TY - JOUR A1 - Stawski, Tomasz A1 - Van Driessche, A. E. S. T1 - Editorial for special issue "Formation of sulfate minerals in natural and industrial environments" N2 - Sulfate is abundant in the environment and, as a result, sulfate-containing minerals constitute a large and important focus of research. These minerals play an important role in many geochemical and industrial processes, including the sulfur cycle, the construction industry (e.g., plaster of Paris), fault tectonics, acid mine drainage, and even rare biominerals. Important to note are the abundant amounts of sulfate (minerals) located on the surface of Mars, and in meteorites, extending the relevance of this mineral group beyond the realm of our planet. In geological systems, sulfate minerals such as barite are also important for indicating certain sedimentation environments. In this regard, sulfate deposits can be used to evaluate the redox state of ancient oceans during early Earth time periods. KW - Calcium sulfate KW - Sulfates PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546794 DO - https://doi.org/10.3390/min12030299 SN - 2075-163X VL - 12(3) IS - Special issue "Formation of sulfate minerals in natural and industrial environments" SP - 1 EP - 3 PB - MDPI CY - Basel AN - OPUS4-54679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steiner, S. A1 - Heldt, J. A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Frömeling, T. T1 - Influence of oxygen vacancies on core-shell formation in solid solutions of (Na,Bi)TiO3 and SrTiO3 N2 - Solid solutions of (Na,Bi)TiO3 (NBT) and SrTiO3 (ST) are materials of interest for high-strain or high-energy density capacitor applications. Often, they exhibit chemical heterogeneity and develop core-shell structures during regular solid-state synthesis with an NBT-rich core. In this case, the NBT forms first so that the strontium needs to diffuse into the material to reach chemical homogeneity. Depending on the presence of core-shell structures, the electrical properties can vary drastically. In this work, we rationalize the effect of variations in oxygen vacancy concentration by Fe-acceptor and Nb-donor doping. It can be shown that a diffusion couple of strontium and oxygen is responsible for chemical homogenization and that the oxygen vacancy content can control the formation of a core-shell structure. KW - Lead-free ceramics KW - Bismuth titanates KW - Core-shell structures KW - Diffusion/diffusivity KW - Ferroelectricity/ferroelectric materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525988 DO - https://doi.org/10.1111/jace.17845 SP - 1 EP - 10 PB - Wiley Periodicals LLC, John Wiley & Sons, Inc. AN - OPUS4-52598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan, Jenny A1 - Stühler, Merlin R. A1 - Fornacon-Wood, Christoph A1 - Dimde, Mathias A1 - Ludwig, Kai A1 - Sturm, Heinz A1 - Olmedo-Martínez, Jorge L. A1 - Müller, Alejandro J. A1 - Plajer, Alex J. T1 - Sulfur-containing block polymers from ring-opening copolymerization: coordinative encapsulants for transition metals N2 - Sulfur-containing polymers can coordinate transition metals via sulfur-centered, chemically soft lone pairs, although this typically occurs in a spatially uncontrolled manner. In this study, we employed the controlled ring-opening copolymerization of oxetane with sulfur-containing comonomers to construct a series of amphiphilic block copolymers featuring thioester and thiocarbonate functionalities. These copolymers self-assemble in aqueous solution into aggregates with a sulfur-rich core capable of coordinating transition metals. This behavior could be resolved by employing cryo-transmission electron tomography and then extended to complexes incorporating functional coligands. Our study demonstrates how selective catalysis can be harnessed to produce functional polymers with tunable metal coordination properties, paving the way for an emerging class of sulfur-containing copolymers. KW - Sulfur-containing polymer KW - Controlled synthesis KW - Metal ion coordination KW - Cryo TEM PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626157 DO - https://doi.org/10.1039/d4py01415d SN - 1759-9962 VL - 16 IS - 8 SP - 1003 EP - 1009 PB - Royal Society of Chemistry (RSC) AN - OPUS4-62615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stier, S. P. A1 - Kreisbeck, C. A1 - Ihssen, H. A1 - Popp, M. A. A1 - Hauch, J. A1 - Malek, K. A1 - Reynaud, M. A1 - Goumans, T.P.M. A1 - Carlsson, J. A1 - Todorov, I. A1 - Gold, L. A1 - Räder, A. A1 - Wenzel, W. A1 - Bandesha, S. T. A1 - Jacques, P. A1 - Garcia‐Moreno, F. A1 - Arcelus, O. A1 - Friederich, P. A1 - Clark, S. A1 - Maglione, M. A1 - Laukkanen, A. A1 - Castelli, I. E. A1 - Carrasco, J. A1 - Cabanas, M. C. A1 - Stein, H. S. A1 - Özcan Sandikcioglu, Özlem A1 - Elbert, D. A1 - Reuter, K. A1 - Scheurer, C. A1 - Demura, M. A1 - Han, S. S. A1 - Vegge, T. A1 - Nakamae, S. A1 - Fabrizio, M. A1 - Kozdras, M. T1 - Materials Acceleration Platforms (MAPs) Accelerating Materials Research and Development to Meet Urgent Societal Challenges N2 - AbstractClimate Change and Materials Criticality challenges are driving urgent responses from global governments. These global responses drive policy to achieve sustainable, resilient, clean solutions with Advanced Materials (AdMats) for industrial supply chains and economic prosperity. The research landscape comprising industry, academe, and government identified a critical path to accelerate the Green Transition far beyond slow conventional research through Digital Technologies that harness Artificial Intelligence, Smart Automation and High Performance Computing through Materials Acceleration Platforms, MAPs. In this perspective, following the short paper, a broad overview about the challenges addressed, existing projects and building blocks of MAPs will be provided while concluding with a review of the remaining gaps and measures to overcome them. KW - Advanced materials KW - Artificial intelligence KW - Autonomous labs KW - Materials acceleration platforms KW - Societal challenges KW - MAPs PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-611583 DO - https://doi.org/10.1002/adma.202407791 SP - 1 EP - 26 PB - Wiley AN - OPUS4-61158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, V. A1 - Fahrenson, C. A1 - Thünemann, Andreas A1 - Donmez, M. H. A1 - Voss, L. A1 - Bohmert, L. A1 - Braeuning, A. A1 - Lampen, A. A1 - Sieg, H. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles N2 - Current analyses show a widespread occurrence of microplastic particles in food products and raise the question of potential risks to human health. Plastic particles are widely considered to be inert due to their low chemical reactivity and therefore supposed to pose, if at all only minor hazards. However, variable physicochemical conditions during the passage of the gastrointestinal tract gain strong importance, as they may affect particle characteristics. This study aims to analyze the impact of the gastrointestinal passage on the physicochemical particle characteristics of the five most produced and thus environmentally relevant plastic materials polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate and polystyrene. Scanning electron microscopy (SEM) and subsequent image analysis were employed to characterize microplastic particles. Our results demonstrate a high resistance of all plastic particles to the artificial digestive juices. The present results underline that the main stages of the human gastrointestinal tract do not decompose the particles. This allows a direct correlation between the physicochemical particle characteristics before and after digestion. Special attention must be paid to the adsorption of organic compounds like proteins, mucins and lipids on plastic particles since it could lead to misinterpretations of particle sizes and shapes. KW - Artificial digestion KW - Gastrointestinal barrier KW - Microplastic KW - Oral uptake KW - Particle size PY - 2020 DO - https://doi.org/10.1016/j.fct.2019.111010 VL - 135 SP - 111010 PB - Elsevier Ltd. AN - OPUS4-49999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. T1 - Reference material for the determination of the field of view of small-area X-ray photoelectron spectrometers N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces. For evaluating the quality of such microstructures, it is crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. The aperture has a major influence on the signal-contribution from the outside. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize the FoV: The signal-contribution from the outside is reduceable down to lower than 50 %, when the aperture is 30 % of the structure dimension for our Kratos AXIS Ultra DLD system. T2 - Kratos User's Meeting 2020 CY - Online meeting DA - 21.09.2020 KW - Small-area XPS KW - Field of View KW - Imaging XPS KW - Reference Material PY - 2020 AN - OPUS4-51412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. T1 - New Test Specimen for the Determination of the Field of View of Small-Area XPS N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces. For evaluating the quality of such microstructures, it is crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. The aperture has a major influence on the signal-contribution from the outside. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize the FoV: The signal-contribution from the outside is reduceable down to lower than 50 %, when the aperture is 30 % of the structure dimension for our Kratos AXIS Ultra DLD system. T2 - Kratos User's Meeting 2020 CY - Online meeting DA - 21.09.2020 KW - Small Area XPS KW - Reference Material KW - Imaging XPS KW - Field of View PY - 2020 AN - OPUS4-51413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - A new test specimen for the determination of the field of view of small-area X-ray photoelectron spectrometers N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces, and so forth. For evaluating the quality of such microstructures, it is often crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. To address this issue, the d80/20 parameter of a line scan across a chemical edge is often used. However, the typical d80/20 parameter does not give information on contributions from the long tails of the X-ray beam intensity distribution or the electron-optical system as defined by apertures. In the VAMAS TWA2 A22 project “Applying planar, patterned, multi-metallic samples to assess the impact of analysis area in surface-chemical analysis,” new test specimen was developed and tested. The here presented testing material consists of a silicon wafer substrate with an Au-film and embedded Cr circular and square spots with decreasing dimensions from 200 μm down to 5 μm. The spot sizes are traceable to the length unit due to size measurements with a metrological SEM. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize, as an example, the FoV of a Kratos AXIS Ultra DLD XPS instrument. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Field of view KW - Reference material KW - Selected area XPS KW - Small-area XPS KW - Small-spot XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509902 DO - https://doi.org/10.1002/sia.6831 SN - 1096-9918 VL - 52 IS - 12 SP - 890 EP - 894 PB - John Wiley & Sons Ltd AN - OPUS4-50990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg Manfred T1 - A new XPS test material for more reliable surface analysis of microstructures N2 - Small-area XPS analysis is one of the most popular and powerful methods for analysing the surface of features in the micro-range. When measuring microstructures, the ques-tion arises whether the measuring point is really located at the point intended to be ana-lysed. Information in a measured spectrum might originate within the field of view (FoV) on the surface of the sample, from outside the FoV, or even from inherent contamination. To ensure that small structures can be measured correctly regardless of user and instru-ment, certain instrument and sample settings must be known and selected correctly: beam and aperture size as well as the aperture settings and the approximate dimensions of the structure to be analysed. This is the only way to ensure that the information in the spectrum originates only from the FoV on the analysed structure. To test the performance of the XPS instruments, a dedicated test material was developed that consists of a gold surface on which 8 circles and 8 squares of chrome are incorpo-rated using a masking process, so that the Au substrate and the Cr structure surfaces are in the same surface plane. In order to be able to test as many as possible instruments from different manufacturers, the structures have been designed with a size ranging from 300 µm down to 7 µm. The layout of the test material has been optimised in regard of the handling. The structures are arranged along lines instead of a circumference, marking arrows around the smaller structures (≤50 µm) are added, and the lithography mask is optimised regarding edge and diffraction effects. Furthermore, the manufacturing process was changed from electron-beam deposition to mask lithography due to costs reasons. The structures on the test material were measured with a metrological SEM to determine their accurate dimensions and check the repeatability of the manufacturing process. XPS investigations with a Kratos AXIS Ultra DLD and an ULVAC-Phi Quantes demonstrates the suitability of this new test material for measuring the analysed area. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Small-area XPS KW - Test material KW - Field of view KW - Imaging PY - 2024 AN - OPUS4-60539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stockmann, Jörg Manfred A1 - Radnik, Jörg A1 - Bütefisch, Sebastian A1 - Weimann, Thomas A1 - Hodoroaba, Vasile-Dan T1 - A New XPS Test Material for More Reliable Analysis of Microstructures N2 - A reference material is required for small‐area XPS because it has been used more frequently for surface control in recent years and many operators use incorrect field of views. To address this problem, we developed a test material starting in 2019. We optimised this XPS test material dedicated to the control of analysis position on the sample, with respect to the following factors: type of XPS instruments available on the market, the manufacturing process and sample handling. Test structures are now aligned along lines instead of on a circle radius, so that the individual structures can be accessed more quickly and easily. In addition, a larger test structure of 300 μm and another one in an intermediate size of 18 μm were added. Smaller test structures under 50 μm have been annotated with finder grids/arrows around them so that they are easier to find. Further, the manufacturing process was changed from e‐beam lithography to a mask process to be able to offer the test material at a favourable price. The use of masks also had to be adapted for the new manufacturing process so that the smallest square structures are also realised as such and do not show any distortion of the structure boundaries. The quality control using a metrological SEM confirmed a very reproducible manufacturing process. It is demonstrated that the test material can be successfully employed to find the most suitable beam size of the XPS system used for the analysis of small (μm range) surface features. KW - Small-area measurements KW - Test material KW - XPS KW - XPS imaging PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-616577 DO - https://doi.org/10.1002/sia.7367 SP - 1 EP - 6 PB - Wiley AN - OPUS4-61657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -