TY - CONF A1 - Hahn, Marc Benjamin T1 - Geant4: A universal Monte-Carlo toolkit for Particle scattering simulations N2 - Particle scattering simulations are an useful tool to plan experiments, design detectors, estimate doses in irradiated materials and medical treatment planning. Geant4 is a Monte-Carlo toolkit for the simulation of of particles scattering in matter. Photons, electrons, ions etc can be simulated with energies in the eV to GeV range. Their interactions with matter in arbitrary scattering geometries be studied. Scattering models, cross sections and material parameters can be set to cover interactions in gas, liquid and solid state. The import of geometries from computer aided design files or the protein data base is possible. It is currently being applied in high energy and nuclear physics, accelerator and detector design, space application, dosimetry and medical sciences. In this first part of the talk a brief overview over the structure, functionality and possible applications of Geant4 will be given. In the second part an example application will be presented: The determination of the microscopic dose-damage relations in aqueous environment for electron irradiated plasmid DNA will be explained. Therefore, we combine electron scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We present, how to combine these simulational results and experimental data via a generalized damage model to determine the microscopic dose-damage relation at a molecular level. T2 - Department 6 Seminar CY - Berlin, Germany DA - 04.04.2019 KW - Geant4 KW - Dosimetry KW - Microdosimetry KW - Radiation damage KW - Electron irradiation KW - Monte-Carlo Simulation KW - Monte-Carlo Simulations KW - DNA KW - Computer simulation KW - Geant4-DNA PY - 2019 AN - OPUS4-47819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Measurement and Simulation of the Microscopic Energy Deposit: A general approach applicable to Ionizing Radiation Sources of varying Linear Energy Transfer N2 - The determination of microscopic dose-damage relations in aqueous environment is of fundamental interest for dosimetry and its application in radiation-therapy and protection. We present a combined experimental and simulational approach to quantify the microscopic energy deposit at biomolecules in liquid environment which is applicable to a wide range of primary radiation sources, e.g. photons, electrons or ions, and targets, such as DNA, proteins or cells.Therefore, we combine Geant4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We present, how to combine these simulational results and experimental data via a generalised damage model to determine the microscopic dose-damage relation at a molecular level. To show the viability of this approach, we apply this method to an experimentally challenging system, the direct irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here we combine electron-scattering simulations with calculations concerning the diffusion and convection induced movement of the DNA, within a coarse-grained model of the irradiated liquid. Additionally a microscopic target model for DNA molecules based on the relation of lineal energy and radiation quality is used to calculate their effective target volume. It was found that on average fewer than two ionisations within a 7.5\,nm radius around the sugar-phosphate backbone are sufficient to cause a single strand break, with a corresponding median lethal energy deposit being E\textsubscript{1/2}=6+-4\,eV. The presented method is applicable for all types of ionising radiation and a broad variety of biological targets. T2 - CCQM Workshop CY - Paris, France DA - 09.04.2019 KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - Geant4-DNA KW - DNA KW - Electron irradiation KW - Monte-Carlo Simulation PY - 2019 UR - https://www.bipm.org/utils/en/pdf/Workshop-CCQM2019-EP1.pdf AN - OPUS4-47810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Altmann, Korinna A1 - Braun, Ulrike T1 - Notwendigkeit von (Realistischen) Referenzmaterialien N2 - Die Herstellung von Mikroplastik Referenzmaterialien wird vorgestellt. T2 - Statusfonferenz der BMBF Fördermassnahme "Plastik in der Umwelt" CY - Berlin, Germany DA - 09.04.2019 KW - Ringversuch KW - Mikroplastik KW - Referenzmaterialien PY - 2019 AN - OPUS4-47798 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Thermal properties of polymer nanocomposites based on polycarbonate (PC) and boehmite N2 - Nanocomposites are extremely versatile due to their physicochemical properties, which differ significantly from bulk homopolymers. One of the inorganic nanomaterials which are increasingly used as a filler in polymer matrices is boehmite, typically used as an inexpensive flame retardant. Here, it is used as a nanofiller in polycarbonate and polyamide, expecting to improve their mechanical properties. For industrial use boehmite is obtained by the solvothermal method, resulting in a layered nanomaterial, whereas naturally it occurs as single crystals with the size of <100µm. In this work we are obtaining and isolating boehmite crystals by a bottom-up method, in which a reaction between aluminum nitride and sodium hydroxide. Obtaining boehmite as microcrystals is necessary for its analysis and characterization, as well as to investigate its interaction with polymer matrices at the polymer/particle interface. Here, the obtained particles in polymer matrices are characterized with differential scanning calorimetry and thermogravimetry analysis. T2 - 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Boehmite KW - Polycarbonate PY - 2019 AN - OPUS4-47769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Thermal properties of polymer nanocomposites based on polycarbonate (PC) and boehmite N2 - Nanocomposites are extremely versatile due to their physicochemical properties, which differ significantly from bulk homopolymers. One of the inorganic nanomaterials which are increasingly used as a filler in polymer matrices is boehmite, typically used as an inexpensive flame retardant. Here, it is used as a nanofiller in polycarbonate and polyamide, expecting to improve their mechanical properties. For industrial use boehmite is obtained by the solvothermal method, resulting in a layered nanomaterial, whereas naturally it occurs as single crystals with the size of <100µm. In this work we are obtaining and isolating boehmite crystals by a bottom-up method, in which a reaction between aluminum nitride and sodium hydroxide. Obtaining boehmite as microcrystals is necessary for its analysis and characterization, as well as to investigate its interaction with polymer matrices at the polymer/particle interface. Here, the obtained particles in polymer matrices are characterized with differential scanning calorimetry and thermogravimetry analysis. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 31.03.2019 KW - Boehmite KW - Polycarbonate PY - 2019 AN - OPUS4-47768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Füllenbach, L.C. A1 - Perez, J. P. H. A1 - Freeman, H.M. A1 - Thomas, A.N. A1 - Mayanna, S. A1 - Parker, J. E. A1 - Göttlicher, J. A1 - Steininger, R. A1 - Radnik, Jörg A1 - Benning, L.G. A1 - Oelkers, E.H. T1 - Nanoanalytical Identification of Siderite Dissolution-Coupled Pb Removal Mechanisms from Oxic and Anoxic Aqueous Solutions N2 - Lead(II) is a toxic pollutant often found in metalcontaminated soils and wastewaters. In acidic aqueous environments, Pb(II) is highly mobile. Chemical treatment strategies of such systems therefore often include neutralization agents and metal sorbents. Since metal solubility and the retention potential of sorbents depend on the redox state of the aqueous system, we tested the efficiency of the naturally occurring redox-sensitive ferrous iron carbonate mineral siderite to remove Pb(II) from acidic aqueous solutions in batch experiments under oxic and anoxic conditions over a total of 1008 h. Siderite dissolution led to an increase in reactive solution pH from 3 to 5.3 and 6.9, while 90 and 100% of the initial aqueous Pb(II) (0.48 × 10−3 mol kg−1) were removed from the oxic and anoxic systems, respectively. Scanning and transmission electron microscopy, combined with X-ray absorption and photoelectron spectroscopy, indicated that under oxic conditions, Pb(II) was consumed by cerussite precipitation and inner-sphere surface complexation to secondary goethite. Under anoxic conditions, Pb(II) was removed by the rapid precipitation of cerussite. This efficient siderite dissolution-coupled sequestration of Pb(II) into more stable solid phases demonstrates this potential method for contaminated water Treatment regardless of the redox environment. KW - Siderite KW - X-ray absorption spectroscopy KW - X-ray photoelectron spectroscopy KW - Wastewater treatment PY - 2020 DO - https://doi.org/10.1021/acsearthspacechem.0c00180 VL - 4 IS - 11 SP - 1966 EP - 1977 PB - ACS Publication AN - OPUS4-51961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Dietrich, P. M. A1 - Thissen, A. A1 - Radnik, Jörg A1 - Nefedov, A. A1 - Natzeck, C. A1 - Wöll, C. A1 - Unger, Wolfgang T1 - Application of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) in an in-situ analysis of the stability of the surface-supported metal-organic framework HKUST-1 in water, methanol and pyridine atmospheres N2 - Surface-supported metal-organic frameworks HKUST-1 (Hong Kong University of Science and Technology) were used as a model system for a development of a near ambient pressure (NAP) XPS based approach to investigate interaction with atmospheres of water, methanol or pyridine at pressures ranging from 1 to 4 mbar. The films were grown on a gold substrate functionalized with a COOH-terminated self-assembled monolayer using liquidphase epitaxy in a step-by-step fashion. Measurement protocols were developed and optimised for different gases in order to obtain spectra of similar quality in terms of signal intensity, noise and shape. Peak shapes were found to depend on the efficiency of charge compensation. Reference measurements in argon proved to be a useful strategy not only for the evaluation of the Cu(II)-fraction in pristine samples, but also to identify the contributions by the respective gas atmosphere to the C 1s and O 1s photoelectron spectra. Reduced copper was found during the exposition of HKUST-1 to water vapour and pyridine, but this effect was not observed in case of methanol. Additionally, it was established that there are no changes in relative Cu(II) percentage with increasing exposure time. This indicates that saturation was reached already at the lowest time of gas exposure. A detailed elucidation of the mechanism of Cu(II) reduction to Cu(I) in HKUST-1 mediated by water and pyridine is part of ongoing work and not in the scope of the present paper. KW - HKUST-1 KW - Near-ambient pressure X-ray photoelectron spectroscopy KW - Metal-organic frameworks KW - Interaction with atmospheres KW - Water PY - 2021 DO - https://doi.org/10.1016/j.elspec.2020.147042 SN - 0368-2048 IS - 247 SP - 147042 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-52098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Realitätsnahe Referenzmaterialien für die Mikroplastik-Analytik und Vergleichsuntersuchungen N2 - Zur Validierung und Harmonisierung von verschiedenen Methoden in der Mikroplastik-Analytik werden polymere Referenzmaterialien benötigt. In diesem Vortrag wird dargestellt, was bisher an der BAM zu Referenzmaterialien für die Mikroplastik-Analytik entwickelt wurde, wo es hingehen soll und ein Überblick über bisher gelaufene Vergleichsuntersuchungen gebracht. T2 - Kick-off Meeting "Mikroplastik in Lebensmitteln" CY - Online meeting DA - 03.12.2020 KW - Mikroplastik KW - Referenzmaterial KW - Vergleichsuntersuchungen KW - Ringversuche PY - 2020 AN - OPUS4-51743 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - DNA based Reference Materials: In Biodosimetry and Pharmaceutical Quality Control N2 - Applications of plasmid DNA base reference materials in dosimetry and pharmaceutical research. T2 - Physical and Chemical Analysis of Polymers seminar CY - Online meeting DA - 29.03.2021 KW - Analytic KW - Certification KW - DNA KW - Dosimetry KW - Homogeneity KW - Quality testing KW - Reference material KW - Referenzmaterialien KW - Stability KW - Dose KW - Radiation KW - Pharmacy KW - Electrohpresis PY - 2021 AN - OPUS4-52361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Reference Materials at BAM N2 - A introduction into reference materials, the certification process and brief over current reference projects at BAM is given. T2 - AK-Postdoc seminar CY - BAM Berlin, Germany DA - 02.02.2021 KW - Referenzmaterialien KW - Reference material KW - Homogeneity KW - Stability KW - Quality testing KW - Analytic KW - DNA KW - Dosimetry KW - Certification PY - 2021 AN - OPUS4-52060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -