TY - CONF A1 - Eisentraut, Paul A1 - Hassanein, Yosri A1 - Elert, Anna Maria A1 - Braun, Ulrike T1 - Understanding degradation mechanisms of microplastics in environmental samples N2 - Im Vortrag wird die Problematik Mikroplastik eingeführt und ein Probenset aus dem Mittelmeer mit ersten Ergebnissen besprochen. Die Alterung von Polymeren im Umweltkontext sowie Möglichkeiten der Analyse von Polymeralterungsfortschritten werden diskutiert. Die thermoanalytische Methode mit Zersetzungsgasanalytik (TED-GC-MS) wird eingeführt und deren Einsatzmöglichkeiten in der Thematik umrissen. T2 - EuroMech Colloquium 607 Marine Aging of Polymers CY - Brest, France DA - 28.08.2019 KW - Microplastics KW - Tara Mediterranee KW - Polymer aging KW - TED-GC-MS PY - 2019 AN - OPUS4-49110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klöckner, P. A1 - Reemtsma, T. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Ruhl, A. S. A1 - Wagner, S. T1 - Tire and road wear particles in road environment e Quantification and assessment of particle dynamics by Zn determination after density separation N2 - In this study, a method for the determination of tire and road wear particle (TRWP) contents in particulate samples from road Environment was developed. Zn was identified as the most suitable elemental marker for TRWP, due to its high concentration in tire tread and the possibility of separation from other Zn sources. The mean concentration of 21 tire samples was 8.7 ± 2.0 mg Zn/g. Before quantification in samples from road environment, TRWP were separated from the particulate matrix by density separation. Method development was conducted using shredded tread particles (TP) as a surrogate for TRWP. Recovery of TP from spiked sediment was 95 ± 17% in a concentration range of 2 - 200 mg TP/g. TP determination was not affected by other Zn containing solids or spiked Zn-salts. By adjusting the density of the separation solution to 1.9 g/cm3, more than 90% of total TRWP were separated from the sample matrix. TRWP concentrations in particulate matter collected in two road runoff treatment Systems ranged from 0.38 to 150 mg TRWP/g. Differences in quantified TRWP contents of the two Systems indicate changes in particle dynamics due to ageing and aggregation processes. The developed method allows TRWP determination in road runoff and in environments that are influenced by road traffic. The validated separation procedure can also be applied for TRWP characterization in future studies. KW - Zinc analysis KW - Microplastics KW - Tire particles PY - 2019 VL - 222 SP - 714 EP - 721 PB - Elsevier AN - OPUS4-47433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogler, M. A1 - Müller, Axel A1 - Braun, Ulrike A1 - Grathwohl, P. T1 - Sampling and Sample Preparation for Analysis of Microplastics in Soils N2 - Despite abundant evidence of the occurrence of microplastics (MP) – these are particles smaller 5 mm – in aquatic environments, little is known about the accumulation of plastic in terrestrial environments, especially in soils. Possible major input pathways could be the use of plastic mulching, the use of compost, sewage sludge or residues from biogas facilities as fertilizers, as well as littering in urban areas. To estimate the MP pollution, the development of reliable, fast methods for sampling, sample preparation, and detection is needed. The obtained data must be representative of the sampled environmental compartment and measurements from different environmental compartments must be comparable. A first breakthrough is an application of ThermoExtractionDesorption-Gas Chromatography-MassSpectrometry (TED-GC-MS) for the detection of MP, including tire abrasives. This method allows the determination of mass content within a few hours and only a minimum of sample preparation for samples from aquatic environments is needed. However, in contrast to filtrate samples from aquatic environments, sediment or soil samples need an enrichment of MP. Whereas MP concentration from marine sediments can be obtained by floatation and density Separation techniques using NaCl solutions, the extraction or separation from soils proves to be more difficult, as plastic particles are often part of organo-mineral aggregates within the soil matrix. The aim of this study is the development of a practicable processing guideline for representatively taken soil samples in order to concentrate microplastics, without complex and time-consuming treatment steps. Dispersants or detergents can be applied to decompose the soil matrix, but each preparation step carries the risk of crosscontamination of the sample and prolongs the preparation procedure. For this reason, we choose ZnCl2-solution with a density of 1.7 g/cm3, which include the densities of relevant MP types (0.9-1.7 g/cm3). It was tested to achieve both, disaggregation and separation as it decomposes organic material and dissolves carbonates. Also, ZnCl2 is inert to the precipitation of undesirable salts and Carbonates during the process of density separation, as polytungstate solution does. ZnCl2 can be reused after stepwise filtering (7 µm, 1.5 µm, 0.7 µm). Thus, disposal costs can be reduced. Efficiency and reproducibility of the sample preparation as well as the degradation behavior of MP under the present conditions were demonstrated with model samples. Real sampling campaigns were conducted at several agricultural sites and floodplains in south-west Germany. The sampling was performed according to practice for soil sampling, using adequate sampling strategies (pattern of sampling, number of field samples, homogenization, etc). The lab sample was fractioned into three size classes (5-100 µm, 100-1000 µm, and 1-5 mm). The identification and determination of mass fraction were done using TED-GC-MS. T2 - EGU 2019 - European Geoscience Union General Assembly 2019 CY - Wien, Austria DA - 07.04.2019 KW - Microplastics KW - Density separation KW - Sample preparation KW - Soil PY - 2019 AN - OPUS4-47824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Altmann, Korinna A1 - Eisentraut, Paul A1 - Ricking, M. A1 - Reiche, M. A1 - Barthel, A.-K. A1 - Bannick, C. G. T1 - New sampling strategies for optimised microplastic analysis in surface waters N2 - The occurrence of microplastic particles (MP) in nearly each environmental compartment but especially in water is well documented in an increasing amount of publication within the last few years. However, a comprehensive understanding of MP occurrence, sources and pathways in the environment as well as effects of MP on the environment is still unclear. Many of the studies are not compatible, because they used different sampling, sample preparation and detection techniques, resulting in a very broad variation and very different dimension of archived results. Hence a useful avoiding strategy for reduction the MP entry in the environment is not possible. Furthermore, the existing methods are often very time consuming, need user knowledge and labour force, which is often not acceptable for the routine monitoring of an action or sanction. The call for harmonised methods become loud and louder and promising efforts are done in this area. However, the scientific discussion is often focus on advantages and disadvantages of detection tools and sample preparation, less initiative is given to the sampling strategy. That is a pity, because every environmental scientist knows, a good analytical result depend on a good sampling strategy. The sampling of water seems on the first view easy because the sampling process include already an up concentration of the MP by means of sieves and filters. However, this filtering of water is often limited by filter cake on the sieves, consisting of high amount of natural particular matter. Hence often a small water volume is filtered, which will not own a representative amount of trait carriers or complex sieves cascades are used, which need a high technical equipment. Recently we presented a fast thermoanalytical method for the detection of polymers fractions in water samples. This method, thermo-extraction desorption gas chromatography mass spectrometry (TED-GC-MS) can analyse MP in water filtrates without sample preparations within 2-3 hours. Advantageous is the additional analysis of rubber particles from tires beside the MP. In order to come even faster we now start to develop new sampling strategies, which should be use for different water systems. It is intended to reduce the effort in the field and to elongate times for sampling to obtain a representatives result without random effects. In the present presentation we will show first result using a sedimentation box for sampling of MP from surface water. Advantages and disadvantages will be discussed and comparison to data from conventional fractionated filtration will be given. T2 - SETAC CY - Helsinki, Finland DA - 26.05.2019 KW - Microplastics KW - Sampling KW - Sampling techniques KW - Water PY - 2019 AN - OPUS4-48118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wander, Lukas A1 - Vianello, A. A1 - Vollertsen, J. A1 - Braun, Ulrike A1 - Paul, Andrea T1 - Multivariate analysis of large µ-FTIR datasets in search of microplastics N2 - µ-FTIR spectroscopy is a widely used technique in microplastics research. It allows to simultaneously characterize the material of the small particles, fibers or fragments, and to specify their size distribution and shape. Modern detectors offer the possibility to perform two-dimensional imaging of the sample providing detailed information. However, datasets are often too large for manual evaluation calling for automated microplastic identification. Library search based on the comparison with known reference spectra has been proposed to solve this problem. To supplement this ‘targeted analysis’, an exploratory approach was tested. Principal component analysis (PCA) was used to drastically reduce the size of the data set while maintaining the significant information. Groups of similar spectra in the prepared data set were identified with cluster analysis. Members of different clusters could be assigned to different polymer types whereas the variation observed within a cluster gives a hint on the chemical variability of microplastics of the same type. Spectra labeled according to the respective cluster can be used for supervised learning. The obtained classification was tested on an independent data set and results were compared to the spectral library search approach. T2 - CEST 2019 CY - Rhodes, Greece DA - 04.09.2019 KW - FTIR KW - Microplastics KW - Multivariate data analysis PY - 2019 AN - OPUS4-48889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hagendorf, C. A1 - Richter, S. A1 - Krause, S. A1 - Bauer, J. A1 - Miclea, P.-T. A1 - Braun, Ulrike A1 - Altmann, Korinna A1 - Turek, M. T1 - Microplastic detection and analysis in water with silicon filter systems N2 - The use of optimized silicon filter systems is presented for the microplastic detection. T2 - International Conference on Sustainable Energy-Water-enviroment Nexus in Desert Climate CY - Doha, Qatar DA - 02.12.2019 KW - Filters KW - Microplastics KW - TED-GC-MS KW - Harmonisation PY - 2019 AN - OPUS4-50006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Harmonization in microplastics Analysis N2 - The lecture summarizes the current status of hamonization edr microplastics analytics in Germany. T2 - Symposium on Occurrence and Fate of Microplastics CY - Beijing, China DA - 09.07.2019 KW - Microplastics KW - TED-GC-MS KW - Harmonisation PY - 2019 AN - OPUS4-49063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Bannick, C.G. A1 - Szewzyk, R. A1 - Ricking, M. A1 - Schniegler, S. A1 - Obermaier, N. A1 - Barthel, A. K. A1 - Altmann, Korinna A1 - Eisentraut, Paul T1 - Development and testing of a fractionated filtration for sampling of microplastics in water N2 - A harmonization of sampling, sample preparation and detection is pivotal in order to obtain comparable data on microplastics (MP) in the environment. This paper develops and proposes a suitable sampling concept for waterbodies that considers different plastic specific properties and influencing factors in the environment. Both artificial water including defined MP fractions and the discharge of a wastewater treatment plant were used to verify the derived sampling procedure, sample preparation and the subsequent analysis of MP using thermal extraction-desorption gas chromatography - mass spectrometry (TED-GC-MS). A major finding of this paper is that an application of various particle size classes greatly improves the practical handling of the sampling equipment. Size classes also enable the TED-GC-MS to provide any data on the MP size distribution, a substantial sampling property affecting both the necessary sampling volume and the optimal sampling depth. In the artificial water with defined MP fractions, the recovery rates ranged from 80 to 110%, depending on the different MP types and MP size classes. In the treated wastewater, we found both Polyethylene and polystyrene in different size classes and quantities. KW - Microplastics KW - Sampling KW - Sampling techniques KW - Water PY - 2019 U6 - https://doi.org/10.1016/j.watres.2018.10.045 SN - 0043-1354 VL - 149 SP - 650 EP - 658 PB - Elsevier AN - OPUS4-47200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hassanein, Yosri-Kamal A1 - Eisentraut, Paul A1 - Goedecke, Caroline A1 - Müller, Axel A1 - Kittner, Maria A1 - Bannick, C.G. A1 - Barthel, A.K. A1 - Braun, Ulrike T1 - Detection of microplastics in compost samples using a thermal decomposition method N2 - The ubiquitous presence of unwanted plastics in the environment, especially microscale particles, has been an issue in scientific studies and public debate in the last years. It is well known that oxidative degradation and subsequent fragmentation, caused by UV-radiation, oxidative aging and abrasion lead to the decomposition of larger plastic products into microplastics (MP). Possible effects of these MP on ecosystems are still unclear. Recent studies on MP findings are focused mainly on aquatic systems, while little is known about MP in terrestrial ecosystems. A possible source of MP input into the soil is compost from domestic bio-waste. Inappropriate waste separation causes plastic fragments in the bio-waste, some of which end up in the compost. In Germany compost is used as fertilizer in agriculture, hence MP could enter the soil by this pathway. So far, there have been only a few studies on this object. For this reason, analysis of compost as a sink and source of MP in ecosystems is of high interest. To estimate and monitor the MP content in compost and soil, fast and harmonised analytical methods are essential, which not only measure the polymer type and number of particles, but also the mass content. The most common spectroscopic methods are very time-consuming, often require complex sample preparation steps and cannot determine mass contents. Therefore, we used ThermoExtractionDesorption-GasChromatography-MassSpectrometry (TED-GC-MS) as a fast, integral analytical technique. The sample is pyrolyzed to 600°C in a nitrogen atmosphere and an excerpt of the pyrolysis gases is collected on a solid phase adsorber. Afterwards, the decomposition gases are desorbed and measured in a GC-MS system. Characteristic pyrolysis products can be used to identify the polymer type and determine the mass contents. This method is well established for the analysis of MP in water filtrate samples. In the present work we optimized the TED-GC-MS method for compost and compost/soil matrix and very common polymers, such as polyethylene, polypropylene, polyethylene-terephthalate and polystyrene (sample mass, detection limits, interfering signals, etc.). Additionally, specific pyrolysis products of polymers used for bio-waste bags, such as polylactide (PLA) and polybutylenadipat-terephthalat (PBAT) had to be identified and evaluated. First measurements were carried out on model and real samples from prepared mixtures and composting plant. The samples were sterilized, fractionated, filtered and dried. In addition, half of the sample material was treated with hydrogen peroxide to investigate a possible effect on detection. T2 - European Geosciences Union (EGU) General Assembly 2019 CY - Vienna, Austria DA - 07.04.2019 KW - Microplastics KW - Compost KW - Detection PY - 2019 AN - OPUS4-47829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goedecke, Caroline A1 - Altmann, Korinna A1 - Eisentraut, Paul A1 - Paul, Andrea A1 - Barthel, A. K. A1 - Bannick, C. G. A1 - Lau, P. A1 - Venghaus, D. A1 - Barjenbruch, M. A1 - Braun, Ulrike T1 - Detection of microplastic and tire wear particles in road run-off samples using TED-GC-MS N2 - Plastics and rubber are used in many applications, such as packaging, building, construction and mobility. Due to their favourable properties like light weight, flexible processing and low costs their production and consequently their input into the environment has increased significantly over the last decades. In the environment, oxidation processes and mechanical abrasion lead to the decomposition of these plastics into small fragments, called microplastic (< 5 mm). By definition, microplastics only involve thermoplastics and duroplastics but elastomers made out of synthetic polymers (e. g. styrene butadiene rubber), modified natural polymers (e. g. natural rubber) and products of synthetic polymers (e. g. tires) are also part of the current microplastic discussion. The main entry pathway of rubber into the environment is the wear of used tire treads in road traffic. Lassen et al. showed that 60 % of the microplastic emissions in Denmark into the environment come from secondary microplastics generated by tires. Rain events can cause microplastic and rubber to get from the street into the street inlets. Depending on the sewage system, these waters are sometimes not cleaned in the sewage treatment plants and reach the surface waters untreated. To analyse microplastic particles in samples, mainly FTIR or Raman spectroscopic methods are applied at present. Rubber or tire particles in environmental samples cannot be analysed by these methods, because the added carbon black leads to annoying absorption and fluorescent effects. We developed a thermoanalytical method, the so-called TED-GC-MS (thermal extraction desorption gas chromatography mass spectrometry), which allows the simultaneous detection of microplastic and tire wear with almost no sample preparation in about 2.5 h. The TED-GC-MS is a two-step analytical method which consists of a thermobalance and a GC-MS system. Up to 50 mg of an environmental sample is heated up to 600 °C in a nitrogen atmosphere. During pyrolysis, between 300 and 600 °C polymer-specific decomposition products are produced and collected on a solid phase. Afterwards the substances are desorbed, separated and analysed using the GC-MS. The aim of the present work is to present the TED-GC-MS as a time efficient screening method to quantify the industrial most relevant polymers in street run-off samples. Analytical challenges in the determination of polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and polyamide (PA), polymethyl methacrylate (PMMA) and styrene-butadiene-rubber (SBR) as a component of tire wear are honestly discussed. The study area is a 200 m long section of the Clayallee in Berlin, a representative typical urban catchment area. The road run-off in this section flows through the gullies directly into a sample chamber, which directs the runoff in an open channel to the rainwater sewer of this area. The sample chamber allows a sample to be taken directly from the road run-off without mixing with the run-off from other areas. The sample chamber is equipped with an automatic sampler. The automatic sampler is controlled by a conductivity sensor to detect the storm event at an early stage. The sensor gives the sampler a signal to start the sampling program when it gets in contact with water and reaches a certain conductivity threshold. The capacity of the sample container is 100 l and the maximum delivery of the automatic sampler is 2.8 l/min. Afterwards, the water was pumped through various stainless-steel sieves with a diameter of approximately 20 cm and mesh widths of 500, 100, 50 μm. The obtained solids were steam sterilized, freeze-dried and measured with the TED-GC-MS. The results of the TED-GC-MS-measurements are summarized in Figure 1. It shows the polymers which were detected in 1 mg of the dry masses of various street run off samples obtained during a period of 1.5 years. We detected PMMA, PS, PP, PE and SBR, as a component of tire wear in the samples. The quantification of the polymers leads to amounts of PS, PP, PE and SBR between 0 µg and 10 µg. PMMA was only detected in traces. T2 - ICCE 2019 CY - Thessaloniki, Greece DA - 16.06.2019 KW - Microplastics KW - TED-GC-MS KW - Road run-off KW - Chromatography PY - 2019 AN - OPUS4-48301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -