TY - CONF A1 - Radnik, Jörg T1 - Analytical & Characterisation Excellence in nanomaterial risk assessment: A tiered approach N2 - The work packages of the EU H2020 project ACEnano are presented and their activities in standardization and guidance for regulators and SMEs. T2 - ISO/TC 229 Strategy meeting CY - Online meeting DA - 10.11.2020 KW - Nanomaterials KW - Standardization KW - Risk assessment PY - 2020 AN - OPUS4-51611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Benettoni, P. A1 - Stryhanyuk, H. A1 - Wagner, S. A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Tentschert, J. T1 - Analytical and Characterisation Excellence in nanomaterial risk assessment: A tiered approach Task2.5 N2 - The final results of Task 2.5 "Optimization of sample preparation for characterization of ENPs using TOF-SIMS under real-life conditions (a.) UfZ: polymer template; b.) BAM: pressing of pellets)" were presented. T2 - ACEnano General Meeting CY - Amsterdam, The Netherlands DA - 05.03.2020 KW - Nanoparticles KW - ToF-SIMS KW - Preparation PY - 2020 AN - OPUS4-50572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Artificial intelligence for spectroscopy examples from BAMline N2 - Various applications for artificial intelligence in the context of spectroscopy will be presented. in particular, examples from bamline will be featured. After a short introduction to synchrotron radiation, artificial intelligence algorithms for the quantification of X-ray fluorescence measurement are discussed. In the second example, information retrieval by natural language processing is reviewed. As a last example the reconstruction of measurements with the X-ray color camera and coded apertures is presented. T2 - Seminar Strahlenphysikalische Anwendungen in Technik und Medizin CY - ATi Wien, Austria DA - 22.01.2020 KW - Machine learning KW - Natural language processing KW - Neural networks KW - Synchrotron KW - BAMline PY - 2020 AN - OPUS4-51891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Pfüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Assessing optical and electrical properties of highly active IrOx catalysts for the electrochemical oxygen evolution reaction via spectroscopic ellipsometry JF - ACS Catalysis N2 - Efficient water electrolysis requires highly active electrodes. The activity of corresponding catalytic coatings strongly depends on material properties such as film thickness, crystallinity, electrical conductivity, and chemical surface speciation. Measuring these properties with high accuracy in vacuum-free and nondestructive methods facilitates the elucidation of structure−activity relationships in realistic environments. Here, we report a novel approach to analyze the optical and electrical properties of highly active oxygen evolution reaction (OER) catalysts via spectroscopic ellipsometry (SE). Using a series of differently calcined, mesoporous, templated iridium oxide films as an example, we assess the film thickness, porosity, electrical resistivity, electron concentration, electron mobility, and interband and intraband transition energies by modeling of the optical spectra. Independently performed analyses using scanning electron microscopy, energy-dispersive X-ray spectroscopy, ellipsometric porosimetry, X-ray reflectometry, and absorption spectroscopy indicate a high accuracy of the deduced material properties. A comparison of the derived analytical data from SE, resonant photoemission spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy with activity measurements of the OER suggests that the intrinsic activity of iridium oxides scales with a shift of the Ir 5d t2g sub-level and an increase of p−d interband transition energies caused by a transition of μ1-OH to μ3-O species. KW - Spectroscopic ellipsometry KW - Electrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive ambient analysis KW - Intrinsic OER activity KW - Complementary methodology and metrology PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516288 DO - https://doi.org/10.1021/acscatal.0c03800 SN - 2155-5435 VL - 10 IS - 23 SP - 14210 EP - 14223 PB - American Chemical Society AN - OPUS4-51628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Wang, Shu A1 - Radnik, Jörg A1 - You, Yi A1 - Resch-Genger, Ute T1 - Assessing the protective effects of different surface coatings on NaYF4:YB3+, Er3+, upconverting nanoparticles in buffer and DMEM JF - Scientific reports N2 - We studied the dissolution behavior of β NaYF4:Yb(20%), Er(2%) UCNP of two different sizes in biologically relevant media i.e., water (neutral pH), phosphate buffered saline (PBS), and Dulbecco’s modified Eagle medium (DMEM) at different temperatures and particle concentrations. Special emphasis was dedicated to assess the influence of different surface functionalizations, particularly the potential of mesoporous and microporous silica shells of different thicknesses for UCNP stabilization and protection. Dissolution was quantified electrochemically using a fluoride ion selective electrode (ISE) and by inductively coupled plasma optical emission spectrometry (ICP OES). In addition, dissolution was monitored fluorometrically. These experiments revealed that a thick microporous silica shell drastically decreased dissolution. Our results also underline the critical influence of the chemical composition of the aqueous environment on UCNP dissolution. In DMEM, we observed the formation of a layer of adsorbed molecules on the UCNP surface that protected the UCNP from dissolution and enhanced their fluorescence. Examination of this layer by X ray photoelectron spectroscopy (XPS) and mass spectrometry (MS) suggested that mainly phenylalanine, lysine, and glucose are adsorbed from DMEM. These findings should be considered in the future for cellular toxicity studies with UCNP and other nanoparticles and the design of new biocompatible surface coatings. KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515984 DO - https://doi.org/10.1038/s41598-020-76116-z SN - 2045-2322 VL - 10 IS - 1 SP - 19318-1 EP - 19318-11 PB - Springer Nature CY - London AN - OPUS4-51598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Unger, Wolfgang A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Auger electron spectroscopy T2 - Characterization of nanoparticles - Measurement processes for nanoparticles N2 - An introduction in the application of Auger Electron Spectroscopy to surface chemical analysis of nanoparticles is given. Auger Electron Spectroscopy is a mature method in the field of surface chemical analysis. The chapter addresses the physical basis of the method, the principal design of recent instruments together with modes of operation and options for the presentation of spectra, as well as different approaches for qualitative (including identification of chemical species) and quantitative surface analysis of elements. An application paragraph on surface chemical analysis of nanoparticles by AES or SAM introduces the different measurement approaches and sample preparation strategies applied by analysts. The analysis of nanoparticle ensembles, the so-called selected point analysis where a narrow primary electron beam is centered on an individual nanoparticle, and chemical mapping of individual nanoparticles (or a line scan across) are addressed. Existing literature is reviewed and informative case studies presented. Limitations and pitfalls in the application of AES in surface chemical analysis of nanoparticles are also addressed. KW - Auger Electron Spectroscopy KW - Surface chemical analysis KW - Imaging surface chemical analysis KW - Nanoparticles KW - Nanotechnology PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00020-1 SP - 373 EP - 395 PB - Elsevier CY - Amsterdam AN - OPUS4-50119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezera, Marek A1 - Richter, Anja A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on femtosecond laser-induced periodic surface structures N2 - Biofilm formation in industrial or medical settings is usually unwanted and leads to serious health problems and high costs. Inhibition of initial bacterial adhesion prevents biofilm formation and is, therefore, a major mechanism of antimicrobial action of surfaces. Surface topography largely influences the interaction between bacteria and surfaces which makes topography an ideal base for antifouling strategies and eco-friendly alternatives to chemical surface modifications. Femtosecond laser-processing was used to fabricate sub-micrometric surface structures on silicon and stainless steel for the development of antifouling topographies on technical materials. T2 - Future Tech Week 2020 CY - Online meeting DA - 21.09.2020 KW - Laser-induced periodic surface structures (LIPSS) KW - Bacterial adhesion KW - Biofilm growth KW - Structural color KW - Femtosecond laser processing PY - 2020 UR - http://futuretechweek.fetfx.eu/wp-content/uploads/gravity_forms/2-5432af7ecff9e0243d7383ab3f931ed3/2020/09/BioCombs4Nanofibers_Poster-for-Future_Tech_Week_2020_08-09-2020_with_Reprint-permission_for_upload.pdf AN - OPUS4-51233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Basics and applications of good SAXS: Quantifying the fine structure of lots of materials N2 - In contrast to the crisp, clear images you can get from electron microscopy, small-angle X-ray scattering (SAXS) patterns are rather featureless. These patterns, however, contain averaged structural information of all of the finest material structures that were illuminated by the X-ray beam. With careful and precise investigation, and supplementary information from complementary techniques, this bulk material structure can be quantified to reveal structural information spanning four or even five decades in size. Additionally, while the data correction and analysis is complex, sample preparation is very straightforward, also allowing for in-situ and operando measurements to be performed without breaking a sweat. In the right hands, then, this technique can be the most powerful tool in your analytical arsenal. T2 - OpTecBB webinar within the scope of the focus area Optical Analytics CY - Online meeting DA - 27.05.2020 KW - Small-angle scattering KW - Introduction KW - Application KW - Saxs KW - Nanomaterials KW - Nanostructure PY - 2020 UR - https://www.youtube.com/watch?v=mXkYL3dSsTY UR - https://optecbb.de/veranstaltungen/veranstaltung/webinar-basics-and-applications-of-good-saxs-1238/ AN - OPUS4-50879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marcoulaki, E. A1 - M López de Ipiña, J. A1 - Vercauteren, S. A1 - Witters, H. A1 - Lynch, I. A1 - van Duuren-Stuurman, B. A1 - Shandilya, N. A1 - Kunz, Valentin A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Bard, D. A1 - Evans, G. A1 - Viitanen, A.-K. A1 - Pilou, M. A1 - Bochon, A. A1 - Duschl, A. A1 - Himly, M. A1 - Geppert, M. A1 - Persson, K. A1 - Cotgreave, I. A1 - Niga, P. A1 - Scalbi, S. A1 - Caillard, B. A1 - Arevalillo, A. A1 - Jensen, K. A. A1 - Frejafon, E. A1 - Bouillard, J. A1 - Aguerre-Chariol, O. A1 - Dulio, V. T1 - Blueprint for a sustainable new European Centre to support safe innovation for nanotechnology N2 - This paper presents the blueprint for the operation of a sustainable and permanent European Centre of collaborating reference laboratories and research centres, to establish a one-stop shop for a wide variety of nanosafety related services, and to provide a central contact point for questions about nanosafety in Europe. The Centre aims to harmonise service provision, and bring novel risk assessment and management approaches closer to practice. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - EC4SafeNano KW - European Centre KW - Nanomaterials KW - Nanosafety KW - Catalogue of Services (CoS) PY - 2020 UR - https://www.nanosafe.org/cea-tech/pns/nanosafe/en AN - OPUS4-51694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyranvand, S. A1 - Pourghobadi, Z. A1 - Sattari, S. A1 - Soleymani, K. A1 - Donskyi, Ievgen A1 - Gharabaghi, M. A1 - Unger, Wolfgang A1 - Farjanikish, G. A1 - Nayebzadeh, H. A1 - Adeli, M. T1 - Boronic acid functionalized graphene platforms for diabetic wound JF - Carbon N2 - While noncovalent interactions between graphene derivatives and biosystems are extensively studied, less knowledge about their covalent multivalent interactions at biointerfaces is available. Due to the affinity of boronic acids towards cis-diol bearing biosystems, graphene sheets with this functionality were synthesized and their covalent interactions with the bacteria and nematode were investigated. As expected, graphene platforms with boronic acid functionality were able to wrap bacteria and destroy it in a short time. Surprisingly, body of nematodes was ruptured and their viability decreased to 30% after 24 h incubation with the functionalized graphene sheets. Because of their antibacterial and antiparasitic activities as well as their ability for wound dressing, graphene platforms with the boronic acid functionality were further investigated for diabetic wound healing. In vivo experiments showed that graphene platforms are more efficient than the commercially available drug, phenytoin, and restore both infected and non-infected diabetic wounds in ten days. Taking advantage of their straightforward synthesis, strong interactions with different biosystems as well as their ability to heal diabetic wounds, the boronic Acid functionalized graphene sheets are promising candidates for a broad range of future biomedical applications. KW - Graphene KW - Boronic acid KW - Functionalized graphene KW - XPS PY - 2020 UR - https://www.sciencedirect.com/science/article/abs/pii/S0008622319310954 DO - https://doi.org/doi.org/10.1016/j.carbon.2019.10.077 VL - 158 SP - 327 EP - 336 PB - Elsevier Ltd. AN - OPUS4-50559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -