechanism introduces a “seed of imperfection,” which leads to a macroscopic “single” crystal whose fragments do not fit together at different length scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very welldefined walls/edges. However, at the same time, the material retains in part its single crystal nature. KW - Calcium sulfate KW - Anhydrite KW - Mesocrystal KW - Nucleation KW - Naica PY - 2021 DO - https://doi.org/10.1073/pnas.2111213118 SN - 0027-8424 VL - 118 IS - 48 SP - 1 EP - 11 PB - National Academy of Sciences (USA) CY - Washington AN - OPUS4-53820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Pimentel, Carlos A1 - Montes-Hernández, German A1 - Kochovski, Zdravko A1 - Bienert, Ralf A1 - Weimann, Karin A1 - Emmerling, Franziska A1 - Scoppola, Ernesto A1 - Van Driessche, Alexander E.S. T1 - Solution-driven processing of calcium sulfate: The mechanism of the reversible transformation of gypsum to bassanite in brines JF - Journal of Cleaner Production N2 - Here, we show that calcium sulfate dihydrate (gypsum) can be directly, rapidly and reversibly converted to calcium sulfate hemihydrate (bassanite) in high salinity solutions (brines). The optimum conditions for the efficient production of bassanite in a short time (<5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the better-known behaviour of the bassanite phase in low-salt environments. In low-salinity aqueous solutions, bassanite is considered to be metastable with respect to gypsum and anhydrite, and therefore gypsum-to-bassanite conversion does not occur in pure water. Interestingly, the high-salinity transformation of gypsum-to-bassanite has been reported by many authors and used in practice for several decades, although its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures was inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline phase for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. KW - Industrial and Manufacturing Engineering KW - Strategy and Management KW - General Environmental Science KW - Renewable Energy, Sustainability and the Environment KW - Building and Construction KW - Calcium sulfate KW - Gypsum KW - Bassanite KW - Scattering KW - Raman KW - In situ KW - Synchrotron KW - BESSY KW - MySpot PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594698 UR - https://www.sciencedirect.com/science/article/pii/S0959652624004591#appsec1 DO - https://doi.org/10.1016/j.jclepro.2024.141012 SN - 0959-6526 VL - 440 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-59469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Souza, B. A1 - Chauque, S. A1 - de Oliveira, P. A1 - Emmerling, Franziska A1 - Torresi, R. T1 - Mechanochemical optimization of ZIF-8/Carbon/S8 composites for lithium-sulfur batteries positive electrodes JF - Journal of Electroanalytical Chemistry N2 - The application of lithium-sulfur (Li-S) batteries is still limited by their rapid capacity fading. The pulverization of the sulfur positive electrode after the lithiation and the consequence dissolution of long chain polysulfides in organic solvents lead to the shuttle effect. To address these issues, here we report the mechanochemical preparation of ZIF-8 (Zeolitic Imidazole Framework-8)-based composites as sulfur hosts for positive electrodes in Li-S batteries. We studied different methods for the incorporation of conductive carbon. Also, the replacement of Zn2+ metal centers by other bivalent metals (Cu2+, Co2+ and Ni2+), enabled the preparation of other ZIF-8-based materials. The positive electrode ZIF-8/C/S8 showed initial discharges of 772 mA h g−1 while the pristine one, ZIF-8/S8, displayed 502 mA h g−1. The enhanced performance of 54% for ZIF-8/C/S8 indicates that the direct mechanochemical synthesis of ZIF-8 with conductive carbon is beneficial at initials charge/discharge process in comparison to traditional slurry preparation (ZIF-8/S8). Also, the Li2S6 absorption tests shows 87% of discoloration with ZIF-8/C/S8, confirming the better polysulfides absorption. KW - Lithium-sulfur battery KW - Metal organic frameworks KW - ZIF-8 KW - Mechanochemistry PY - 2021 DO - https://doi.org/10.1016/j.jelechem.2021.115459 VL - 896 SP - 115459 PB - Elsevier B.V. AN - OPUS4-53542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Somasundaram, S. K. A1 - Buzanich, Ana A1 - Emmerling, Franziska A1 - Krishnan, S. A1 - Senthilkumar, K. A1 - Joseyphus, R.J. T1 - New insights into pertinent Fe-complexes for the synthesis of iron via the instant polyol process JF - Physical Chemistry Chemical Physics N2 - Chemically synthesized iron is in demand for biomedical applications due to its large saturation magnetization compared to iron oxides. The polyol process, suitable for obtaining Co and Ni particles and their alloys, is laborious in synthesizing Fe. The reaction yields iron oxides, and the reaction pathway remains unexplored. This study shows that a vicinal polyol, such as 1,2-propanediol, is suitable for obtaining Fe rather than 1,3-propanediol owing to the formation of a reducible Fe intermediate complex. X-ray absorption spectroscopy analysis reveals the ferric octahedral geometry and tetrahedral geometry in the ferrous state of the reaction intermediates in 1,2-propanediol and 1,3-propanediol, respectively. The final product obtained using a vicinal polyol is Fe with a γ-Fe2O3 shell, while the terminal polyol is favourable for Fe3O4. The distinct Fe–Fe and Fe–O bond lengths suggest the presence of a carboxylate group and a terminal alkoxide ligand in the intermediate of 1,2-propanediol. A large Fe–Fe bond distance suggests diiron complexes with bidentate carboxylate bridges. Prominent high-spin and low-spin states indicate the possibility of transition, which favors the reduction of iron ions in the reaction using 1,2-propanediol. KW - XAS KW - Nanoparticle PY - 2023 DO - https://doi.org/10.1039/D3CP01969A SN - 1463-9076 VL - 25 IS - 33 SP - 21970 EP - 21980 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobina, E. A1 - Zimathies, Annett A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - de Santis Neves, R. A1 - Wang, H. A1 - Mizuno, K. A1 - Devoille, L. A1 - Steel, E. A1 - Ceyhan, A. A1 - Sadak, E. ED - Sobina, E. T1 - Final report of CCQM-K153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) JF - Metrologia N2 - CCQM key comparison K-153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The objective of this key comparison is to compare the equivalency of the National Metrology Institutes (NMIs) and Designated Institutes (DIs) for the measurement of specific adsorption, BET specific surface area) of nonporous substances (sorbents, ceramics, catalytic agents, etc) used in advanced technology. In this key comparison, a commercial nonporous silicon dioxide was supplied as a sample. Eight NMIs participated in this key comparison, but only five NMI's have reported in time. All participants used a gas adsorption method, here nitrogen and (or) krypton adsorption at 77.3 K, for analysis according to the international standards ISO 15901-2 and 9277. In this key comparison, the degrees of equivalence uncertainties for specific adsorption nitrogen and krypton, BET specific surface area were established. KW - Nonporous SiO2 KW - Specific Adsorption of N-2 and Kr KW - BET specific surface area PY - 2019 DO - https://doi.org/10.1088/0026-1394/56/1A/08013 VL - 56 IS - 1A SP - 08013 PB - IOP publishing Ltd CY - Bristol, UK AN - OPUS4-50358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simões, R. G. A1 - Melo, P. L. T. A1 - Bernardes, C. E. S. A1 - Heilmann, Maria A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Linking Aggregation in Solution, Solvation, and Solubility of Simvastatin: An Experimental and MD Simulation Study JF - Crystal Growth & Design N2 - The solubility is generally thought to be higher if the solvent effectively solvates solute molecules that are well-separated from each other. The present work suggests, however, that the formation of large solute aggregates does not necessarily imply less effective solvation and lower solubility. Measurements of the solubility of simvastatin (one of the most commonly prescribed antihyperlipidemic drugs) in three solvents with different polarities and protic characters, led to the solubility order acetone > ethyl acetate > ethanol, in the full temperature range covered by the experiments (283–308 K). An analysis of the structures of the different solutions on the basis of molecular dynamics simulation results indicated that this trend seems to be determined by a balance between the solute tendency toward aggregation and the ability of the solvent to efficiently solvate it, by integrating the cluster structures, regardless of their size, and effectively establishing solvent–solute interactions. KW - Simvastatin KW - Solubility KW - API KW - Aggregation PY - 2021 DO - https://doi.org/10.1021/acs.cgd.0c01325 VL - 21 IS - 1 SP - 544 EP - 551 AN - OPUS4-52185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simoes, R. A1 - Bernades, C. A1 - Joseph, A. A1 - Piedade, F. A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Diogo, H. A1 - da Piedade, M. T1 - Polymorphism in simvastatin: Twinning, disorder, and enantiotropic phase transitions JF - Molecular pharmaceutics N2 - : Simvastatin is one of the most widely used active pharmaceutical ingredients for the treatment of hyperlipidemias. Because the compound is employed as a solid in drug formulations, particular attention should be given to the characterization of different polymorphs, their stability domains, and the nature of the phase transitions that relate them. In this work, the phase transitions delimiting the stability domains of three previously reported simvastatin forms were investigated from structural, energetics, and dynamical points of view based on single crystal X-ray diffraction (SCXRD), hot stage microscopy (HSM), and differential scanning calorimetry (DSC) experiments (conventional scans and heat capacity measurements), complemented with molecular dynamics (MD) simulations. Previous assignments of the crystal forms were confirmed by SCXRD: forms I and II were found to be orthorhombic (P212121, Z′/Z = 1/4) and form III was monoclinic (P21, Z′/Z = 2/4). The obtained results further indicated that (i) the transitions between different forms are observed at 235.9 ± 0.1 K (form III → form II) and at 275.2 ± 0.2 K (form II → form I) in DSC runs carried out at 10 K min−1 and close to these values when other types of techniques are used (e.g., HSM). (ii) They are enantiotropic (i.e., there is a transition temperature relating the two phases before fusion at which the stability order is reversed), fast, reversible, with very little hysteresis between heating and cooling modes, and occur under single crystal to single crystal conditions. (iii) A nucleation and growth mechanism seems to be followed since HSM experiments on single crystals evidenced the propagation of an interface, accompanied by a change of birefringence and crystal contraction or expansion (more subtle in the case of form III → form II), when the phase transitions are triggered. (iv) Consistent with the reversible and small hysteresis nature of the phase transitions, the SCXRD results indicated that the molecular packing is very similar in all forms and the main structural differences are associated with conformational changes of the “ester tail”. (v) The MD simulations further suggested that the tail is essentially “frozen” in two conformations below the III → II transition temperature, becomes progressively less hindered throughout the stability domain of form II, and acquires a large conformational freedom above the II → I transition. Finally, the fact that these transitions were found to be fast and reversible suggests that polymorphism is unlikely to be a problem for pharmaceutical formulations employing crystalline simvastatin because, if present, the III and II forms will readily convert to form I at ambient temperature. KW - Polymorphism KW - Twinning KW - Disorder KW - Simvastatine PY - 2018 DO - https://doi.org/10.1021/acs.molpharmaceut.8b00818 SN - 1543-8384 SN - 1543-8392 VL - 15 IS - 11 SP - 5349 EP - 5360 PB - American Chemical Society CY - Washington, DC AN - OPUS4-46927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlögl, Johanna A1 - Goldammer, Ole A1 - Bader, Julia A1 - Emmerling, Franziska A1 - Riedel, Sebastian T1 - Introducing AFS ([Al(SO3F)3]x) – a thermally stable, readily available, and catalytically active solid Lewis superacid JF - Chemical Science N2 - This paper introduces the thermally stable, solid Lewis superacid aluminium tris(fluorosulfate) (AFS), that is easy-to-synthesize from commercially available starting materials. Its applicability, e.g. in catalytic C–F bond activations, is shown. KW - Lewis Acid KW - C-F activation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601001 DO - https://doi.org/10.1039/D4SC01753F SN - 2041-6520 SP - 1 EP - 7 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiffmann, J. A1 - Emmerling, Franziska A1 - Martins, Ines A1 - Van Wüllen, L. T1 - In-situ reaction monitoring of a mechanochemical ball mill reaction with solid state NMR JF - Solid State Nuclear Magnetic Resonance N2 - We present an approach towards the in situ solid state NMR monitoring of mechanochemical reactions in a ball mill. A miniaturized vibration ball mill is integrated into the measuring coil of a home-built solid state NMR probe, allowing for static solid state NMR measurements during the mechanochemical reaction within the vessel. The setup allows to quantitatively follow the product evolution of a prototypical mechanochemical reaction, the formation of zinc phenylphosphonate from zinc acetate and phenylphosphonic acid. MAS NMR investigations on the final reaction mixture confirmed a reaction yield of 89% in a typical example. Thus, NMR spectroscopy may in the future provide complementary information about reaction mechanisms of mechanochemical reactions and team up with other analytical methods which have been employed to follow reactions in situ, such as Raman spectroscopy or X-ray diffraction. KW - Mechanochemistry KW - Solid state NMR KW - NMR probe Development PY - 2020 DO - https://doi.org/10.1016/j.ssnmr.2020.101687 VL - 109 SP - 101687 PB - Elsevier Inc. AN - OPUS4-51283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheurrell, Kerstin A1 - B. Martins, Inês C. A1 - Murray, Claire A1 - Emmerling, Franziska T1 - Exploring the role of solvent polarity in mechanochemical Knoevenagel condensation: in situ investigation and isolation of reaction intermediates JF - Physical Chemistry Chemical Physics N2 - Mechanochemistry has proven to be a highly effective method for the synthesis of organic compounds. We studied the kinetics of the catalyst-free Knoevenagel reaction between 4-nitrobenzaldehyde and malononitrile, activated and driven by ball milling. The reaction was investigated in the absence of solvents (neat grinding) and in the presence of solvents with different polarities (liquid-assisted grinding). The reaction was monitored using time-resolved in situ Raman spectroscopy and powder X-ray diffraction (PXRD). Our results indicate a direct relationship between solvent polarity and reaction kinetics, with higher solvent polarity leading to faster product (2-(4-nitrobenzylidone)malononitrile) formation. For the first time, we were able to isolate and determine the structure of an intermediate 2-(hydroxy(4-nitrophenyl)methyl)malononitrile based on PXRD data. KW - Physical and Theoretical Chemistry KW - General Physics and Astronomy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588071 DO - https://doi.org/10.1039/D3CP02883F SN - 1463-9076 VL - 25 IS - 35 SP - 23637 EP - 23644 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Santos de Freitas, M. A1 - Araghi, R. R. A1 - Brandenburg, E. A1 - Leiterer, Jork A1 - Emmerling, Franziska A1 - Folmert, K. A1 - Gerling-Driessen, U. I. M. A1 - Bardiaux, B. A1 - Böttcher, C. A1 - Pagel, K. A1 - Diehl, A. A1 - v. Berlepsch, H. A1 - Oschkinat, H. A1 - Koksch, B. T1 - The protofilament architecture of a de novo designed coiled coil-based amyloidogenic peptide JF - Journal of Structural Biology N2 - Amyloid fibrils are polymers formed by proteins under specific conditions and in many cases they are related to pathogenesis, such as Parkinson’s and Alzheimer’s diseases. Their hallmark is the presence of a β-sheet structure. High resolution structural data on these systems as well as information gathered from multiple complementary analytical techniques is needed, from both a fundamental and a pharmaceutical perspective. Here, a previously reported de novo designed, pH-switchable coiled coil-based peptide that undergoes structural transitions resulting in fibril formation under physiological conditions has been exhaustively characterized by transmission electron microscopy (TEM), cryo-TEM, atomic force microscopy (AFM), wide-angle X-ray scattering (WAXS) and solid-state NMR (ssNMR). Overall, a unique 2-dimensional carpet-like assembly composed of large coexisiting ribbon-like, tubular and funnel-like structures with a clearly resolved protofilament substructure is observed. Whereas electron microscopy and scattering data point somewhat more to a hairpin model of β-fibrils, ssNMR data obtained from samples with selectively labelled peptides are in agreement with both, hairpin structures and linear arrangements. KW - Amyloid KW - Elektronenmikroskopie PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458713 UR - https://www.sciencedirect.com/science/article/pii/S1047847718301333 DO - https://doi.org/10.1016/j.jsb.2018.05.009 SN - 1047-8477 VL - 203 IS - 3 SP - 263 EP - 272 PB - Elsevier AN - OPUS4-45871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ravi, J. A1 - Feiler, Torvid A1 - Mondal, A. A1 - Michalchuk, Adam A1 - Reddy, C. M. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Chandrasekar, R. T1 - Plastically bendable organic crystals for monolithic and hybrid micro-optical circuits JF - Advanced optical materials N2 - Fluorescent plastically bendable crystals are a promising alternative to silicon-based materials for fabricating photonic integrated circuits, owing to their optical attributes and mechanical compliance. Mechanically bendable plastic organic crystals are rare. Their formation requires anisotropic intermolecular interactions and slip planes in the crystal lattice. This work presents three fluorescent plastically bendable crystalline materials namely, 2-((E)-(6-methylpyridin-2-ylimino)methyl)-4-chlorophenol (SB1), 2-((E)-(6-methylpyridin-2-ylimino)methyl)-4-bromophenol (SB2), and 2-((E)-(6-Bromopyridin-2-ylimino)methyl)-4-bromophenol (SB3) molecules. The crystal plasticity in response to mechanical stress facilitates the fabrication of various monolithic and hybrid (with a tip-to-tip coupling) photonic circuits using mechanical micromanipulation with an atomic force microscope cantilever tip. These plastically bendable crystals act as active (self-guiding of fluorescence) and passive waveguides both in straight and extremely bent (U-, J-, and O-shaped) geometries. These microcircuits use active and passive waveguiding principles and reabsorbance and energy-transfer mechanisms for their operation, allowing input-selective and direction-specific signal transduction. KW - Flexible crystals KW - Flexible waveguide PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565302 DO - https://doi.org/10.1002/adom.202201518 SN - 2195-1071 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Gernhard, M. A1 - Radnik, Jörg A1 - Witt, Julia A1 - Roth, C. A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of fluorine-containing Co-doped zeolitic imidazolate frameworks for producing electrocatalysts JF - Frontiers in chemistry N2 - Catalysts derived from pyrolysis of metal organic frameworks (MOFs) are promising candidates to replace expensive and scarce platinum-based electrocatalysts commonly used in polymer electrolyte membrane fuel cells. MOFs contain ordered connections between metal centers and organic ligands. They can be pyrolyzed into metal- and nitrogen-doped carbons, which show electrocatalytic activity toward the oxygen reduction reaction (ORR). Furthermore, metal-free heteroatom-doped carbons, such as N-F-Cs, are known for being active as well. Thus, a carbon material with Co-N-F doping could possibly be even more promising as ORR electrocatalyst. Herein, we report the mechanochemical synthesis of two polymorphs of a zeolitic imidazole framework, Co-doped zinc 2-trifluoromethyl-1H-imidazolate (Zn0.9Co0.1(CF3-Im)2). Time-resolved in situ X-ray diffraction studies of the mechanochemical formation revealed a direct conversion of starting materials to the products. Both polymorphs of Zn0.9Co0.1(CF3-Im)2 were pyrolyzed, yielding Co-N-F containing carbons, which are active toward electrochemical ORR. KW - Mechanochemistry KW - Metal-organic-frameworks KW - Nobel-metal free electrocatalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546833 DO - https://doi.org/10.3389/fchem.2022.840758 SN - 2296-2646 VL - 10 IS - 840758 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-54683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Bhattacharya, Biswajit A1 - Witt, Julia A1 - Jain, Mohit A1 - Emmerling, Franziska T1 - In situ time-resolved monitoring of mixed-ligand metal–organic framework mechanosynthesis JF - CrystEngComm N2 - The mechanism of mixed-ligand metal–organic framework (MOF) formation, and the possible role of intermediate single-ligand metal complexes during mechanosynthesis, have not been explored yet. For the first time, we report here in situ real-time monitoring of the mechanochemical formation mechanism of mixed-ligand MOFs. Our results show that binary phases can act as intermediates or competing products in one-pot and stepwise synthesis. KW - Mechanochemistry KW - Metal-organic-frameworks KW - In situ X-ray diffraction KW - Mixed-ligand MOFs PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558167 DO - https://doi.org/10.1039/D2CE00803C SP - 1 EP - 4 PB - Royal Society of Chemistry AN - OPUS4-55816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Bhattacharya, Biswajit A1 - Das, Chayanika A1 - Emmerling, Franziska T1 - Mechanochemical Synthesis of Phosphonate-Based Proton Conducting Metal-Organic Frameworks JF - Inorganic Chemistry N2 - Water-stable metal−organic frameworks (MOFs) with proton-conducting behavior have attracted great attention as promising materials for proton-exchange membrane fuel cells. Herein, we report the mechanochemical gram-scale synthesis of three new mixed-ligand phosphonate-based MOFs, {Co(H2PhDPA)(4,4′-bipy)H2O)·2H2O}n (BAM-1), {Fe(H2PhDPA)(4,4′-bipy) (H2O)·2H2O}n (BAM-2), and {Cu(H2PhDPA)(dpe)2(H2O)2·2H2O}n (BAM-3) [where H2PhDPA = phenylene diphosphonate, 4,4′-bipy = 4,4′-bipyridine, and dpe = 1,2-di(4-pyridyl)ethylene]. Single-crystal X-ray diffraction measurements revealed that BAM-1 and BAM-2 are isostructural and possess a three-dimensional (3D) network structure comprising one-dimensional (1D) channels filled with guest water molecules. Instead, BAM-3 displays a 1D network structure extended into a 3D supramolecular structure through hydrogenbonding and π−π interactions. In all three structures, guest water molecules are interconnected with the uncoordinated acidic hydroxyl groups of the phosphonate moieties and coordinated water molecules by means of extended hydrogen-bonding interactions. BAM-1 and BAM-2 showed a gradual increase in proton conductivity with increasing temperature and reached 4.9 × 10−5 and 4.4 × 10−5 S cm−1 at 90 °C and 98% relative humidity (RH). The highest proton conductivity recorded for BAM-3 was 1.4 × 10−5 S cm−1 at 50 °C and 98% RH. Upon further heating, BAM-3 undergoes dehydration followed by a phase transition to another crystalline form which largely affects its performance. All compounds exhibited a proton hopping (Grotthuss model) mechanism, as suggested by their low activation energy. KW - Mechanochemistry KW - Metal-organic-frameworks KW - Proton conductivity PY - 2022 DO - https://doi.org/10.1021/acs.inorgchem.2c01023 VL - 61 SP - 10801 EP - 10809 PB - ACS Publications AN - OPUS4-55448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Bhattacharya, Biswajit A1 - Akhmetova, Irinia A1 - Emmerling, Franziska T1 - Mechanochemical and solution syntheses of two novel cocrystals of orcinol with two N,N0-Dipyridines: Structural diversity with varying ligand flexibility JF - Journal of Molecular Structure N2 - We studied the influence of coformers flexibility on the supramolecular assembly of 5-substituted resorcinol. Two cocrystals of orcinol (ORL) with two dipyridine molecules, i.e. 1,2-di(4-pyridyl)ethane (ORLeBPE) and 1,2-di(4-pyridyl)ethylene (ORLeBPY), were prepared by mechanochemical synthesis and slow evaporation of solvent. The new crystalline solids were thoroughly characterized by single crystal Xray diffraction (SCXRD), powder X-ray diffraction analysis (PXRD), Fourier-transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), and thermogravimetric analysis (TGA). Structural determination reveals that in both cocrystals, the phenolepyridine, i.e. OeH/N(py) heterosynthon takes the main role in the formation of cocrystals. In ORLeBPE, the components form infinite 1D zig-zag chains, which are extended to 2D layer structure by inter-chain CeH/O interactions between BPE hydrogen atoms and hydroxyl oxygen atoms of ORL. In ORLeBPY, the components form a 0D fourcomponent complex. Formation of the discrete assemblies is attributed to the comparative rigid nature of BPY, which restricts the formation of an extended network. KW - Cocrystal KW - Single crystal KW - X-ray diffraction KW - Mechanochemistry PY - 2020 DO - https://doi.org/10.1016/j.molstruc.2020.128303 SN - 0022-2860 VL - 1217 SP - 128303 PB - Elsevier B.V. AN - OPUS4-51023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Akhmetova, Irina A1 - Das, Chayanika A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska T1 - Synthesis and In Situ Monitoring of Mechanochemical Preparation of Highly Proton Conductive Hydrogen-Bonded Metal Phosphonates JF - ACS Omega N2 - Crystalline porous materials are recognized as promising proton conductors for the proton exchange membrane (PEM) in fuel cell technology owing to their tunable framework structure. However, it is still a challenging bulk synthesis for real-world applications of these materials. Herein, we report the mechanochemical gram-scale synthesis of two isostructural metal hydrogen-bonded organic frameworks (MHOFs) of Co(II) and Ni(II) based on 1-hydroxyethylidenediphosphonic acid (HEDPH4) with 2,2′-bipyridine (2,2′-bipy): Co(HEDPH3)2(2,2′-bipy)·H2O (1) and Ni(HEDPH3)2(2,2′-bipy)·H2O (2). In situ monitoring of the mechanochemical synthesis using different synchrotron-based techniques revealed a one-step mechanism – the starting materials are directly converted to the product. With the existence of extensive hydrogen bonds with amphiprotic uncoordinated phosphonate hydroxyl and oxygen atoms, both frameworks exhibited proton conduction in the range of 10–4 S cm–1 at room temperature under humid conditions. This study demonstrates the potential of green mechanosynthesis for bulk material preparation of framework-based solid-state proton conductors. KW - Mechanochemistry KW - Proton conductivity KW - Metal Organic Frameworks PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577777 DO - https://doi.org/10.1021/acssuschemeng.2c07509 VL - 8 IS - 19 SP - 16687 EP - 16693 PB - ACS Publications AN - OPUS4-57777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz, J. A1 - de Oliveira, P. F. M. A1 - Shetty, S. A1 - Oropeza, F. A1 - Peña O’Shea, V. A1 - Rodrigues, L. A1 - Rodrigues, M. A1 - Torresi, R. A1 - Emmerling, Franziska A1 - Camargo, P. T1 - Bringing earth-abundant plasmonic catalysis to light: Gram-scale mechanochemical synthesis and tuning of activity by dual excitation of antenna and reactor sites JF - ACS sustainable chemistry & engineering N2 - The localized surface plasmon resonance (LSPR) excitation in plasmonic nanoparticles (NPs) in the visible and near-infrared ranges is currently at the forefront of improving photocatalytic performances via plasmonic photocatalysis. One bottleneck of this field is that the NPs that often display the best optical properties in the visible and near-infrared ranges are based on expensive noble metals such as silver (Ag) and gold (Au). While earth-abundant plasmonic materials have been proposed together with catalytic metals in antenna–reactor systems, their performances remain limited by their optical properties. Importantly, the synthesis of plasmonic photocatalysts remains challenging in terms of scalability while often requiring several steps, high temperatures, and special conditions. Herein, we address these challenges by developing a one-pot, gram-scale, room-temperature synthesis of earth-abundant plasmonic photocatalysts while improving their activities beyond what has been dictated by the LSPR excitation of the plasmonic component. We describe the mechanochemical synthesis of earth-abundant plasmonic photocatalysts by using MoO3 (antenna) and Au (reactor) NPs as a proof-of-concept example and demonstrate that the dual plasmonic excitation of antenna and reactor sites enables the tuning of plasmonic photocatalytic performances toward the reductive coupling of nitrobenzene to azobenzene as a model reaction. In addition to providing a pathway to the facile and gram-scale synthesis of plasmonic photocatalysts, the results reported herein may open pathways to improved activities in plasmonic catalysis. KW - MoO3 KW - Au nanoparticles KW - Localized surface plasmon resonance KW - Plasmonic photocatalysis KW - Nitrobenzene reduction PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532089 DO - https://doi.org/10.1021/acssuschemeng.1c02063 VL - 9 IS - 29 SP - 9750 EP - 9760 PB - American Chemical Society CY - Washington, DC AN - OPUS4-53208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pütz, E. A1 - Smales, Glen Jacob A1 - Jegel, O. A1 - Emmerling, Franziska A1 - Tremel, W. T1 - Tuning ceria catalysts in aqueous media at the nanoscale: how do surface charge and surface defects determine peroxidase- and haloperoxidase-like reactivity JF - Nanoscale N2 - Designing the shape and size of catalyst particles, and their interfacial charge, at the nanometer scale can radically change their performance. We demonstrate this with ceria nanoparticles. In aqueous media, nanoceria is a functional mimic of haloperoxidases, a group of enzymes that oxidize organic substrates, or of peroxidases that can degrade reactive oxygen species (ROS) such as H2O2 by oxidizing an organic substrate. We show that the chemical activity of CeO2−x nanoparticles in haloperoxidase- and peroxidaselike reactions scales with their active surface area, their surface charge, given by the ζ-potential, and their surface defects (via the Ce3+/Ce4+ ratio). Haloperoxidase-like reactions are controlled through the ζ-potential as they involve the adsorption of charged halide anions to the CeO2 surface, whereas peroxidase-like reactions without charged substrates are controlled through the specific surface area SBET. Mesoporous CeO2−x particles, with large surface areas, were prepared via template-free hydrothermal reactions and characterized by small-angle X-ray scattering. Surface area, ζ-potential and the Ce3+/Ce4+ ratio are controlled in a simple and predictable manner by the synthesis time of the hydrothermal reaction as demonstrated by X-ray photoelectron spectroscopy, sorption and ζ-potential measurements. The surface area increased with synthesis time, whilst the Ce3+/Ce4+ ratio scales inversely with decreasing ζ-potential. In this way the catalytic activity of mesoporous CeO2−x particles could be tailored selectively for haloperoxidase- and peroxidase-like reactions. The ease of tuning the surface properties of mesoporous CeO2x particles by varying the synthesis time makes the synthesis a powerful general tool for the preparation of nanocatalysts according to individual needs. KW - SAXS KW - Ceria KW - Zeta potential PY - 2022 DO - https://doi.org/10.1039/D2NR03172H SP - 1 EP - 12 PB - Royal Society of Chemistry AN - OPUS4-55649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, Stefan A1 - Kunkel, Benny A1 - Cakir, Cafer Tufan A1 - Kabelitz, Anke A1 - Witte, Steffen A1 - Bernstein, Thomas A1 - Bartling, Stephan A1 - Radtke, Martin A1 - Emmerling, Franziska A1 - Abdel-Mageed, Ali Mohamed A1 - Wohlrab, Sebastian A1 - Guilherme Buzanich, Ana T1 - Time-, space- and energy-resolved in situ characterization of catalysts by X-ray absorption spectroscopy JF - Chemical Communications N2 - A novel setup for dispersive X-ray absorption spectroscopy (XAS) with simultaneous resolution of space, time and energy for in situ characterization of solid materials is demonstrated. KW - Dispersive XAS KW - Catalysis KW - In situ KW - Structure analysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584924 DO - https://doi.org/10.1039/d3cc03277a SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pakrashy, S. A1 - Mandal, P. K. A1 - Goswami, J. N. A1 - Dey, S. K. A1 - Choudhury, S. M. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Alasmary, F. A. A1 - Dolai, M. T1 - Bioinformatics and Network Pharmacology of the First Crystal Structured Clerodin: Anticancer and Antioxidant Potential against Human Breast Carcinoma Cell JF - ACS Omega N2 - Clerodin was isolated from the medicinal plant Clerodendrum infortunatum, and CSD search showed the first crystal structure of clerodin by a single-crystal X-ray diffraction study. We checked its binding potential with target proteins by docking and conducted network pharmacology analysis, ADMET analysis, in silico pathway analysis, normal mode analysis (NMA), and cytotoxic activity studies to evaluate clerodin as a potential anticancer agent. The cell viability studies of clerodin on the human breast carcinoma cell line (MCF-7) showed toxicity on MCF-7 cells but no toxicity toward normal human lymphocyte cells (HLCs). The anticancer mechanism of clerodin was validated by its enhanced capacity to produce intracellular reactive oxygen species (ROS) and to lower the reduced glutathione content in MCF-7 cells. KW - Anticancer KW - Clerodin PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567600 DO - https://doi.org/10.1021/acsomega.2c07173 SN - 2470-1343 VL - 7 IS - 51 SP - 48572 EP - 48582 PB - ACS Publ. CY - Washington, DC AN - OPUS4-56760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Opitz, P. A1 - Besch, L. A1 - Panthöfer, M. A1 - Kabelitz, Anke A1 - Unger, R. A1 - Emmerling, Franziska A1 - Mondeshki, M. A1 - Tremel, W. T1 - Insights into the In Vitro Formation of Apatite from Mg‐Stabilized Amorphous Calcium Carbonate JF - Advanced Functional Materials N2 - A protein‐free formation of bone‐like apatite from amorphous precursors through ball‐milling is reported. Mg2+ ions are crucial to achieve full amorphization of CaCO3. Mg2+ incorporation generates defects which strongly retard a recrystallization of ball‐milled Mg‐doped amorphous calcium carbonate (BM‐aMCC), which promotes the growth of osteoblastic and endothelial cells in simulated body fluid and has no effect on endothelial cell gene expression. Ex situ snapshots of the processes revealed the reaction mechanisms. For low Mg contents (<30%) a two phase system consisting of Mg‐doped amorphous calcium carbonate (ACC) and calcite “impurities” was formed. For high (>40%) Mg2+ contents, BM‐aMCC follows a different crystallization path via magnesian calcite and monohydrocalcite to aragonite. While pure ACC crystallizes rapidly to calcite in aqueous media, Mg‐doped ACC forms in the presence of phosphate ions bone‐like hydroxycarbonate apatite (dahllite), a carbonate apatite with carbonate substitution in both type A (OH−) and type B (PO43−) sites, which grows on calcite “impurities” via heterogeneous nucleation. This process produces an endotoxin‐free material and makes BM‐aMCC an excellent “ion storage buffer” that promotes cell growth by stimulating cell viability and metabolism with promising applications in the treatment of bone defects and bone degenerative diseases. KW - Total Scattering KW - XRD KW - Mechanochemistry PY - 2020 DO - https://doi.org/10.1002/adfm.202007830 VL - 31 IS - 3 SP - 7830 PB - Wiley VHC-Verlag AN - OPUS4-51761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Opitz, P. A1 - Asta, M. A1 - Fernandez-Martinez, A. A1 - Panthöfer, M. A1 - Kabelitz, Anke A1 - Emmerling, Franziska A1 - Mondeshki, M. A1 - Tremel, W. T1 - Monitoring a Mechanochemical Syntheses of Isostructural Luminescent Cocrystals of 9-Anthracenecarboxylic Acid with two Dipyridines Coformers JF - Crystal Growth and Design N2 - Amorphous calcium carbonate (ACC) is an important precursor in the biomineralization of crystalline CaCO3. In nature, it serves as a storage material or as a permanent structural element, whose lifetime is regulated by an organic matrix. The relevance of ACC in materials science is primarily related to our understanding of CaCO3 crystallization pathways and CaCO3/(bio)polymer nanocomposites. ACC can be synthesized by liquid–liquid phase separation, and it is typically stabilized with macromolecules. We have prepared ACC by milling calcite in a planetary ball mill. Phosphate “impurities” were added in the form of monetite (CaHPO4) to substitute the carbonate anions, thereby stabilizing ACC by substitutional disorder. The phosphate anions do not simply replace the carbonate anions. They undergo shear-driven acid/base and condensation reactions, where stoichiometric (10%) phosphate contents are required for the amorphization to be complete. The phosphate anions generate a strained network that hinders ACC recrystallization kinetically. The amorphization reaction and the structure of BM-ACC were studied by quantitative Fourier transform infrared spectroscopy and solid state 31P, 13C, and 1H magic angle spinning nuclear magnetic resonance spectroscopy, which are highly sensitive to symmetry changes of the local environment. In the first—and fast—reaction step, the CO32– anions are protonated by the HPO42– groups. The formation of unprecedented hydrogen carbonate (HCO3–) and orthophosphate anions appears to be the driving force of the reaction, because the phosphate group has a higher Coulomb energy and the tetrahedral PO43– unit can fill space more efficiently. In a competing second—and slow—reaction step, pyrophosphate anions are formed in a condensation reaction. No pyrophosphates are formed at higher carbonate contents. High strain leads to such a large energy barrier that any reaction is suppressed. Our findings aid in the understanding of the mechanochemical amorphization of calcium carbonate and emphasize the effect of impurities for the stabilization of the amorphous phases in general. Our approach allowed the synthesis of new amorphous alkaline earth defect variants containing the unique HCO3– anion. Our approach outlines a general strategy to obtain new amorphous solids for a variety of carbonate/phosphate systems that offer promise as biomaterials for bone regeneration. KW - Crystallization KW - Mechanochemistry KW - PDF PY - 2020 DO - https://doi.org/10.1021/acs.cgd.0c00912 VL - 20 IS - 10 SP - 6831 EP - 6846 PB - American Chemical Society AN - OPUS4-51819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nag, Sayak A1 - Emmerling, Franziska A1 - Tothadi, Srinu A1 - Bhattacharya, Biswajit A1 - Ghosh, Soumyajit T1 - Distinct photomechanical responses of two new 1,3-dimethylbarbituric acid derivative crystals JF - CrystEngComm N2 - We demonstrate two distinct photomechanical responses (i.e. photomechanical bending and photosalient bursting) of two new 1,3-dimethylbarbituric acid derivative crystals based on tailoring their substituents and the modulation of their spacers. KW - Crystal engineering KW - Fexible crystals PY - 2024 DO - https://doi.org/10.1039/D4CE00233D SP - 1 EP - 12 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Time-Resolved InSitu Monitoring of Mechanochemical Reactions JF - Angewandte Chemie International Edition N2 - Mechanochemical transformations offer environmentally benign synthesis routes, whilst enhancing both the speed and selec-tivity of reactions. In this light, mechanochemistry promises to trans-form the way in which chemistry is done in both academia and indus-try but is greatly hindered by a current lack in mechanistic understand-ing. The continued development and use of time-resolved in situ(TRIS) approaches to monitor mechanochemical reactions provides a new dimension to elucidatethese fascinating transformations. We here discuss recent trends in method development that have pushed the boundaries of mechanochemical research. New features of mech-anochemical reactions obtained by TRIS techniques are subse-quently discussed, shedding light on how different TRISapproaches have beenused. Emphasis is placed on the strength of combining complementary techniques. Finally, we outline our views for the po-tential of TRIS methods in mechanochemical research, towards es-tablishing a new, environmentally benign paradigm in the chemical sciences KW - Mechanochemistry KW - Material synthesis KW - Green chemistry PY - 2022 DO - https://doi.org/10.1002/anie.202117270 SN - 1433-7851 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam A1 - Boldyreva, E. A1 - Belenguer, A. M. A1 - Emmerling, Franziska A1 - Boldyrev, V. V. T1 - Tribochemistry, mechanical alloying, mechanochemistry: what is in a name? JF - Frontiers in chemistry N2 - Over the decades, the application of mechanical force to influence chemical reactions has been called by various names: mechanochemistry, tribochemistry, mechanical alloying, to name but a few. The evolution of these terms has largely mirrored the understanding of the field. But what is meant by these terms, why have they evolved, and does it really matter how a process is called? Which parameters should be defined to describe unambiguously the experimental conditions such that others can reproduce the results, or to allow a meaningful comparison between processes explored under different conditions? Can the information on the process be encoded in a clear, concise, and self-explanatory way? We address these questions in this Opinion contribution, which we hope will spark timely and constructive discussion across the international mechanochemistry community. KW - Mechanochemistry KW - Tribochemistry KW - Mechanical alloying KW - Tribology KW - Mechanical activation KW - Nomenclature KW - Mechanochemical pictographs PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523291 DO - https://doi.org/10.3389/fchem.2021.685789 SN - 2296-2646 VL - 9 SP - 1 EP - 29 PB - Frontiers Media CY - Lausanne AN - OPUS4-52329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mazzeo, P. P. A1 - Prencipe, M. A1 - Feiler, Torvid A1 - Emmerling, Franziska A1 - Bacchi, A. T1 - On the mechanism of cocrystal mechanochemical reaction via low melting eutectic: A time-resolved in situ monitoring investigation JF - Crystal growth and design N2 - Mechanochemistry has become a sustainable and attractive cost-effective synthetic technique, largely used within the frame of crystal engineering. Cocrystals, namely, crystalline compounds made of different chemical entities within the same crystal structure, are typically synthesized in bulk via mechanochemistry; however, whereas the macroscopic aspects of grinding are becoming clear, the fundamental principles that underlie mechanochemical cocrystallization at the microscopic level remain poorly understood. Time-resolved in situ (TRIS) monitoring approaches have opened the door to exceptional detail regarding mechanochemical reactions. We here report a clear example of cocrystallization between two solid coformers that proceeds through the formation of a metastable low melting binary eutectic phase. The overall cocrystallization process has been monitored by time-resolved in situ (TRIS) synchrotron X-ray powder diffraction with a customized ball milling setup, currently available at μ Spot beamline at BESSY-II, Helmholtz-Zentrum Berlin. The binary system and the low melting eutectic phase were further characterized via DSC, HSM, and VT-XRPD. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552977 DO - https://doi.org/10.1021/acs.cgd.2c00262 SN - 1528-7505 VL - 22 IS - 7 SP - 4260 EP - 4267 PB - ACS Publ. CY - Washington, DC AN - OPUS4-55297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mazzeo, P A1 - Lampronti, G A1 - Michalchuk, Adam A1 - Belenguer, A A1 - Bacchi, A A1 - Emmerling, Franziska T1 - Accurate extrinsic and intrinsic peak broadening modelling for time-resolved in situ ball milling reactions via synchrotron powder X-ray diffraction JF - Faraday Discussions N2 - The debate on the mechanisms which underpin mechanochemical reactions via ball mill grinding is still open. Our ability to accurately measure the microstructural (crystal size and microstrain) evolution of materials under milling conditions as well as their phase composition as a function of time is key to the in-depth understanding of the kinetics and driving forces of mechanochemical transformations. Furthermore, all ball milling reactions end with a steady state or milling equilibrium – represented by a specific phase composition and relative microstructure – that does not change as long as the milling conditions are maintained. The use of a standard sample is essential to determine the instrumental contribution to the X-ray powder diffraction (XRPD) peak broadening for time-resolved in situ (TRIS) monitoring of mechanochemical reactions under in operando conditions. Using TRIS-XRPD on a ball milling setup, coupled with low-energy synchrotron radiation, we investigated different data acquisition and analysis strategies on a silicon standard powder. The diffraction geometry and the microstructural evolution of the standard itself have been studied to model the instrumental contribution to XRPD peak broadening throughout the grinding activity. Previously proposed functions are here challenged and further developed. Importantly, we show that minor drifts of the jar position do not affect the instrumental resolution function significantly. We here report and discuss the results of such investigations and their application to TRIS-XRPD datasets of inorganic and organic ball mill grinding reactions. KW - Mechanochemistry KW - In situ diffraction KW - Synchrotron radiation KW - Sustainable chemisry PY - 2022 DO - https://doi.org/10.1039/d2fd00104g SP - 1 EP - 17 PB - Royal Society of Chemistry AN - OPUS4-55932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Inês C.B. A1 - Al-Sabbagh, Dominik A1 - Meyer, Klas A1 - Maiwald, Michael A1 - Scholz, G. A1 - Emmerling, Franziska T1 - Insight into the Structure and Properties of Novel Imidazole-Based Salts of Salicylic Acid JF - Molecules N2 - The preparation of new active pharmaceutical ingredient (API) multicomponent Crystal forms, especially co-crystals and salts, is being considered as a reliable strategy to improve API solubility and bioavailability. In this study, three novel imidazole-based salts of the poorly water-soluble salicylic acid (SA) are reported exhibiting a remarkable improvement in solubility and dissolution rate properties. All structures were solved by powder X-ray diffraction. Multiple complementary techniques were used to solve co-crystal/salt ambiguities: density functional Theory calculations, Raman and 1H/13C solid-state NMR spectroscopies. In all molecular salts, the Crystal packing interactions are based on a common charged assisted +N-H SA)...O-(co-former) hydrogen bond interaction. The presence of an extra methyl group in different positions of the co-former, induced different supramolecular arrangements, yielding salts with different physicochemical properties. All salts present much higher solubility and dissolution rate than pure SA. The most promising results were obtained for the salts with imidazole and 1-methylimidazole co-formers. KW - Salicylic acid KW - Imidazole KW - Salts KW - Powder X-ray diffraction KW - SsNMR KW - DFT PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502825 DO - https://doi.org/10.3390/molecules24224144 VL - 24 IS - 22 SP - 4144 PB - MDPI AN - OPUS4-50282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Ines A1 - Al-Sabbagh, Dominik A1 - Bentrup, U. A1 - Marquardt, Julien A1 - Schmid, Thomas A1 - Scoppola, E. A1 - Kraus, Werner A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill A1 - Weidner, Steffen A1 - Emmerling, Franziska T1 - Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate JF - Chemistry - A European Journal N2 - A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4] ⋅ 22 H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo−K and the Bi−L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi−Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure. KW - Bismuth KW - In situ EXAFS KW - In situ SAXS/WAXS KW - Lacunary Keggin ion KW - Polyoxometalates KW - Self-assembly PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546823 DO - https://doi.org/10.1002/chem.202200079 SN - 0947-6539 VL - 28 IS - 27 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, I. A1 - Carta, M. A1 - Haferkamp, Sebastian A1 - Feiler, Torvid A1 - Delogu, F. A1 - Colacino, E. A1 - Emmerling, Franziska T1 - Mechanochemical N‑Chlorination Reaction of Hydantoin: In Situ Real-Time Kinetic Study by Powder X‑ray Diffraction and Raman Spectroscopy JF - Acs Sustainable Chemistry & Engineering N2 - Mechanochemistry has become a valuable tool for the synthesis of new molecules, especially in the field of organic chemistry. In the present work, we investigate the kinetic profile of the chlorination reaction of N-3-ethyl-5,5-dimethylhydantoin (EDMH) activated and driven by ball milling. The reaction has been carried out using 2 mm, 4 mm, 5 mm, 6 mm, and 8 mm ball sizes in a new small custom-made Perspex milling jar. The Crystal structure of the starting material EDMH and the 1-chloro-3-ethyl5,5′-dimethyl hydantoin (CEDMH) chlorination product was solved by single-crystal X-ray diffraction. The reaction was monitored, in situ and in real time, by both powder X-ray diffraction (PXRD) and Raman spectroscopy. Our kinetic data show that the reaction progress to equilibrium is similar at all milling ball sizes. The induction period is very short (between 10 and 40 s) when using 4 mm, 5 mm, 6 mm, and 8 mm balls. For the reaction performed with a 2 mm ball, a significantly longer induction period of 9 min was observed. This could indicate that an initial energy accumulation and higher mixing efficiency are necessary before the reaction starts. Using different kinetic models, we found that the amount of powder affected by critical loading conditions during individual impacts is significantly dependent on the ball size used. An almost linear correlation between the rate of the chemical transformations and the ball volume is observed. KW - Mechanochemistry KW - In situ real-time monitoring KW - N-Chlorination KW - Kinetics KW - Hydantoin KW - Powder X-ray diffraction KW - Raman spectroscopy PY - 2021 DO - https://doi.org/10.1021/acssuschemeng.1c03812 VL - 9 IS - 37 SP - 12591 EP - 12601 AN - OPUS4-53541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manoharan, Deepak A1 - Ranjan, Subham A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Takamizawa, Satoshi A1 - Ghosh, Soumyajit T1 - Elasto-plastic behaviour with reversible thermosalient expansion in acrylonitrile-based organic crystals JF - Journal of Materials Chemistry C N2 - Crystalline materials that exhibit reversible mechanical responses upon exposure to external stimuli have garnered significant attention owing to their potential applications in various fields. Herein, we report a crystal of (2Z,2′Z)-2,2′-(1,4-phenylene)bis(3-(4-bromophenyl)acrylonitrile) (DSBr), which displays simultaneous elasto-plastic behaviour and reversible thermosalient effects. While elasto-plastic behaviour is attributed to underlying packing features, reversible thermosalient expansion is attributed to uniaxial expansion mediated by heat. Exceptional length increase and contraction upon cooling is due to the restorative nature of weak interactions through a cooperative effect. The cooperative movement of molecules is reflected in the unidirectional expansion of the habit plane. Thermosalient reversible expansion–contraction in elasto-plastic crystals have not been discussed in the literature so far. Detailed analysis reported herein provides a comprehensive understanding of the underlying mechanism of flexibility and thermosalient responses. This crystal's unique blend of reversible thermal expansion with flexibility holds substantial promise for applications in flexible thermal actuators. KW - Materials Chemistry KW - General Chemistry PY - 2024 DO - https://doi.org/10.1039/D3TC04272C SN - 2050-7526 SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manoharan, Deepak A1 - Ahmad, Shamim A1 - Tothadi, Srinu A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, Soumyajit T1 - Linker size dependent mechanical properties of di-imine based molecular crystals JF - CrystEngComm N2 - We have demonstrated the ability to modify the mechanical flexibility of molecular crystals by modulating the length of intervening linker moieties while keeping the terminal shape synthons the same. KW - Mechanically flexible molecular crystals KW - Mechanical properties KW - Crystal Engineering PY - 2023 DO - https://doi.org/10.1039/D3CE00928A SN - 1466-8033 SP - 1 EP - 8 PB - RSC CY - London AN - OPUS4-58836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manoharan, D. A1 - Megha, S. N. A1 - Kiran, M. S. R. N. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Designing the Mechanical Plasticity of Benzylidene Indanones Based Molecular Crystals by Crystal Engineering JF - Crystal Growth & Design N2 - Mechanically flexible molecular crystals have important implications in flexible optoelectronics, optical waveguides, etc. We report a series of 2-benzylidene 1-indanone based plastic crystals. Moreover, we have shown how plasticity can be fine-tuned through controlling intermolecular interactions. KW - Mechanical flexibility KW - Organic crystal KW - Mechanical property PY - 2023 DO - https://doi.org/10.1021/acs.cgd.2c01137 SN - 1528-7483 VL - 23 SP - 657 EP - 661 PB - ACS Publications AN - OPUS4-57773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manoharan, D. A1 - Ahmad, S. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Stress and light sensitive dual-mechanical property of acylhydrazone crystal JF - CrystEngComm N2 - Mechanically dual-responsive molecular crystals have gained ubstantial interest among researchers due to their significant applications in various fields. However, incorporation of disparate mechanical responses in the same crystalline material is still a challenging issue and is continuously being explored. Here, we report long acicular crystals derived from 4-bromobenzhydrazide and 9-anthraldehyde exhibit both stressinduced mechanical bending and blue-light induced photomechanical bending. Furthermore, the crystals show thermal back isomerization upon gradual heating. These two distinct mechanical responses in the crystalline phase have been studied and their structure–property correlation have been established. KW - Light sensitive crystal KW - Mechanical flexibility KW - Organic crystal PY - 2023 DO - https://doi.org/10.1039/d3ce00296a VL - 25 IS - 21 SP - 3237 EP - 3244 PB - Royal Society of Chemisty (RSC) CY - London/Cambridge AN - OPUS4-57593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lumpe, H. A1 - Menke, Annika A1 - Haisch, C. A1 - Mayer, P. A1 - Kabelitz, Anke A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Block, T. A1 - Pöttgen, R. A1 - Emmerling, Franziska A1 - Daumann, L. T1 - The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone JF - Chemistry A European Journal N2 - Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled plasma mass spectrometry (ICP‐MS), infrared (IR) spectroscopy, 151Eu‐Mössbauer spectroscopy, X‐ray total scattering, and extended X‐ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent. KW - PQQ KW - Lanthanoide KW - Coordination chemistry KW - Rare earth elements separations PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512707 DO - https://doi.org/10.1002/chem.202002653 VL - 26 IS - 44 SP - 10133 EP - 10139 AN - OPUS4-51270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lumpe, H. A1 - Menke, A. A1 - Haisch, C. A1 - Mayer, P. A1 - Kabelitz, Anke A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Block, T. A1 - Pöttgen, R. A1 - Emmerling, Franziska A1 - Daumann, L. J. T1 - The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone JF - Chemistry – A European Journal N2 - Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol Dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled Plasma mass spectrometry (ICP-MS), infrared (IR) spectroscopy, 151Eu-Mössbauer spectroscopy, X-ray total scattering, and Extended X-ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve Separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent. KW - Lanthanides KW - Structural Analysis KW - Separation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510821 DO - https://doi.org/10.1002/chem.202002653 SN - 0947-6539 VL - 26 SP - 1 EP - 8 PB - WILEY-VCH Verlag GmbH & co. KGaA AN - OPUS4-51082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Loges, A. A1 - Scholz, G. A1 - Amadeu de Sosa, Nader A1 - Jingjing, S. A1 - Emmerling, Franziska A1 - John, T. A1 - Paulus, B. A1 - Braun, T. T1 - Studies on the local structure of the F/OH site in topaz by magic angle spinning nuclear magnetic resonance and Raman spectroscopy JF - European journal of mineralogy N2 - he mutual influence of F and OH groups in neighboring sites in topaz (Al2SiO4(F,OH)2) was investigated using magic angle spinning nuclear magnetic resonance (MAS NMR) and Raman spectroscopy. The splitting of 19F and 1H NMR signals, as well as the OH Raman band, provides evidence for hydrogen bond formation within the crystal structure. Depending on whether a given OH group has another OH group or fluoride as its neighbor, two different hydrogen bond constellations may form: either OH···O···HO or F···H···O. The proton accepting oxygen was determined to be part of the SiO4 tetrahedron using 29Si MAS NMR. Comparison of the MAS NMR data between an OH-bearing and an OH-free topaz sample confirms that the 19F signal at −130 ppm stems from F− ions that take part in H···F bonds with a distance of ∼ 2.4 Å, whereas the main signal at −135 ppm belongs to fluoride ions with no immediate OH group neighbors. The Raman OH sub-band at 3644 cm−1 stems from OH groups neighboring other OH groups, whereas the sub-band at 3650 cm−1 stems from OH groups with fluoride neighbors, which are affected by H···F bridging. The integrated intensities of these two sub-bands do not conform to the expected ratios based on probabilistic calculations from the total OH concentration. This can be explained by a difference in the polarizability of the OH bond between the different hydrogen bond constellations or partial order or unmixing of F and OH, or a combination of both. This has implications for the quantitative interpretation of Raman data on OH bonds in general and their potential use as a probe for structural (dis-)order. No indication of tetrahedrally coordinated Al was found with 27Al MAS NMR, suggesting that the investigated samples likely have nearly ideal Al/Si ratios, making them potentially useful as high-density electron microprobe reference materials for Al and Si, as well as for F. KW - Topas KW - NMR KW - XRD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561863 DO - https://doi.org/10.5194/ejm-34-507-2022 SN - 1617-4011 VL - 34 IS - 5 SP - 507 EP - 521 PB - Copernicus Publications CY - Göttingen AN - OPUS4-56186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, X. A1 - Michalchuk, Adam A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Pulham, C. T1 - High-pressure reversibility in a plastically flexible coordination polymer crystal JF - Nature Communications N2 - Single crystals which exhibit mechanical flexibility are promising materials for advanced technological applications. Before such materials can be used, a detailed understanding of the mechanisms of bending is needed. Using single crystal X-ray diffraction and microfocus Raman spectroscopy, we study in atomic detail the high-pressure response of the plastically flexible coordination polymer [Zn(μ-Cl)2(3,5-dichloropyridine)2]n (1). Contradictory to three-point bending, quasi-hydrostatic compression of (1) is completely reversible, even following compression to over 9 GPa. A structural phase transition is observed at ca. 5 GPa. DFT calculations show this transition to result from the pressure-induced softening of low-frequency vibrations. This phase transition is not observed during three-point-bending. Microfocus synchrotron X-ray diffraction revealed that bending yields significant mosaicity, as opposed to compression. Hence, our studies indicate of overall disparate mechanical responses of bulk flexibility and quasi-hydrostatic compression within the same crystal lattice. We suspect this to be a general feature of plastically bendable materials. KW - High pressure KW - Density functional theory KW - Mechanically flexible crystals PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530360 DO - https://doi.org/10.1038/s41467-021-24165-x VL - 12 IS - 1 SP - 3871 AN - OPUS4-53036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Emmerling, Franziska A1 - Michalchuk, Adam A. L. T1 - The Origin of Delayed Polymorphism in Molecular Crystals Under Mechanochemical Conditions JF - Chemistry – A European Journal N2 - We show that mechanochemically driven polymorphic transformations can require extremely long induction periods, which can be tuned from hours to days by changing ball milling energy. The robust design and interpretation of ball milling experiments must account for this unexpected kinetics that arises from energetic phenomena unique to the solid state. Detailed thermal analysis, combined with DFT simulations, indicates that these marked induction periods are associated with processes of mechanical activation. Correspondingly, we show that the pre‐activation of reagents can also lead to marked changes in the length of induction periods. Our findings demonstrate a new dimension for exerting control over polymorphic transformations in organic crystals. We expect mechanical activation to have a much broader implication across organic solid‐state mechanochemistry. KW - General Chemistry KW - Catalysis KW - Organic Chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589219 DO - https://doi.org/10.1002/chem.202302150 SN - 0947-6539 SP - e202302150 PB - Wiley AN - OPUS4-58921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Röder, Bettina A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Controlling polymorphism in molecular cocrystals by variable temperature ball milling JF - Faraday Discussions N2 - Mechanochemistry offers a unique opportunity to modify and manipulate crystal forms, often providing new products as compared with conventional solution methods. While promising, there is little known about how to control the solid form through mechanochemical means, demanding dedicated investigations. Using a model organic cocrystal system (isonicotinamide:glutaric acid), we here demonstrate that with mechanochemistry, polymorphism can be induced in molecular solids under conditions seemingly different to their conventional thermodynamic (thermal) transition point. Whereas Form II converts to Form I upon heating to 363 K, the same transition can be initiated under ball milling conditions at markedly lower temperatures (348 K). Our results indicate that mechanochemical techniques can help to reduce the energy barriers to solid form transitions, offering new insights into controlling polymorphic forms. Moreover, our results suggest that the nature of mechanochemical transformations could make it difficult to interpret mechanochemical solid form landscapes using conventional equilibrium-based tools. KW - Mechanochemistry KW - Kinetics KW - In situ PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558878 DO - https://doi.org/10.1039/d2fd00115b SP - 1 EP - 16 PB - Royal Society of Chemistry AN - OPUS4-55887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Unintended Rate Enhancement in Mechanochemical Kinetics by Using Poly(methyl methacrylate) Jars JF - Crystal Growth & Design N2 - Time-resolved in situ (TRIS) X-ray diffraction has changed how mechanochemical transformations are studied but requires the use of X-ray transparent jars often made from poly(methyl methacrylate) (PMMA). However, using PMMA jars can alter the apparent kinetics of mechanochemical polymorphism by an order of magnitude, questioning the interpretability of established TRIS methods. Our results suggest that rate enhancement in PMMA jars may not be dominated by chemical effects of the polymer, but rather a result of different equilibrium temperatures within the jar. These features must be better understood before control over mechanochemical reactions can be achieved. KW - Mechanochemistry KW - Organic compounds KW - Polymers KW - Materials PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565276 DO - https://doi.org/10.1021/acs.cgd.2c01227 SN - 1528-7483 SP - 1 EP - 5 PB - ACS Publications AN - OPUS4-56527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Ali, Naveed Zafar A1 - Etter, M. A1 - Michalchuk, Adam A1 - Rademann, K. A1 - Emmerling, Franziska T1 - A Comparative Study of the Ionic Cocrystals NaX (α-d-Glucose)2 (X = Cl, Br, I) JF - Crystal growth & design N2 - The mechanochemical formation of the ionic cocrystals of glucose (Glc) and sodium salts Glc2NaCl·H2O (1) and Glc2NaX (X = Br (2), I (3)) is presented. Products are formed by co-milling Glc with three sodium salts (NaCl, NaBr, NaI). The ionic cocrystals were obtained under both neat grinding and liquid-assisted grinding conditions, the later found to accelerate the reaction kinetics. The crystal structures of the ionic cocrystals (2) and (3) were solved from powder X-ray diffraction data. The structure solution contrasts with the structure of Glc2NaCl·H2O (1) where the electron density at three halide crystallographic sites is modeled as of being the intermediate between water molecule and a chloride ion. The reaction pathways of the three ionic cocrystals were investigated in real time using our tandem approach comprising a combination of in situ synchrotron powder X-ray diffraction and Raman spectroscopy. The results indicate the rapid formation of each cocrystal directly from their respective starting materials without any intermediate moiety formation. The products were further characterized by DTA-TG and elemental analysis. KW - In situ KW - Co-crystal KW - Mechanochemistry KW - Glucose PY - 2019 DO - https://doi.org/10.1021/acs.cgd.8b01929 VL - 19 IS - 8 SP - 4293 EP - 4299 PB - ACS Publications AN - OPUS4-48781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lee, P.-W. A1 - Kaynak, T. A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Schalley, C. T1 - Effect of Perfluorinated Side-Chain Length on the Morphology, Hydrophobicity, and Stability of Xerogel Coatings JF - Langmuir N2 - Superhydrophobic surfaces can be quickly formed with supramolecular materials. Incorporating low-molecular-weight gelators (LMWGs) with perfluorinated chains generates xerogel coatings with low surface energies and high roughness. Here, we examine and compare the properties of the xerogel coatings formed with eight different LMWGs. These LMWGs all have a trans-1,2-diamidocyclohexane core and two perfluorinated ponytails, whose lengths vary from three to ten carbon atoms (CF3 to CF10). Investigation of the xerogels aims to provide in-depth information on the chain length effect. LMWGs with a higher degree of fluorination (CF7 to CF10) form superhydrophobic xerogel coatings with very low surface energies. Scanning electron microscopy images of the coatings show that the aggregates of CF5 and CF7 are fibrous, while the others are crystal-like. Aggregates of CF10 are particularly small and further assemble into a porous structure on the micrometer scale. To test their stabilities, the xerogel coatings were flushed multiple times with a standardized water flush test. The removal of material from the surface in these flushes was monitored by a combination of the water contact angle, contact angle hysteresis, and coating thickness measurements. A new method based on image processing techniques was developed to reliably determine the change of the coating thickness. The CF7, CF9, and CF10 surfaces show consistent hydrophobicity and coating durability after repetitive flushing tests. The length of the perfluorinated side chains thus has a significant effect on the morphology of the deposited xerogel coatings, their roughness, and, in consequence, their hydrophobicity and mechanical durability. KW - Coating materials KW - Amorphous materials KW - Hydrophobicity KW - Materials Stability PY - 2021 DO - https://doi.org/10.1021/acs.langmuir.1c02341 SN - 1520-5827 VL - 37 IS - 49 SP - 14390 EP - 14397 PB - ACS Publications AN - OPUS4-54071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lampronti, G. A1 - Michalchuk, Adam A1 - Mazzeo, P. A1 - Belenguer, Ana A1 - Sanders, J. K. M. A1 - Bacchi, A. A1 - Emmerling, Franziska T1 - Changing the game of time resolved X-ray diffraction on the mechanochemistry playground by downsizing JF - Nature Communications N2 - Time resolved in situ (TRIS) monitoring has revolutionised the study of mechanochemical transformations but has been limited by available data quality. Here we report how a combination of miniaturised grinding jars together with innovations in X-ray powder diffraction data collection and state-of-the-art analysis strategies transform the power of TRIS synchrotron mechanochemical experiments. Accurate phase compositions, comparable to those obtained by ex situ measurements, can be obtained with small sample loadings. Moreover, microstructural parameters (crystal size and microstrain) can be also determined with high confidence. This strategy applies to all chemistries, is readily implemented, and yields high-quality diffraction data even using a low energy synchrotron source. This offers a direct avenue towards the mechanochemical investigation of reactions comprising scarce, expensive, or toxic compounds. Our strategy is applied to model systems, including inorganic, metal-organic, and organic mechanosyntheses, resolves previously misinterpreted mechanisms in mechanochemical syntheses, and promises broad, new directions for mechanochemical research. KW - Mechanochemistry KW - Synchrotron radiation KW - Material synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535932 DO - https://doi.org/10.1038/s41467-021-26264-1 SN - 2041-1723 VL - 12 IS - 1 SP - 1 EP - 9 PB - Nature Publishing Group CY - London AN - OPUS4-53593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lakshmipathi, M. A1 - Tothadi, S. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Different mechanical responses of dimorphic forms of Anthracene Schiffbase crystal JF - Journal of Molecular Structure N2 - We obtained concomitant dimorphic forms of Anthracene Schiffbase (N-(anthracen-9-yl methylene)-2,5- dichloroaniline) from hexane solvent. Two polymorphs can be differentiated by their morphology and mechanical properties. One form is long acicular type and elastically bendable while another form is block shaped and brittle in nature. Mechanical property is attributed to underlying crystal packing. Hirsh- feld analysis and energy framework calculations were done to corroborate structure-property correlation of two forms. KW - Elasticity KW - Mechanical properties KW - Anthracene schiff base KW - Dimorphs PY - 2021 DO - https://doi.org/10.1016/j.molstruc.2021.132182 VL - 1252 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-54356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lakshmipathi, M. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Structure-mechanical property correlation of a series of 4-(1-Napthylvinyl) pyridine based cocrystals JF - Journal of molecular structure N2 - We obtained three 4-(1-Napthylvinyl) pyridine based cocrystals ( 1–3 ) and studied its structure mechan- ical property correlation which aimed towards various applications for photo switches, mechanical ac- tuators etc. Selection of coformer molecules is important in fine tuning mechanical property outcome of synthesized cocrystals. Amongst three cocrystals, cocrystal 1 is mechanically flexible and its mechani- cal property is attributed to underlying crystal packing features which is in line with existing elastically bendable crystals while other two cocrystals ( 2, 3 ) are brittle in nature. Hirshfeld analysis was carried out to illustrate structure-property correlation particularly in terms of number as well as types of non- covalent interactions in the lattice and further to corroborate the space of the molecules in the lattice. KW - Cocrystals KW - Mechanical properties KW - Halogen bond interaction KW - Structure-mechanical property correlation PY - 2022 DO - https://doi.org/10.1016/j.molstruc.2022.133670 SN - 0022-2860 VL - 1268 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam AN - OPUS4-55547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lakshmipathi, M. A1 - Dey, S. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam T1 - Designing Dual Mechanical Response in Molecular Crystals through Cocrystallization JF - Crystal Growth and Design N2 - Two isomorphous crystals are reported based on a naphthylvinylpyridine coformer. The crystals are mechanically flexible and exhibit photosalient response to UV irradiation. We therefore show how multiple mechanical phenomena can be simultaneously designed into a single material by cocrystallization. KW - Cocrystal KW - Mechanical response PY - 2022 DO - https://doi.org/10.1021/acs.cgd.2c00913 SN - 1528-7483 VL - 22 SP - 6838 EP - 6843 PB - ACS Publ. CY - Washington, DC AN - OPUS4-56561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kumari, N. A1 - Bhattacharya, Biswajit A1 - Roy, P. A1 - Michalchuk, Adam A1 - Ghosh, A. A1 - Emmerling, Franziska T1 - Enhancing the Pharmaceutical Properties of Pirfenidone by Mechanochemical Cocrystallization JF - Crystal Growth and Design N2 - Pirfenidone is an important drug molecule used in the treatment of idiopathic lung fibrosis. Although approved by the USFDA in 2014, pirfenidone’s aqueous solubility is too high and must be mitigated by additives. In this work, the cocrystallization of pirfenidone is explored as an alternative approach to reducing its solubility. Herein, an anhydrous form of pirfenidone is reported, alongside its first two reported cocrystals. The new crystalline solids are thoroughly characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction analysis (PXRD), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Equilibrium solubility and intrinsic dissolution rates (IDR) are studied for the cocrystals and compared to that of the parent drug. Both cocrystal forms exhibit drastically lower aqueous solubility (by up to 90%) and dissolution rates, rationalized based on both lattice energy calculations and consideration of intermolecular interactions in the solid state. Furthermore, we compare the physicochemical properties of solution-based material with that of material produced mechanochemically. Importantly, no differences are observed between the two production methods. This work demonstrates the strength of crystal Engineering strategies to beneficially modify important pharmaceutical properties and highlights the potential of mechanochemistry to facilitate this in an environmentally benign way. KW - Mechanochemistry PY - 2019 DO - https://doi.org/10.1021/acs.cgd.9b00932 VL - 19 IS - 11 SP - 6482 EP - 6492 PB - ACS Publications AN - OPUS4-49828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Hampel, S. A1 - Fittschen, U.E.A. A1 - Streli, C. A1 - Radtke, Martin T1 - Comparison of three reconstruction methods based on deconvolution, iterative algorithm and neural network for X-ray fluorescence imaging with coded apertures JF - Journal of Analytical Atomic Spectrometry N2 - X-ray imaging methods are used in many fields of research, as they allow a non-destructive Investigation of the elemental content of various samples. As for every imaging method, for X-ray imaging the optics are of crucial importance. However, these optics can be very expensive and laborious to build, as the requirements on surface roughness and precision are extremely high. Angles of reflection and refraction are often in the range of a few mrad, making a compact design hard to achieve. In this work we present a possibility to simplify X-ray imaging. We have adapted the coded aperture method, a high energy radiation imaging method that has its origins in astrophysics, to full field X-ray fluorescence imaging. In coded aperture imaging, an object is projected through a known mask, the coded aperture, onto an area sensitive detector. The resulting image consists of overlapping projections of the object and a reconstruction step is necessary to obtain the information from the recorded image. We recorded fluorescence images of different samples with an energy-dispersive 2D detector (pnCCD) and investigated different reconstruction methods. With a small coded aperture with 12 holes we could significantly increase the count rate compared to measurements with a straight polycapillary optic. We show that the reconstruction of two different samples is possible with a deconvolution approach, an iterative algorithm and a neural network. These results demonstrate that X-ray fluorescence imaging with coded apertures has the potential to deliver good results without scanning and with an improved count rate, so that measurement times can be shortened compared to established methods. KW - X-ray fluorescence imaging KW - Coded apertures KW - Imaging KW - Elemental mapping KW - Image reconstruction PY - 2020 DO - https://doi.org/10.1039/d0ja00146e VL - 35 IS - 7 SP - 1423 EP - 1434 PB - Royal Society of Chemistry CY - United Kingdom AN - OPUS4-51518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Manipulating the dynamics of mechanochemical ternary cocrystal formation JF - ChemComm N2 - The mechanism of ternary cocrystal formation, and the potential role of intermediate binary phases, has been debated for some time. We report here the first in situ real-time monitoring of two prototypic ternary cocrystals. Our results suggest that the question is more complicated than previously considered. The mechanism of mechanochemical ternary cocrystal formation depends on the milling conditions, here the milling frequency and addition of liquid. Binary phases can form under certain conditions, but do not act as intermediates in the formation of the ternary cocrystals. Rather, binary phases are competitive with the ternary phase, and their formation appears to compete with that of the ternary components. The presence of binary phases leads to an increase in the overall reaction time. The results reported here offer the first insights into the true complexities of mechanochemical multi-component synthesis of higher order multi-component crystals and demonstrate a new understanding of the influence of milling condition for the study of mechanisms and kinetics. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2019 UR - https://pubs.rsc.org/en/content/articlepdf/2019/cc/c9cc03034d DO - https://doi.org/10.1039/c9cc03034d SN - 1364-548X VL - 55 IS - 66 SP - 9793 EP - 9796 PB - RSC AN - OPUS4-48613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Haferkamp, Sebastian A1 - Akhmetova, Irina A1 - Röllig, Mathias A1 - Maierhofer, Christiane A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical one-pot syntheses JF - Angewandte Chemie International Edition N2 - We present an in situ triple coupling of synchrotron X-ray diffraction with Raman spectroscopy, and thermography to study milling reactions in real time. This combination of methods allows a correlation of the structural evolution with temperature information. The temperature information is crucial for understanding both the thermodynamics and reaction kinetics. The reaction mechanisms of three prototypical mechanochemical syntheses, a cocrystal formation, a C@C bond formation (Knoevenagel condensation), and the formation of a manganese-phosphonate, were elucidated. Trends in the temperature development during milling are identified. The heat of reaction and latent heat of crystallization of the product contribute to the overall temperature increase. A decrease in temperature occurs via release of, for example, water as a byproduct. Solid and liquid intermediates are detected. The influence of the mechanical impact could be separated from temperature effects caused by the reaction. KW - In situ studies KW - Mechanochemistry KW - Raman spectroscopy KW - Thermography KW - X-ray diffraction PY - 2018 DO - https://doi.org/10.1002/anie.201800147 SN - 1433-7851 SN - 1521-3773 VL - 57 IS - 20 SP - 5930 EP - 5933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-44946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Becker, C. A1 - Michalchuk, Adam A1 - Linberg, Kevin A1 - Paulus, B. A1 - Emmerling, Franziska T1 - Tuning the Apparent Stability of Polymorphic Cocrystals through Mechanochemistry JF - Crystal Growth & Design N2 - Mechanochemistry has become a valuable method for the synthesis of new materials and molecules, with a particular strength for screening and preparing multicomponent crystals. In this work, two novel cocrystals of pyrazinamide (PZA) with pimelic acid (PA) were prepared mechanochemically. Their formation was monitored in real time by in situ synchrotron powder X-ray diffraction. Control over the polymorphic form was obtained through the selective choice of liquid additive via liquid assisted grinding. Slurry experiments and dispersion-corrected density functional theory calculations suggest that Form I is the thermodynamically stable form under ambient conditions. Upon aging, Form II converts to Form I. The stability of Form II upon aging was found to depend strongly on the milling duration, intensity, and material of the milling vessels. Longer or higher energy milling drastically increased the lifetime of the Form II product. For the first time, this work also demonstrates that the choice of milling jar can have a decisive effect on the aging stability of a bulk polymorphic powder. In contrast to material prepared in steel milling vessels, the preparation of Form II in Perspex (PMMA) vessels increased its lifetime 3-fold. These findings offer a new dimension to garnering control over mechanochemical cocrystallization and demonstrate the critical importance of the careful and timely ex situ screening of ball mill grinding reactions. This will be of importance for potential industrial applications of mechanochemical cocrystallization where understanding polymorph longevity is crucial for the development of a robust preparative protocol. KW - Physical and chemical processes KW - Organic compounds KW - Liquids KW - Materials KW - Stability PY - 2019 DO - https://doi.org/10.1021/acs.cgd.9b01158 VL - 19 IS - 12 SP - 7271 EP - 7279 PB - ACS Publications AN - OPUS4-50281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, B. A1 - Meyer, T. A1 - Sieg, H. A1 - Kästner, Claudia A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Estrela-Lopis, I. A1 - Burel, A. A1 - Chevance, S. A1 - Gauffre, F. A1 - Jalili, P. A1 - Meijer, J. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Fessard, V. A1 - Laux, P. A1 - Lampen, A. A1 - Luch, A. T1 - Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis JF - RSC Advances N2 - The application of appropriate analytical techniques is essential for nanomaterial (NM) characterization. In this study, we compared different analytical techniques for NM analysis. Regarding possible adverse health effects, ionic and particulate NM effects have to be taken into account. As NMs behave quite differently in physiological media, special attention was paid to techniques which are able to determine the biosolubility and complexation behavior of NMs. Representative NMs of similar size were selected: aluminum (Al0) and aluminum oxide (Al2O3), to compare the behavior of metal and metal oxides. In addition, titanium dioxide (TiO2) was investigated. Characterization techniques such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were evaluated with respect to their suitability for fast characterization of nanoparticle dispersions regarding a particle's hydrodynamic diameter and size distribution. By application of inductively coupled plasma mass spectrometry in the single particle mode (SP-ICP-MS), individual nanoparticles were quantified and characterized regarding their size. SP-ICP-MS measurements were correlated with the information gained using other characterization techniques, i.e. transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The particle surface as an important descriptor of NMs was analyzed by X-ray diffraction (XRD). NM impurities and their co-localization with biomolecules were determined by ion beam microscopy (IBM) and confocal Raman microscopy (CRM). We conclude advantages and disadvantages of the different techniques applied and suggest options for their complementation. Thus, this paper may serve as a practical guide to particle characterization techniques. KW - Small-angle X-ray scattering KW - SAXS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447057 DO - https://doi.org/10.1039/C8RA00205C SN - 2046-2069 VL - 8 IS - 26 SP - 14377 EP - 14388 PB - The Royal Society of Chemistry AN - OPUS4-44705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraffert, K. A1 - Kabelitz, Anke A1 - Siemensmeyer, K. A1 - Schmack, R. A1 - Bernsmeier, D. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Nanocasting of superparamagnetic iron oxide films with ordered mesoporosity JF - Advanced Materials Interfaces N2 - Maghemite and magnetite show superparamagnetic behavior when synthesized in a nanostructured form. The material’s inducible magnetization enables applications ranging from contrast enhancing agents for magnetic resonance imaging to drug delivery systems, magnetic hyperthermia, and separation. Superparamagnetic iron oxides with templated porosity have been synthesized so far only in the form of hard-templated powders, where silicon retained from the template severely degrades the material’s magnetic properties. Here, for the first time, the synthesis of superparamagnetic iron oxides with soft-templated mesopore structure is reported. The synthesis of nanostructured maghemite and magnetite films succeeds using micelles of amphiphilic block-copolymers as templates. A thermal treatment of the initially formed mesoporous ferrihydrite in nitrogen produces maghemite, which can be partly reduced to magnetite via thermal treatment in hydrogen while retaining the templated mesopore structure. The resulting materials feature a unique combination of high surface area, controlled pore diameter, and tunable magnetic properties. KW - Iron oxide films KW - Mesoporosity KW - Soft-templated PY - 2018 DO - https://doi.org/10.1002/admi.201700960 SN - 2196-7350 VL - 5 IS - 3 SP - 1700960, 1 EP - 1700960, 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-43560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kervarec, M.-C. A1 - Kemnitz, E. A1 - Scholz, G. A1 - Rudic, S. A1 - Jäger, Christian A1 - Braun, T. A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - A HF Loaded Lewis-Acidic Aluminium Chlorofluoride for Hydrofluorination Reactions JF - Chemistry A European Journal N2 - The very strong Lewis acid aluminium chlorofluo-ride (ACF) was loaded with anhydrous HF. The interactionbetween the surface of the catalyst and HF was investigatedusing a variety of characterization methods, which revealed he formation of polyfluorides. Moreover, the reactivity ofthe HF-loaded ACF towards the hydrofluorination of alkyneswas studied. KW - Aluminium KW - HF KW - Hydrofluorination KW - Metal fluorides PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508360 DO - https://doi.org/10.1002/chem.202001627 VL - 26 SP - 1 PB - Wiley Online Libary AN - OPUS4-50836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Scoppola, E. A1 - Wolf, S.E. A1 - Kochovski, Z. A1 - Matzdorff, D. A1 - Van Driessche, A. E. S. A1 - Hövelmann, J. A1 - Emmerling, Franziska A1 - Stawski, Tomasz M. T1 - Evidence for liquid-liquid phase separation during the early stages of Mg-struvite formation JF - The Journal of Chemical Physics N2 - The precipitation of struvite, a magnesium ammonium phosphate hexahydrate (MgNH₄PO₄ · 6H₂O) mineral, from wastewater is a promising method for recovering phosphorous. While this process is commonly used in engineered environments, our understanding of the underlying mechanisms responsible for the formation of struvite crystals remains limited. Specifically, indirect evidence suggests the involvement of an amorphous precursor and the occurrence of multi-step processes in struvite formation, which would indicate non-classical paths of nucleation and crystallization. In this study, we use synchrotron-based in situ x-ray scattering complemented by cryogenic transmission electron microscopy to obtain new insights from the earliest stages of struvite formation. The holistic scattering data captured the structure of an entire assembly in a time-resolved manner. The structural features comprise the aqueous medium, the growing struvite crystals, and any potential heterogeneities or complex entities. By analysing the scattering data, we found that the onset of crystallization causes a perturbation in the structure of the surrounding aqueous medium. This perturbation is characterized by the occurrence and evolution of Ornstein-Zernike fluctuations on a scale of about 1 nm, suggesting a non-classical nature of the system. We interpret this phenomenon as a liquid-liquid phase separation, which gives rise to the formation of the amorphous precursor phase preceding actual crystal growth of struvite. Our microscopy results confirm that the formation of Mg-struvite includes a short-lived amorphous phase, lasting >10 s. KW - Physical and theoretical chemistry KW - Non-classical crystallization KW - Struvite KW - Liquid-liquid-phase-separation KW - Nucleation KW - Crystallization KW - In-situ scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584766 DO - https://doi.org/10.1063/5.0166278 SN - 1089-7690 VL - 159 IS - 13 SP - 1 EP - 12 PB - AIP Publishing CY - Woodbury, NY AN - OPUS4-58476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Ryll, T. W. A1 - Buzanich, Ana Guilherme A1 - Emmerling, Franziska A1 - Stawski, Tomasz Maciej T1 - Phase stability studies on transition metal phosphates aided by an automated synthesis JF - Royal Society of Chemistry (RSC) N2 - Transition metal phosphates (TMPs) have attracted interest as materials for (electro-) catalysis, and electrochemistry due to their low-cost, stability, and tunability. In this work, an automated synthesis platform was used for the preparation of transition metal phosphate crystals to efficiently explore the multidimensional parameter space, determining the phase selection, crystal sizes, shapes. By using X-ray diffraction and spectroscopy-based methods and electron microscopy imaging, a complete characterization of the phase stability fields, phase transitions, and crystal morphology/sizes was achieved. In an automated three-reactant synthesis, the individual effect of each reactant species NH4+, M2+, and PO43- on the formation of transition metal phosphate phases: M-struvite NH4MPO4·6H2O, M-phosphate octahydrate M3(PO4)2·8H2O with M = Ni, Co and an amorphous phase, was investigated. The NH4+ concentration dictates the phase composition, morphology, and particle size in the Ni-system (crystalline Ni-struvite versus amorphous Ni-PO4 phase), whereas in the Co-system all reactant species - NH4+, Co2+, and PO43- - influence the reaction outcome equivalently (Co-struvite vs. Co-phosphate octahydrate). The coordination environment for all crystalline compounds and of the amorphous Ni-PO4 phase was resolved by X-ray absorption spectroscopy, revealing matching characteristics to its crystalline analogue, Ni3(PO4)2·8H2O. The automated synthesis turned out to be significantly advantageous for the exploration of phase diagrams due to its simple modularity, facile traceability, and enhanced reproducibility compared to a typical manual synthesis. KW - Automated synthesis KW - Phase diagrams KW - Transition metals KW - Phosphates KW - Local structure KW - Struvite PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579151 DO - https://doi.org/10.1039/D3CE00386H VL - 25 IS - 30 SP - 4333 EP - 4344 PB - CrystEngComm CY - London AN - OPUS4-57915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Kochovski, Z. A1 - Scoppola, E. A1 - Retzmann, Anika A1 - Hodoroaba, Vasile-Dan A1 - ten Elshof, J. E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz Maciej T1 - Nonclassical Crystallization Pathway of Transition Metal Phosphate Compounds JF - Chemistry of Materials N2 - Here, we elucidate nonclassical multistep crystallization pathways of transition metal phosphates from aqueous solutions. We followed precipitation processes of M-struvites, NH4MPO4·6H2O, and M-phosphate octahydrates, M3(PO4)2·8H2O, where M = Ni, Co, or NixCo1–x, by using in situ scattering and spectroscopy-based techniques, supported by elemental mass spectrometry analyses and advanced electron microscopy. Ni and Co phosphates crystallize via intermediate colloidal amorphous nanophases, which change their complex structures while agglomerating, condensing, and densifying throughout the extended reaction times. We reconstructed the three-dimensional morphology of these precursors by employing cryo-electron tomography (cryo-ET). We found that the complex interplay between metastable amorphous colloids and protocrystalline units determines the reaction pathways. Ultimately, the same crystalline structure, such as struvite, is formed. However, the multistep process stages vary in complexity and can last from a few minutes to several hours depending on the selected transition metal(s), their concentration, and the Ni/Co ratio. KW - Non-classical crystallization theory KW - Transition metals KW - Phosphates KW - Amorphous phases KW - Intermediate phases PY - 2023 DO - https://doi.org/10.1021/acs.chemmater.3c02346 SN - 1520-5002 VL - 35 IS - 24 SP - 10645 EP - 10657 PB - American Chemical Society (ACS) CY - Washington D.C. AN - OPUS4-59135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kochovski, Z. A1 - Feldmann, Ines A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Ni- and Co-Struvites: Revealing Crystallization Mechanisms and Crystal Engineering toward Applicational Use of Transition Metal Phosphates JF - Crystal Growth & Design N2 - Industrial and agricultural waste streams (waste water, sludges, tailings, etc.) which contain high concentrations of NH4+, PO43–, and transition metals are environmentally harmful and toxic pollutants. At the same time, phosphorous and transition metals constitute highly valuable resources. Typically, separate pathways have been considered to extract hazardous transition metals or phosphate independently from each other. Investigations on the simultaneous removal of multiple components have been carried out only to a limited extent. Here, we report the synthesis routes for Ni- and Co-struvites (NH4MPO4·6H2O, M = Ni2+ and Co2+), which allow for P, ammonia, and metal co-precipitation. By evaluating different reaction parameters, the phase and stability of transition metal struvites as well as their crystal morphologies and sizes could be optimized. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P) ratios, whereas Co-struvite only forms at low M/P ratios. Detailed investigations of the precipitation process using ex situ and in situ techniques provided insights into the crystallization mechanisms/crystal engineering of these materials. M-struvites crystallize via intermediate colloidal amorphous nanophases, which subsequently aggregate and condense to final crystals after extended reaction times. However, the exact reaction kinetics of the formation of a final crystalline product varies significantly depending on the involved metal cation in the precipitation process: several seconds (Mg) to minutes (Ni) to hours (Co). The achieved level of control over the morphology and size makes precipitation of transition metal struvites a promising method for direct metal recovery and binding them in the form of valuable phosphate raw materials. Under this paradigm, the crystals can be potentially up-cycled as precursor powders for electrochemical or (electro)catalytic applications, which require transition metal phosphates. KW - Crystallization KW - Struvite KW - Nickel KW - Cobalt KW - Phosphorous recovery KW - Up-cycling KW - Aqueous synthesis PY - 2022 DO - https://doi.org/10.1021/acs.cgd.2c00284 VL - 22 IS - 7 SP - 4305 EP - 4315 PB - ACS Publications CY - Washington D.C. AN - OPUS4-55286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - de Oliveira Guilherme Buzanich, Ana A1 - Heinekamp, Christian A1 - Smales, Glen Jacob A1 - Hodoroaba, Vasile-Dan A1 - ten Elshof, J. E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Template-free synthesis of mesoporous, amorphous transition metal phosphate materials JF - Nanoscale N2 - We present how mesoporosity can be engineered in transition metal phosphate (TMPs) materials in a template-free manner. The method involves a transformation of a precursor metal phosphate phase, called M-struvite (NH4MPO4·6H2O, M = Mg2+, Ni2+, Co2+, NixCo1-x2+). It relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneously mesoporous phase, which forms while degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the metal coordination environment were followed with in-situ and ex-situ scattering and diffraction, as well as X -ray spectroscopy. Despite sharing the same precursor struvite structure, different amorphous and mesoporous structures were obtained depending on the involved transition metal. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions depending on a metal cation present in the analogous M-struvites. The amorphous structures of thermally decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes (240 m²g-1 and 0.32 cm-3 g-1 for Mg and 90 m²g-1 and 0.13 cm-3 g-1 for Ni). We propose that the low-cost, environmentally friendly M-struvites could be obtained as recycling products from industrial and agricultural wastewaters. These waste products could be then upcycled into mesoporous TMPs through a simple thermal treatment for further applications, for instance, in (electro)catalysis. KW - Struvite KW - Pphosphates KW - Transition metal KW - In-situ SAXS/WAXS KW - Mesoporosity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569503 DO - https://doi.org/10.1039/D2NR05630E SN - 2040-3364 SP - 1 EP - 15 PB - Royal Society of Chemistry (RSC) AN - OPUS4-56950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Bhattacharya, Biswajit A1 - de Oliveira Guilherme Buzanich, Ana A1 - Fink, Friedrich A1 - Feldmann, Ines A1 - ten Elshof, J. E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Thermally processed Ni-and Co-struvites as functional materials for proton conductivity JF - Dalton Transactions N2 - We present how mesoporosity can be engineered in transition metal phosphate (TMPs) materials in a template-free manner. The method involves the transformation of a precursor metal phosphate phase, called M-struvite (NH4MPO4·6H2O, M = Mg2+, Ni2+, Co2+, NixCo1−x2+). It relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneously mesoporous phase, which forms during degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the metal coordination environment were followed by in situ and ex situ scattering and diffraction, as well as X-ray spectroscopy. Despite sharing the same precursor struvite structure, different amorphous and mesoporous structures were obtained depending on the involved transition metal. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions depending on the metal cation present in the analogous M-struvites. The amorphous structures of thermally decomposed Mg-, Ni- and NixCo1−x-struvites exhibit high surface areas and pore volumes (240 m2 g−1 and 0.32 cm−3 g−1 for Mg and 90 m2 g−1 and 0.13 cm−3 g−1 for Ni). We propose that the low-cost, environmentally friendly M-struvites could be obtained as recycling products from industrial and agricultural wastewaters. These waste products could be then upcycled into mesoporous TMPs through a simple thermal treatment for further application, for instance in (electro)catalysis. KW - Struvite KW - Phosphates KW - Transition metals KW - Proton conductivity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575862 DO - https://doi.org/10.1039/D3DT00839H SN - 1477-9226 SP - 1 EP - 13 PB - Royal Society of Chemisty (RSC) CY - London/Cambridge AN - OPUS4-57586 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kabelitz, Anke A1 - Dinh, H. A. A1 - Emmerling, Franziska T1 - Early stage in situ detection of polynuclear aluminum phases in aqueous solution JF - Polyhedron N2 - Polynuclear cationic aluminum hydroxide phases are known intermediates in the formation of aluminum oxides or (oxide) ydroxides upon hydrolysis of aluminum salt solutions. In the presence of sulfate anions, these aluminum polyoxocations (Al13) can form crystalline Al13 sulfates with varying chemical composition. The formation of these Al13 sulfates in aqueous solution has been poorly understood. Here, we investigate the early stage crystallization of Al13 clusters in a sulfate-containing solution, in situ and in real time. Dynamics associated with Al13 sulfate formation have been obtained for the first time, using Synchrotron X-ray diffraction (XRD) of solutions suspended by acoustic levitation. Time-resolved in situ data show that the cubic phase, Na [(AlO4)Al12(OH)24(H2O)12](SO4)4*10H2O, forms after only minutes. The Formation mechanism of Al13 sulfates was found to depend on the sulfate:aluminum (SO4:Al) ratio. Ex situ XRD of the product Al13 sulfates in solution shows that for SO4:Al ratio ≤ 1.5 two other crystalline phases form, and convert to the cubic phase upon washing and drying. In situ XRD for the same ratio shows transient formation of an intermediate during the crystallization process. KW - Polyoxocation KW - In situ KW - Crystallization KW - Acoustic levitation KW - Synchroton x-ray diffraction PY - 2019 DO - https://doi.org/10.1016/j.poly.2019.05.049 VL - 170 SP - 639 EP - 648 PB - Elsevier Ltd. AN - OPUS4-48552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Grevel, K.-D. A1 - Emmerling, Franziska A1 - Dachs, E. A1 - Benisek, A. A1 - Adam, Christian A1 - Majzlan, J. T1 - Thermodynamic properties of calcium alkali phosphates Ca(Na,K)PO4 JF - Journal of Materials Science N2 - Calcium alkali phosphates Ca(Na,K)PO4 are main constituents of bioceramics and thermochemically produced phosphorus fertilizers because of their bioavailability. Sparse thermodynamic data are available for the endmembers CaNaPO4 and CaKPO4. In this work, the missing data were determined for the low-temperature phase modifications of the endmembers CaNaPO4 and CaKPO4 and three intermediate Ca(Na,K)PO4 compositions. Standard enthalpy of formation ranges from - 2018.3 ± 2.2 kJ mol-1 to - 2030.5 ± 2.1 kJ mol-1 and standard entropy from 137.2 ± 1.0 J mol-1 K-1 to 148.6 ± 1.0 J mol-1 K-1 from sodium endmember b-CaNaPO4 to potassium endmember b0-CaKPO4. Thermodynamic functions are calculated up to 1400 K for endmembers and the sodium-rich intermediate phase b-Ca(Na0.93K0.07)PO4. Functions above 640 K are extrapolated because of the phase transition from low- to high-temperature phase. Impurities in the synthesized intermediate phases c-Ca(Na0.4K0.6)PO4 and c-Ca Na0.35K0.65)PO4 and one additional phase transition around 500 K impeded the determination of high-temperature thermodynamic functions. In general, data for phase transition temperatures agree with the previously reported phase diagrams. KW - Formation enthalpy KW - Heat capacity KW - Phase transformation KW - Bioceramics KW - Phosphorus fertilizer KW - Entropy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507640 DO - https://doi.org/10.1007/s10853-020-04615-5 VL - 55 SP - 8477 EP - 8490 PB - Springer AN - OPUS4-50764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Kneiske, Sönke A1 - Guilherme Buzanich, Ana A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - A fluorolytic sol-gel route to access an amorphous Zr fluoride catalyst: A useful tool for C-F bond activation JF - Catalysis Science & Technology N2 - A route to a ZrF4 catalyst active in room temperature Friedel–Crafts and dehydrofluorination reactions was developed via a fluorolytic sol–gel route, which was followed by a postfluorination step using a stream of CHClF2. The behaviour of different Zr(IV) precursors in a sol–gel reaction with anhydrous isopropanol/HF solution was investigated. The subsequent post-fluorination step was optimised in its temperature ramp and confirmed the necessity of a fluorination of the generated xerogels to obtain catalytic activity. The process is discussed in the context of the analysis of the materials using Brunauer–Emmett–Teller analysis (BET), powder X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The local structure of the amorphous catalyst was elucidated by extended X-ray absorption fine structure spectroscopy (EXAFS). KW - Catalysis KW - Heterogeneous catalysis KW - C-F bond activation KW - Postfluorination PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593433 DO - https://doi.org/10.1039/D3CY01439H SN - 2044-4761 SP - 1 EP - 8 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Guilherme Buzanich, Ana A1 - Ahrens, M. A1 - Braun, T. A1 - Emmerling, Franziska T1 - An amorphous Lewis-acidic zirconium chlorofluoride as HF shuttle: C–F bond activation and formation JF - Chemical Communications N2 - An exceptional HF transfer reaction by C–F bond activation of fluoropentane and a subsequent hydrofluorination of alkynes at room temperature is reported. An amorphous Lewis-acidic Zr chlorofluoride serves as heterogeneous catalyst, which is characterised by an eightfold coordination environment at Zr including chlorine atoms. The studies are seminal in establishing sustainable fluorine chemistry. KW - ZCF KW - Heterogeneous catalysis KW - C-F bond activation KW - HF-shuttle PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582249 DO - https://doi.org/10.1039/D3CC03164K SN - 1359-7345 VL - 59 IS - 75 SP - 11224 EP - 11227 PB - RSC CY - Cambridge AN - OPUS4-58224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Simões, R. G. A1 - Bernardes, C. E. S. A1 - Ramisch, Yen A1 - Bienert, Ralf A1 - Röllig, Matthias A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Real-Time In situ XRD Study of Simvastatin Crystallization in Levitated Droplets JF - Crystal Growth & Design N2 - Simvastatin (SV) is an important active pharmaceutical ingredient (API) for treatment of hyperlipidemias, which is known to exist in different crystalline and amorphous phases. It is, therefore, an interesting model to investigate how the outcome of evaporative crystallization in the contactless environment of an acoustically levitated droplet may be influenced by key experimental conditions, such as temperature, solvent properties (e.g., polarity and hygroscopicity), and dynamics of the evaporation process. Here, we describe a real-time and in situ study of simvastatin evaporative crystallization from droplets of three solvents that differ in volatility, polarity, and protic character (acetone, ethanol, and ethyl acetate). The droplet monitorization relied on synchrotron X-ray diffraction (XRD), Raman spectroscopy, imaging, and thermographic analysis. A pronounced solvent-dependent behavior was observed. In ethanol, a simvastatin amorphous gel-like material was produced, which showed no tendency for crystallization over time; in ethyl acetate, a glassy material was formed, which crystallized on storage over a two-week period to yield simvastatin form I; and in acetone, form I crystallized upon solvent evaporation without any evident presence of a stable amorphous intermediate. The XRD and Raman results further suggested that the persistent amorphous phase obtained from ethanol and the amorphous precrystallization intermediate formed in ethyl acetate were similar. Thermographic analysis indicated that the evaporation process was accompanied by a considerable temperature decrease of the droplet surface, whose magnitude and rate correlated with the solvent volatility (acetone > ethyl acetate > ethanol). The combined thermographic and XRD results also suggested that, as the cooling effect increased, so did the amount of residual water (most likely captured from the atmosphere) remaining in the droplet after the organic solvent was lost. Finally, the interpretation of the water fingerprint in the XRD time profiles was aided by molecular dynamics simulations, which also provided insights into the possible role of H2O as an antisolvent that facilitates simvastatin crystallization. KW - Simvastatin KW - In-situ KW - API KW - Crystallization PY - 2021 DO - https://doi.org/10.1021/acs.cgd.1c00509 SN - 1528-7483 VL - 21 IS - 8 SP - 4665 EP - 4673 PB - ACS Publications AN - OPUS4-53663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Wendt, R. A1 - Kunkel, B. A1 - Radnik, Jörg A1 - Hoell, A. A1 - Wohlrab, S. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Size-Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction JF - Advanced Engineering Materials N2 - A facile and efficient methodology is described for the solvothermal synthesis of size-tunable, stable, and uniform NiCu core–shell nanoparticles (NPs) for application in catalysis. The diameter of the NPs is tuned in a range from 6 nm to 30 nm and to adjust the Ni:Cu ratio from 30:1 to 1:1. Furthermore, the influence of different reaction parameters on the final NPs is studied. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small-angle X-ray scattering, X-ray absorption fine structure, and X-ray photoelectron spectroscopy. Using these analytical methods, it is possible to elucidate a core–shell–shell structure of all particles and their chemical composition. In all cases, a depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni-rich shell and an outer NiO shell. The SiO2-supported NiCu core–shell NPs show pronounced selectivity of >99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction) independent of size and Ni:Cu ratio. KW - Nanoparticles KW - Core-shell KW - Catalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543606 DO - https://doi.org/10.1002/adem.202101308 SN - 1438-1656 SP - 1 EP - 13 PB - Wiley VCH AN - OPUS4-54360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Kulla, Hannes A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Advances in Nickel Nanoparticle Synthesis via Oleylamine Route JF - nanomaterials N2 - Nickel nanoparticles are an active research area due to their multiple applications as catalysts in different processes. A variety of preparation techniques have been reported for the synthesis of these nanoparticles, including solvothermal, microwave-assisted, and emulsion techniques. The well-studied solvothermal oleylamine synthesis route comes with the drawback of needing standard air-free techniques and often space-consuming glassware. Here, we present a facile and straightforward synthesis method for size-controlled highly monodisperse nickel nanoparticles avoiding the use of, e.g., Schlenk techniques and space-consuming labware. The nanoparticles produced by this novel synthetic route were investigated using small-angle X-ray scattering, transmission electron microscopy, X-ray diffraction, and X-ray spectroscopy. The nanoparticles were in a size range of 4–16 nm, show high sphericity, no oxidation, and no agglomeration after synthesis. KW - Nanoparticle synthesis KW - Nickel nanoparticles KW - SAXS KW - TEM KW - XAS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507531 DO - https://doi.org/10.3390/nano10040713 VL - 10 IS - 4 SP - 713 PB - MDPI AN - OPUS4-50753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Paul, Andrea A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation JF - Beilstein Journal of Organic Chemistry N2 - The transformation of a base-catalyzed, mechano-assisted Knoevenagel condensation of mono-fluorinated benzaldehyde derivatives (p-, m-, o-benzaldehyde) with malonodinitrile was investigated in situ and in real time. Upon milling, the para-substituted product was found to crystallize initially into two different polymorphic forms, depending on the quantity of catalyst used. For low catalyst concentrations, a mechanically metastable phase (monoclinic) was initially formed, converting to the mechanically stable phase (triclinic) upon further grinding. Instead, higher catalyst concentrations crystallize directly as the triclinic product. Inclusion of catalyst in the final product, as evidenced by mass spectrometric analysis, suggests this complex polymorphic pathway may be due to seeding effects. Multivariate analysis for the in situ Raman spectra supports this complex formation pathway, and offers a new approach to monitoring multi-phase reactions during ball milling. KW - Ball milling KW - C-C coupling KW - In situ KW - Mechanochemistry KW - Multivariate data analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481872 DO - https://doi.org/10.3762/bjoc.15.110 SN - 1860-5397 VL - 15 SP - 1141 EP - 1148 PB - Beilstein Insitut CY - Frankfurt am Main AN - OPUS4-48187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Feldmann, Ines A1 - Emmerling, Franziska T1 - Mix and wait – a relaxed way for synthesizing ZIF-8 JF - RSC Advances N2 - Herein we report the synthesis of a zeolitic imidazolate framework (ZIF-8) by an easy “mix and wait” procedure. In a closed vial, without any interference, the mixture of 2-methylimidazole and basic zinc carbonate assembles into the crystalline product with approx. 90% conversion after 70 h. The reaction exhibits sigmoidal kinetics due to the self-generated water which accelerates the reaction. KW - In-situ analysis KW - Mechanochemistry KW - MOF KW - Synthesis KW - ZIF-8 PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546841 DO - https://doi.org/10.1039/D2RA00740A VL - 12 SP - 8940 EP - 8944 PB - Royal Society of Chemistry AN - OPUS4-54684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Dautain, O. A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Optimizing the Green Synthesis of ZIF-8 by Reactive Extrusion Using In Situ Raman Spectroscopy JF - ACS Sustainable Chemistry & Engineering N2 - We report the scale-up of a batch solid synthesis of zeolitic imidazolate framework-8 (ZIF-8) for reactive extrusion. The crystalline product forms in the extruder directly under the mixture of solid 2-methylimidazole and basic zinc carbonate in the presence of a catalytic amount of liquid. The process parameters such as temperature, liquid type, feeding rate, and linker excess were optimized using the setup specifically designed for in situ Raman spectroscopy. Highly crystalline ZIF-8 with a Brunauer–Emmett–Teller (BET) surface area of 1816 m2 g–1 was quantitatively prepared at mild temperature using a catalytic amount of ethanol and a small excess of the linker. Finally, we developed a simple and comprehensive approach to evaluating the environmental friendliness and scalability of metal–organic framework (MOF) syntheses in view of their large-scale production. KW - Mechanochemistry KW - In situ Raman KW - Large-scale processing KW - Metal−organic frameworks KW - Twin-screw extrusion (TSE) PY - 2023 DO - https://doi.org/10.1021/acssuschemeng.2c07509 SN - 2168-0485 VL - 11 IS - 13 SP - 5175 EP - 5183 PB - ACS Publications AN - OPUS4-57366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grunert, B. A1 - Saatz, Jessica A1 - Hoffmann, Katrin A1 - Appler, F. A1 - Lubjuhn, Dominik A1 - Jakubowski, Norbert A1 - Resch-Genger, Ute A1 - Emmerling, Franziska A1 - Briel, A. T1 - Multifunctional rare-earth element nanocrystals for cell labeling and multimodal imaging JF - ACS Biomaterials Science & Engineering N2 - In this work, we describe a simple solvothermal route for the synthesis of Eu3+-doped gadolinium orthovanadate nanocrystals (Eu:GdVO4−PAA) functionalized with poly(acrylic)acid (PAA), that are applicable as cell labeling probes for multimodal cellular imaging. The Eu3+ doping of the vanadate matrix provides optical functionality, due to red photoluminescence after illumination with UV light. The Gd3+ ions of the nanocrystals reduce the T1 relaxation time of surrounding water protons, allowing these nanocrystals to act as a positive MRI contrast agent with a r1 relaxivity of 1.97 mM−1 s−1. Low background levels of Eu3+, Gd3+, and V5+ in biological systems make them an excellent label for elemental microscopy by Laser Ablation (LA)-ICP-MS. Synthesis resulted in polycrystalline nanocrystals with a hydrodynamic diameter of 55 nm and a crystal size of 36.7 nm, which were further characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL) and transmission electron microscopy (TEM). The multifunctional nanocrystals were subsequently used for intracellular labeling of both human adipose-derived stem cells (MSCs) and A549 (adenocarcinomic human alveolar basal epithelial) cells. KW - Bioimaging KW - Nanoparticle KW - Multimodal KW - Lanthanide PY - 2018 DO - https://doi.org/10.1021/acsbiomaterials.8b00495 SN - 2373-9878 VL - 4 IS - 10 SP - 3578 EP - 3587 PB - ACS Publications CY - Washington, USA AN - OPUS4-46244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goswami, Juli Nanda A1 - Haque, Najirul A1 - Seikh, Asiful H. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Bar, Nimai A1 - Ifseisi, Ahmad A. A1 - Biswas, Surajit A1 - Dolai, Malay T1 - Carboxylative cyclization of propargyl alcohols with carbon dioxide for the synthesis of α-alkylidene cyclic carbonates in presence of Co(III) schiff base complex catalyst JF - Journal of Molecular Structure N2 - A cobalt(III) complex, [Co(L)3](DMF) (1) of Schiff base ligand HL, 2-((E)-(benzylimino)methyl)-4-bromophenol is prepared and single crystal X-ray structural analysis have also been performed. The structures of complex 1 showed hexa-coordinated mononuclear systems that adopt octahedral geometry. The complex has also exhibited the supramolecular networks through non-covalent interactions like H-bonding, C–Hπ stacking. Moreover, the complex 1 is very effective in the catalytic fixation of carbon dioxide in propergyl alcohols to produce α-alkylidene cyclic carbonates. The catalytic production of α-alkylidene cyclic carbonates have been carried out through carboxylative cyclization of propargyl alcohols using CO2 balloon of 1 atm pressure at 80 ◦C. Solvent free condition (green synthesis) made this catalytic protocol eco-friendly towards the environment. Utilizing various substrates of propargyl alcohols moderate to high percentage yield (62–95%) of respective α-alkylidene cyclic carbonates product have been isolated over this catalytic reaction. Besides, the theoretical calculations (DFT) was performed for the prediction of probable mechanism of the catalytic reaction KW - Catalytic fixation of carbon dioxide KW - Carboxylative cyclization of propargyl alcohols KW - Cobalt (III) Schiff base complex KW - X-ray crystal analysis PY - 2024 DO - https://doi.org/10.1016/j.molstruc.2023.136868 SN - 0022-2860 VL - 1296 IS - Part 1 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-58947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghazanfari, M. R. A1 - Vittadello, L. A1 - Al-Sabbagh, Dominik A1 - Santhosh, A. A1 - Frankcom, C. A1 - Fuß, F. A1 - von Randow, C. A. A1 - Siemensmeyer, K. A1 - Vrijmoed, J. C. A1 - Emmerling, Franziska A1 - Jerabek, P. A1 - Irmlau, M. A1 - Thiele, G. T1 - Remarkable Infrared Nonlinear Optical, Dielectric, and Strong Diamagnetic Characteristics of Semiconducting K3[BiS3] JF - The journal of physical chemistry letters N2 - The ternary sulfido bismuthate K3[BiS3] is synthesized in quantitative yields. The material exhibits nonlinear optical properties with strong second harmonic generation properties at arbitrary wavelengths in the infrared spectral range and a notable laser-induced damage threshold of 5.22 GW cm−2 for pulsed laser radiation at a wavelength of 1040 nm, a pulse duration of 180 fs, and a repetition rate of 12.5 kHz. K3[BiS3] indicates semiconductivity with a direct optical band gap of 2.51 eV. Dielectric and impedance characterizations demonstrate κ values in the range of 6−13 at 1 kHz and a high electrical resistivity. A strong diamagnetic behavior with a susceptibility of −2.73 × 10−4 m3 kg−1 at room temperature is observed. These results suggest it is a promising nonlinear optical candidate for the infrared region. The synergic physical characteristics of K3[BiS3] provide insight into the correlation of optical, electrical, and magnetic properties. KW - Electrical properties KW - Insulators KW - Materials KW - Nonlinear optics KW - Quantum mechanics PY - 2022 DO - https://doi.org/10.1021/acs.jpclett.2c01689 VL - 13 IS - 30 SP - 6987 EP - 6993 PB - ACS Publications AN - OPUS4-55456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Getenet, M. A1 - Otálora, F. A1 - Emmerling, Franziska A1 - Al-Sabbagh, Dominik A1 - García-Ruiz, J. M. T1 - Mineral precipitation and hydrochemical evolution through evaporitic processes in soda brines (East African Rift Valley) JF - Chemical geology N2 - Soda lakes of the East African Rift Valley are hyperalkaline, hypersaline lakes extremely enriched in Na+, K+, Cl−, CO32−, HCO3−, and SiO2. In this paper, we investigate the chemical evolution in these lakes and the production of chemical sediments by salt precipitation via evaporation. Water samples from tributary springs and three lakes (Magadi, Nasikie Engida and Natron) have been experimentally studied by in-situ X-ray diffraction during evaporation experiments to characterize the sequence of mineral precipitation. These data are complemented by ex-situ diffraction studies, chemical analyses and thermodynamic hydrochemical calculations producing detailed information on the activity of all solution species and the saturation state of all minerals potentially generated by the given composition. Major minerals precipitating from these samples are sodium carbonates/bicarbonates as well as halite. The CO3/HCO3 ratio, controlled by pH, is the main factor defining the Na‑carbonates precipitation sequence: in lake brines where CO3/HCO3 > 1, trona precipitates first whereas in hot springs, where CO3/HCO3 ≪ 1, nahcolite precipitates instead of trona, which forms later via partial dissolution of nahcolite. Precipitation of nahcolite is possible only at lower pH values (pCO2 higher than −2.7) explaining the distribution of trona and nahcolite in current lakes and the stratigraphic sequences. Later, during evaporation, thermonatrite precipitates, normally at the same time as halite, at a very high pH (>11.2) after significant depletion of HCO3− due to trona precipitation. The precipitation of these soluble minerals increases the pH of the brine and is the main factor contributing to the hyperalkaline and hypersaline character of the lakes. Villiaumite, sylvite, alkaline earth carbonates, fluorapatite and silica are also predicted to precipitate, but most of them have not been observed in evaporation experiments, either because of the small amount of precipitates produced, kinetic effects delaying the nucleation of some phases, or by biologically induced effects in the lake chemistry that are not considered in our calculations. Even in these cases, the chemical composition in the corresponding ions allows for discussion on their accumulation and the eventual precipitation of these phases. The coupling of in-situ and ex-situ experiments and geochemical modelling is key to understanding the hydrogeochemical and hydroclimatic conditions of soda lakes, evaporite settings, and potentially soda oceans of early Earth and other extraterrestrial bodies. KW - Crystallization sequence KW - Hydrochemical evolution KW - Alkaline brines KW - Sodium carbonate minerals KW - Soda lakes KW - Evaporite deposits PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568431 DO - https://doi.org/10.1016/j.chemgeo.2022.121222 SN - 0009-2541 VL - 616 SP - 1 EP - 13 PB - Elsevier CY - New York, NY AN - OPUS4-56843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Getenet, M. A1 - Garcia-Ruiz, J. M. A1 - Otálora, F. A1 - Emmerling, Franziska A1 - Al-Sabbagh, Dominik A1 - Verdugo-Escamilla, E. T1 - A comprehensive methodology for monitoring evaporitic mineral precipitation and hydrochemical evolution of saline lakes: The case of Lake Magadi soda brine (East African Rift Valley, Kenya) JF - Crystal growth and design N2 - Lake Magadi, East African Rift Valley, is a hyperalkaline and saline soda lake highly enriched in Na+, K+, CO32–, Cl–, HCO3–, and SiO2 and depleted in Ca2+ and Mg2+, where thick evaporite deposits and siliceous sediments have been forming for 100 000 years. The hydrogeochemistry and the evaporite deposits of soda lakes are subjects of growing interest in paleoclimatology, astrobiology, and planetary sciences. In Lake Magadi, different hydrates of sodium carbonate/bicarbonate and other saline minerals precipitate. The precipitation sequence of these minerals is a key for understanding the hydrochemical evolution, the paleoenvironmental conditions of ancient evaporite deposits, and industrial crystallization. However, accurate determination of the precipitation sequence of these minerals was challenging due to the dependency of the different hydrates on temperature, water activity, pH and pCO2, which could induce phase transformation and secondary mineral precipitation during sample handling. Here, we report a comprehensive methodology applied for monitoring the evaporitic mineral precipitation and hydrochemical evolution of Lake Magadi. Evaporation and mineral precipitations were monitored by using in situ video microscopy and synchrotron X-ray diffraction of acoustically levitated droplets. The mineral patterns were characterized by ex situ Raman spectroscopy, X-ray diffraction, and scanning electron microscopy. Experiments were coupled with thermodynamic models to understand the evaporation and precipitation-driven hydrochemical evolution of brines. Our results closely reproduced the mineral assemblages, patterns, and textural relations observed in the natural setting. Alkaline earth carbonates and fluorite were predicted to precipitate first followed by siliceous sediments. Among the salts, dendritic and acicular trona precipitate first via fractional crystallization─reminiscent of grasslike trona layers of Lake Magadi. Halite/villiaumite, thermonatrite, and sylvite precipitate sequentially after trona from residual brines depleted in HCO3–. The precipitation of these minerals between trona crystals resembles the precipitation process observed in the interstitial brines of the trona layers. Thermonatrite precipitation began after trona equilibrated with the residual brines due to the absence of excess CO2 input. We have shown that evaporation and mineral precipitation are the major drivers for the formation of hyperalkaline, saline, and SiO2-rich brines. The discrepancy between predicted and actual sulfate and phosphate ion concentrations implies the biological cycling of these ions. The combination of different in situ and ex situ methods and modeling is key to understanding the mineral phases, precipitation sequences, and textural relations of modern and ancient evaporite deposits. The synergy of these methods could be applicable in industrial crystallization and natural brines to reconstruct the hydrogeochemical and hydroclimatic conditions of soda lakes, evaporite settings, and potentially soda oceans of early Earth and extraterrestrial planets. KW - Crystallization KW - Precipitation KW - Crystals KW - Evaporation KW - Minerals PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546712 DO - https://doi.org/10.1021/acs.cgd.1c01391 SN - 1528-7483 VL - 22 IS - 4 SP - 2307 EP - 2317 PB - ACS Publications CY - Washington, DC AN - OPUS4-54671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gernhard, M. A1 - Rautenberg, Max A1 - Hörner, G. A1 - Weber, B. A1 - Emmerling, Franziska A1 - Roth, C. T1 - Mechanochemical Synthesis as a Greener Way to ProduceIron-based Oxygen Reduction Catalysts JF - Zeitschrift für anorganische und allgemeine Chemie N2 - Iron-based catalysts have been reported manifold and studied as platinum group metal (PGM) free alternatives for the catalysis of the oxygen reduction reaction (ORR). However, their sustainable preparation by greener synthesis approaches is usually not discussed. In this work, we propose a new method for the sustainable preparation of such catalysts by using a mechanochemical approach, with no solvents and non-toxic chemicals. The materials obtained from low temperature carbonization (700 °C) exhibit considerable and stable catalytic performance for ORR in alkaline medium. A catalyst obtained from iron hydroxide, tryptophan, dicyandiamide, and ammonium nitrate shows the best electrocatalytic Performance with an overpotential of 921 mV vs. RHE at 0.1 mA/cm2 and an electron transfer number of 3.4. KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - AEMFC KW - Mössbauer Spectroscopy KW - Sustainable Synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535326 DO - https://doi.org/10.1002/zaac.202100194 VL - 647 IS - 22 SP - 2080 EP - 2087 PB - Weinheim-VCH GmbH AN - OPUS4-53532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fink, Friedrich A1 - Stawski, Tomasz M. A1 - Stockmann, Jörg M. A1 - Emmerling, Franziska A1 - Falkenhagen, Jana T1 - Surface Modification of Kraft Lignin by Mechanochemical Processing with Sodium Percarbonate JF - Biomacromolecules N2 - In this article, we present a novel one-pot mechanochemical reaction for the surface activation of lignin. The process involves environmentally friendly oxidation with hydrogen peroxide, depolymerization of fractions with high molecular mass, and introduction of new carbonyl functions into the lignin backbone. Kraft lignin was ground with sodium percarbonate and sodium hydroxide in a ball mill at different time intervals. Analyses by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), size exclusion chromatography (SEC), dynamic vapor sorption (DVS), and small-angle X-ray scattering (SAXS) showed significant improvements. After only 5 min of reaction, there was a 47% reduction in mass-average molecular weight and an increase in carboxyl functionalities. Chemical activation resulted in an approximately 2.8-fold increase in water adsorption. Principal component analysis (PCA) provided further insight into the correlations between IR spectra and SAXS parameters KW - Kraft Lignin KW - Mechanochemical oxidation KW - SEC KW - FTIR KW - SAXS KW - PCA PY - 2023 DO - https://doi.org/10.1021/acs.biomac.3c00584 SN - 1525-7797 SP - 1 EP - 11 PB - American Chemical Society AN - OPUS4-58074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Yasuda, N. A1 - Michalchuk, Adam A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit T1 - Mechanistic Investigation of an Elastically Flexible Organic Crystal JF - Crystal Growth & Design N2 - Mechanical flexibility in molecular crystals is a fascinating behavior with potential for developing advanced technologies. However, the phenomenon of mechanical bending is poorly understood. We explore for the first time the atomistic origin of elastic bending in a single component organic crystal using a combination of μ-focus synchrotron X-ray diffraction and ab initio simulation. KW - Flexible crystals KW - DFT calculation KW - Bending mechanism PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581949 DO - https://doi.org/10.1021/acs.cgd.3c00473 SN - 1528-7483 VL - 23 IS - 9 SP - 6244 EP - 6249 PB - ACS Publications AN - OPUS4-58194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Michalchuk, Adam A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit T1 - Elastic Flexibility in an Optically Active Naphthalidenimine-Based Single Crystal JF - Crystals N2 - Organic single crystals that combine mechanical flexibility and optical properties are important for developing flexible optical devices, but examples of such crystals remain scarce. Both mechanical flexibility and optical activity depend on the underlying crystal packing and the nature of the intermolecular interactions present in the solid state. Hence, both properties can be expected to be tunable by small chemical modifications to the organic molecule. By incorporating a chlorine atom, a reportedly mechanically flexible crystal of (E)-1-(4-bromo-phenyl)iminomethyl-2-hydroxylnaphthalene (BPIN) produces (E)-1-(4-bromo-2-chloro-phenyl)iminomethyl-2-hydroxyl-naphthalene (BCPIN). BCPIN crystals show elastic bending similar to BPIN upon mechanical stress, but exhibit a remarkable difference in their optical properties as a result of the chemical modification to the backbone of the organic molecule. This work thus demonstrates that the optical properties and mechanical flexibility of molecular materials can, in principle, be tuned independently. KW - Elastic Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539040 DO - https://doi.org/10.3390/cryst11111397 VL - 11 IS - 11 SP - 1397 PB - MDPI AN - OPUS4-53904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Mechanochemical Syntheses of Isostructural Luminescent Cocrystals of 9-Anthracenecarboxylic Acid with two Dipyridines Coformers JF - Crystals N2 - Tuning and controlling the solid-state photophysical properties of organic luminophore are very important to develop next-generation organic luminescent materials. With the aim of discovering new functional luminescent materials, new cocrystals of 9-anthracene carboxylic acid (ACA) were prepared with two different dipyridine coformers: 1,2-bis(4-pyridyl)ethylene and 1,2-bis(4-pyridyl)ethane. The cocrystals were successfully obtained by both mechanochemical approaches and conventional solvent crystallization. The newly obtained crystalline solids were characterized thoroughly using a combination of single crystal X-ray diffraction, powder X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, and thermogravimetric analysis. Structural analysis revealed that the cocrystals are isostructural, exhibiting two-fold interpenetrated hydrogen bonded networks. While the O–H···N hydrogen bonds adopts a primary role in the stabilization of the cocrystal phases, the C–H···O hydrogen bonding interactions appear to play a significant role in guiding the three-dimensional assembly. Both π···π and C–H···π interactions assist in stabilizing the interpenetrated structure. The photoluminescence properties of both the starting materials and cocrystals were examined in their solid states. All the cocrystals display tunable photophysical properties as compared to pure ACA. Density functional theory simulations suggest that the modified optical properties result from charge transfers between the ACA and coformer molecules in each case. This study demonstrates the potential of crystal engineering to design solid-state luminescence switching materials through cocrystallization. KW - Cocrystal KW - Mechanochemical synthesis KW - Luminescence KW - X-ray diffraction KW - DFT calculation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518226 DO - https://doi.org/10.3390/cryst10100889 VL - 10 IS - 10 SP - 889 PB - MDPI AN - OPUS4-51822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schöder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Tuning the mechanical flexibility of organic molecular crystals by polymorphism for flexible optical waveguides JF - CrystEngComm N2 - The ability to selectively tune the optical and the mechanical properties of organic molecular crystals offers a promising approach towards developing flexible optical devices. These functional properties are sensitive to crystallographic packing features and are hence expected to vary with polymorphic modification. Using as a model system the photoluminescent material 4-bromo-6-[(6-chloropyridin-2-ylimino)methyl]phenol (CPMBP), we herein demonstrate the simultaneous tuning of mechanical flexibility and photoluminescence properties via polymorphism. Two new polymorphic forms of CPMBP were obtained from a solution and fully characterised using a combination of experiments and density functional theory simulations. These polymorphic forms exhibit remarkably distinct mechanical properties and an order of magnitude difference in photoluminescence quantum yield. The mechanically plastic form has a higher quantum yield than the brittle polymorphic form. However, their photoluminescence emission profile is largely unaffected by the observed polymorphism, thereby demonstrating that the optical properties and bulk mechanical properties can in principle be tuned independently. By distinguishing between active (involving absorption and emission) and passive (involving no absorption) light propagation, the waveguiding properties of the plastic form of CPMBP (form II) were explored using the straight and bent crystals to highlight the potential applications of CPMBP in designing flexible optical devices. Our results demonstrated that polymorph engineering would be a promising avenue to achieve concurrent modulation of the optical and mechanical properties of photoluminescent molecular crystals for next-generation flexible optical device applications. KW - Mechanochemistry KW - Flexible PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532075 DO - https://doi.org/10.1039/d1ce00642h VL - 23 IS - 34 SP - 5815 EP - 5825 PB - Royal Society of Chemistry CY - London AN - OPUS4-53207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Villajos Collado, José Antonio A1 - Jagorel, Noëmie A1 - Reinsch, Stefan T1 - Increasing Exposed Metal Site Accessibility in a Co-MOF-74 Material With Induced Structure-Defects JF - Frontiers in Materials N2 - Metal-organic frameworks (MOFs) are promising nanoporous materials with many practical applications. This owes largely to their remarkable porosity and the presence of specific chemical functionalities, such as exposed metal sites (EMS). The MOF-74 structure is known for exhibiting one of the highest EMS densities among porous materials. Moreover, the inclusion of structural defects has been proposed to enhance activity further. This was previously achieved by mixing the original linker together with a second one, having lower topology. The presence of structural defects was evidenced by the resulting crystalline properties and thermal stability. In this work, different mixtures of tetratopic 2,5-dihydroxyterephthalic acid with up to 60% of the tritopic hydroxyterephtalic acid were used to synthesize crystalline Co-MOF-74-like materials. Materials synthesized from higher proportions than 30% of hydroxyterephtalic acid in the synthesis media collapse upon partial removal of the solvent molecules. This indicates the presence of structural defects and the importance of the solvent molecules in stabilizing the crystalline structures. Electron microscope images show that crystal size reduces with inclusion of hydroxyterephtalic acid as the second linker. The presence of coordinated solvent molecules at the EMS was evaluated by Fourier-transform infrared spectra (FTIR) spectroscopy, so that a higher degree of solvent-exchange was observed during washing for defective structures. Furthermore, TG analysis suggests defective structures exhibit lower desolvation temperatures than the defect-free structures. Finally, N2 adsorption-desorption analyses at −196°C showed an enhanced accessibility of the gas to the inner porosity of the defective structures and therefore, the EMS of the material. All these finding make this pathway interesting to enhance the potential interest of these materials for an industrial application because of both a facilitated activation and a better access to the active sites. KW - MOF-74 KW - Structural defects KW - Mixed-linkers KW - Exposed metal sites KW - Facilitated activation PY - 2019 DO - https://doi.org/10.3389/fmats.2019.00230 VL - 6 SP - 230 PB - Frontiers Media CY - Lausanne AN - OPUS4-49256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -