TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Wurzler, Nina A1 - Hampel, Marco A1 - Witt, Julia A1 - Schenderlein, Matthias T1 - In situ imaging of corrosion processes N2 - The presentation summarizes our recent results on the coupled electrochemical methods for high resolution corrosion studies. The combination of Scanning Electrochemical Microscopy (SECM) and multielectrode (MMA) based real-time corrosion monitoring was presented as a new method for achieving high time resolution in local electrochemical analysis. Correlative imaging by means of Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) was demonstrated as a tool for the investigation of local corrosion processes initiated by the intermetallic particles (IMPs) on AA2024-T3 aluminium alloy. T2 - BAM-IfW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - MIC KW - Atomic Force Microscopy (AFM) KW - Corrosion monitoring KW - Corrosion PY - 2019 AN - OPUS4-50291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Almalla, Ahed T1 - Application of atomic force microscopy (AFM) for in situ corrosion studies of thin film covered AA2024 T3 aluminium alloy surface N2 - The performance of functional coatings and adhesively joined hybrid components relies strongly on the stability of the polymer-metal interface. With the increasing utilization of multi-material structures in the automotive and aerospace industry, it is of great scientific and technical interest to understand the processes leading to interface degradation and to develop novel strategies to increase corrosion and delamination resistance. The aim of this project is to develop thin epoxy-based films and their carbon nanofiller loaded composites on aluminium alloy AA2024-T3 as a model system and to investigate their interfacial stability under corrosive and coupled corrosive-mechanical load. Spin coating was used for the layer-by-layer deposition of poly[(o-cresyl glycidyl ether)-co-formaldehyde] and poly-(ethylenimine) bi-layers. Atomic force microscopy (AFM) results indicate a very homogeneous and dense film with low surface roughness. Carbon nanofillers were introduced either by mixing into the coating components or in between individual layers to control the separation between the carbon nanofillers and alloy surface. The film chemistry and barrier properties were characterized by means of spectroscopic and electrochemical methods, respectively. The degradation and delamination behavior of the epoxy-based films was characterized by means of in situ AFM corrosion experiments. The quantitative imaging (QI) mode allowed the observation of hydrogen-generation induced blister formation during exposure to corrosive electrolyte and how the local corrosion processes evolved with exposure time. Complementary energy dispersive X-ray spectroscopy (EDX) analysis was performed to correlate the corrosion behavior with the different intermetallic particle chemistries and distributions. The presentation will summarize our results on the effect of interface chemistry and carbon nanofiller – alloy separation on the initiation of local corrosion processes on thin film covered AA2024-T3 aluminium alloys. T2 - EuroCorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Corrosion KW - Atomic Force Microscopy (AFM) PY - 2019 AN - OPUS4-50293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Fernandes Jamar, Marina A1 - Stepien, Daniel T1 - In situ atomic force microscopy (AFM) analysis of materials under combined corrosive and mechanical load N2 - In service, most materials are operated under simultaneous corrosive and mechanical load and there are very few methods capable for testing material degradation under these conditions, especially when it comes to high resolution analysis. For this purpose, in this work, a tensile module capable of uniaxial stretching and compression with up to 5 kN force was integrated into an AFM stage. The elimination of the need for sample unmounting and remounting and the resulting possibility of keeping the sample under constant mechanical load during AFM measurements not only enables a precise positioning of the area of interest but also allows for the analysis of processes in the elastic deformation regime. This methodology was demonstrated for two case studies. Scanning Kelvin Probe Force Microscopy (SKPFM) was used as the main tool to characterize the deformation behavior. Moreover, a flexible electrochemical measurement cell was used to enable electrochemical analysis by means of electrochemical impedance spectroscopy (EIS) and Linear Sweep Voltammetry (LSV) during AFM measurements at different levels of strain. The in situ AFM results are complemented by microstructure analysis by means of electron backscatter diffraction (EBSD). In the first case study, the deformation induced delamination of a thin organic coating on AA2024 T3 aluminium alloy was investigated as a function of alloy surface treatment. The formation of cracks in the insulating passive film enabled an early detection of deformation processes by means of SKPFM. The second case study focused on the comparison of corrosion and deformation behavior of conventional and additively manufactured 316 stainless steels. In comparison to the conventional 316 stainless steel, the effect of processing was clearly detectable on the additively manufactured material as zones of inhomogeneous potential, which also affected the initiation of local corrosion processes. The contribution will provide detailed information on the new AFM setup and summarize our results from both case studies. T2 - EuroCorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Corrosion KW - Coupled corrosive and mechanial load KW - Atomic Force Microscopy (AFM) PY - 2019 AN - OPUS4-50294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Schenderlein, Matthias A1 - Hampel, Marco A1 - Almalla, Ahed T1 - Coupled electrochemical, microscopic and spectroscopic techniques for the analysis of local corrosion and mic processes N2 - Summary of the research topics of the division 6.2 and recent results T2 - HZDR-IRE Institutscolloquium CY - Dresden, Germany DA - 24.09.2019 KW - MIC KW - Localised corrosion KW - Corrosion monitoring KW - Biofilmbildung KW - Atomic Force Microscopy (AFM) PY - 2019 AN - OPUS4-50295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Wurzler, Nina A1 - Witt, Julia A1 - Dimper, Matthias A1 - Wagner, R. A1 - Lützenkirchen-Hecht, D. T1 - Changes in passive film chemistry of stainless steels in the presence of iron reducing bacteria N2 - Summary of the results obtained at DELTA-Beamline 8 in 2018. T2 - DELTA User Treffen CY - Dortmund, Germany DA - 28.11.2018 KW - MIC KW - Corrosion KW - XANES PY - 2018 AN - OPUS4-50312 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Wurzler, Nina A1 - Hampel, Marco A1 - Witt, Julia A1 - Schenderlein, Matthias T1 - Combined electrochemical techniques for the investigation of corrosion processes N2 - Short presentation of BAM, a summary of the methods available in FB 6.2 and recent results on MIC and high resolution corrosion studies T2 - Institute Seminar: Jerzy Haber Institute of Catalysis and Surface Chemistry CY - Cracow, Poland DA - 07.11.2018 KW - MIC KW - Corrosion KW - Atomic Force Microscopy (AFM) KW - Combined corrosive and mechanical load PY - 2018 AN - OPUS4-50313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zubia Aranburu, Judith A1 - Cappella, Brunero A1 - Zabala Eguren, A. A1 - Buruaga Lamarain, L. A1 - Aginagalde Lopez, A. A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Quantification of the adhesion force of E. coli on Ti via single-cell force spectroscopy T2 - Libro de Actas del XL Congreso Anual de la Sociedad Española de Ingeniería Biomédica N2 - Antibiotic resistance is a growing global problem which poses a massive threat to human health. Although human activity contributes to the acceleration of the process, bacteria have a self-driven stabilisation mechanism to protect themselves from such and other external threats: biofilm formation. Nonetheless, it is the adhesion of a single bacterial cell to a surface that triggers the formation of such network of biomolecules and microorganisms, as well as its hazardous consequences. The main objective of this work was to quantify the adhesion force of a single E. coli cell on a Ti substrate via the AFM-related single-cell force spectroscopy, with both the cell and the substrate material being of high clinical relevance. A set of 25 x 25 force displacement curves was acquired with a maximum force of 3.2 nN without dwell time, yielding a topography map and an adhesion force map that showed to be correlated. A mean adhesion force of 0.85 ± 0.175 nN was measured and the presence of cell appendages on the bacterial cell wall was verified through individual force-displacement curves. Bacterial viability was assessed after the measurements via live/dead staining. T2 - XL Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2022 CY - Valladolid, Spain DA - 23.11.2022 KW - Bacteria KW - Atomic force microscopy KW - Force distance curve PY - 2022 SN - 978-84-09-45972-8 SP - 217 EP - 220 AN - OPUS4-57039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yesilcicek, Yasemin A1 - Haas, S. A1 - Suárez Ocano, Patricia A1 - Zaiser, E. A1 - Hesse, René A1 - Többens, D. M. A1 - Glatzel, U. A1 - Manzoni, Anna Maria T1 - Controlling Lattice Misfit and Creep Rate Through the γ' Cube Shapes in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy with Hf and W Additions JF - High Entropy Alloys & Materials N2 - Trace elements play an important role in the fine-tuning of complex material properties. This study focuses on the correlation of microstructure, lattice misfit and creep properties. The compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 (in at. %) was tuned with high melting trace elements Hf and W. The microstructure consists of a γ matrix, γ' precipitates and the Heusler phase and it is accompanied by good mechanical properties for high temperature applications. The addition of 0.5 at.% Hf to the Al10Co25Cr8Fe15Ni36Ti6 alloy resulted in more sharp-edged cubic γ′ precipitates and an increase in the Heusler phase amount. The addition of 1 at.% W led to more rounded γ′ precipitates and the dissolution of the Heusler phase. The shapes of the γ' precipitates of the alloys Al9.25Co25Cr8Fe15Ni36Ti6Hf0.25W0.5 and Al9.25Co25Cr8Fe15Ni36Ti6Hf0.5W0.25, that are the alloys of interest in this paper, create a transition from the well-rounded precipitates in the alloy with 1% W containing alloy to the sharp angular particles in the alloy with 0.5% Hf. While the lattice misfit has a direct correlation to the γ' precipitates shape, the creep rate is also related to the amount of the Heusler phase. The lattice misfit increases with decreasing corner radius of the γ' precipitates. So does the creep rate, but it also increases with the amount of Heusler phase. The microstructures were investigated by SEM and TEM, the lattice misfit was calculated from the lattice parameters obtained by synchrotron radiation measurements. KW - High entropy alloy KW - Lattice misfit KW - Creep KW - Transmission electron microscopy KW - X-ray diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565655 DO - https://doi.org/10.1007/s44210-022-00009-1 SP - 1 EP - 9 PB - Springer AN - OPUS4-56565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yesilcicek, Yasemin A1 - Wetzel, Annica A1 - Witt, Julia A1 - Stephan-Scherb, C. A1 - Ozcan, Ozlem T1 - Investigation on gradient Fe-Ni-Cr-Mn alloy using diffusion multiples N2 - The high-throughput synthesis and characterization of potential material combinations plays an important role in accelerating the development of new materials. Diffusion controlled synthesis of gradient alloys is widely used to create phase diagrams, and it is also one of the most effective combinatorial approaches for rapid realization of potential material combinations. This study focuses on the synthesis and investigation of the quaternary multi-principle-element alloy (MPEA) FeNiCrMn by means of diffusion multiples, the correlation of their microstructural and chemical characterization data with their application relevant properties like local mechanical and corrosion properties. A diffusion system was set up by combining an equimolar ternary alloy (FeNiCr) with a single diffusing metallic component (Mn) with the highest interdiffusion coefficient. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to collect microstructural and compositional information which were correlated to local mechanical properties studied with nanoindentation. Local corrosion properties were investigated by means of Atomic Force Microscopy (AFM) and Scanning Electrochemical Microscopy (SECM). We have observed that a >50 μm deep homogeneous diffusion zone was formed the thickness of which scales with the duration of the thermal treatment. Beyond the Mn-concentration gradient in the FeNiCr matrix, a distinct Cr-rich secondary phase, characterized by high hardness and elastic modulus values appeared. We synthesized MPEAs with selected compositions from the diffusion zone as well as the Cr-rich phase as bulk alloys for electrochemical corrosion studies under different environmental conditions. The presentation will summarize the results of our correlative study on the mechanical properties and corrosion resistance of the quaternary multi-principle-element alloy (MPEA) FeNiCrMn family. T2 - MRS Spring 2023 CY - San Francisco, California, USA DA - 10.04.2023 KW - Chemically Complex Materials KW - CCMat KW - Diffusion multiples PY - 2023 AN - OPUS4-59404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yesilcicek, Yasemin A1 - Wetzel, Annica A1 - Witt, Julia A1 - Dimper, Matthias A1 - Ozcan, Ozlem T1 - Corrosion and mechanical properties of multi principal element alloys designed by using diffusion couples N2 - The efficient exploration of novel alloy chemistries is crucial for advancing the development of new materials. Diffusion-controlled synthesis of gradient alloys is an intelligent approach for creating phase diagrams and to effectively identify potential material combinations with tailored properties. This project focusses on the design of quaternary multi-principle-element alloys (MPEAs) using diffusion couples. Our diffusion system contains an equimolar ternary alloy (FeNiCr) and additional single diffusing elements e.g. Mn and Mo. We determined the optimal temperature ranges for the diffusion thermal treatment by means of ThermoCalc simulations with the aim to form single-phase MPEAs. Microstructure and chemical characterization of the diffusion couples were performed by means of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). For most alloy couples, the diffusion zone contained a single-phase alloy matrix with diffusion-induced compositional gradient as well as precipitation phases. This heterogeneity makes the diffusion couples interesting materials to investigate local mechanical and corrosion properties. Thus, local corrosion properties were examined using Atomic Force Microscopy (AFM) and Scanning Electrochemical Microscopy (SECM). Nanoindentation was used for the analysis of local mechanical properties. Based on the results of the local corrosion analysis, we have selected single-phase alloy chemistries along the diffusion zone and reproducibly synthesized these alloys in bulk for detailed corrosion studies by means of potentiodynamic polarization and SECM. The presentation will briefly summarize our methodology and motivation for using diffusion couples as an efficient tool for exploring phase diagrams of MPEAs in the search for new alloy chemistries and the results of our correlative study on the mechanical and corrosion properties of these materials. T2 - 244th ECS Meeting CY - Gothenburg, Sweden DA - 08.10.2023 KW - Chemically Complex Materials KW - CCMat KW - Corrosion PY - 2023 AN - OPUS4-59407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -