TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Lippitz, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Schmid, Thomas A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Zirconium permanent modifiers for graphite furnaces used in absorption spectrometry: understanding their structure and mechanism of action N2 - The mechanism of action of zirconium permanent modifiers on graphite surfaces was investigated in order to understand its influence on the analytical signal in atomic and molecular absorption spectrometry (AAS/MAS). For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEMEDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. We propose here a mechanism, where ZrO2 acts as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. No evidence of the formation of zirconium carbide was found. Consequently, as the CaF formation is catalysed by a heterogeneous catalyst, surface modifications with ZrO2 nanoparticles and ZrO xerogels were investigated in order to increase the surface area. Their influence was evaluated in the molecule formation of CaF, CaCl, CaBr, and CaI. Graphite furnace modification with zirconium oxide nanoparticles proves to be the best choice for fluorine analysis with a signal enhancement of more than eleven times with respect a non-coated graphite furnace. However, the influence of zirconium modifications in the analytical signals of Cl, and I is lower than the F signals or even negative in case of the Br. Understanding zirconium modifiers as heterogeneous catalysts offers a new perspective to AAS and MAS, and reveals the potential of surface analytical methods for development of improved permanent modifiers and graphite furnace coatings. KW - Zirconium KW - HR-CS-MAS KW - Graphite furnace KW - Nanoparticles KW - Xerogel KW - Calcium monofluoride KW - Absorption spectrometry PY - 2018 UR - https://pubs.rsc.org/en/content/articlelanding/2018/ja/c8ja00190a DO - https://doi.org/10.1039/C8JA00190A SN - 0267-9477 VL - 33 IS - 12 SP - 2034 EP - 2042 PB - Royal Society of Chemistry AN - OPUS4-46775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Accorsi, M. A1 - Tiemann, M. A1 - Wehrhan, L. A1 - Finn, Lauren M. A1 - Cruz, R. A1 - Rautenberg, Max A1 - Emmerling, Franziska A1 - Heberle, J. A1 - Keller, B. G. A1 - Rademann, J. T1 - Pentafluorophosphato-Phenylalanines: Amphiphilic Phosphotyrosine Mimetics Displaying Fluorine-Specific Protein Interactions N2 - Phosphotyrosine residues are essential functional switches in health and disease. Thus, phosphotyrosine biomimetics are crucial for the development of chemical tools and drug molecules. We report here the discovery and investigation of pentafluorophosphato amino acids as novel phosphotyrosine biomimetics. A mild acidic pentafluorination protocol was developed and two PF5-amino acids were prepared and employed in peptide synthesis. Their structures, reactivities, and fluorine-specific interactions were studied by NMR and IR spectroscopy, X-ray diffraction, and in bioactivity assays. The mono-anionic PF5 motif displayed an amphiphilic character binding to hydrophobic surfaces, to water molecules, and to protein-binding sites, exploiting charge and H−F-bonding interactions. The novel motifs bind 25- to 30-fold stronger to the phosphotyrosine binding site of the protein tyrosine phosphatase PTP1B than the best current biomimetics, as rationalized by computational methods, including molecular dynamics simulations. KW - Chemical Biology KW - Drug Development KW - Pentafluorophosphates KW - Phosphotyrosine Biomimetics KW - Protein Tyrosine Phosphatases PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549984 DO - https://doi.org/10.1002/anie.202203579 SN - 1433-7851 VL - 134 IS - 25 SP - 1 EP - 6 PB - Wiley-VCH GmbH AN - OPUS4-54998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akbar, S. A1 - Hasanain, S.K. A1 - Ivashenko, O. A1 - Dutka, M.V. A1 - Akhtar, N. A1 - De Hosson, J.Th.M. A1 - Ali, Naveed A1 - Rudolf, P. T1 - Defect ferromagnetism in SnO2:Zn2+ hierarchical nanostructures: correlation between structural, electronic and magnetic properties N2 - We report on the ferromagnetism of Sn1-xZnxO2 (x < 0.1) hierarchical nanostructures with various morphologies synthesized by a solvothermal route. A room temperature ferromagnetic and paramagnetic response was observed for all compositions, with a maximum in ferromagnetism for x = 0.04. The ferromagnetic behaviour was found to correlate with the presence of zinc on substitutional Sn sites and with a low oxygen vacancy concentration in the samples. The morphology of the nanostructures varied with zinc concentration. The strongest ferromagnetic response was observed in nanostructures with well-formed shapes, having nanoneedles on their surfaces. These nanoneedles consist of (110) and (101) planes, which are understood to be important in stabilizing the ferromagnetic defects. At higher zinc concentration the nanostructures become eroded and agglomerated, a phenomenon accompanied with a strong decrease in their ferromagnetic response. The observed trends are explained in the light of recent computational studies that discuss the relative stability of ferromagnetic defects on various surfaces and the role of oxygen vacancies in degrading ferromagnetism via an increase in free electron concentration. KW - Ferromagnetism KW - Nanostructures KW - Magnetic properties PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473014 DO - https://doi.org/10.1039/c9ra00455f SN - 2046-2069 VL - 9 IS - 7 SP - 4082 EP - 4091 PB - Royal Society of Chemistry AN - OPUS4-47301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akhmetova, Irina A1 - Beyer, Sebastian A1 - Schutjajew, K. A1 - Tichter, T. A1 - Wilke, Manuel A1 - Prinz, Carsten A1 - B. Martins, Inês C. A1 - Al-Sabbagh, Dominik A1 - Roth, C. A1 - Emmerling, Franziska T1 - Cadmium benzylphosphonates - the close relationship between structure and properties N2 - Cadmium benzylphosphonate Cd(O3PBn)·H2O and its fluorinated derivates Cd(O3PBn-3F)·H2O, Cd(O3PBn-4F)·H2O, and Cd(O3PBn-F5)·H2O were synthesized mechanochemically. The Crystal structures of the compounds were determined based on powder X-ray diffraction (PXRD) data. The influence of the ligand substitution on the crystal structure of the metal phosphonate was determined. The hydrophobicity as a function of degree of fluorination was investigated using dynamic vapor sorption. KW - Mechanochemistry KW - Metal phosphonates KW - PXRD KW - DVS PY - 2019 DO - https://doi.org/10.1039/c9ce00776h VL - 21 SP - 5958 EP - 5964 PB - RSC Royal Society of Chemistry AN - OPUS4-49930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akhmetova, Irina A1 - Schuzjajew, K. A1 - Wilke, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Rademann, K. A1 - Roth, C. A1 - Emmerling, Franziska T1 - Synthesis, characterization and in situ monitoring of the mechanochemical reaction process of two manganese(II)-phosphonates with N-containing ligands N2 - Two divalent manganese aminophosphonates, manganese mono (nitrilotrimethylphosphonate) (MnNP3) and manganese bis N-(carboxymethyl)iminodi(methylphosphonate)) (Mn(NP2AH)2), have been prepared by mechanochemical synthesis and characterized by powder X-ray diffraction (PXRD). The structure of the novel compound Mn(NP2AH)2 was determined from PXRD data. MnNP3 as well as Mn(NP2AH)2 exhibits a chain-like structure. In both cases, the manganese atom is coordinated by six oxygen atoms in a distorted octahedron. The local coordination around Mn was further characterized by extended X-ray absorption fine structure. The synthesis process was followed in situ by synchrotron X-ray diffraction revealing a three-step reaction mechanism. The asprepared manganese(II) phosphonates were calcined on air. All samples were successfully tested for their suitability as catalyst material in the oxygen evolution reaction. KW - Mechanochemistry KW - In situ KW - XRD PY - 2018 DO - https://doi.org/10.1007/s10853-018-2608-6 SN - 0022-2461 SN - 1573-4803 VL - 53 IS - 19 SP - 13390 EP - 13399 PB - Springer Science + Business Media B.V. AN - OPUS4-45673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Prinz, Carsten A1 - Scholz, Gudrun A1 - Kemnitz, Erhard A1 - Emmerling, Franziska T1 - Ca-, Sr-, and Ba-Coordination polymers based on anthranilic acid via mechanochemistry N2 - Ca-, Sr-, and Ba-Based coordination polymers (CPs) were prepared mechanochemically by milling metal-hydroxide samples with anthranilic acid (oABAH). {[Ca(oABA)2(H2O)3]}n consists of one-dimensional polymeric chains that are further connected by a hydrogen-bonding network. {[Sr(oABA)2(H2O)2]·H2O}n is a one-dimensional CP in which water molecules bridge Sr2+ ions and increase the dimensionality by building an extended network. {[Ba(oABA)2(H2O)]}n crystallizes as a two-dimensional CP comprising one bridging water molecule. The cation radii influence the inorganic connectivity and dimensionality of the resulting crystal structures. The crystal structures were refined from powder X-ray diffraction data using the Rietveld method. The local coordination environments were studied via extended X-ray absorption fine structure (EXAFS) measurements. The compounds were further characterized using comprehensive analytical methods such as elemental analysis, thermal analysis, MAS NMR, imaging, and dynamic vapor sorption (DVS) measurements. Compounds 1, 2, and 3 exhibit small surface areas which decrease further after thermal annealing experiments. All compounds exhibit a phase transformation upon heating, which is only reversible in 3. KW - Mechanochemistry KW - XRD PY - 2019 DO - https://doi.org/10.1039/c9dt00991d SN - 1477-9226 SN - 1477-9234 VL - 48 IS - 19 SP - 6513 EP - 6521 PB - Royal Society of Chemistry AN - OPUS4-48014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - Prinz, Carsten A1 - Zimathies, Annett A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - Hydrated and dehydrated Ca-coordination polymers based on benzene-dicarboxylates: mechanochemical synthesis, structure refinement, and spectroscopic characterization N2 - A series of Ca-based coordination polymers were prepared mechanochemically by milling Ca(OH)2 with phthalic acid (H2oBDC), isophthalic acid (H2mBDC), and terephthalic acid (H2pBDC). The hydrated compounds [Ca(oBDC)(H2O)], [Ca(mBDC)(H2O)3.4], and [Ca(pBDC)(H2O)3] were prepared for the first time via mechanochemical routes. The refined structures were validated by extended X-ray absorption data. The new dehydrated compound [Ca(oBDC)] (1-H2O), obtained after the thermal post-treatment of 1 in a reversible phase transition process, was determined ab initio based on the powder X-ray diffraction (PXRD) data. The materials were thoroughly characterized using elemental analysis, thermal analysis, and spectroscopic methods: magic-angle spinning NMR and attenuated total reflection-infrared spectroscopy. The specific surface areas and sorption properties of the hydrated and dehydrated samples were determined using the isotherms of gas sorption and dynamic vapor sorption measurements. KW - Mechanochemistry KW - XRD PY - 2018 UR - http://pubs.rsc.org/en/content/articlehtml/2017/ce/c7ce01906h DO - https://doi.org/10.1039/C7CE01906H VL - 20 SP - 946 EP - 961 PB - Royal Society of Chemistry AN - OPUS4-44440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, Gudrun A1 - Emmerling, Franziska A1 - Kemnitz, Erhard T1 - Ca-Tetrafluorophthalate and Sr-isophthalate: mechanochemical synthesis and characterization in comparison with other Ca-and Sr-coordination polymers N2 - New Ca- and Sr-based coordination polymers (CPs) were mechanochemically synthesized by milling metal hydroxide samples (M = Ca, Sr) with tetrafluorophthalic acid (H2oBDC-F4) and isophthalic acid (H2mBDC). [Ca(oBDC-F4)(H2O)2] (1) exhibits a small surface area which is slightly increased after removing the crystal water. On the other hand, the hydrated sample of the nonfluorinated [Sr(mBDC)(H2O)3.4] (2) reveals a small BET surface area which remains unchanged even after the release of crystal water via thermal treatment. The new compounds 1 and 2 are similar to their Sr- and Ca-analogs, respectively. These findings are confirmed by thermal analysis, MAS NMR, and ATR-IR measurements, in addition to the Le Bail refinements for the measured powder X-ray data of 1 and 2. Ca- and Sr-CPs based on perfluorinated dicarboxylic systems and their nonfluorinated analogs diverse in structural and chemical properties depending on the geometries of the organic linkers and the presence of fluorine atoms. The fluorinations of organic ligands lead to the formation of fluorinated CPs with higher dimensionalities compared to their nonfluorinated counterparts. Conversely, the thermal stabilities of the latter are higher than those of the fluorinated CPs. KW - Mechanochemistry PY - 2018 DO - https://doi.org/10.1039/c8dt00695d SN - 1477-9226 SN - 1477-9234 VL - 47 IS - 16 SP - 5743 EP - 5754 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-44696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, Gudrun A1 - Emmerling, Franziska A1 - Kemnitz, Erhard T1 - Barium coordination polymers based on fluorinated and fluorine-free benzene-dicarboxylates: Mechanochemical synthesis and spectroscopic characterization N2 - A series of new Ba-based coordination polymers (CPs) were mechanochemically synthesized by milling Ba-hydroxide samples with perfluorinated and fluorine-free benzene-dicarboxylic acids, including tetrafluoroisophthalic acid (H2mBDC-F4), tetrafluorophthalic acid (H2oBDC-F4), isophthalic acid (H2mBDC) and phthalic acid (H2oBDC). The new fluorinated CPs: [Ba(mBDC-F4)$0.5H2O] (1) and [Ba(oBDC-F4)·1.5H2O] (2) are compared to their nonfluorinated counterparts: [Ba(mBDC)·2.5H2O] (3), and [Ba(oBDC)·1H2O] (4). These materials are thoroughly characterized using powder X-ray diffraction. The products obtained by milling are all hydrated but vary in their water contents. Compositions and local structures are investigated by elemental analysis, thermal analysis, MAS NMR and attenuated total reflectioninfrared spectroscopy. These materials exhibit high thermal stabilities but small surface areas that remain unchanged even after thermal treatments. KW - Mechanochemical synthesis KW - Barium KW - Fluorine KW - Coordination polymers KW - PXRD KW - MAS NMR spectroscopy PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S1293255817310798 DO - https://doi.org/10.1016/j.solidstatesciences.2018.03.013 SN - 1293-2558 SN - 1873-3085 VL - 79 SP - 99 EP - 108 PB - Elsevier AN - OPUS4-44880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ali, Naveed A1 - Komal, N. A1 - Malik, Z. A1 - Chaudhary, A.J. T1 - Synthesis, characterization and properties of hierarchically assembled antimony oxyhalides nanonetworks N2 - The novel synthesis route has been developed for hierarchically structured; nanorods and nanosheets of Sb4O5Cl2 from a single precursor, with dimension range between 57–90 nm. X-ray powder diffraction analysis confirmed the monoclinic crystal symmetry in P21/c(14)with structure type Sb4O5Cl2 for both forms; the nanorods and nanosheets. Rietveld refinements and crystallite size investigations of the powder patterns revealed significant enhancement in intensity with subtle variation in the lattice parameters and crystallite size decrease in case of nanosheets in comparison to the nanorods assembly. Through scanning electron microscopy, a composition commensurate to Sb4O5Cl2 at% with averaged dimensions; dia.∼90 nm, l ∼ 2 μm for nanorods and dia.∼50–150 nm for nanosheets got corroborated. Owing to the quantum confinement a band gap widening was observed while moving from bulk to nano regime, i.e. 3.25, 3.31 and 3.34 eV, for bulk, nanosheets, and nanorods, respectively. In the case of nanosheets, the highest value of dielectric constant was observed, i.e. 87, as compared to nanorods and the bulk, i.e. 40 and 35.5, respectively. The nanosheets also showed the highest value of dielectric and tangent loss with an increase in frequency due to the least crystallite size of these nanonetworks. Nanosheets depicted the higher AC conductivity at low frequency due to the alignment of the charges but its value decreases at the higher frequency due to lack of time for charge reorientation. The hopping phenomenon was observed in all three cases with the most prominent one in bulk case at higher frequencies. KW - Nanorods KW - Nanosheets KW - Antimony oxychloride ( Sb4O5Cl2) KW - Optical properties KW - Dielectric properties PY - 2019 DO - https://doi.org/10.1088/2053-1591/ab0da9 SN - 2053-1591 VL - 6 IS - 6 SP - 065035 PB - IOP AN - OPUS4-47734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ali, Naveed Zafar A1 - Campbell, B. J. A1 - Jansen, M. T1 - Topotactic, pressure-driven, diffusion-less phasetransition of layered CsCoO2to a stuffedcristobalite-type configuration N2 - CsCoO2, featuring a two-dimensional layered architecture of edge- and vertex-linked CoO4tetrahedra, is subjected to a temperature-driven reversible second-order phase transformation at 100 K, which corresponds to a structuralrelaxation with concurrent tilting and breathing modes of edge-sharing CoO4tetrahedra. In the present investigation, it was found that pressure induces a phase transition, which encompasses a dramatic change in the connectivity ofthe tetrahedra. At 923 K and 2 GPa, beta-CsCoO2 undergoes a first-order phasetransition to a new quenchable high-pressure polymorph,alpha-CsCoO2. It is built up of a three-dimensional cristobalite-type network of vertex-sharing CoO4 tetrahedra. According to a Rietveld refinement of high-resolution powderdiffraction data, the new high-pressure polymorph gamma-CsCoO2 crystallizes in the tetragonal space groupI41/amd:2 (Z= 4) with the lattice constants a= 5.8711 (1) and c= 8.3214 (2) A, corresponding to a shrinkage in volume by 5.7% compared with the ambient-temperature and atmospheric pressure-CsCoO2polymorph.The pressure-induced transition (beta>gamma) is reversible;-CsCoO2 stays metastable under ambient conditions, but transforms back to the-CsCoO2structure upon heating to 573 K. The transformation pathway revealed isremarkable in that it is topotactic, as is demonstrated through a clean displacive transformation track between the two phases that employs the symmetry oftheir common subgroupPb21a(alternative setting of space group No. 29 that matches the conventional-phase cell). KW - Structures under extreme conditions KW - Topotactic phase transitions KW - Transformation pathways KW - Oxocobaltates KW - Cristobalite frameworks PY - 2019 DO - https://doi.org/10.1107/S2052520619008436 SN - 2052-5206 VL - 75 IS - 4 SP - 704 EP - 710 PB - International Union of Crystallography AN - OPUS4-48782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asanova, T.I. A1 - Asanov, Igor A1 - Yusenko, Kirill A1 - Le Fontane, Camille A1 - Gerasimov, E.Y. A1 - Zadesenetz, A.V. A1 - Korenev, S.V. T1 - Time-resolved study of Pd-Os and Pt-Os nanoalloys formation through thermal decomposition of Pd(NH3)(4) OsCl6 and Pt(NH3)(4) OsCl6 complex salts N2 - The formation mechanisms of Pd-Os and Pt-Os alloys in the course of thermal decomposition of iso-formular and isostructural complex salts [Pd(NH3)4][OsCl6] and [Pt(NH3)4][OsCl6] in an inert atmosphere have been studied by in-situ QXAFS, XPS and PXRD. The mechanisms of thermal decomposition of the precursors are found to differ from each other, but the detected intermediate products show no significant effect on the local atomic structure around Os, Pt/Pd in their final products. A crystalline beta-trans-[Pd(NH3)2Cl2] intermediate of the first step of thermal decomposition of [Pd(NH3)4][OsCl6] makes the anion [OsCl6]2− transform differently than that of [Pt(NH3)4][OsCl6]. It transforms into a short-lived [Os(NH3)xCl6-x] (2≤x≤4), and then to a distorted octahedron [OsCl6]2−, similar to the high-temperature modification of OsCl4. In case of [Pt(NH3)4][OsCl6], the intermediate [Os(NH3)2Cl4] modifies into four chlorine coordinated Os,{OsCl4}0/1−. Consecutive reduction of Pd(II)/Pt(II) and Os(IV) to the metals defines the homophilic atomic order with the fcc-Pd covered by a random Pd-Os alloy layer and Os on the surface, that is supported by High-Resolution Transmission Electron Mictroscopy (HRTEM) and Scanning TEM (STEM) energy dispersive X-ray (EDX) data, and the diffusion direction going from the surface (hcp-Os) to bulk (fcc-Pd/Pt). As a result, the heterogeneous alloys are formed with a very similar electronic and local atomic structure of Os and Pd/Pt. Upon alloying, the Os 5d5/2,3/2 and Pt 5d5/2,3/2 levels are depleted in the Pt-Os alloys compared to dispersed hcp-Os, fcc-Pt, and Pt foil. This is an unusual behaviour for Os and Pt, calling into question the versatility of d-band theory in bimetallic Os-alloys. The spin-orbit effect at the Os site has been found for both the Pd-Os and Pt-Os alloys, but it is about 4 times less compared to the complex salts. The obtained values for the complex compounds are comparable with those for the iridates, proposed as materials with spin-orbit-induced properties. KW - Thermal decomposition KW - Quick-EXAFS PY - 2021 DO - https://doi.org/10.1016/j.materresbull.2021.111511 VL - 144 SP - 111511 PB - Elsevier Ltd. AN - OPUS4-54010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baek, W. A1 - Gromilov, S. A1 - Kuklin, A. A1 - Kovaleva, E. A1 - Fedorov, A. A1 - Sukhikh, Alex A1 - Hanfland, M. A1 - Pomogaev, V. A1 - Melchakova, Y. A1 - Avramov, P. A1 - Yusenko, Kirill T1 - Unique Nanomechanical Properties of Diamond-Lonsdaleite Biphases: Combined Exp and Theor consideration of popigai impact diamonds N2 - For the first time, lonsdaleite-rich impact diamonds from one of the largest Popigai impact crater (Northern Siberia) with a high concentration of structural defects are investigated under hydrostatic compression up to 25 GPa. It is found that, depending on the nature of a sample, the bulk modulus for lonsdaleite experimentally obtained by X-ray diffraction in diamond-anvil cells is systematically lower and equal to 93.3−100.5% of the average values of the bulk moduli of a diamond matrix. Density functional theory calculations reveal possible coexistence of a number of diamond/lonsdaleite and twin diamond biphases. Among the different mutual configurations, separate inclusions of one lonsdaleite (001) plane per four diamond (111) demonstrate the lowest energy per carbon atom, suggesting a favorable formation of single-layer lonsdaleite (001) fragments inserted in the diamond matrix. Calculated formation energies and experimental diamond (311) and lonsdaleite (331) powder X-ray diffraction patterns indicate that all biphases could be formed under high-temperature, high-pressure conditions. Following the equation of states, the bulk modulus of the diamond (111)/lonsdaleite (001) biphase is the largest one among all bulk moduli, including pristine diamond and lonsdaleite. KW - Compressibility KW - Lonsdaleite KW - Impact diamonds PY - 2019 DO - https://doi.org/10.1021/acs.nanolett.8b04421 VL - 19 IS - 9 SP - 1570 EP - 1576 PB - ACS AN - OPUS4-47403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baláž, M. A1 - Tešinský, M. A1 - Marquardt, Julien A1 - Škrobian, M. A1 - Daneu, N. A1 - Rajňák, M. A1 - Baláž, P. T1 - Synthesis of copper nanoparticles from refractory sulfides using a semi-industrial mechanochemical approach N2 - The large-scale mechanochemical reduction of binary sulfides chalcocite (Cu2S) and covellite (CuS) by elemental iron was investigated in this work. The reduction of Cu2S was almost complete after 360 min of milling, whereas in the case of CuS, a significant amount of non-reacted elemental iron could still be identified after 480 min. Upon application of more effective laboratory-scale planetary ball milling, it was possible to reach almost complete reduction of CuS. Longer milling leads to the formation of ternary sulfides and oxidation product, namely cuprospinel CuFe2O4. The rate constant calculated from the magnetometry measurements using a diffusion model for Cu2S and CuS reduction by iron in a large-scale mill is 0.056 min−0.5 and 0.037 min−0.5, respectively, whereas for the CuS reduction in a laboratory-scale mill, it is 0.1477 min−1. The nanocrystalline character of the samples was confirmed by TEM and XRD, as the produced Cu exhibited sizes up to 16 nm in all cases. The process can be easily scaled up and thus copper can be obtained much easier from refractory minerals than in traditional metallurgical approaches. KW - Mechanochemistry KW - Copper sulfides KW - Copper nanoparticles KW - Magnetometry KW - Oxidation PY - 2020 DO - https://doi.org/10.1016/j.apt.2019.11.032 VL - 31 IS - 2 SP - 782 EP - 791 PB - Elsevier B.V. AN - OPUS4-50665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baumann, Maria A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Wold, C. A1 - Uliyanchenko, E. T1 - Characterization of copolymers of polycarbonate and polydimethylsiloxane by 2D chromatographic separation, MALDI-TOF mass spectrometry, and FTIR spectroscopy N2 - The structure and composition of polycarbonate polydimethylsiloxane copolymer (PC-co-PDMS) was investigated by applying various analytical approaches including chromatographic separation methods, spectrometric, and spectroscopic detection techniques. In particular, size exclusion chromatography (SEC) and liquid adsorption chromatography operating at different conditions (e.g. using gradient solvent systems) were used to achieve separations according to molar mass and functionality distribution. The coupling of both techniques resulted in fingerprint two-dimensional plots, which could be used to easily compare different copolymer batches. Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry was applied for structural investigations. The different ionization behavior of both comonomers, however, strongly limited the applicability of this technique. In contrast to that, Fourier-transform Infrared (FTIR) spectroscopy could be used to quantify the amount of PDMS in the copolymer at different points in the chromatogram. The resulting methodology was capable of distinguishing PC-co-PDMS copolymer from PC homopolymer chains present in the material. KW - FTIR KW - Liquid chromatography KW - Mass spectrometry KW - Gradient elution KW - Polycarbonate-co-dimethylsiloxane copolymer PY - 2020 DO - https://doi.org/10.1080/1023666X.2020.1820170 VL - 25 IS - 7 SP - 1 EP - 12 PB - Taylor & Francis AN - OPUS4-51369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Scholz, Philipp A1 - Jung, Christian A1 - Weidner, Steffen T1 - Thermo-Desorption Gas Chromatography-Mass Spectrometry for investigating the thermal degradation of polyurethanes N2 - Thermo-Desorption Gas Chromatography-Mass Spectrometry (TD-GC-MS) was used to investigate the thermal degradation of two different polyurethanes (PU). PU samples were heated at different heating rates and the desorbed products were collected in a cold injection system and thereafter submitted to GC-MS. Prospects and limitations of the detection and quantification of semi-volatile degradation products were investigated. A temperature dependent PU depolymerization was found at temperatures above 200 °C proved by an increasing release of 1,4-butanediol and methylene diphenyl diisocyanate (MDI) representing the main building blocks of both polymers. Their release was monitored quantitatively based on external calibration with authentic compounds. Size Exclusion Chromatography (SEC) of the residues obtained after thermodesorption confirmed the initial competitive degradation mechanism indicating an equilibrium of crosslinking and depolymerization as previously suggested. Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry of SEC fractions of thermally degraded PUs provided additional hints on degradation mechanism. KW - Thermo-desorption KW - Mass spectrometry KW - Polyurethanes KW - Thermal degradation PY - 2023 DO - https://doi.org/10.1039/D3AY00173C SN - 1759-9660 SP - 1 EP - 6 PB - Royal Society for Chemistry AN - OPUS4-57307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A A1 - Michalchuk, Adam A1 - Lampronti, G A1 - Sanders, J T1 - Using solid catalysts in disulfide-based dynamic combinatorial solution- and mechano-chemistry N2 - We here show for the first time that solid amines can act as catalysts for disulfide-based dynamic combinatorial chemistry by ball mill grinding. The mechanochemical Equilibrium for the two disulfide reactions studied is reached within one to three hours using ten different amine catalysts. This contrasts with the weeks to months to achieve solution equilibrium for most solid amine catalysts at 2%M at 2mM concentration in a suitable solvent. The final mechanochemical equilibrium is independent of the catalyst used, but varies with other ball mill grinding factors such as the presence of traces of solvent. The different efficiencies of the amines tested are discussed. KW - Mechanochemistry KW - Green chemistry KW - Catalysis PY - 2022 DO - https://doi.org/10.1002/cssc.202102416 SN - 1864-5631 VL - 15 IS - 3 SP - 1 EP - 10 PB - Wiley AN - OPUS4-53930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Lampronti, G. A1 - Michalchuk, Adam A1 - Emmerling, Franziska A1 - Sanders, J. T1 - Quantitative reversible one pot interconversion of three crystalline polymorphs by ball mill grinding N2 - We demonstrate here using a disulfide system the first example of reversible, selective, and quantitative transformation between three crystalline polymorphs by ball mill grinding. This includes the discovery of a previously unknown polymorph. Each polymorph is reproducibly obtained under well-defined neat or liquid-assisted grinding conditions, revealing subtle control over the apparent thermodynamic stability. We discovered that the presence of a contaminant as low as 1.5% mol mol−1 acting as a template is required to enable all these three polymorph transformations. The relative stabilities of the polymorphs are determined by the sizes of the nanocrystals produced under different conditions and by surface interactions with small amounts of added solvent. For the first time, we show evidence that each of the three polymorphs is obtained with a unique and reproducible crystalline size. This mechanochemical approach gives access to bulk quantities of metastable polymorphs that are inaccessible through recrystallisation. KW - Mechanochemistry KW - Polymorph KW - XRD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549934 DO - https://doi.org/10.1039/D2CE00393G SP - 1 EP - 7 PB - Royal Society of Chemistry AN - OPUS4-54993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Michalchuk, Adam A1 - Lampronti, G A1 - Sanders, J T1 - Understanding the unexpected effect of frequency on the kinetics of a covalent reaction under ball-milling conditions N2 - We here explore how ball-mill-grinding frequency affects the kinetics of a disulfide exchange reaction. Our kinetic data show that the reaction progress is similar at all the frequencies studied (15–30 Hz), including a significant induction time before the nucleation and growth process starts. This indicates that to start the reaction an initial energy accumulation is necessary. Other than mixing, the energy supplied by the mechanical treatment has two effects: (i) reducing the crystal size and (ii) creating defects in the structure. The crystal-breaking process is likely to be dominant at first becoming less important later in the process when the energy supplied is stored at the molecular level as local crystal defects. This accumulation is taken here to be the rate-determining step. We suggest that the local defects accumulate preferentially at or near the crystal surface. Since the total area increases exponentially when the crystal size is reduced by the crystal-breaking process, this can further explain the exponential dependence of the onset time on the milling frequency. KW - Mechanochemistry KW - Kinetics KW - Diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483361 DO - https://doi.org/10.3762/bjoc.15.120 SN - 2195-951X VL - 15 SP - 1226 EP - 1235 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-48336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernardes, C. E. S. A1 - Feliciano, I.O. A1 - Naese, Christoph A1 - Emmerling, Franziska A1 - Minas da Piedade, M. T1 - Energetics of dehydroepiandrosterone polymorphs I and II from solution and drop-sublimation Calvet microcalorimetry measurements N2 - The lattice enthalpies and monotropic relationship of two dehydroepiandrosterone (DEHA) polymorphs (forms I and II) were evaluated through a combination of differential scanning calorimetry (DSC), isothermal solution microcalorimetry, and drop-sublimation Calvet microcalorimetry experiments. The standard molar enthalpy of transition between both forms was determined as ΔtrsHom (II→I, 298.15 K) = - 0.90 ± 0.07 kJ mol-1 and ΔtrsHom (II→I, 417.8 K) = - 1.7 ± 1.0 kJ mol- 1, from measurements of standard molar enthalpies of solution in dimethyl sulfoxide and enthalpies of fusion, respectively. Drop-sublimation Calvet microcalorimetry experiments on form I led to ΔsubHom (cr I, 298.15 K) = 132.0±3.3 kJ mol - 1. This result, when combined with the more precise ΔtrsHom (II→I) value obtained by solution calorimetry, afforded ΔsubHom (cr II, 298.15 K) = 131.1±3.3 kJ mol - 1. The overall data indicate that on enthalpic grounds form I is more stable than form II from 298.15 K up to fusion. This conclusion, and the fact that DSC experiments indicated that form I has also a considerably higher temperature fusion, namely, Tfus(cr I)= 422.5±0.2 K and Tfus(cr II) = 413.1±0.2 K, suggest that the two polymorphs are monotropically related. KW - Calorimetry KW - Polymorphism KW - Enthalpy of solution KW - Enthalpy of sublimation KW - Thermochemistry KW - Lattice enthalpy PY - 2023 DO - https://doi.org/10.1016/j.jct.2023.107137 SN - 0021-9614 SN - 1096-3626 VL - 186 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-58418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Besselink, R. A1 - Stawski, Tomasz A1 - Freeman, H. M. A1 - Hovelmann, J. A1 - Tobler, D. J. A1 - Benning, L. G. T1 - Mechanism of Saponite Crystallization from a Rapidly Formed Amorphous Intermediate N2 - Clays are crucial mineral phases in Earth’s weathering engine, but we do not know how they form in surface environments under (near-)ambient pressures and temperatures. Most synthesis routes, attempting to give insights into the plausible mechanisms, rely on hydrothermal conditions, yet many geological studies showed that clays may actually form at moderate temperatures (<100 °C) in most terrestrial settings. Here, we combined high-energy X-ray diffraction, infrared spectroscopy, and transmission electron microscopy to derive the mechanistic pathways of the low-temperature (25–95 °C) crystallization of a synthetic Mg-clay, saponite. Our results reveal that saponite crystallizes via a two stage process: (1) a rapid (several minutes) coprecipitation where ∼20% of the available magnesium becomes incorporated into an aluminosilicate network, followed by (2) a much slower crystallization mechanism (several hours to days) where the remaining magnesium becomes gradually incorporated into the growing saponite sheet structure. KW - Saponite KW - FTIR KW - PDF KW - Diffraction PY - 2020 DO - https://doi.org/10.1021/acs.cgd.0c00151 VL - 20 IS - 5 SP - 3365 EP - 3373 PB - American Chemical Society AN - OPUS4-50917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, Sebastian A1 - Schürmann, Robin A1 - Feldmann, Ines A1 - Blocki, A. A1 - Bald, Ilko A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Maintaining Stable Zeolitic Imidazolate Framework (ZIF) Templates during Polyelectrolyte Multilayer Coating N2 - Equipping ZIF particles with a polyelectrolyte membrane provides functional groups at their interface, enabling further conjugations necessary for applications such as targeted drug delivery. Previous approaches to coat ZIF particles with polyelectrolytes led to surface corrosion of the template material. This work overcomes previous limitations by performing a Layer-by-Layer (LbL) polyelectrolyte coating onto ZIF-8 and ZIF-67 particles in nonaqueous environment. Using the 2-methylimidazolium salt of polystyrensulfonic acid instead of the acid itself and polyethyleneimine in methanol led to intact ZIF particles after polyelectrolyte coating. This was verified by electron microscopy. Further, zetapotential and atomic force microscopy measurements confirmed a continuous polyelectrolyte multilayer built up. The here reported adaption to the well-studied (LbL) polyelectrolyte selfassembly process provides a facile method to equip ZIF particles with a nanometer thin polyelectrolyte multilayer membrane. KW - Zeolithe KW - Molecular Organic Frameworks KW - MOF KW - ZIF KW - Layer-by-Layer KW - Beschichtung KW - Polyelektrolyt PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447729 DO - https://doi.org/10.1016/j.colcom.2017.11.004 SN - 2215-0382 VL - 22 SP - 14 EP - 17 PB - Elsevier B.V. CY - Amsterdam, NL AN - OPUS4-44772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Das, S. A1 - Lal, G. A1 - Soni, S. R. A1 - Ghosh, A. A1 - Reddy, C. M. A1 - Ghosh, S. T1 - Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine N2 - Multidrug solids have a potential use to efficiently treat and control a superfluity of medical conditions. To address the current drawbacks of drug development in R&D, it was targeted to achieve new pharmaceutical solid forms of fenamic acids having improved solubility and thermal stability. Subsequently, five new multicomponent solids consisting of three salt hydrates of trimethoprim (TMP) with mefenamic acid (TMP-MFA-H2O), tolfenamic acid (TMP-TFA-H2O) and flufenamic acid (TMP-FFA-H2O), and two cocrystals of sulfamethazine (SFZ) with flufenamic acid (SFZ-FFA) and niflumic acid (SFZ-NFA) were prepared by liquid assisted grinding. Looking at the structures of active pharmaceutical ingredient (API) molecules, it was quite expected that a wide range of supramolecular synthons would lead to cocrystallization. New forms were characterized thoroughly by various solid-state techniques, including single crystal X-ray diffraction (SCXRD), which provided details of hydrogen bonding, molecular packing and interactions between drug and coformer. Kinetic solubility at pH 7.4 buffer study has been carried out and a comparison is made with respect to the parent drugs. A significant enhancement of NSAIDs solubility was observed in all salt hydrate systems of TMP. Thus with increasing physicochemical properties such as improved solubility further leads to the enhancement of bioavailability, which has implications to overcoming the formulation related problems of active pharmaceutical ingredients (APIs). KW - Cocrystals KW - Crystal engineering KW - Solubility PY - 2020 DO - https://doi.org/10.1016/j.molstruc.2019.127028 SN - 0022-2860 VL - 1199 SP - 127028 PB - Elsevier B.V. AN - OPUS4-49873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A. L. A1 - Silbernagl, Dorothee A1 - Yasuda, N. A1 - Feiler, Torvid A1 - Sturm, Heinz A1 - Emmerling, Franziska T1 - An atomistic mechanism for elasto-plastic bending in molecular crystals N2 - Mechanically flexible single crystals of molecular materials offer potential for a multitude of new directions in advanced materials design. Before the full potential of such materials can be exploited, insight into their mechanisms of action must be better understood. Such insight can be only obtained through synergistic use of advanced experimentation and simulation. We herein report the first detailed mechanistic study of elasto-plastic flexibility in a molecular solid. An atomistic origin for this mechanical behaviour is proposed through a combination of atomic force microscopy, μ-focus synchrotron X-ray diffraction, Raman spectroscopy, ab initio simulation, and computed elastic tensors. Our findings suggest that elastic and plastic bending are intimately linked and result from extensions of the same molecular deformations. The proposed mechanism bridges the gap between contested mechanisms, suggesting its applicability as a general mechanism for elastic and plastic bending in organic molecular crystals. KW - Mechanical property KW - Mechanical flexibility KW - Organic crystal PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577722 DO - https://doi.org/10.1039/D2SC06470G SN - 2041-6520 VL - 14 IS - 13 SP - 3441 EP - 3450 PB - Royal Society of Chemisty (RSC) CY - London/Cambridge AN - OPUS4-57772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Silbernagl, Dorothee A1 - Rautenberg, Max A1 - Schmid, Thomas A1 - Feiler, Torvid A1 - Reimann, K. A1 - Ghalgaoui, A. A1 - Sturm, Heinz A1 - Paulus, B. A1 - Emmerling, Franziska T1 - A Mechanistic Perspective on Plastically Flexible Coordination Polymers N2 - Mechanical flexibility in single crystals of covalently bound materials is a fascinating and poorly understood phenomenon. We present here the first example of a plastically flexible one-dimensional (1D) coordination polymer. The compound [Zn(m-Cl)2(3,5-dichloropyridine)2]n is flexible over two crystallographic faces. Remarkably, the single crystal remains intact when bent to 1808. A combination of microscopy, diffraction, and spectroscopic studies have been used to probe the structural response of the crystal lattice to mechanical bending. Deformation of the covalent polymer chains does not appear to be responsible for the observed macroscopic bending. Instead, our results suggest that mechanical bending occurs by displacement of the coordination polymer chains. Based on experimental and theoretical evidence, we propose a new model for mechanical flexibility in 1D coordination polymers. Moreover, our calculations propose a cause of the different mechanical properties of this compound and a structurally similar elastic material KW - Coordination polymer KW - Flexible crystals KW - Mechanical properties KW - Plastic deformation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504755 DO - https://doi.org/10.1002/anie.201914798 VL - 59 IS - 14 SP - 5557 EP - 5561 PB - Wiley-VCH AN - OPUS4-50475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - You, Yi A1 - van Wasen, Sebastian A1 - Bosc-Bierne, Gaby A1 - Weller, Michael G. A1 - Riedel, Jens T1 - Laser-Induced Microplasma as an Ambient Ionization Approach for the Mass-Spectrometric Analysis of Liquid Samples N2 - An airborne high repetition rate laser-induced plasma was applied as a versatile ambient ionization source for mass-spectrometric determinations of polar and nonpolar analytes in solution. The laser plasma was sustained between a home-built pneumatic nebulizer and the inlet capillary of an Orbitrap mass spectrometer. To maintain stable conditions in the droplet-rich spray environment, the plasma was directly fed by the fundamental output (λ = 1064 nm) of a current state-of-the-art diode-pumped solid-state laser. Ionization by the laser-driven plasma resulted in signals of intact analyte ions of several chemical categories. The analyte ions were found to be fully desolvated since no further increase in ion signal was observed upon heating of the inlet capillary. Due to the electroneutrality of the plasma, both positive and negative analyte ions could be formed simultaneously without altering the operational parameters of the ion source. While, typically, polar analytes with pronounced gas phase basicities worked best, nonpolar and amphoteric compounds were also detected. The latter were detected with lower ion signals and were prone to a certain degree of fragmentation induced during the ionization process. All the described attests the laser-induced microplasma by a good performance in terms of stability, robustness, sensitivity, and general applicability as a self-contained ion source for the liquid sample introduction. KW - Laser KW - Laser-induced plasma KW - Ambient ionization KW - Mass Spectrometry PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b00329 SN - 0003-2700 VL - 91 IS - 9 SP - 5922 EP - 5928 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-47939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Wolf, Jakob A1 - Meyer, Klas A1 - Kern, S. A1 - Angelone, D. A1 - Leonov, A. A1 - Cronin, L. A1 - Emmerling, Franziska T1 - Standardization and control of Grignard reactions in a universal chemical synthesis machine using online NMR T1 - Standardisierung und Kontrolle von Grignard-Reaktionen mittels Online-NMR in einer universellen chemischen Syntheseplattform N2 - A big problem with the chemistry literature is that it is not standardized with respect to precise operational parameters, and real time corrections are hard to make without expert knowledge. This lack of context means difficult reproducibility because many steps are ambiguous, and hence depend on tacit knowledge. Here we present the integration of online NMR into an automated chemical synthesis machine (CSM aka. “Chemputer” which is capable of small-molecule synthesis using a universal programming language) to allow automated analysis and adjustment of reactions on the fly. The system was validated and benchmarked by using Grignard reactions which were chosen due to their importance in synthesis. The system was monitored in real time using online-NMR, and spectra were measured continuously during the reactions. This shows that the synthesis being done in the Chemputer can be dynamically controlled in response to feedback optimizing the reaction conditions according to the user requirements. N2 - Ein Problem der chemischen Literatur ist die fehlende Standardisierung bezüglich genauer Bedingungen, auch Echtzeit-Korrekturen sind ohne Expertenwissen nur schwer möglich. Dieser Mangel an Details erschwert experimentelle Reproduzierbarkeit, da Schritte oft mehrdeutig sind und daher von implizitem Wissen abhängen. Hier präsentieren wir die Integration von Online-NMR Spektroskopie in eine automatisierte chemische Syntheseplattform (CSM aka. “Chemputer”, unter Verwendung einer universellen Programmiersprache zur Synthese kleiner Moleküle fähig), um eine automatisierte Analyse und Anpassung von Reaktionen im laufenden Betrieb zu ermöglichen. Das System wurde anhand von Grignard-Reaktionen, die aufgrund ihrer Bedeutung für die Synthese ausgewählt wurden, validiert und einem Härtetest unterzogen. Synthesen wurden in Echtzeit mit Online-NMR überwacht, und die Spektren wurden während der Reaktionen kontinuierlich aufgenommen und analysiert. Dies zeigt, dass der Chemputer dynamisch mittels einer Regelung kontrolliert werden kann, um die Reaktionsbedingungen entsprechend den Anforderungen des Benutzers zu optimieren. KW - Grignard reaction KW - NMR spectroscopy KW - Process analytical technology KW - Process control KW - Grignard-Reaktion KW - NMR-Spektroskopie KW - Prozessanalytik KW - Prozesskontrolle PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531260 DO - https://doi.org/10.1002/anie.202106323 SN - 1521-3773 SN - 1433-7851 N1 - Bibliografische Angaben für die deutsche Version: Angewandte Chemie 2021, Jg. 133, S. 1–7, ISSN 0044-8249, ISSN 1521-3757, https://doi.org/10.1002/ange.202106323 - Bibliographic information for the German version: Angewandte Chemie 2021, vol. 133, p. 1–7, ISSN 0044-8249, ISSN 1521-3757, https://doi.org/10.1002/ange.202106323 VL - 60 IS - 43 SP - 1 EP - 6 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53126 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Borzekowski, Antje A1 - Drewitz, T. A1 - Keller, Julia A1 - Pfeifer, Dietmar A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. A1 - Maul, R. T1 - Biosynthesis and characterization of zearalenone-14-sulfate, zearalenone-14-glucoside and zearalenone-16-glucoside using common fungal strains N2 - Zearalenone (ZEN) and its phase II sulfate and glucoside metabolites have been detected in food and feed commodities. After consumption, the conjugates can be hydrolyzed by the human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. To include ZEN conjugates in routine analysis, reliable standards are needed, which are currently not available. Thus, the aim of the present study was to develop a facilitated biosynthesis of ZEN-14-sulfate, ZEN-14-glucoside and ZEN-16-glucoside. A metabolite screening was conducted by adding ZEN to liquid fungi cultures of known ZEN conjugating Aspergillus and Rhizopus strains. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. In addition, a consecutive biosynthesis was developed by using Fusarium graminearum for ZEN biosynthesis with subsequent conjugation of the toxin by utilizing Aspergillus and Rhizopus species. ZEN-14-sulfate (yield: 49%) is exclusively formed by Aspergillus oryzae. ZEN-14-glucoside (yield: 67%) and ZEN-16-glucoside (yield: 39%) are formed by Rhizopus oryzae and Rhizopus oligosporus, respectively. Purities of ≥73% ZEN-14-sulfate, ≥82% ZEN-14-glucoside and ≥50% ZEN-16-glucoside were obtained by 1H-NMR. In total, under optimized cultivation conditions, fungi can be easily utilized for a targeted and regioselective synthesis of ZEN conjugates. KW - Mycotoxin KW - Zearalenone KW - Conjugate KW - Biosynthesis KW - Fusarium KW - Aspergillus KW - Rhizopus PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444246 DO - https://doi.org/10.3390/toxins10030104 SN - 2072-6651 VL - 10 IS - 3 SP - Article 104, 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-44424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitfeld, Steffen A1 - Scholz, G. A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - BaF-benzenedicarboxylate: the first mechanochemical N2 - Anewbariumcoordination polymer, BaF-benzenedicarboxylate (BaF(p-BDC)0.5), with fluorine directly coordinated to the metal cation, was prepared by mechanochemical synthesis routes. Phase-pure BaF-benzenedicarboxylate was synthesized by milling starting either from barium hydroxide or from Barium acetate as sources for barium cations. In both cases, the second reactant was 1,4-benzenedicarboxylic acid (H2(p-BDC)). Ammonium fluoride was used as fluorinating agent directly at milling. This is the first mechanochemical synthesis of coordination polymers where fluorine is directly coordinated to the metal cation. Following the second possibility, barium acetate fluoride (Ba(OAc)F) is formed as ntermediate product after milling, and the new coordination polymer is accessible only after washing with water and dimethyl sulfoxide. The new compound BaF(p-BDC)0.5 was characterized by X-ray powder diffraction, FTIR-, and 19F, 1H-13C CP MAS NMR spectroscopies, DTA-TG, and elemental Analysis. KW - Milling KW - MOF PY - 2018 DO - https://doi.org/10.1007/s10853-018-2331-3 SN - 0022-2461 VL - 53 IS - 19 SP - 13682 EP - 13689 PB - Springer AN - OPUS4-45677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brirmi, M A1 - Chabbah, T. A1 - Chatti, S. A1 - Schiets, F. A1 - Casabianca, H. A1 - Marestin, C. A1 - Mercier, R. A1 - Weidner, Steffen A1 - Errachid, A. A1 - Jaffrezic-Renault, N. A1 - Ben Romdhane, H. T1 - Effect of the pendent groups on biobased polymers, obtained from click chemistry suitable, for the adsorption of organic pollutants from water N2 - In this work, four triazole-based poly(ether-pyridine)s polymers were synthesized and used as an adsorbent for the removal of phenolic compounds from aqueous solutions. For this purpose, new fluoromonomers containing 1,2,3-triazole units were prepared by the Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction and then used for the elaboration of novel poly(ether-pyridine-triazole)s (PEPTs) by direct polyconden-sation with isosorbide and bisphenol A. Chemical structure of fluorinated pyridinicmonomers as well as resulting polymers was confirmed by 1H and 19F NMR spectroscopic methods. The thermal behavior of the obtained PEPTs was characterized using differential scanning calorimetry and thermogravimetric analysis. Results of sorption showed that polymers can be effectively used as a sorbent for the removal of polarorganic pollutants. The isosorbide-based poly(ether-pyridine-triazole) which contains hydrophilic hydroxyl groups as pendants chains (P4) exhibited the highest sorption efficiencies (78%–100% after 1 h). In order to explain the results an adsorption mech-anism mainly based on π–π interactions and hydrogen bonding with the pendent groups is proposed. KW - Adsorption KW - Biobased polymers KW - Cycloaddition KW - Pentafluoropyridine KW - Phenolic compounds PY - 2022 DO - https://doi.org/10.1002/pat.5809 SN - 1042-7147 SP - 1 EP - 21 PB - Wiley online library AN - OPUS4-55389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruna, F. G. A1 - Prokop, M. A1 - Bystron, T. A1 - Loukrakpam, R. A1 - Melke, J. A1 - Lobo, C. M. S. A1 - Fink, M. A1 - Zhu, M. A1 - Voloshina, E. A1 - Kutter, M. A1 - Hoffmann, H. A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Röder, B. A1 - Bouzek, K. A1 - Paulus, B. A1 - Roth, C. T1 - Following adsorbed intermediates on a platinum gas diffusion electrode in H3PO3‑containing electrolytes using in situ X‑ray absorption spectroscopy N2 - One of the challenges of high-temperature polymer electrolyte membrane fuel cells is the poisoning of the Pt catalyst with H3PO4. H3PO4 is imbibed into the routinely used polybenzimidazole-based membranes, which facilitate proton conductivity in the temperature range of 120−200 °C. However, when leached out of the membrane by water produced during operation, H3PO4 adsorbs on the Pt catalyst surface, blocking the active sites and hindering the oxygen reduction reaction (ORR). The reduction of H3PO4 to H3PO3, which occurs at the anode due to a combination of a low potential and the presence of gaseous H2, has been investigated as an additional important contributing factor to the observed poisoning effect. H3PO3 has an affinity toward adsorption on Pt surfaces even greater than that of H2PO4 −. In this work, we investigated the poisoning effect of both H3PO3 and H3PO4 using a half-cell setup with a gas diffusion electrode under ambient conditions. By means of in situ X-ray absorption spectroscopy, it was possible to follow the signature of different species adsorbed on the Pt nanoparticle catalyst (H, O, H2PO4 −, and H3PO3) at different potentials under ORR conditions in various electrolytes (HClO4, H3PO4, and H3PO3). It was found that H3PO3 adsorbs in a pyramidal configuration P(OH)3 through a Pt−P bond. The competition between H3PO4 and H3PO3 adsorption was studied, which should allow for a better understanding of the catalyst poisoning mechanism and thus assist in the development of strategies to mitigate this phenomenon in the future by minimizing H3PO3 generation by, for example, improved catalyst design or adapted operation conditions or changes in the electrolyte composition. KW - H3PO4 life cycle KW - XAS KW - In situ coupling KW - High-temperature fuel cells KW - Δμ XANES KW - H3PO3 PY - 2022 DO - https://doi.org/10.1021/acscatal.2c02630 SN - 2155-5435 VL - 12 IS - 18 SP - 11472 EP - 11484 PB - ACS CY - Washington, DC AN - OPUS4-55815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bugel, S. A1 - Hahnel, M. A1 - Kunde, T. A1 - de Sousa Amadeu, Nadar A1 - Sun, Y. A1 - Spieß, A. A1 - Beglau, T. H. Y. A1 - Janiak, C. A1 - Schmidt, B. M. T1 - Synthesis and Characterization of a Crystalline Imine-Based Covalent Organic Framework with Triazine Node and Biphenyl Linker and Its Fluorinated Derivate for CO2/CH4 Separation N2 - A catalyst-free Schiff base reaction was applied to synthesize two imine-linked covalent organic frameworks (COFs). The condensation reaction of 1,3,5-tris-(4-aminophenyl)triazine (TAPT) with 4,4′-biphenyldicarboxaldehyde led to the structure of HHU-COF-1 (HHU = Heinrich-Heine University). The fluorinated analog HHU-COF-2 was obtained with 2,2′,3,3′,5,5′,6,6′-octafluoro-4,4′-biphenyldicarboxaldehyde. Solid-state NMR, infrared spectroscopy, X-ray photoelectron spectroscopy, and elemental analysis confirmed the successful formation of the two network structures. The crystalline materials are characterized by high Brunauer–Emmett–Teller surface areas of 2352 m2/g for HHU-COF-1 and 1356 m2/g for HHU-COF-2. The products of a larger-scale synthesis were applied to prepare mixed-matrix membranes (MMMs) with the polymer Matrimid. CO2/CH4 permeation tests revealed a moderate increase in CO2 permeability at constant selectivity for HHU-COF-1 as a dispersed phase, whereas application of the fluorinated COF led to a CO2/CH4 selectivity increase from 42 for the pure Matrimid membrane to 51 for 8 wt% of HHU-COF-2 and a permeability increase from 6.8 to 13.0 Barrer for the 24 wt% MMM. KW - MOF KW - Filter PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547632 DO - https://doi.org/10.3390/ma15082807 SN - 1996-1944 VL - 15 IS - 8 SP - 1 EP - 18 PB - MDPI AN - OPUS4-54763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bui, M. A1 - Hoffmann, K. F. A1 - Braun, T. A1 - Riedel, S. A1 - Heinekamp, Christian A1 - Scheurell, K. A1 - Scholz, G. A1 - Stawski, Tomasz A1 - Emmerling, Franziska T1 - An Amorphous Teflate Doped Aluminium Chlorofluoride: A Solid Lewis-Superacid for the Dehydrofluorination of Fluoroalkanes N2 - Ananion-dopedaluminiumchlorofluoride AlCl0.1F2.8(OTeF5)0.1(ACF-teflate) was synthesized.The material contains pentafluor-oorthotellurate(teflate)groups, which mimic fluoride ions electronically, but are sterically more demanding. They are embedded into the amorphous structure. The latter was studied by PDF analysis, EXAFS data and MAS NMR spectroscopy. The mesoporous powder is a Lewis superacid, and ATR-IR spectra of adsorbed CD3CN reveal a blue-shift of the adsorption band by73 cm-1, which is larger than the shift for SbF5. Remarkably,ACF-teflate catalyzes dehydrofluorination reactions of mono-fluoroalkanes to yield olefins in C6D6. In these cases,no Friedel-Crafts products were formed. KW - Aluminium fluorides KW - Aluminium teflates KW - C-F bond activation KW - Lewis superacids KW - Silanes PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572290 DO - https://doi.org/10.1002/cctc.202300350 SN - 1867-3880 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-57229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burek, K. A1 - Dengler, J. A1 - Emmerling, Franziska A1 - Feldmann, Ines A1 - Kumke, M. U. A1 - Stroh, Julia T1 - Lanthanide Luminescence Revealing the Phase Composition in Hydrating Cementitious Systems N2 - The hydration process of Portland cement in a cementitious system is crucial for development of the high-quality cementbased construction material. Complementary experiments of Xray diffraction analysis (XRD), scanning electron microscopy (SEM) and time-resolved laser fluorescence spectroscopy (TRLFS) using europium (Eu(III)) as an optical probe are used to analyse the hydration process of two cement systems in the absence and presence of different organic admixtures. We Show that different analysed admixtures and the used sulphate carriers in each cement system have a significant influence on the hydration process, namely on the time-dependence in the formation of different hydrate phases of cement. Moreover, the effect of a particular admixture is related to the type of sulphate carrier used. The quantitative information on the amounts of the crystalline cement paste components is accessible via XRD analysis. Distinctly different morphologies of ettringite and calcium-silicate-hydrates (C-S-H) determined by SEM allow visual conclusions about formation of these phases at particular ageing times. The TRLFS data provides information about the admixture influence on the course of the silicate reaction. The dip in the dependence of the luminescence decay times on the hydration time indicates the change in the structure of C-S-H in the early hydration period. Complementary information from XRD, SEM and TRLFS provides detailed information on distinct periods of the cement hydration process. KW - Cement admixtures KW - Cement hydration KW - Europium KW - Luminescence KW - SEM KW - X-ray diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504842 DO - https://doi.org/10.1002/open.201900249 VL - 8 IS - 12 SP - 1441 EP - 1452 PB - Wiley-VCH AN - OPUS4-50484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bykov, M. A1 - Yusenko, Kirill A1 - Bykova, E. A1 - Pakhomova, A. A1 - Kraus, Werner A1 - Dubrovinskaia, N. A1 - Dubrovinsky, L. T1 - Synthesis of arsenopyrite-type rhodium pernitride RhN2 from a single-source azide precursor N2 - Nitrogen-rich noble metal nitrides possess unique mechanical and catalytic properties, therefore their synthesis and characterization is of interest for fundamental solid state chemistry and materials science. In this study we have synthesized a singlesource precursor [Rh(NH3)6]3(N3)5Cl4 (Rh:N ratio 1:11). Its controlled decomposition in a laser-heated diamond anvil cell at 39 GPa resulted in a formation of rhodium pernitride, RhN2. According to the results of single-crystal X-ray diffraction RhN2 has arsenopyrite structure type crystal structure previously unknown for this compound (P21/c (no. 14). KW - EOS KW - High-pressure KW - Nitrides PY - 2019 DO - https://doi.org/10.1002/ejic.201900488 IS - 32 SP - 3667 EP - 3671 PB - Wiley AN - OPUS4-48924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - C. Pardo Pérez, L. A1 - Arndt, A. A1 - Stojkovikj, S. A1 - Y. Ahmet, I. A1 - T. Arens,, J. A1 - Dattila, F. A1 - Wendt, R. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Davies, V. A1 - Höflich, K. A1 - Köhnen, E. A1 - Tockhorn, P. A1 - Golnak, R. A1 - Xiao, J. A1 - Schuck, G. A1 - Wollgarten, M. A1 - López, N. A1 - T. Mayer, M. T1 - Determining Structure-Activity Relationships in Oxide Derived CuSn Catalysts During CO2 Electroreduction Using X-Ray Spectroscopy N2 - The development of earth-abundant catalysts for selective electrochemical CO2 conversion is a central challenge. Cu-Sn bimetallic catalysts can yield selective CO2 reduction toward either CO or formate. This study presents oxide-derived Cu-Sn catalysts tunable for either product and seeks to understand the synergetic effects between Cu and Sn causing these selectivity trends. The materials undergo significant transformations under CO2 reduction conditions, and their dynamic bulk and surface structures are revealed by correlating observations from multiple methods—X-ray absorption spectroscopy for in situ study, and quasi in situ X-ray photoelectron spectroscopy for surface sensitivity. For both types of catalysts, Cu transforms to metallic Cu0 under reaction conditions. However, the Sn speciation and content differ significantly between the catalyst types: the CO-selective catalysts exhibit a surface Sn content of 13 at. % predominantly present as oxidized Sn, while the formate-selective catalysts display an Sn content of ≈70 at. % consisting of both metallic Sn0 and Sn oxide species. Density functional theory simulations suggest that Snδ+ sites weaken CO adsorption, thereby enhancing CO selectivity, while Sn0 sites hinder H adsorption and promote formate production. This study reveals the complex dependence of catalyst structure, composition, and speciation with electrochemical bias in bimetallic Cu catalysts. KW - Electrochemical CO2 conversion KW - Cu catalysts KW - X-ray absorption spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547116 DO - https://doi.org/10.1002/aenm.202103328 SN - 1614-6832 VL - 12 IS - 5 SP - 2103328 PB - Wiley-VCH GmbH AN - OPUS4-54711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cakir, Cafer Tufan A1 - Bogoclu, Can A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Guilherme Buzanich, Ana A1 - Radtke, Martin T1 - Machine learning for efficient grazing-exit x-ray absorption near edge structure spectroscopy analysis: Bayesian optimization approach N2 - In materials science, traditional techniques for analyzing layered structures are essential for obtaining information about local structure, electronic properties and chemical states. While valuable, these methods often require high vacuum environments and have limited depth profiling capabilities. The grazing exit x-ray absorption near-edge structure (GE-XANES) technique addresses these limitations by providing depth-resolved insight at ambient conditions, facilitating in situ material analysis without special sample preparation. However, GE-XANES is limited by long data acquisition times, which hinders its practicality for various applications. To overcome this, we have incorporated Bayesian optimization (BO) into the GE-XANES data acquisition process. This innovative approach potentially reduces measurement time by a factor of 50. We have used a standard GE-XANES experiment, which serve as reference, to validate the effectiveness and accuracy of the BO-informed experimental setup. Our results show that this optimized approach maintains data quality while significantly improving efficiency, making GE-XANES more accessible to a wider range of materials science applications. KW - Machine Learning KW - GE-XANES KW - Bayesian Optimization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603955 DO - https://doi.org/10.1088/2632-2153/ad4253 VL - 5 IS - 2 SP - 1 EP - 12 PB - IOP Publishing AN - OPUS4-60395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cakir, Cafer Tufan A1 - Piotrowiak, T. A1 - Reinholz, Uwe A1 - Ludwig, A. A1 - Emmerling, Franziska A1 - Streli, C. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin T1 - Exploring the Depths of Corrosion: A Novel GE-XANES Technique for Investigating Compositionally Complex Alloys N2 - In this study, we propose the use of nondestructive, depth-resolved, element-specific characterization using grazing exit X-ray absorption near-edge structure spectroscopy (GE-XANES) to investigate the corrosion process in compositionally complex alloys (CCAs). By combining grazing exit X-ray fluorescence spectroscopy (GE-XRF) geometry and a pnCCD detector, we provide a scanning-free, nondestructive, depth-resolved analysis in a sub-micrometer depth range, which is especially relevant for layered materials, such as corroded CCAs. Our setup allows for spatial and energy-resolved measurements and directly extracts the desired fluorescence line, free from scattering events and other overlapping lines. We demonstrate the potential of our approach on a compositionally complex CrCoNi alloy and a layered reference sample with known composition and specific layer thickness. Our findings indicate that this new GE-XANES approach has exciting opportunities for studying surface catalysis and corrosion processes in real-world materials. KW - Degradation mechanisms KW - Grazin exit XANES KW - Depth resolved XANES KW - Compositional complex alloys KW - Corrosion PY - 2023 DO - https://doi.org/10.1021/acs.analchem.3c00404 VL - 95 SP - 4810 EP - 4818 PB - ACS Publications AN - OPUS4-57823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Casali, C. A1 - Feiler, Torvid A1 - Heilmann, Maria A1 - Braga, D. A1 - Emmerling, Franziska A1 - Grepioni, F. T1 - Too much water? Not enough? In situ monitoring of the mechanochemical reaction of copper salts with dicyandiamide N2 - n situ monitoring of mechanochemical reactions between dicyandiamide (DCD) and CuX2 salts (X = Cl−, NO3−), for the preparation of compounds of agrochemical interest, showed the appearance of a number of phases. It is demonstrated that milling conditions, such as the amount of water added in wet grinding and/or the milling frequency, may affect the course of the mechanochemical reactions, and drive the reaction towards the formation of different products. It has been possible to discover by in situ monitored experiments two novel crystalline forms, namely the neutral complexes [Cu(DCD)2(OH2)2(NO3)2] (2) and [Cu(DCD)2(OH2)Cl2]·H2O (4), in addition to the previously known molecular salt [Cu(DCD)2(OH2)2][NO3]2·2H2O (1, DIVWAG) and neutral complex [Cu(DCD)2(OH2)Cl2] (3, AQCYCU), for which no synthesis conditions were available. Compounds 2 and 4 were fully characterized via a combination of solid-state techniques, including X-ray diffraction, Raman spectroscopy and TGA. KW - Mechanochemistry KW - In situ PY - 2022 DO - https://doi.org/10.1039/d1ce01670a VL - 24 IS - 6 SP - 1292 EP - 1298 PB - RSC AN - OPUS4-54344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Casali, L. A1 - Broll, V. A1 - Ciurili, S. A1 - Braga, D. A1 - Emmerling, Franziska A1 - Gepioni, F. T1 - Facilitating Nitrification Inhibition through Green, Mechanochemical Synthesis of a Novel Nitrapyrin Complex N2 - Nitrapyrin (NP) is applied to cultivated soils to inhibit the enzymatic activity of ammonia monooxygenase (AMO), but its poor aqueous solubility and high volatility severely limit its application. β-Cyclodextrin (β-CD) is commonly used to form inclusion complexes with hydrophobic molecules, improving water solubility and stability upon complexation. Here we report on the mechanochemical synthesis of the inclusion complex β-CD·NP, characterized via a combination of solid-state techniques, including exsitu and in situ X-ray diffraction, Raman and NMR spectroscopies, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The pure inhibitor NP was also structurally characterized. The β-CD·NP complex presents improved solubility and thermal stability, and still inhibits the enzymatic activity of AMO with high efficacy. All results indicate that the inclusion of NP into β-CD represents a viable route for the preparation of a novel class of inhibitors, with improved properties related to stability, water solubility, and good inhibition activity. KW - Mechanochemistry KW - Nitrification PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537154 DO - https://doi.org/10.1021/acs.cgd.1c00681 VL - 21 IS - 10 SP - 5792 EP - 5799 PB - ACS Publications AN - OPUS4-53715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chabbah, T. A1 - Chatti, S. A1 - Jaffrezic-Renault, N. A1 - Weidner, Steffen A1 - Marestin, C. A1 - Mercier, R. T1 - Impedimetric sensors based on diethylphosphonate-containingpoly(arylene ether nitrile)s films for the detection of lead ions N2 - This article describes the elaboration and characterization of diethylphosphonate-containing polymers coated electrodes as sensors for the detection of heavy metalstraces, by electrochemical impedance spectroscopy. Diethylphosphonate groupswere chosen as heavy metals binding sites. Two different series of polymers bearingthese anchoring groups were synthesized. Whereas the diethylphosphonate groupsare directly incorporated in the aromatic macromolecular chain in some polymers, analiphatic spacer is removing the chelating site from the polymer backbone in others.The influence of the macromolecular structure on the sensing response was studied,especially for the detection of Pb2+,Ni2+,Cd2+and Hg2+. Polymer P6, including thehigher amount of diethylphosphonate groups removed from the polymer chain by ashort alkyl spacer gave the higher sensitivity of detection of lead ions, with a detec-tion limit of 50 pM KW - Heavy metals KW - Phosphonate esters KW - Lead ions KW - MALDI TOF MS PY - 2023 DO - https://doi.org/10.1002/pat.6065 SN - 1042-7147 SP - 1 EP - 11 PB - John Wiley & Sons, Ltd AN - OPUS4-57356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chabbah, T. A1 - Chatti, S. A1 - Zouaoui, F. A1 - Jlalia, A. A1 - Gaiji, H. A1 - Abderrazak, H. A1 - Casablanca, H. A1 - Mercier, R. A1 - Weidner, Steffen A1 - Errachid, A. A1 - Marestin, C. A1 - Jaffrezic-Renault, N. T1 - New poly(ether-phosphoramide)s sulfides based on green resources as sensitive films for the specific impedimetric detection of nickel ions N2 - For the development of selective and sensitive chemical sensors, we have developed a new family of poly(etherphosphoramide) polymers. These polymers were obtained with satisfactory yields by nucleophilic aromatic polycondensation using isosorbide as green resources, and bisphenol A with two novel difluoro phosphinothioic amide monomers. Unprecedented, the thiophosphorylated aminoheterocycles monomers, functionalized with two heterocyclic amine, N-methylpiperazine and morpholine were successfully obtained by nucleophilic substitution reaction of P(S)–Cl compound. The resulting polymers were characterized by different analytical techniques (NMR, MALDI–ToF MS, GPC, DSC, and ATG). The resulting partially green polymers, having tertiary phosphine sulfide with P–N side chain functionalities along the main chain of polymers are the sensitive film at the surface of a gold electrode for the impedimetric detection of Cd, Ni, Pb and Hg. The bio-based poly(etherphosphoramide) functionalized with N-methylpiperazine modified sensor showed better analytical performance than petrochemical based polymers for the detection of Ni2+. A detection limit of 50 pM was obtained which is very low compared to the previously published electrochemical sensors for nickel detection. KW - Poly(ether-phosphoramide)s sulfides KW - Green chemistry KW - Polymer film KW - MALDI TOF MS PY - 2022 DO - https://doi.org/10.1016/j.talanta.2022.123550 VL - 247 IS - 123550 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-54980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chapartegui-Arias, Ander A1 - Raysyan, A. A1 - Belenguer, A. M. A1 - Jaeger, Carsten A1 - Tchipilov, Teodor A1 - Prinz, Carsten A1 - Abad Andrade, Carlos Enrique A1 - Beyer, S. A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Tailored mobility in a zeolite imidazolate framework (ZIF) antibody conjugate N2 - Zeolitic imidazolate framework (ZIF) hybrid fluorescent nanoparticles and ZIF antibody conjugates have been synthesized, characterized, and employed in lateral-flow immunoassay (LFIA). The bright fluorescence of the conjugates and the possibility to tailor their mobility gives a huge potential for diagnostic assays. An enzyme-linked immunosorbent assay (ELISA) with horseradish peroxidase (HRP) as label, proved the integrity, stability, and dispersibility of the antibody conjugates, LC-MS/MS provided evidence that a covalent link was established between these metal-organic frameworks and lysine residues in IgG antibodies. KW - ZIF KW - ELISA PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532096 DO - https://doi.org/10.1002/chem.202100803 SN - 0947-6539 SN - 1521-3765 VL - 27 IS - 36 SP - 9414 EP - 9421 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chapartegui-Arias, Ander A1 - Villajos Collado, José Antonio A1 - Myxa, Anett A1 - Beyer, Sebastian A1 - Falkenhagen, Jana A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Covalently Fluorophore-Functionalized ZIF‑8 Colloidal Particles as a Sensing Platform for Endocrine-Disrupting Chemicals Such as Phthalates Plasticizers N2 - We present the optical sensing of phthalate Esters (PAEs), a group of endocrine-disrupting chemicals. The sensing takes place as changes in the fluorescence emission intensity of aminopyrene covalently bound to the organic ligands of the metal−organic framework compound ZIF-8. In the presence of PAEs, a quenching of the fluorescence emission is observed. We evaluated strategies to engineer colloidal size distribution of the sensing particles to optimize the sensory response to PAEs. A thorough characterization of the modified ZIF-8 nanoparticles included powder X-ray diffractometry, transmission electron microscopy, high-performance liquid chromatography, and photophysical characterization. The presented capability of the fluorophore-functionalized ZIF-8 to sense PAEs complements established methods such as chromatography-based procedures, which cannot be used on-site and paves the way for future developments such as hand-held quick sensing devices. KW - Sensing KW - MOF PY - 2019 DO - https://doi.org/10.1021/acsomega.9b01051 VL - 4 IS - 17 SP - 17090 EP - 17097 PB - ACS AN - OPUS4-49562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Müller, Bernd R. A1 - Prinz, Carsten A1 - Stroh, Julia A1 - Feldmann, Ines A1 - Bruno, Giovanni T1 - The correlation between porosity characteristics and the crystallographic texture in extruded stabilized aluminium titanate for diesel particulate filter applications N2 - Porous ceramic diesel particulate filters (DPFs) are extruded products that possess macroscopic anisotropic mechanical and thermal properties. This anisotropy is caused by both morphological features (mostly the orientation of porosity) and crystallographic texture. We systematically studied those two aspects in two aluminum titanate ceramic materials of different porosity using mercury porosimetry, gas adsorption, electron microscopy, X-ray diffraction, and X-ray refraction radiography. We found that a lower porosity content implies a larger isotropy of both the crystal texture and the porosity orientation. We also found that, analogous to cordierite, crystallites do align with their axis of negative thermal expansion along the extrusion direction. However, unlike what found for cordierite, the aluminium titanate crystallite form is such that a more pronounced (0 0 2) texture along the extrusion direction implies porosity aligned perpendicular to it. KW - Preferred orientation KW - X-ray refraction KW - Pore orientation KW - Crystal structure KW - Extrusion KW - Microstructure-property relations PY - 2020 DO - https://doi.org/10.1016/j.jeurceramsoc.2019.11.076 SN - 0955-2219 VL - 40 IS - 4 SP - 1592 EP - 1601 PB - Elsevier Ltd. AN - OPUS4-50325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chewle, Surahit A1 - Emmerling, Franziska A1 - Weber, M. T1 - Effect of choice of solvent on crystallization pathway of paracetamol: An experimental and theoretical case study N2 - The choice of solvents influences crystalline solid formed during the crystallization of active pharmaceutical ingredients (API). The underlying effects are not always well understood because of the complexity of the systems. Theoretical models are often insufficient to describe this phenomenon. In this study, the crystallization behavior of the model drug paracetamol in different solvents was studied based on experimental and molecular dynamics data. The crystallization process was followed in situ using time-resolved Raman spectroscopy. Molecular dynamics with simulated annealing algorithm was used for an atomistic understanding of the underlying processes. The experimental and theoretical data indicate that paracetamol molecules adopt a particular geometry in a given solvent predefining the crystallization of certain polymorphs KW - Crystallization KW - Nucleation KW - Polymorphism KW - Raman spectroscopy KW - Cassical nucleation theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520052 DO - https://doi.org/10.3390/cryst10121107 SN - 2073-4352 VL - 10 IS - 12 SP - 1 EP - 10 PB - MDPI CY - Basel AN - OPUS4-52005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinnasamy, R. A1 - Ravi, J. A1 - Pradeep, V.V. A1 - Manoharan, D. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Adaptable Optical Microwaveguides From Mechanically Flexible Crystalline Materials N2 - Flexible organic crystals (elastic and plastic) are important materials for optical waveguides, tunable optoelectronic devices, and photonic integrated circuits. Here, we present highly elastic organic crystals of a Schiff base, 1-((E)-(2,5-dichlorophenylimino)methyl)naphthalen-2-ol (1), and an azine molecule, 2,4-dibromo-6-((E)-((E)-(2,6-dichlorobenzylidene)hydrazono)methyl)phenol (2). These microcrystals are highly flexible under external mechanical force, both in the macroscopic and the microscopic regimes. The mechanical flexibility of these crystals arises as a result of weak and dispersive C−H⋅⋅⋅Cl, Cl⋅⋅⋅Cl, Br⋅⋅⋅Br, and π⋅⋅⋅π stacking interactions. Singly and doubly-bent geometries were achieved from their straight shape by a micromechanical approach using the AFM cantilever tip. Crystals of molecules 1 and 2 display a bright-green and red fluorescence (FL), respectively, and selective reabsorption of a part of their FL band. Crystals 1 and 2 exhibit optical-path-dependent low loss emissions at the termini of crystal in their straight and even in extremely bent geometries. Interestingly, the excitation position-dependent optical modes appear in both linear and bent waveguides of crystals 1 and 2, confirming their light-trapping ability. KW - Crystal growth KW - Fluorescence KW - Mechanophotonics KW - Micromanipulation KW - Optical waveguides PY - 2022 DO - https://doi.org/10.1002/chem.202200905 SN - 0947-6539 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-55018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Choi, Ching-Yi A1 - Lossada, F. A1 - Walter, K. A1 - Fleck-Kunde, T. A1 - Behrens, S. A1 - Meinelt, T. A1 - Falkenhagen, Jana A1 - Hiller, M. A1 - Oschkinat, H. A1 - Dallmann, A. A1 - Taden, A. A1 - Börner, H.G. T1 - Organic transformation of lignin into mussel-inspired glues: next-generation 2K adhesive for setting corals under saltwater N2 - The 2-methoxyphenol units (G-units) in lignin are modified by demethylation and oxidation to provide the activated lignin as one part of an advanced biobased two-component (2K) adhesive system, which exhibits promising shear strengths in dry and underwater applications. The activation of lignin is straightforward and generates quinones via demethylation and periodate oxidation. These act as Michael acceptors and react smoothly with multi-thiol-star polymers to yield thiol-catechol connectivities (TCCs). The mussel-inspired material platform acts as a very robust and versatile adhesive, combining low-cost and readily available lignin with multi-thiols to achieve outstanding adhesion strengths of up to 15 MPa in dry application. In particular, the 2K system is compatible with the marine biological environment and shows no acute toxicity to sensitive organisms such as fish eggs. Thus, one possible application of this material could be an adhesive for setting temperature-resistant corals in damaged reefs. KW - Lignin modification KW - Mussel-inspired adhesive systems PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594588 DO - https://doi.org/10.1039/d3gc03680d SN - 1463-9270 SP - 1 EP - 15 PB - RSC CY - Cambridge AN - OPUS4-59458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Christopher, I A1 - Michalchuk, Adam A1 - Pulham, C. A1 - Morrison, C. T1 - Towards Computational Screening for New Energetic Molecules: Calculation of Heat of Formation and Determination of Bond Strengths by Local Mode Analysis N2 - The reliable determination of gas-phase and solid-state heats of formation are important considerations in energetic materials research. Herein, the ability of PM7 to calculate the gas-phase heats of formation for CNHO-only and inorganic compounds has been critically evaluated, and for the former, comparisons drawn with isodesmic equations and Atom equivalence methods. Routes to obtain solid-state heats of formation for a range of singlecomponent molecular solids, salts, and co-crystals were also evaluated. Finally, local vibrational mode analysis has been used to calculate bond length/force constant curves for seven different chemical bonds occurring in CHNO-containing molecules, which allow for rapid identification of the weakest bond, opening up great potential to rationalise decomposition pathways. Both metrics are important tools in rationalising the design of new energetic materials through computational screening processes. KW - Energetic materials KW - Density functional theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530371 DO - https://doi.org/10.3389/fchem.2021.726357 VL - 9 SP - 726357 AN - OPUS4-53037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - da Silva, D.A. A1 - Greiser, Sebastian A1 - Contro, J. A1 - Medeiros, V.L. A1 - Nery, J.G. A1 - Jäger, Christian T1 - 1H, 29Si and 119Sn double and triple resonance NMR spectroscopy of the small-pore framework sodium stannosilicate Na2SnSi3O9⋅2H2O N2 - The small-pore framework sodium stannosilicate AV-10, chemical composition Na2SnSi3O9⋅2H2O and known crystallographic structure, was synthesized by hydrothermal crystallization. This stannosilicate is built up of a three-dimensional network of corner-shared SiO4 tetrahedra and SnO6 octahedra. The SnO6 sites are linked to six SiO4 tetrahedra (Sn(6Si)) while each of the two crystallographically different SiO4 units are connected to two SnO6 and SiO4 units (Si(2Si,2Sn)). This material was used as model compound for developing a solid-state MAS NMR strategy aimed on the challenges and possibilities for structural studies, particularly considering the short and medium range order to verify the connectivity of SiO4 and SnO6 of such compounds despite the low natural abundances of 4.68% for 29Si and 8.59% for 119Sn nuclei as a real challenge. 29Si{119Sn} and 119Sn{29Si} REDOR (Rotational-Echo Double-Resonance) NMR measurements after 1H cross-polarization (CP) were carried out. The REDOR curves show a significant change after the “normal” quadratic short time evolution from which both (i) the shortest internuclear 29Si – 119Sn distances (and vice versa) and (ii) the number of corner-sharing SiO4 tetrahedra around the SnO6 octahedra (and vice versa) can be obtained. Based on these data, optimized 29Si {119Sn} and 119Sn{29Si} REPT-HMQC (Recoupled Polarization Transfer-Heteronuclear Multiple-Quantum Correlation, again after 1H CP) experiments were implemented, which directly show those heterogroup connectivity as correlation peaks in a 2D spectrum. This information was also obtained using 2D29Si{119Sn}-J-Coupling NMR experiments. Furthermore, 2D29Si INADEQUATE NMR experiments are also feasible, showing the connectivity of SiO4 tetrahedra. The combination of REDOR, REPT-HMQC, J-Coupling and INADEQUATE experiments yielded a complete analysis of the short and medium range structure of this microporous stannosilicate, in agreement with the previously published structure obtained Ab Initio from powder X-Ray diffraction data (XRD). KW - Stannosilicates KW - REDOR KW - REPT-HMQC KW - INADEQUATE PY - 2020 DO - https://doi.org/10.1016/j.ssnmr.2020.101661 SN - 0926-2040 VL - 107 SP - 101661 PB - Elsevier Inc. AN - OPUS4-50710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dalgic, Mete-Sungur A1 - Weidner, Steffen T1 - Solvent-free sample preparation for matrix-assisted laserdesorption/ionization time-of-flight mass spectrometry ofpolymer blends N2 - Solvent-free sample preparation offers some advantages over solvent-based techniques, such as improved accuracy, reproducibility and sensitivity, for matrix-assisted laser desorption/ionization (MALDI) analysis. However, little or no information is available on the application of solvent-free techniques for the MALDI analysis of polymer blends. Solvent-free sample preparation by ball milling was applied with varying sample-to-matrix ratios for MALDI time-of-flight mass spectrometry analysis of various polymers, including polystyrenes, poly(methyl methacrylate)s and poly(ethylene glycol)s. The peak intensity ratios were compared with those obtained after using the conventional dried droplet sample preparation method. In addition, solvent-assisted milling was also applied to improve sample homogeneities. Depending on the sample preparation method used, different peak intensity ratios were found, showing varying degrees of suppression of the signal intensities of higher mass polymers. Ball milling for up to 30 min was required to achieve constant intensity ratios indicating homogeneous mixtures. The use of wet-assisted grinding to improve the homogeneity of the blends was found to be disadvantageous as it caused partial degradation and mass-dependent segregation of the polymers in the vials.The results clearly show that solvent-free sample preparation must be carefully considered when applied to synthetic polymer blends, as it may cause additional problems with regard to homogeneity and stability of the blends. KW - MALDI TOF MS KW - Sample preparation KW - Polymer blends KW - Solvent-free PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598570 DO - https://doi.org/10.1002/rcm.9756 SN - 0951-4198 VL - 38 IS - 12 SP - 1 EP - 9 PB - Wiley online library AN - OPUS4-59857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, P. A1 - Chakraborty, Gouri A1 - Roeser, J. A1 - Vogl, S. A1 - Rabeah, J. A1 - Thomas, A. T1 - Integrating Bifunctionality and Chemical Stability in Covalent Organic Frameworks via One-Pot Multicomponent Reactions for Solar-Driven H2O2 Production N2 - Multicomponent reactions (MCRs) can be used to introduce different functionalities into highly stable covalent organic frameworks (COFs). In this work, the irreversible three-component Doebner reaction is utilized to synthesize four chemically stable quinoline-4-carboxylic acid DMCR-COFs (DMCR-1−3 and DMCR-1NH) equipped with an acid−base bifunctionality. These DMCR-COFs show superior photocatalytic H2O2 evolution (one of the most important industrial oxidants) compared to the imine COF analogue (Imine-1). This is achieved with sacrificial oxidants but also in pure water and under an oxygen or air atmosphere. Furthermore, the DMCR-COFs show high photostability, durability, and recyclability. MCR-COFs thus provide a viable materials’ platform for solar to chemical energy conversion. KW - Reactions KW - Bifunctionality KW - Postsynthetic modification KW - Multicomponent PY - 2022 DO - https://doi.org/10.1021/jacs.2c11454 SN - 0002-7863 VL - 145 IS - 5 SP - 2975 EP - 2984 PB - ACS Publications AN - OPUS4-56922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, Prasenjit A1 - Chakraborty, Gouri A1 - Friese, Nico A1 - Roeser, Jérôme A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - Schmidt, Johannes A1 - Thomas, Arne T1 - Heteropolyaromatic Covalent Organic Frameworks via One-Pot Multicomponent Reactions N2 - Multicomponent reactions (MCRs) offer a platform to create different chemical structures and linkages for highly stable covalent organic frameworks (COFs). As an illustrative example, the multicomponent Povarov reaction generates 2,4-phenylquinoline from aldehydes and amines in the presence of electron-rich alkenes. In this study, we introduce a new domino reaction to generate unprecedented 2,3-phenylquinoline COFs in the presence of epoxystyrene. This work thus presents, for the first time, structural isomeric COFs produced by multicomponent domino and Povarov reactions. Furthermore, 2,3-phenylquinolines can undergo a Scholl reaction to form extended aromatic linkages. With this approach, we synthesize two thermally and chemically stable MCR-COFs and two heteropolyaromatic COFs using both domino and in situ domino and Scholl reactions. The structure and properties of these COFs are compared with the corresponding 2,4-phenylquinoline-linked COF and imine-COF, and their activity toward benzene and cyclohexane sorption and separation is investigated. The position of the pendant phenyl groups within the COF pore plays a crucial role in facilitating the industrially important sorption and separation of benzene over cyclohexane. This study opens a new avenue to construct heteropolyaromatic COFs via MCR reactions. KW - COF PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604038 DO - https://doi.org/10.1021/jacs.4c02551 SP - 1 EP - 9 PB - American Chemical Society (ACS) AN - OPUS4-60403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de O. Primo, J. A1 - Horsth, D.F. A1 - de S. Correa, J. A1 - Das, A. A1 - Bittencourt, C. A1 - Umek, P. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Zanetta, C. A1 - Anaissi, F.J. T1 - Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water N2 - n this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial dis- infection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in “Standard Methods for the Examination of Water and Wastewater” were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis,and disinfection efficiency. KW - Synchrotron KW - BAMline PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562440 DO - https://doi.org/10.3390/nano12101764 SN - 2079-4991 VL - 12 IS - 10 SP - 1 EP - 18 PB - MDPI CY - Basel AN - OPUS4-56244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana T1 - Recent developments of X-ray absorption spectroscopy as analytical tool for biological and biomedical applications N2 - X-ray absorption spectroscopy (XAS), in its various modalities, has gained exponential attention and applicability in the field of biological and biomedical systems. Particularly in this field, challenges like low concentration of analyte or proneness to radiation damage have certainly settle the basis for further analytical developments, when using X-ray based methods. Low concentration calls for higher sensitivity—by increasing the detection limits (DL); while susceptibility for radiation damage requires shorter measurement times and/or cryogenic sample environment possibilities. This manuscript reviews the latest analytical possibilities that make XAS more and more adequate to investigate biological or biomedical systems in the last 5 years. KW - Biological & biomedical applications KW - TXRF-XAS KW - HERFD-XAS KW - RXES KW - Quick-XAS KW - Dispersive-XAS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531206 DO - https://doi.org/10.1002/xrs.3254 SN - 0049-8246 VL - 51 IS - 3 SP - 1 EP - 10 PB - John Wiley & Sons Ltd AN - OPUS4-53120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Cakir, Cafer Tufan A1 - Radtke, Martin A1 - Haider, M. Bilal A1 - Emmerling, Franziska A1 - F. M. Oliveira, P. A1 - Michalchuk, Adam A. L. T1 - Dispersive x-ray absorption spectroscopy for time-resolved in situ monitoring of mechanochemical reactions N2 - X-ray absorption spectroscopy (XAS) provides a unique, atom-specific tool to probe the electronic structure of solids. By surmounting long-held limitations of powder-based XAS using a dynamically averaged powder in a Resonant Acoustic Mixer (RAM), we demonstrate how time-resolved in situ (TRIS) XAS provides unprecedented detail of mechanochemical synthesis. The use of a custom-designed dispersive XAS (DXAS) setup allows us to increase the time resolution over existing fluorescence measurements from ∼15 min to 2 s for a complete absorption spectrum. Hence, we here establish TRIS-XAS as a viable method for studying mechanochemical reactions and sampling reaction kinetics. The generality of our approach is demonstrated through RAM-induced (i) bottom-up Au nanoparticle mechanosynthesis and (ii) the synthesis of a prototypical metal organic framework, ZIF-8. Moreover, we demonstrate that our approach also works with the addition of a stainless steel milling ball, opening the door to using TRIS-DXAS for following conventional ball milling reactions. We expect that our TRIS-DXAS approach will become an essential part of the mechanochemical tool box. KW - In situ studies KW - Dipsersive XAS KW - Mechanochemistry KW - Time-resolved PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567659 DO - https://doi.org/10.1063/5.0130673 SN - 1089-7690 VL - 157 IS - 21 SP - 1 EP - 12 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-56765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kulow, Anicó A1 - Kabelitz, Anke A1 - Grunewald, C. A1 - Seidel, R. A1 - Chapartegui-Arias, Ander A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Beyer, S. T1 - Observation of early ZIF-8 crystallization stages with X-ray absorption spectroscopy N2 - The present study investigates early stages of ZIF-8 crystallization up to 5 minutes post mixing of precursor solutions. Dispersive X-ray Absorption Spectroscopy (DXAS) provides a refined understanding of the evolution of the coordination environment during ZIF-8 crystallization. Linear Combination Fiting (LCF) suggests tetrakis(1-methylimidazole)zinc2+ to be a suitable and stable mononuclear structure analogue for some early stage ZIF-8 intermediates. Our results pave the way for more detailed studies on physico-chemical aspects of ZIF-8 crystallization to better control tailoring ZIF-8 materials for specific applications. KW - In-situ KW - XANES KW - ZIF-8 KW - Crystallization PY - 2020 DO - https://doi.org/10.1039/D0SM01356K SN - 1744-6848 VL - 17 IS - 2 SP - 331 EP - 334 PB - Royal Scociety of Chemistry AN - OPUS4-51723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Stawski, Tomasz A1 - Kulow, Anicó A1 - Cakir, Cafer Tufan A1 - Röder, Bettina A1 - Naese, Christoph A1 - Britzke, Ralf A1 - Sintschuk, Michael A1 - Emmerling, Franziska T1 - BAMline - A real-life sample materials research beamline N2 - With increasing demand and environmental concerns, researchers are exploring new materials that can perform as well or better than traditional materials while reducing environmental impact. The BAMline, a real-life sample materials research beamline, provides unique insights into materials’ electronic and chemical structure at different time and length scales. The beamline specializes in x-ray absorption spectroscopy, x-ray fluorescence spectroscopy, and tomography experiments. This enables real-time optimization of material properties and performance for various applications, such as energy transfer, energy storage, catalysis, and corrosion resistance. This paper gives an overview of the analytical methods and sample environments of the BAMline, which cover non-destructive testing experiments in materials science, chemistry, biology, medicine, and cultural heritage. We also present our own synthesis methods, processes, and equipment developed specifically for the BAMline, and we give examples of synthesized materials and their potential applications. Finally, this article discusses the future perspectives of the BAMline and its potential for further advances in sustainable materials research. KW - Extended X-ray absorption fine structure KW - Energy storage KW - Environmental impacts KW - Nondestructive testing techniques KW - X-ray fluorescence spectroscopy KW - Corrosion KW - Near edge X-ray absorption fine structure spectroscopy KW - X-ray absorption spectroscopy PY - 2023 DO - https://doi.org/10.1063/5.0157194 VL - 158 IS - 24 SP - 1 EP - 22 PB - AIP Publishing AN - OPUS4-57824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira, P. F. M. A1 - Torresi, R. A1 - Emmerling, Franziska A1 - Carmago, P. T1 - Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles N2 - Mechanochemistry is a promising alternative to solution-based protocols across the chemical sciences, enabling different types of chemistries in solvent-free and environmentally benign conditions. The use of mechanical energy to promote physical and chemical transformations has reached a high level of refinement, allowing for the design of sophisticated molecules and nanostructured materials. Among them, the synthesis of noble metal nanoparticles deserves special attention due to their catalytic applications. In this review, we discuss the recent progress on the development of mechanochemical strategies for the controlled synthesis of noble metal nanostructures. We start by covering the fundamentals of different preparation routes, namely top-down and bottom-up approaches. Next, we focus on the key examples of the mechanochemical synthesis of non-supported and supported metal nanoparticles as well as hybrid nanomaterials containing noble metals. In these examples, in addition to the principles and synthesis mechanisms, their performances in catalysis are discussed. Finally, a perspective of the field is given, where we discuss the opportunities for future work and the challenges of mechanochemical synthesis to produce well-defined noble metal nanoparticles. KW - Mechanochemistry KW - Nanoparticles PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512080 DO - https://doi.org/10.1039/D0TA05183G VL - 8 IS - 32 SP - 16114 AN - OPUS4-51208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Olivera, Paulo A1 - Michalchuk, Adam A1 - de Oliveira Guilherme Buzanich, Ana A1 - Bienert, Ralf A1 - Torresi, R. A1 - Camargo, P. A1 - Emmerling, Franziska T1 - Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis N2 - Current time-resolved in situ approaches limit the scope of mechanochemical investigations possible. Here we develop a new, general approach to simultaneously follow the evolution of bulk atomic and electronic structure during a mechanochemical synthesis. This is achieved by coupling two complementary synchrotron-based X-ray methods: X-ray absorption spectroscopy (XAS) and X-ray diffraction. We apply this method to investigate the bottom-up mechanosynthesis of technologically important Au micro and nanoparticles in the presence of three different reducing agents, hydroquinone, sodium citrate, and NaBH4. Moreover, we show how XAS offers new insight into the early stage generation of growth species (e.g. monomers and clusters), which lead to the subsequent formation of nanoparticles. These processes are beyond the detection capabilities of diffraction methods. This combined X-ray approach paves the way to new directions in mechanochemical research of advanced electronic materials. KW - Mechanochemistry KW - XANES KW - X-ray diffraction KW - Nano particles PY - 2020 DO - https://doi.org/10.1039/d0cc03862h SN - 1364-548X VL - 56 SP - 10329 EP - 10332 PB - Royal Society of Chemistry AN - OPUS4-51760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Olivera, Paulo A1 - Michalchuk, Adam A1 - Marquardt, Julien A1 - Feiler, Torvid A1 - Prinz, Carsten A1 - Torresi, R. A1 - Camargo, P. A1 - Emmerling, Franziska T1 - Investigating the role of reducing agents on mechanosynthesis of Au nanoparticles N2 - Control over the bottom up synthesis of metal nanoparticles (NP) depends on many experimental factors, including the choice of stabilising and reducing agents. By selectively manipulating these species, it is possible to control NP characteristics through solution-phase synthesis strategies. It is not known, however, whether NPs produced from mechanochemical syntheses are governed by the same rules. Using the Au NPs mechanosynthesis as a model system, we investigate how a series of common reducing agents affect both the reduction kinetics and size of Au NPs. It is shown that the relative effects of reducing agents on mechanochemical NP synthesis differ significantly from their role in analogous solution-phase reactions. Hence, strategies developed for control over NP growth in solution are not directly transferrable to environmentally benign mechanochemical approaches. This work demonstrates a clear need for dedicated, systematic studies on NP mechanosynthesis. KW - Mechanochemistry KW - Metal nanoparicels PY - 2020 DO - https://doi.org/10.1039/d0ce00826e VL - 22 IS - 38 SP - 6261 EP - 6267 PB - Royal Society of Chemistry AN - OPUS4-51757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - De Samber, B. A1 - Scharf, Oliver A1 - Buzanich, Günter A1 - Garrevoet, J. A1 - Tack, P. A1 - Radtke, Martin A1 - Riesemeier, Heinrich A1 - Reinholz, Uwe A1 - Evens, R. A1 - De Schamphelaere, K. A1 - Falkenberg, G. A1 - Janssen, C. A1 - Vincze, L. T1 - Three-dimensional X-ray fluorescence imaging modes for biological specimens using a full-field energy dispersive CCD camera N2 - Besides conventional scanning X-ray fluorescence imaging at synchrotron sources, full-field X-ray fluorescence (FF-XRF) imaging techniques that do not implicitly require spatial scanning of the sample have become available. FF-XRF has become achievable thanks to the development of a new type of energy dispersive CCD-based 2D detector, also referred to as a 'color X-ray camera (CXC)' or 'SLcam'. We report on different imaging schemes for biological samples using FF-XRF imaging: (a) 2D 'zoom' imaging with pinhole optics using the 'camera obscura' principle; (b) 2D 'fixed magnification' imaging using magnifying polycapillary optics; and (c) 3D-FF-XRF imaging using an X-ray sheet beam or computed tomography (CT). The different FF-XRF imaging modes are illustrated using the crustacean Daphnia magna, a model organism for investigating the effects of metals on organism/ecosystem health, and foraminifera, a class of amoeboid protist. Detailed analytical characterization of the set-up is performed through analyzing various reference materials in order to determine limits of detection (LODs) and sensitivities. Experiments were performed using the BAMline at the BESSY synchrotron (Berlin, Germany) and using the P06 Hard X-ray Microprobe at the PETRAIII synchrotron (Hamburg, Germany). KW - CXC KW - BAMline KW - Maia detector KW - Synchrotron PY - 2019 DO - https://doi.org/10.1039/c9ja00198k VL - 34 IS - 10 SP - 2083 EP - 2093 PB - Royal Society of Chemistry CY - Cambridge, United Kingdom AN - OPUS4-49359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, S. A1 - Zimmermann, B. A1 - Tafintseva, V. A1 - Seifert, S. A1 - Bagcioglu, M. A1 - Ohlson, M. A1 - Weidner, Steffen A1 - Fjellheim, S. A1 - Kohler, A. A1 - Kneipp, Janina T1 - Combining Chemical Information From Grass Pollen in Multimodal Characterization N2 - The analysis of pollen chemical composition is important to many fields, including agriculture, plant physiology, ecology, allergology, and climate studies. Here, the potential of a combination of different spectroscopic and spectrometric methods regarding the characterization of small biochemical differences between pollen samples was evaluated using multivariate statistical approaches. Pollen samples, collected from three populations of the grass Poa alpina, were analyzed using Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, surface enhanced Raman scattering (SERS), and matrix assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). The variation in the sample set can be described in a hierarchical framework comprising three populations of the same grass species and four different growth conditions of the parent plants for each of the populations. Therefore, the data set can work here as a model system to evaluate the classification and characterization ability of the different spectroscopic and spectrometric methods. ANOVA Simultaneous Component Analysis (ASCA) was applied to achieve a separation of different sources of variance in the complex sample set. Since the chosen methods and sample preparations probe different parts and/or molecular constituents of the pollen grains, complementary information about the chemical composition of the pollen can be obtained. By using consensus principal component analysis (CPCA), data from the different methods are linked together. This enables an investigation of the underlying global information, since complementary chemical data are combined. The molecular information from four spectroscopies was combined with phenotypical information gathered from the parent plants, thereby helping to potentially link pollen chemistry to other biotic and abiotic parameters. KW - Pollen KW - MALDI-TOF MS KW - FTIR KW - Raman KW - Multivariate analyses PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504822 DO - https://doi.org/10.3389/fpls.2019.01788 VL - 10 SP - 1788 AN - OPUS4-50482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, Sabrina A1 - Zimmermann, B. A1 - Bagcioglu, M. A1 - Seifert, Stephan A1 - Kohler, A. A1 - Ohlson, M. A1 - Fjellheim, S. A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows adaption of grass pollen composition N2 - MALDI time-of-flight mass spectrometry (MALDI-TOF MS) has become a widely used tool for the classification of biological samples. The complex chemical composition of pollen grains leads to highly specific, fingerprint-like mass spectra, with respect to the pollen species. Beyond the species-specific composition, the variances in pollen chemistry can be hierarchically structured, including the level of different populations, of environmental conditions or different genotypes. We demonstrate here the sensitivity of MALDI-TOF MS regarding the adaption of the chemical composition of three Poaceae (grass) pollen for different populations of parent plants by analyzing the mass spectra with partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Thereby, variances in species, population and specific growth conditions of the plants were observed simultaneously. In particular, the chemical pattern revealed by the MALDI spectra enabled discrimination of the different populations of one species. Specifically, the role of environmental changes and their effect on the pollen chemistry of three different grass species is discussed. Analysis of the Group formation within the respective populations showed a varying influence of plant genotype on the classification, depending on the species, and permits conclusions regarding the respective rigidity or plasticity towards environmental changes. KW - Pollen KW - MALDI-TOF MS KW - Classification KW - Partial least square discriminant analysis (PLS-DA) KW - Principal component analysis (PCA) PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465294 DO - https://doi.org/10.1038/s41598-018-34800-1 SN - 2045-2322 VL - 8 IS - 1 SP - 16591, 1 EP - 11 PB - Nature AN - OPUS4-46529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Domonov, D.P. A1 - Pechenyuk, S.I. A1 - Semushina, Y.P. A1 - Yusenko, Kirill T1 - Solid state transformation in inner coordination sphere of [Co(NH3)6][Fe(C2O4)3]·3H2O as a route to access catalytically active Co-Fe materials N2 - Thermal decomposition of [Co(NH₃)₆][Fe(C₂O₄)₃]∙3H₂O in argon atmosphere, at a low heating rate (3°/min), and in large amounts of the initial complex (~0.1 mole), has been studied. It was possible to distinguish four decomposition steps upon heating: In the temperature range of 50⁻100 °C-the loss of crystal water; 100⁻190 °C-stability region of dehydrated complex; 230⁻270 °C-the range of stability of intermediate phase with the formula CoFe(NH₃)₂(C₂O₄)₂; 270⁻350 °C-thermal decomposition of the intermediate with the formation of metallic products and further air oxidation with the formation of Co1.5Fe1.5O₄. Catalytic properties of thermolysis products were tested in the decomposition reaction of H₂O₂ (inactive), oxidation of acetone (average activity), and decomposition of ammonium perchlorate (highly active). KW - Double complex salts KW - Catalysts KW - Single-source precursors PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474014 DO - https://doi.org/10.3390/ma12020221 SN - 1996-1944 VL - 12 IS - 2 SP - 221, 1 EP - 10 PB - mdpi CY - Zürich AN - OPUS4-47401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water N2 - In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated byXRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Titanium oxide KW - Nanoparticles KW - Laser ablation in liquid KW - Particle morphology KW - Nanoparticle structure PY - 2018 DO - https://doi.org/10.1088/2053-1591/aaba56 SN - 2053-1591 VL - 5 IS - 4 SP - 045015-1 EP - 045015-12 PB - IOP Publishing CY - London, UK AN - OPUS4-44678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Driscoll, Laura L. A1 - Driscoll, Elizabeth H. A1 - Dong, Bo A1 - Sayed, Farheen N. A1 - Wilson, Jacob N. A1 - O’Keefe, Christopher A. A1 - Gardner, Dominic J. A1 - Grey, Clare P. A1 - Allan, Phoebe K. A1 - Michalchuk, Adam A. L. A1 - Slater, Peter R. T1 - Under pressure: offering fundamental insight into structural changes on ball milling battery materials N2 - Synthesis of Li ion battery materials via ball milling has been a huge area of growth, leading to new high-capacity electrode materials, such as a number of promising disordered rocksalt (DRS) phases. In prior work, it was generally assumed that the synthesis was facilitated simply by local heating effects during the milling process. In this work, we show that ball milling Li2MoO4 leads to a phase transformation to the high pressure spinel polymorph and we report electrochemical data for this phase. This observation of the formation of a high pressure polymorph shows that local heating effects alone cannot explain the phase transformation observed (phenakite to spinel) and so indicates the importance of other effects. In particular, we propose that when the milling balls collide with the material, the resulting shockwaves exert a localised pressure effect, in addition to local heating. To provide further support for this, we additionally report ball milling results for a number of case studies (Li2MnO3, Li2SnO3, Nb2O5) which reinforces the conclusion that local heating alone cannot explain the phase transformations observed. The work presented thus provides greater fundamental understanding of milling as a synthetic pathway and suggests potential strategies to prepare such samples without milling (e.g., doping to create internal chemical pressure). In addition, we suggest that further research is needed into the effect of the use of milling as a route to smaller particles, since we believe that such milling may also be affecting the surface structure of the particles through the influence of the shockwaves generated. KW - Pollution KW - Nuclear Energy and Engineering KW - Sustainability and the Environment KW - Environmental Chemistry KW - Renewable Energy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590086 DO - https://doi.org/10.1039/d3ee00249g VL - 16 IS - 11 SP - 5196 EP - 5209 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dubey, A. A1 - Hon Keat, C. A1 - Shvartsman, V. A1 - Yusenko, Kirill A1 - Escobar, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Hagemann, U. A1 - Kovalenko, S. A1 - Stächler, J. A1 - Lupascu, D. T1 - Mono-, Di-, and Tri-valent Cation Doped BiFe0.95Mn0.05O3 Nanoparticles: Ferroelectric Photocatalysts N2 - The ferroelectricity of multivalent co-doped Bismuth ferrite (BiFeO3; BFO) nanoparticles (NPs) is revealed and utilized for light photocatalysis exploiting their narrow electronic band gap. The photocatalytic activity of ferroelectric photocatalysts BiFe0.95Mn0.05O3 (BFM) NPs and mono-, di-, or tri-valent cations (Ag+, Ca2+, Dy3+; MDT) co-incorporated BFM NPs are studied under ultrasonication and in acidic conditions. We find that such doping enhances the photocatalytic activity of the ferroelectric NPs approximately three times. The correlation of the photocatalytic activity with structural, optical, and electrical properties of the doped NPs is established. The increase of spontaneous polarization by the mono- and tri-valent doping is one of the major factors in enhancing the photocatalytic performance along with other factors such as stronger light absorption in the visible range, low recombination rate of charge carriers and larger surface area of NPs. A-site doping of BFO NPs by divalent elements suppresses the polarization, whereas trivalent (Dy3+) and monovalent (Ag+) cations provide an increase of polarization. The depolarization field in these single domain NPs acts as a driving force to mitigate recombination of the photoinduced charge carriers. KW - Piezoresponse KW - Bismuth Ferrite KW - Nanoparticles KW - Photocatalysis KW - Ferroelectric KW - Polarization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557230 DO - https://doi.org/10.1002/adfm.202207105 SN - 1616-301X SP - 1 EP - 16 PB - Wiley AN - OPUS4-55723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Edzards, Joshua A1 - Saßnick, Holger-Dietrich A1 - Buzanich, Ana Guilherme A1 - Valencia, Ana M. A1 - Emmerling, Franziska A1 - Beyer, Sebastian A1 - Cocchi, Caterina T1 - Effects of Ligand Substituents on the Character of Zn-Coordination in Zeolitic Imidazolate Frameworks N2 - Due to their favorable properties and high porosity, zeolitic imidazolate frameworks (ZIFs) have recently received much limelight for key technologies such as energy storage, optoelectronics, sensorics, and catalysis. Despite widespread interest in these materials, fundamental questions regarding the zinc coordination environment remain poorly understood. By focusing on zinc(II)2-methylimidazolate (ZIF-8) and its tetrahedrally coordinated analogues with Br-, Cl-, and H-substitution in the 2-ring position, we aim to clarify how variations in the local environment of Zn impact the charge distribution and the electronic properties of these materials. Our results from densityfunctional theory confirm the presence of a Zn coordinative bond with a large polarization that is quantitatively affected by different substituents on the organic ligand. Moreover, our findings suggest that the variations in the Zn coordination induced by the functionalization have a negligible effect on the electronic structure of the considered compounds. On the other hand, halogen terminations of the ligands lead to distinct electronic contributions in the vicinity of the frontier region which ultimately reduce the band gap size by a few hundred millielectron volts. Experimental results obtained from X-ray absorption spectroscopy (Zn K-edge) confirm the trends predicted by theory and, together with them, contribute to a better understanding of the structure−property relationships that are needed to tailor ZIFs for target applications. KW - Surfaces KW - Physical and Theoretical Chemistry KW - General Energy KW - Electronic KW - Coatings and Films KW - Optical and Magnetic Materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589117 DO - https://doi.org/10.1021/acs.jpcc.3c06054 SN - 1932-7447 VL - 127 IS - 43 SP - 21456 EP - 21464 PB - American Chemical Society (ACS) AN - OPUS4-58911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Chewle, S. A1 - Weber, M. T1 - Revealing Kinetics of Paracetamol Crystallization Using Time Resolved Raman Spectroscopy, Orthogonal Time-Lapse Photography, and Non-Negative Matrix Factorization (OSANO) N2 - Crystallization is a complex phenomenon with farreaching implications for the production and formulation of active pharmaceutical ingredients. Understanding this process is critical for achieving control over key physicochemical properties that can affect, for example, the bioavailability and stability of a drug. In this study, we were able to reveal intricate and diverse dynamics of the formation of metastable intermediates of paracetamol crystallization varying with the choice of solvent. We demonstrate the efficacy of our novel approach utilizing an objective function-based non-negative matrix factorization technique for the analysis of time-resolved Raman spectroscopy data, in conjunction with time-lapse photography. Furthermore, we emphasize the crucial importance of integrating Raman spectroscopy with supplementary experimental instrumentation for the mathematical analysis of the obtained spectra. KW - Polymorphism KW - Crystallization KW - Measurement KW - Algorithm PY - 2023 DO - https://doi.org/10.1021/acs.cgd.3c00617 SN - 1528-7483 VL - 23 SP - 6737 EP - 6746 PB - ACS Publications AN - OPUS4-58193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Haferkamp, Sebastian A1 - Kraus, Werner T1 - Studies on the mechanochemical Knoevenagel condensation of fluorinated benzaldehyde derivates N2 - The mechanochemical Knoevenagel condensation of three fluorinated benzaldehyde derivates and malononitrile was investigated. The reactions were performed under solvent- and catalyst-free conditions and resulted in highly crystalline products after crystallization from a viscous phase in the milling jar. The quality of the obtained crystals was sufficient for single-crystal X-ray diffraction circumventing a recrystallization step. To gain more information on the reaction, progress was investigated in situ using time-resolved Raman spectroscopy. The results show a direct conversion of the reactants. KW - C-C coupling KW - Knoevenagel condensation KW - In situ KW - Mechanochemistry PY - 2018 DO - https://doi.org/10.1007/s10853-018-2492-0 SN - 0022-2461 VL - 53 IS - 19 SP - 13713 EP - 13718 PB - Springer Link AN - OPUS4-45682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Martins, Ines T1 - Carbamazepine Dihydroxybenzoic Acid Cocrystals: Exploring Packing Interactions and Reaction Kinetics N2 - Herein, we present the mechanochemical formation of three new cocrystals containing the active pharmaceutical ingredient carbamazepine and dihydroxybenzoic acids as coformers (CBZ:2,4-DHBA 1:1, CBZ:2,5-DHBA 1:1, and CBZ:2,6-DHBA 1:1). Rietveld methods were used for three different purposes: (i) refining all structures solved using powder X-ray diffraction, (ii) performing a quantitative phase analysis of the diffraction data collected from ex situ mechanochemical reactions at different milling times, and (iii) determining the cocrystallization kinetic profiles. The rate of cocrystallization was found to be higher for the formation of CBZ:2,4-DHBA and CBZ:2,6-DHBA, reaching an equilibrium after 600 s of milling. In the case of CBZ:2,5-DHBA a short induction period of 20 s was detected prior to the start of the reaction and an equilibrium was reached after 1200 s. An empirical trend between the rate of cocrystallization and the structural complexity of the cocrystal product was found. The slowest cocrystallization rate observed for CBZ:2,5-DHBA corresponds to the crystal structure deviating substantially from the hydrogen-bonding motif found in the reactants. KW - Mechanochemistry KW - In situ real-time monitoring KW - Kinetics PY - 2021 DO - https://doi.org/10.1021/acs.cgd.1c00902 VL - 21 IS - 12 SP - 6961 EP - 6970 PB - ACS Publications AN - OPUS4-54407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Stock, Norbert A1 - Tadei, Marco A1 - Demel, Jan A1 - Cabeza, Aurelio A1 - Viviani, Riccardo A1 - Demadis, Konstantinos A1 - Vassaki, Maria T1 - New directions in metal phosphonate and phosphinate chemistry N2 - In September 2018, the First European Workshop on Metal Phosphonates Chemistry brought together some prominent researchers in the field of metal phosphonates and phosphinates with the aim of discussing past and current research efforts and identifying future directions. The scope of this perspective article is to provide a critical overview of the topics discussed during the workshop, which are divided into two main areas: synthesis and characterisation, and applications. In terms of synthetic methods, there has been a push towards cleaner and more efficient approaches. This has led to the introduction of high-throughput synthesis and mechanochemical synthesis. The recent success of metal–organic frameworks has also promoted renewed interest in the synthesis of porous metal phosphonates and phosphinates. Regarding characterisation, the main advances are the development of electron diffraction as a tool for crystal structure determination and the deployment of in situ characterisation techniques, which have allowed for a better understanding of reaction pathways. In terms of applications, metal phosphonates have been found to be suitable materials for several purposes: they have been employed as heterogeneous catalysts for the synthesis of fine chemicals, as solid sorbents for gas separation, notably CO2 capture, as materials for electrochemical devices, such as fuel cells and rechargeable batteries, and as matrices for drug delivery. KW - Metal phosphonates KW - Metal–organic frameworks KW - X-ray and electron diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484346 DO - https://doi.org/10.3390/cryst9050270 SN - 2073-4352 VL - 9 IS - 5 SP - 270, 1 EP - 36 PB - MDPI AN - OPUS4-48434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Tumanov, N. A1 - Tumanova, N. A1 - Fischer, Franziska A1 - Morelle, F. A1 - Ban, V. A1 - Robeyns, K. A1 - Filinchuk, Y. A1 - Wouters, J. A1 - Leyssens, T. T1 - Exploring polymorphism and stoichiometric diversity in naproxen/proline cocrystals N2 - We present naproxen/proline cocrystals discovered when combining enantiopure and racemic naproxen and proline. Using liquid-assisted grinding as the main method to explore the variety of crystal forms in this system, we found 17 cocrystals, of which the structures of only four of them were previously known. The naproxen/proline system exhibited multiple polymorphs of 1 : 1 stoichiometry as well as more rare cocrystals with 1 : 2 and 2 : 3 stoichiometries, two cocrystal hydrates and one cocrystal solvate. In situ ballmilling, used to monitor liquid-assisted grinding reactions, revealed that the solvent dictates the reaction intermediates even if the final reaction product stays the same. Synchrotron X-ray diffraction data collected in situ upon heating allowed us to monitor directly the phase changes upon heating and gave access to pure diffraction patterns of several cocrystals, thus enabling their structure determination from powder X-ray diffraction data; this method also confirmed the formation of a conglomerate in the RS-naproxen/DL-proline system. Proline in cocrystals kept its ability to form charge-assisted head-to-tail N-H⋯O hydrogen bonds, typical of pure crystalline amino acids, thus increasing the percentage of strong chargeassisted interactions in the structure and consequently providing some of the cocrystals with higher melting points as compared to pure naproxen. The majority of drugs are chiral, and hence, these data are of importance to the pharmaceutical industry as they provide insight into the challenges of chiral cocrystallization. KW - In situ KW - Mechanochemistry KW - XRD PY - 2018 UR - https://pubs.rsc.org/en/Content/ArticleLanding/CE/2018/C8CE01338A#!divAbstract DO - https://doi.org/10.1039/c8ce01338a SN - 1466-8033 VL - 20 IS - 45 SP - 7308 EP - 7321 PB - Royal Society of Chemistry CY - London AN - OPUS4-46913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Villajos Collado, José Antonio A1 - Jagorel, Noëmie A1 - Reinsch, Stefan T1 - Increasing Exposed Metal Site Accessibility in a Co-MOF-74 Material With Induced Structure-Defects N2 - Metal-organic frameworks (MOFs) are promising nanoporous materials with many practical applications. This owes largely to their remarkable porosity and the presence of specific chemical functionalities, such as exposed metal sites (EMS). The MOF-74 structure is known for exhibiting one of the highest EMS densities among porous materials. Moreover, the inclusion of structural defects has been proposed to enhance activity further. This was previously achieved by mixing the original linker together with a second one, having lower topology. The presence of structural defects was evidenced by the resulting crystalline properties and thermal stability. In this work, different mixtures of tetratopic 2,5-dihydroxyterephthalic acid with up to 60% of the tritopic hydroxyterephtalic acid were used to synthesize crystalline Co-MOF-74-like materials. Materials synthesized from higher proportions than 30% of hydroxyterephtalic acid in the synthesis media collapse upon partial removal of the solvent molecules. This indicates the presence of structural defects and the importance of the solvent molecules in stabilizing the crystalline structures. Electron microscope images show that crystal size reduces with inclusion of hydroxyterephtalic acid as the second linker. The presence of coordinated solvent molecules at the EMS was evaluated by Fourier-transform infrared spectra (FTIR) spectroscopy, so that a higher degree of solvent-exchange was observed during washing for defective structures. Furthermore, TG analysis suggests defective structures exhibit lower desolvation temperatures than the defect-free structures. Finally, N2 adsorption-desorption analyses at −196°C showed an enhanced accessibility of the gas to the inner porosity of the defective structures and therefore, the EMS of the material. All these finding make this pathway interesting to enhance the potential interest of these materials for an industrial application because of both a facilitated activation and a better access to the active sites. KW - MOF-74 KW - Structural defects KW - Mixed-linkers KW - Exposed metal sites KW - Facilitated activation PY - 2019 DO - https://doi.org/10.3389/fmats.2019.00230 VL - 6 SP - 230 PB - Frontiers Media CY - Lausanne AN - OPUS4-49256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Panne, Ulrich A1 - Falkenhagen, Jana T1 - Power of ultra performance liquid chromatography/electrospray ionization-MS reconstructed ion chromatograms in the characterization of small differences in polymer microstructure N2 - From simple homopolymers to functionalized, 3-dimensional structured copolymers, the complexity of polymeric materials has become more and more sophisticated. With new applications for instance in the semiconductor or pharmaceutical industry, the requirements for the characterization have risen with the complexity of the used polymers. For each additional distribution, an additional dimension in analysis is needed. Small, often isomeric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector, but affect the properties of materials significantly. For a drug delivery system for example, the degree of branching and branching distribution is crucial for the formation of micelles. Instead of a complicated, time consuming and/or expensive 2d-chromatography or ion mobility spectrometry (IMS) method, that also has its limitations, in this work a simple approach using size exclusion chromatography (SEC) coupled with electrospray ionization mass spectrometry (ESI) is proposed. The online coupling allows the analysis of reconstructed ion chromatograms (RIC) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities. Although some microstructural heterogeneities like short chain branching can for large polymers be characterized with methods such as light scattering, for oligomers where the heterogeneities just start to form and their influence is at the maximum, they are inaccessible with these methods. It is also shown, that with a proper calibration even quantitative information can be obtained. This method is suitable to detect small differences in e. g. branching, 3d-structure, monomer sequence or tacticity and could potentially be used in routine analysis to quickly determine deviations. KW - Polymer KW - Microstructure KW - UPLC KW - ESI-TOF-MS KW - Reconstructed ion chromatograms PY - 2018 DO - https://doi.org/10.1021/acs.analchem.7b05214 SN - 0003-2700 SN - 1520-6882 VL - 90 IS - 5 SP - 3467 EP - 3474 PB - ACS Publ. CY - Washington, DC AN - OPUS4-44423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fantin, Andrea A1 - Cakir, Cafer Tufan A1 - Kasatikov, S. A1 - Schumacher, G. A1 - Manzoni, Anna Maria T1 - Effects of heat treatment on microstructure, hardness and local structure in a compositionally complex alloy N2 - Unlike conventional alloys, high entropy alloys are characterized by one or more solid solution phase(s) without a clearly defined solvent, all element contribute to the matrix in a way that is still not entirely understood. In addition, it is not known to what extent classic thermodynamic rules can be applied to these multi-element alloys, especially concerning the question about what factor incites the matrix to undergo a phase transformation. This work tackles directly some of these aspects on a chosen alloy, Al8Cr17Co17Cu8Fe17Ni33 (at.%), which presents a high temperature single-phase γ state and a two-phase state with γ′ precipitates, above and below 900 ◦C, respectively. A combined investigation via microstructural observations, hardness testing, X-ray absorption and photoelectron spectroscopy was carried out above the γ′ formation temperature. Hardness values are independent of the annealing temperatures, microstructural analysis shows no phase formation and X-ray absorption spectroscopy does not reveal observable changes in neither local atomic nor electronic structure, indicating that approaching γ′ formation temperature is not influenced by atomic or electronic rearrangements. Interestingly, short-range chemical order remains quantitatively compatible at any annealing temperature in the single-phase γ state, and the observed preferred pairs Al–Cu and Al–Ni in the γ state match with the γ’ precipitates composition below 900 ◦C. KW - High entropy alloys KW - EXAFS KW - Short range order KW - Vickers hardness PY - 2022 DO - https://doi.org/10.1016/j.matchemphys.2021.125432 SN - 0254-0584 VL - 276 SP - 125432 PB - Elsevier B.V. AN - OPUS4-53760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fedorova, E.A. A1 - Asanov, Igor A1 - Yusenko, Kirill A1 - Asanova, T.I. A1 - La Fontaine, Camille A1 - Roudenko, olga A1 - Gerasimov, E.Y. A1 - Vasilchenko, D A1 - Korenev, S.V. T1 - Time-resolved study of thermal decomposition process of (NH4)(2) PtCl6 : Intermediates and Pt nucleation N2 - Evolution in crystal, electronic and local atomic structures of Pt in ammonium hexachloroplatinate in the course of thermal decomposition in inert and reducing atmospheres have been studied by Powder X-Ray Diffraction (PXRD) and Quick X-ray Absorption Fine Structure (QXAFS) at Pt L3-edge for deeper understanding the thermally-induced solid state reaction and the formation of metallic nanoparticles. A three-step thermal decomposition mechanism of (NH4)2[PtCl6] in the inert atmosphere with the intermediate products Pt(NH3)2Cl2 and PtCl2 has been found instead one-[G.Meyer, A.Möller, J. Less. Common. Met. 170 (1991) 327–331] and two-step one [Q.Kong, F.Baudelet, J.Han, S.Chagnot, L.Barthe, J.Headspith, R. Goldsbrough, F.E.Picca, O.Spalla, Sci. Rep. 2 (2012) 1018–1025] considered early. In the reducing atmosphere, the thermal decomposition is a two-step process with the formation of the intermediate PtCl2. The best approach to determining the number of thermal decomposition steps turned out to be the express-analysis of QXAFS spectra offered in the papers, based on the simultaneous presentation of the most important parameters extracted from X-ray Absorption Near Edge Structure (XANES) and Fourier transformed Extended XAFS (EXAFS). This express-analysis was tested by comparison with results of various approaches such as conventional EXAFS fitting, linear combination fit (LCF), Multivariate Curve Resolution Alternating Least Squares method (MCR ALS). KW - Platinum KW - Quick-EXAFS PY - 2021 DO - https://doi.org/10.1016/j.vacuum.2021.110590 VL - 194 SP - 110590 PB - Elsevier AN - OPUS4-54008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schöder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Tuning the mechanical flexibility of organic molecular crystals by polymorphism for flexible optical waveguides N2 - The ability to selectively tune the optical and the mechanical properties of organic molecular crystals offers a promising approach towards developing flexible optical devices. These functional properties are sensitive to crystallographic packing features and are hence expected to vary with polymorphic modification. Using as a model system the photoluminescent material 4-bromo-6-[(6-chloropyridin-2-ylimino)methyl]phenol (CPMBP), we herein demonstrate the simultaneous tuning of mechanical flexibility and photoluminescence properties via polymorphism. Two new polymorphic forms of CPMBP were obtained from a solution and fully characterised using a combination of experiments and density functional theory simulations. These polymorphic forms exhibit remarkably distinct mechanical properties and an order of magnitude difference in photoluminescence quantum yield. The mechanically plastic form has a higher quantum yield than the brittle polymorphic form. However, their photoluminescence emission profile is largely unaffected by the observed polymorphism, thereby demonstrating that the optical properties and bulk mechanical properties can in principle be tuned independently. By distinguishing between active (involving absorption and emission) and passive (involving no absorption) light propagation, the waveguiding properties of the plastic form of CPMBP (form II) were explored using the straight and bent crystals to highlight the potential applications of CPMBP in designing flexible optical devices. Our results demonstrated that polymorph engineering would be a promising avenue to achieve concurrent modulation of the optical and mechanical properties of photoluminescent molecular crystals for next-generation flexible optical device applications. KW - Mechanochemistry KW - Flexible PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532075 DO - https://doi.org/10.1039/d1ce00642h VL - 23 IS - 34 SP - 5815 EP - 5825 PB - Royal Society of Chemistry CY - London AN - OPUS4-53207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Mechanochemical Syntheses of Isostructural Luminescent Cocrystals of 9-Anthracenecarboxylic Acid with two Dipyridines Coformers N2 - Tuning and controlling the solid-state photophysical properties of organic luminophore are very important to develop next-generation organic luminescent materials. With the aim of discovering new functional luminescent materials, new cocrystals of 9-anthracene carboxylic acid (ACA) were prepared with two different dipyridine coformers: 1,2-bis(4-pyridyl)ethylene and 1,2-bis(4-pyridyl)ethane. The cocrystals were successfully obtained by both mechanochemical approaches and conventional solvent crystallization. The newly obtained crystalline solids were characterized thoroughly using a combination of single crystal X-ray diffraction, powder X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, and thermogravimetric analysis. Structural analysis revealed that the cocrystals are isostructural, exhibiting two-fold interpenetrated hydrogen bonded networks. While the O–H···N hydrogen bonds adopts a primary role in the stabilization of the cocrystal phases, the C–H···O hydrogen bonding interactions appear to play a significant role in guiding the three-dimensional assembly. Both π···π and C–H···π interactions assist in stabilizing the interpenetrated structure. The photoluminescence properties of both the starting materials and cocrystals were examined in their solid states. All the cocrystals display tunable photophysical properties as compared to pure ACA. Density functional theory simulations suggest that the modified optical properties result from charge transfers between the ACA and coformer molecules in each case. This study demonstrates the potential of crystal engineering to design solid-state luminescence switching materials through cocrystallization. KW - Cocrystal KW - Mechanochemical synthesis KW - Luminescence KW - X-ray diffraction KW - DFT calculation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518226 DO - https://doi.org/10.3390/cryst10100889 VL - 10 IS - 10 SP - 889 PB - MDPI AN - OPUS4-51822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Michalchuk, Adam A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit T1 - Elastic Flexibility in an Optically Active Naphthalidenimine-Based Single Crystal N2 - Organic single crystals that combine mechanical flexibility and optical properties are important for developing flexible optical devices, but examples of such crystals remain scarce. Both mechanical flexibility and optical activity depend on the underlying crystal packing and the nature of the intermolecular interactions present in the solid state. Hence, both properties can be expected to be tunable by small chemical modifications to the organic molecule. By incorporating a chlorine atom, a reportedly mechanically flexible crystal of (E)-1-(4-bromo-phenyl)iminomethyl-2-hydroxylnaphthalene (BPIN) produces (E)-1-(4-bromo-2-chloro-phenyl)iminomethyl-2-hydroxyl-naphthalene (BCPIN). BCPIN crystals show elastic bending similar to BPIN upon mechanical stress, but exhibit a remarkable difference in their optical properties as a result of the chemical modification to the backbone of the organic molecule. This work thus demonstrates that the optical properties and mechanical flexibility of molecular materials can, in principle, be tuned independently. KW - Elastic Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539040 DO - https://doi.org/10.3390/cryst11111397 VL - 11 IS - 11 SP - 1397 PB - MDPI AN - OPUS4-53904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Yasuda, N. A1 - Michalchuk, Adam A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit T1 - Mechanistic Investigation of an Elastically Flexible Organic Crystal N2 - Mechanical flexibility in molecular crystals is a fascinating behavior with potential for developing advanced technologies. However, the phenomenon of mechanical bending is poorly understood. We explore for the first time the atomistic origin of elastic bending in a single component organic crystal using a combination of μ-focus synchrotron X-ray diffraction and ab initio simulation. KW - Flexible crystals KW - DFT calculation KW - Bending mechanism PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581949 DO - https://doi.org/10.1021/acs.cgd.3c00473 SN - 1528-7483 VL - 23 IS - 9 SP - 6244 EP - 6249 PB - ACS Publications AN - OPUS4-58194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fink, Friedrich A1 - Stawski, Tomasz M. A1 - Stockmann, Jörg M. A1 - Emmerling, Franziska A1 - Falkenhagen, Jana T1 - Surface Modification of Kraft Lignin by Mechanochemical Processing with Sodium Percarbonate N2 - In this article, we present a novel one-pot mechanochemical reaction for the surface activation of lignin. The process involves environmentally friendly oxidation with hydrogen peroxide, depolymerization of fractions with high molecular mass, and introduction of new carbonyl functions into the lignin backbone. Kraft lignin was ground with sodium percarbonate and sodium hydroxide in a ball mill at different time intervals. Analyses by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), size exclusion chromatography (SEC), dynamic vapor sorption (DVS), and small-angle X-ray scattering (SAXS) showed significant improvements. After only 5 min of reaction, there was a 47% reduction in mass-average molecular weight and an increase in carboxyl functionalities. Chemical activation resulted in an approximately 2.8-fold increase in water adsorption. Principal component analysis (PCA) provided further insight into the correlations between IR spectra and SAXS parameters KW - Kraft Lignin KW - Mechanochemical oxidation KW - SEC KW - FTIR KW - SAXS KW - PCA PY - 2023 DO - https://doi.org/10.1021/acs.biomac.3c00584 SN - 1525-7797 SP - 1 EP - 11 PB - American Chemical Society AN - OPUS4-58074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Flatken, M. A. A1 - Radicchi, E. A1 - Wendt, R. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Härk, E. A1 - Pascual, J. A1 - Mathies, F. A1 - Shargaieva, O. A1 - Prause, A. A1 - Dallmann, A. A1 - De Angelis, F. A1 - Hoell, A. A1 - Abate, A. T1 - Role of the Alkali Metal Cation in the Early Stages of Crystallization of Halide Perovskites N2 - ABX3 metal halide perovskites revolutionized the research and development of new optoelectronics, including solar cells and light-emitting diodes. Processing polycrystalline thin films from precursor solutions is one of the core advantages of these materials since it enables versatile and cost-effective manufacturing. The perovskite film morphology, that is, continuous substrate coverage and low surface roughness, is of paramount importance for highly efficient solar cells and optoelectronic devices in general. Controlling the chemistry of precursor solutions is one of the most effective strategies to manage the perovskite film morphology. Herein, we show the fundamental influence of the A-site cation composition on the perovskite precursor arrangement and the consequent film formation. Extended X-ray absorption fine structure spectroscopy and small-angle X-ray scattering give unprecedented insights into the complex structural chemistry of the perovskite precursors and, in particular, their repulsive interactions as a crucial parameter for colloidal stability. Combining these techniques with in situ grazing incidence wide-angle X-ray scattering during thin-film formation allows us to identify the mechanism for using alkali metals as a decisive criterion to control the colloidal stability of the perovskite precursor and thus the thin-film morphology. We illustrate the fundamental principle behind the systematic use of alkali metals regardless of whether they are incorporated in the lattice or not. Hence, this work provides tools to selectively control the morphology and crystal growth in present and future systems KW - MAPbI3 perovskites KW - Halide Perovskites KW - X-ray absorption spectroscopy PY - 2022 DO - https://doi.org/10.1021/acs.chemmater.1c03563 SN - 0897-4756 VL - 34 IS - 3 SP - 1121 EP - 1131 PB - American Chemical Society AN - OPUS4-54713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frisch, M. A1 - Laun, J. A1 - Marquardt, Julien A1 - Arinchtein, A. A1 - Bauerfeind, K. A1 - Bernsmeier, D. A1 - Bernicke, M. A1 - Bredow, T. A1 - Kraehnert, R. T1 - Bridging experiment and theory: enhancing the electrical conductivities of soft-templated niobium-doped mesoporous titania films† N2 - Theoretical calculations suggest a strong dependence of electrical conductivity and doping concentration in transition-metal doped titania. Herein, we present a combined theoretical and experimental approach for the prediction of relative phase stability and electrical conductivity in niobium-doped titania as model system. Our method paves the way towards the development of materials with improved electrical properties. KW - Electrical conductivity KW - Prediction relative KW - Transition-metal doped KW - System method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521371 DO - https://doi.org/10.1039/d0cp06544g SN - 1463-9084 VL - 23 IS - 5 SP - 3219 EP - 3224 PB - Royal Society of Chemistry AN - OPUS4-52137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Förste, F. A1 - Bauer, L. A1 - Streeck, C. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Kadow, D. A1 - Keil, C. A1 - Mantouvalou, I. T1 - Quantitative Analysis and 2D/3D Elemental Imaging of Cocoa Beans Using X‑ray Fluorescence Techniques N2 - As an important raw material for the confectionery industry, the cocoa bean (Theobroma cacao L.) has to meet certain legal requirements in terms of food safety and maximum contaminant levels in order to enter the cocoa market. Understanding the enrichment and distribution of essential minerals but also toxic metals is of utmost importance for improving the nutritional quality of this economically important raw food material. We present three X-ray fluorescence (XRF) techniques for elemental bio-imaging of intact cocoa beans and one additional XRF technique for quantitative analysis of cocoa pellets. The interrelation of all the methods presented gives a detailed picture of the content and 3D-resolved distribution of elements in complete cocoa beans for the first time. KW - BAMline KW - Synchrotron KW - XRF KW - CXC KW - Cocoa PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05370 VL - 95 SP - 5627 EP - 5635 PB - ACS Publications AN - OPUS4-57832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gao, S. A1 - Hou, J. A1 - Deng, Z. A1 - Wang, T. A1 - Beyer, Sebastian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Richardson, J. J. A1 - Rawal, A. A1 - Seidel, R. A1 - Zulkifli, M. Y. A1 - Li, W. A1 - Bennett, T. D. A1 - Cheetham, A. K. A1 - Liang, K. T1 - Improving the Acidic Stability of Zeolitic Imidazolate Frameworks by Biofunctional Molecules N2 - Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for their use in separation, gas adsorption, catalysis, and biotechnology. Their practical applications, however, can be hampered by their structural instability in humid acidic conditions. Here, guided by density functional theory calculations, we demonstrate that the acidic stability of two polymorphic ZIFs (i.e., ZIF-8 and ZIF-L) can be enhanced by the incorporation of functional groups on polypeptides or DNA. A range of complementary synchrotron investigations into the local chemical structure and bonding environment suggest that the enhanced acidic stability arises from the newly established coordinative interactions between the Zn centers and the inserted carboxylate (for polypeptides) or phosphate (for DNA) groups, both of which have lower pKas than the imidazolate ligand. With functional biomolecular homologs (i.e., enzymes), we demonstrate a symbiotic stability reinforcement effect, i.e., the encapsulated biomolecules stabilize the ZIF matrix while the ZIF exoskeleton protects the enzyme from denaturation. KW - Zeolitic Imidazolate Frameworks KW - Biofunctional Molecules KW - X-ray Absorption Spectroscopy PY - 2019 DO - https://doi.org/10.1016/j.chempr.2019.03.025 VL - 5 IS - 6 SP - 1597 EP - 1608 PB - Elsevier Inc. AN - OPUS4-48702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Falkenhagen, Jana T1 - Combined impact of UV radiation and nitric acid on high‐density polyethylene containers as a laboratory test N2 - In a laboratory test, transparent high‐density polyethylene (HDPE) jerrycans have been exposed to both UV radiation and 55 wt‐% nitric acid solution at (41 ± 2)°C, for up to 20 days. For comparison, UV radiant exposure (21 days) and nitric acid exposure (up to 6 weeks) were performed separately, at nearly equal temperatures. The damages are compared with FTIR spectroscopy in ATR and HT‐gel permeation chromatography(GPC) on a molecular level and with hydraulic internal pressure testing as a component test. For the used jerrycans, relevant oxidation can only be found after the combined exposure. This is caused by the decomposition of nitric acid into nitrous gases by UV radiation, which is also observed at lower concentrations (28 wt‐%). After 6 days of laboratory exposure, this is rated as critical, which corresponds to about 1/10 year in Central Europe, according to the UV radiant exposure. The gradual increase in oxidative damage shows the reproducibility of the test. KW - Molecular mass distribution KW - High-density polyethylene KW - Nitric acid KW - UV radiation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550141 DO - https://doi.org/10.1002/pts.2673 SN - 0894-3214 SP - 1 EP - 7 PB - John Wiley & Sons Ltd AN - OPUS4-55014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gernhard, M. A1 - Rautenberg, Max A1 - Hörner, G. A1 - Weber, B. A1 - Emmerling, Franziska A1 - Roth, C. T1 - Mechanochemical Synthesis as a Greener Way to ProduceIron-based Oxygen Reduction Catalysts N2 - Iron-based catalysts have been reported manifold and studied as platinum group metal (PGM) free alternatives for the catalysis of the oxygen reduction reaction (ORR). However, their sustainable preparation by greener synthesis approaches is usually not discussed. In this work, we propose a new method for the sustainable preparation of such catalysts by using a mechanochemical approach, with no solvents and non-toxic chemicals. The materials obtained from low temperature carbonization (700 °C) exhibit considerable and stable catalytic performance for ORR in alkaline medium. A catalyst obtained from iron hydroxide, tryptophan, dicyandiamide, and ammonium nitrate shows the best electrocatalytic Performance with an overpotential of 921 mV vs. RHE at 0.1 mA/cm2 and an electron transfer number of 3.4. KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - AEMFC KW - Mössbauer Spectroscopy KW - Sustainable Synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535326 DO - https://doi.org/10.1002/zaac.202100194 VL - 647 IS - 22 SP - 2080 EP - 2087 PB - Weinheim-VCH GmbH AN - OPUS4-53532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Getenet, M. A1 - Garcia-Ruiz, J. M. A1 - Otálora, F. A1 - Emmerling, Franziska A1 - Al-Sabbagh, Dominik A1 - Verdugo-Escamilla, E. T1 - A comprehensive methodology for monitoring evaporitic mineral precipitation and hydrochemical evolution of saline lakes: The case of Lake Magadi soda brine (East African Rift Valley, Kenya) N2 - Lake Magadi, East African Rift Valley, is a hyperalkaline and saline soda lake highly enriched in Na+, K+, CO32–, Cl–, HCO3–, and SiO2 and depleted in Ca2+ and Mg2+, where thick evaporite deposits and siliceous sediments have been forming for 100 000 years. The hydrogeochemistry and the evaporite deposits of soda lakes are subjects of growing interest in paleoclimatology, astrobiology, and planetary sciences. In Lake Magadi, different hydrates of sodium carbonate/bicarbonate and other saline minerals precipitate. The precipitation sequence of these minerals is a key for understanding the hydrochemical evolution, the paleoenvironmental conditions of ancient evaporite deposits, and industrial crystallization. However, accurate determination of the precipitation sequence of these minerals was challenging due to the dependency of the different hydrates on temperature, water activity, pH and pCO2, which could induce phase transformation and secondary mineral precipitation during sample handling. Here, we report a comprehensive methodology applied for monitoring the evaporitic mineral precipitation and hydrochemical evolution of Lake Magadi. Evaporation and mineral precipitations were monitored by using in situ video microscopy and synchrotron X-ray diffraction of acoustically levitated droplets. The mineral patterns were characterized by ex situ Raman spectroscopy, X-ray diffraction, and scanning electron microscopy. Experiments were coupled with thermodynamic models to understand the evaporation and precipitation-driven hydrochemical evolution of brines. Our results closely reproduced the mineral assemblages, patterns, and textural relations observed in the natural setting. Alkaline earth carbonates and fluorite were predicted to precipitate first followed by siliceous sediments. Among the salts, dendritic and acicular trona precipitate first via fractional crystallization─reminiscent of grasslike trona layers of Lake Magadi. Halite/villiaumite, thermonatrite, and sylvite precipitate sequentially after trona from residual brines depleted in HCO3–. The precipitation of these minerals between trona crystals resembles the precipitation process observed in the interstitial brines of the trona layers. Thermonatrite precipitation began after trona equilibrated with the residual brines due to the absence of excess CO2 input. We have shown that evaporation and mineral precipitation are the major drivers for the formation of hyperalkaline, saline, and SiO2-rich brines. The discrepancy between predicted and actual sulfate and phosphate ion concentrations implies the biological cycling of these ions. The combination of different in situ and ex situ methods and modeling is key to understanding the mineral phases, precipitation sequences, and textural relations of modern and ancient evaporite deposits. The synergy of these methods could be applicable in industrial crystallization and natural brines to reconstruct the hydrogeochemical and hydroclimatic conditions of soda lakes, evaporite settings, and potentially soda oceans of early Earth and extraterrestrial planets. KW - Crystallization KW - Precipitation KW - Crystals KW - Evaporation KW - Minerals PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546712 DO - https://doi.org/10.1021/acs.cgd.1c01391 SN - 1528-7483 VL - 22 IS - 4 SP - 2307 EP - 2317 PB - ACS Publications CY - Washington, DC AN - OPUS4-54671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Getenet, M. A1 - Otálora, F. A1 - Emmerling, Franziska A1 - Al-Sabbagh, Dominik A1 - García-Ruiz, J. M. T1 - Mineral precipitation and hydrochemical evolution through evaporitic processes in soda brines (East African Rift Valley) N2 - Soda lakes of the East African Rift Valley are hyperalkaline, hypersaline lakes extremely enriched in Na+, K+, Cl−, CO32−, HCO3−, and SiO2. In this paper, we investigate the chemical evolution in these lakes and the production of chemical sediments by salt precipitation via evaporation. Water samples from tributary springs and three lakes (Magadi, Nasikie Engida and Natron) have been experimentally studied by in-situ X-ray diffraction during evaporation experiments to characterize the sequence of mineral precipitation. These data are complemented by ex-situ diffraction studies, chemical analyses and thermodynamic hydrochemical calculations producing detailed information on the activity of all solution species and the saturation state of all minerals potentially generated by the given composition. Major minerals precipitating from these samples are sodium carbonates/bicarbonates as well as halite. The CO3/HCO3 ratio, controlled by pH, is the main factor defining the Na‑carbonates precipitation sequence: in lake brines where CO3/HCO3 > 1, trona precipitates first whereas in hot springs, where CO3/HCO3 ≪ 1, nahcolite precipitates instead of trona, which forms later via partial dissolution of nahcolite. Precipitation of nahcolite is possible only at lower pH values (pCO2 higher than −2.7) explaining the distribution of trona and nahcolite in current lakes and the stratigraphic sequences. Later, during evaporation, thermonatrite precipitates, normally at the same time as halite, at a very high pH (>11.2) after significant depletion of HCO3− due to trona precipitation. The precipitation of these soluble minerals increases the pH of the brine and is the main factor contributing to the hyperalkaline and hypersaline character of the lakes. Villiaumite, sylvite, alkaline earth carbonates, fluorapatite and silica are also predicted to precipitate, but most of them have not been observed in evaporation experiments, either because of the small amount of precipitates produced, kinetic effects delaying the nucleation of some phases, or by biologically induced effects in the lake chemistry that are not considered in our calculations. Even in these cases, the chemical composition in the corresponding ions allows for discussion on their accumulation and the eventual precipitation of these phases. The coupling of in-situ and ex-situ experiments and geochemical modelling is key to understanding the hydrogeochemical and hydroclimatic conditions of soda lakes, evaporite settings, and potentially soda oceans of early Earth and other extraterrestrial bodies. KW - Crystallization sequence KW - Hydrochemical evolution KW - Alkaline brines KW - Sodium carbonate minerals KW - Soda lakes KW - Evaporite deposits PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568431 DO - https://doi.org/10.1016/j.chemgeo.2022.121222 SN - 0009-2541 VL - 616 SP - 1 EP - 13 PB - Elsevier CY - New York, NY AN - OPUS4-56843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghazanfari, M. R. A1 - Vittadello, L. A1 - Al-Sabbagh, Dominik A1 - Santhosh, A. A1 - Frankcom, C. A1 - Fuß, F. A1 - von Randow, C. A. A1 - Siemensmeyer, K. A1 - Vrijmoed, J. C. A1 - Emmerling, Franziska A1 - Jerabek, P. A1 - Irmlau, M. A1 - Thiele, G. T1 - Remarkable Infrared Nonlinear Optical, Dielectric, and Strong Diamagnetic Characteristics of Semiconducting K3[BiS3] N2 - The ternary sulfido bismuthate K3[BiS3] is synthesized in quantitative yields. The material exhibits nonlinear optical properties with strong second harmonic generation properties at arbitrary wavelengths in the infrared spectral range and a notable laser-induced damage threshold of 5.22 GW cm−2 for pulsed laser radiation at a wavelength of 1040 nm, a pulse duration of 180 fs, and a repetition rate of 12.5 kHz. K3[BiS3] indicates semiconductivity with a direct optical band gap of 2.51 eV. Dielectric and impedance characterizations demonstrate κ values in the range of 6−13 at 1 kHz and a high electrical resistivity. A strong diamagnetic behavior with a susceptibility of −2.73 × 10−4 m3 kg−1 at room temperature is observed. These results suggest it is a promising nonlinear optical candidate for the infrared region. The synergic physical characteristics of K3[BiS3] provide insight into the correlation of optical, electrical, and magnetic properties. KW - Electrical properties KW - Insulators KW - Materials KW - Nonlinear optics KW - Quantum mechanics PY - 2022 DO - https://doi.org/10.1021/acs.jpclett.2c01689 VL - 13 IS - 30 SP - 6987 EP - 6993 PB - ACS Publications AN - OPUS4-55456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goswami, Juli Nanda A1 - Haque, Najirul A1 - Seikh, Asiful H. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Bar, Nimai A1 - Ifseisi, Ahmad A. A1 - Biswas, Surajit A1 - Dolai, Malay T1 - Carboxylative cyclization of propargyl alcohols with carbon dioxide for the synthesis of α-alkylidene cyclic carbonates in presence of Co(III) schiff base complex catalyst N2 - A cobalt(III) complex, [Co(L)3](DMF) (1) of Schiff base ligand HL, 2-((E)-(benzylimino)methyl)-4-bromophenol is prepared and single crystal X-ray structural analysis have also been performed. The structures of complex 1 showed hexa-coordinated mononuclear systems that adopt octahedral geometry. The complex has also exhibited the supramolecular networks through non-covalent interactions like H-bonding, C–Hπ stacking. Moreover, the complex 1 is very effective in the catalytic fixation of carbon dioxide in propergyl alcohols to produce α-alkylidene cyclic carbonates. The catalytic production of α-alkylidene cyclic carbonates have been carried out through carboxylative cyclization of propargyl alcohols using CO2 balloon of 1 atm pressure at 80 ◦C. Solvent free condition (green synthesis) made this catalytic protocol eco-friendly towards the environment. Utilizing various substrates of propargyl alcohols moderate to high percentage yield (62–95%) of respective α-alkylidene cyclic carbonates product have been isolated over this catalytic reaction. Besides, the theoretical calculations (DFT) was performed for the prediction of probable mechanism of the catalytic reaction KW - Catalytic fixation of carbon dioxide KW - Carboxylative cyclization of propargyl alcohols KW - Cobalt (III) Schiff base complex KW - X-ray crystal analysis PY - 2024 DO - https://doi.org/10.1016/j.molstruc.2023.136868 SN - 0022-2860 VL - 1296 IS - Part 1 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-58947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grabicki, N. A1 - Nguyen, K. T. G. A1 - Weidner, Steffen A1 - Dumele, O. T1 - Confined Spaces in [n]Cyclo-2,7-pyrenylenes N2 - A set of strained aromatic macrocycles based on [n]cyclo2,7-(4,5,9,10-tetrahydro)pyrenylenes is presented with size dependent photophysical properties. The K-region of pyrene was functionalized with ethylene glycol groups to decorate the outer rim and thereby confine the space inside the macrocycle. This confined space is especially pronounced for n = 5, which leads to an internal binding of up to 8.0×104 M–1 between the ether-decorated [5]cyclo-2,7-pyrenylene and shape complementary crown ether–cation complexes. Both, the ether-decorated [n]cyclo-pyrenylenes as well as one of their host–guest complexes have been structurally characterized by single crystal X-ray analysis. In combination with computational methods the structural and thermodynamic reasons for the exceptionally strong binding have been elucidated. The presented rim confinement strategy makes cycloparaphenylenes an attractive supramolecular host family with a favorable, size-independent read-out signature and binding capabilities extending beyond fullerene guests. KW - Cycloparaphenylenes KW - Host–guest systems KW - Macrocycles KW - Molecular recognition KW - Supramolecular chemistry PY - 2021 DO - https://doi.org/10.1002/anie.202102809 SN - 1433-7851 VL - 60 IS - 27 SP - 1 EP - 7 PB - Wiley VCH AN - OPUS4-52517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Greiser, Sebastian A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Jäger, Christian T1 - 29Si{27Al}, 27Al{29Si} and 27Al{1H} double-resonance NMR spectroscopy study of cementitious sodium aluminosilicate gels (geopolymers) and gel-zeolite composites N2 - The influence of starting materials and synthesis route on the properties and the structure of cementitious sodium aluminosilicate gels is not fully understood, partly due their amorphous nature and the fact that they often contain residual reactants, which can make the results of single-pulse NMR spectroscopy applied to these materials difficult to interpret or ambiguous. To overcome some of these limitations, 29Si{27Al} TRAPDOR NMR as well as 27Al{29Si} and 27Al{1H} REDOR NMR spectroscopy were applied to materials synthesized by the one-part alkali-activation route from three different amorphous silica starting materials, including rice husk ash. The latter led to formation of a fully amorphous sodium aluminosilicate gel (geopolymer), while the materials produced from the other silicas contained amorphous phase and crystalline zeolites. Application of the double-resonance NMR methods allowed to identify hydrous alumina gel domains in the rice husk ash-based material as well as significantly differing amounts of residual silica in the three cured materials. Four-coordinated Al existed not only in the aluminosilicate gel framework but also in a water-rich chemical environment with only a small amount of Si in proximity, likely in the alumina gel or possibly present as extra-framework Al in the aluminosilicate gel. The results demonstrate how the employment of different silica starting materials determines the phase assemblage of one-part alkali-activated materials, which in turn influences their engineering properties such as the resistance against chemically/biologically aggressive media. KW - Alkali-activated materials KW - Solid-state NMR KW - Aluminium hydroxide KW - Rice husk ash PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469353 DO - https://doi.org/10.1039/C8RA09246J SN - 2046-2069 VL - 8 IS - 70 SP - 40164 EP - 40171 PB - Royal Society of Chemistry AN - OPUS4-46935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grengg, C. A1 - Gluth, Gregor A1 - Mittermayr, F. A1 - Ukrainczyk, N. A1 - Bertmer, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Leis, A. A1 - Dietzel, M. T1 - Deterioration mechanism of alkali-activated materials in sulfuric acid and the influence of Cu: A micro-to-nano structural, elemental and stable isotopic multi-proxy study N2 - In this study, a multi-proxy approach combining 29Si, 27Al and 1H MAS-NMR, FEG-EPMA, XANES at the Cu K-edge and XRD analytics with hydrochemical tools such as ICP-OES analyses, oxygen-isotope signatures, and thermodynamic modelling was applied to K-silicate-activated metakaolin specimens - with and without CuSO4·5H2O addition - exposed to sulfuric acid at pH = 2 for 35 days. The results revealed a multistage deterioration mechanism governed by (i) acid diffusion, (ii) leaching of K-A-S-H, (iii) microstructural damage related to precipitation of expansive (K,Ca,Al)-sulfate-hydrate phases (iv) complete dissolution of the K-A-S-H framework, (v) and formation of silica gel in the outermost corroded regions. Copper ions were mainly located in layered spertiniite-chrysocolla-like phases in the as-cured materials. The results demonstrate an overall negative effect of Cu addition on chemical material durability, implying that the reported higher durability of Cu-doped AAM in biocorrosion environments can be best explained by bacteriostatic effects. KW - Alkali-activated materials KW - Acid resistance KW - Microbially induced corrosion KW - MIC PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520567 DO - https://doi.org/10.1016/j.cemconres.2021.106373 SN - 0008-8846 VL - 142 SP - 1 EP - 15 PB - Elsevier CY - Oxford AN - OPUS4-52056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grengg, C. A1 - Koraimann, G. A1 - Ukrainczyk, N. A1 - Rudic, O. A1 - Luschnig, S. A1 - Gluth, Gregor A1 - Radtke, Martin A1 - Dietzel, M. A1 - Mittermayr, F. T1 - Cu- and Zn-doped alkali activated mortar – Properties and durability in (bio)chemically aggressive wastewater environments N2 - Metakaolin-based alkali activated mortars (AAM) - with and without CuSO4·5H2O and ZnO addition (mass ratio Mn+/solid binder 0.08% to 1.7%) - were casted and exposed within an extensive long-term field campaign over the period of 20 months to a sewer basin, strongly affected by biogenic acid corrosion. (Un-)exposed AAM were tested regarding their physicochemical and microstructural properties, bioreceptivity and overall durability. Metal addition led to a retarding effect during alkali-activation reaction, as well as to an increase in open porosity of up to 3.0% and corresponding lower compressive strength of up to 10.9%. Reduced microbial colonization and diversity were observed on AAM with Cu, while Zn addition led to increased biodiversity. We propose that the observed higher durability of Cu-doped AAM is due to antibacterial effects and associated reduction of biogenic acid production, superseding overall negative effects of metal-dosage on physical material properties. Observed lower durability of Zn-doped AAM was related to combined negative physicochemical and microbial effects. KW - Microbially induced corrosion KW - Alkali-activated materials KW - Biogenic acid corrosion KW - Biogene Schwefelsäurekorrosion KW - MIC PY - 2021 DO - https://doi.org/10.1016/j.cemconres.2021.106541 SN - 0008-8846 VL - 149 SP - 1 EP - 15 PB - Elsevier CY - Oxford AN - OPUS4-53070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grunert, B. A1 - Saatz, Jessica A1 - Hoffmann, Katrin A1 - Appler, F. A1 - Lubjuhn, Dominik A1 - Jakubowski, Norbert A1 - Resch-Genger, Ute A1 - Emmerling, Franziska A1 - Briel, A. T1 - Multifunctional rare-earth element nanocrystals for cell labeling and multimodal imaging N2 - In this work, we describe a simple solvothermal route for the synthesis of Eu3+-doped gadolinium orthovanadate nanocrystals (Eu:GdVO4−PAA) functionalized with poly(acrylic)acid (PAA), that are applicable as cell labeling probes for multimodal cellular imaging. The Eu3+ doping of the vanadate matrix provides optical functionality, due to red photoluminescence after illumination with UV light. The Gd3+ ions of the nanocrystals reduce the T1 relaxation time of surrounding water protons, allowing these nanocrystals to act as a positive MRI contrast agent with a r1 relaxivity of 1.97 mM−1 s−1. Low background levels of Eu3+, Gd3+, and V5+ in biological systems make them an excellent label for elemental microscopy by Laser Ablation (LA)-ICP-MS. Synthesis resulted in polycrystalline nanocrystals with a hydrodynamic diameter of 55 nm and a crystal size of 36.7 nm, which were further characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL) and transmission electron microscopy (TEM). The multifunctional nanocrystals were subsequently used for intracellular labeling of both human adipose-derived stem cells (MSCs) and A549 (adenocarcinomic human alveolar basal epithelial) cells. KW - Bioimaging KW - Nanoparticle KW - Multimodal KW - Lanthanide PY - 2018 DO - https://doi.org/10.1021/acsbiomaterials.8b00495 SN - 2373-9878 VL - 4 IS - 10 SP - 3578 EP - 3587 PB - ACS Publications CY - Washington, USA AN - OPUS4-46244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guerra, M.F. A1 - Neri, E. A1 - Radtke, Martin T1 - Gold leaf tesserae: tracing the origins of gold using synchrotron-based techniques N2 - To gain insight into the possible origin of the gold used in the production of tesserae containing gold leaf less than 0.5 μm thick placed between two layers of glass, we propose a non-destructive synchrotron radiation (SR) XRF protocol based on sequential analysis under optimised analytical conditions. Using this protocol, trace element analysis is achieved with detection limits of 1–6 mg/kg. As Pt and Au have adjacent fluorescence energies, we tested the most challenging situation, when Pt is present in very low concentrations in gold. Data obtained by double-dispersive XRF (D2XRF) and μXRF for fourth–ninth-century mosaics decorating nine Eastern and Western religious buildings show that the Eastern and Western tesserae are made from different alloys. However, these alloys are identical to those used to make gold leaf for gilding, because plastic deformation requires the use of gold alloys with high ductility and malleability. Although trace element composition of gold used in the concerned period is only available for coins, by comparing the amounts of Pt contained in the tesserae and in the coins we show that Roman tesserae are made from Roman gold, as described in the documentary sources. We observe for the Byzantine period the use of a Byzantine gold and of gold supposedly from different stages of recycling, and we suggest the use of Umayyad and Abbasid gold for the production of Islamic tesserae. KW - Gold KW - XRF KW - Synchrotron KW - BAMline KW - D2XRF KW - Tesserae PY - 2023 DO - https://doi.org/10.1140/epjp/s13360-022-03638-y SN - 2190-5444 VL - 138 IS - 2 SP - 1 EP - 15 AN - OPUS4-57208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Dautain, O. A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Optimizing the Green Synthesis of ZIF-8 by Reactive Extrusion Using In Situ Raman Spectroscopy N2 - We report the scale-up of a batch solid synthesis of zeolitic imidazolate framework-8 (ZIF-8) for reactive extrusion. The crystalline product forms in the extruder directly under the mixture of solid 2-methylimidazole and basic zinc carbonate in the presence of a catalytic amount of liquid. The process parameters such as temperature, liquid type, feeding rate, and linker excess were optimized using the setup specifically designed for in situ Raman spectroscopy. Highly crystalline ZIF-8 with a Brunauer–Emmett–Teller (BET) surface area of 1816 m2 g–1 was quantitatively prepared at mild temperature using a catalytic amount of ethanol and a small excess of the linker. Finally, we developed a simple and comprehensive approach to evaluating the environmental friendliness and scalability of metal–organic framework (MOF) syntheses in view of their large-scale production. KW - Mechanochemistry KW - In situ Raman KW - Large-scale processing KW - Metal−organic frameworks KW - Twin-screw extrusion (TSE) PY - 2023 DO - https://doi.org/10.1021/acssuschemeng.2c07509 SN - 2168-0485 VL - 11 IS - 13 SP - 5175 EP - 5183 PB - ACS Publications AN - OPUS4-57366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -