TY - JOUR A1 - Kolmangadi, Mohamed Aejaz A1 - Szymoniak, Paulina A1 - Zorn, R. A1 - Böhning, Martin A1 - Wolff, M. A1 - Zamponi, M. A1 - Schönhals, Andreas T1 - Molecular mobility in high-performance polynorbornenes:A combined broadband dielectric, advanced calorimetry,and neutron scattering investigation N2 - The molecular dynamics of two addition type polynorbornenes, exo-PNBSiand PTCNSi1, bearing microporosity has been investigated by broadbanddielectric spectroscopy, fast scanning calorimetry, and neutron scattering. Bothpolymers have the same side groups but different backbones. Due to theirfavorable transport properties, these polymers have potential applications inseparation membranes for gases. It is established in literature that molecularfluctuations are important for the diffusion of small molecules through poly-mers. For exo-PNBSi, two dielectric processes are observed, which are assignedto Maxwell/Wagner/Sillars (MWS) process due to blocking of charge carriersat internal voids or pore walls. For PTCNSi1, one MWS-polarization process isfound. This points to a bimodal pore-size distribution for exo-PNBSi. A glasstransition for exo-PNBSi and for PTCNSi1 could be evidenced for the first timeusing fast scanning calorimetry. For Tgand the corresponding apparent activa-tion energy, higher values were found for PTCNSi1 compared to exo-PNBSi.For both polymers, the neutron scattering data reveal one relaxation process.This process is mainly assigned to methyl group rotation probably overlayedby carbon–carbon torsional fluctuations. KW - Advanced calorimetry KW - Dielectric spectroscopy KW - Neutron scattering KW - Polynorbornenes PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547086 DO - https://doi.org/10.1002/pen.25995 SN - 0032-3888 VL - 62 IS - 7 SP - 2143 EP - 2155 PB - Wiley AN - OPUS4-54708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Wolf, M. A1 - Alentiev, D. A1 - Bermeshev, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Low frequency vibrational density of state of highly permeable super glassy polynorbornenes – The Boson peak N2 - Inelastic incoherent neutron time-of flight scattering was employed to measure the low frequency density of states for a series of addition polynorbornenes with bulky side groups. The rigid main chain in combination with the bulky side groups give rise to a microporosity of these polymers in the solid state. The microporosity characterized by the BET surfaces area varies systematically in the considered series. Such materials have some possible application as active separation layer in gas separation membranes. All investigated materials show excess contributions to the Debye type density of states characteristic for glasses known as Boson peak. The maximum position of the Boson peak shifts to lower frequency values with increasing microporosity. Data for PIM-1 and Matrimid included for comparison are in good agreement to this dependency. This result supports the sound wave interpretation of the Boson peak. KW - Polynorbornes KW - Neutron Scattering PY - 2020 DO - https://doi.org/10.1039/d0cp03360j SN - 1463-9076 VL - 22 IS - 33 SP - 18381 EP - 18387 PB - Royal Chemical Society AN - OPUS4-51165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Szymoniak, Paulina A1 - Kang, N.-J. A1 - Wang, D-Y A1 - Wurm, A. A1 - Schick, C. A1 - Schönhals, Andreas T1 - Influence of interfaces on the crystallization behavior and the rigid amorphous phase of poly(l-lactide)-based nanocomposites with different layered doubled hydroxides as nanofiller N2 - Based on the three-phase model of semi-crystalline polymers, we determined all phase fractions of the NiAl-LDH/PLLA nanocomposites in dependence on the concentration of the nanofiller. Moreover, the rigid amorphous fraction (RAF) was separated into the RAFcrystal and the RAFfiller unbiasedly. A detailed comparison to the related nanocomposite system MgAl-LDH/PLLA was made considering that Mg and Ni have different atomic weights. As a first result is was found that NiAl-LDH/PLLA displays a higher crystallization rate compared to MgAl-LDH/PLLA, which is related to the different morphologies of the two nanocomposite systems. For both systems RAFcrystal increases with increasing concentration of the nanofiller. This means in the case of the nanocomposite not each crystal produces the same amount of RAF, as often assumed. Also, RAFfiller increases with the concentration for both systems but in a different way. This is discussed considering again the different morphologies of both nanocomposites. KW - Polymer-based nanocomposites KW - Temperature modulated differential scanning calorimetry PY - 2019 DO - https://doi.org/10.1016/j.polymer.2019.121929 VL - 184 SP - 121929 PB - Elesevier Ltd. AN - OPUS4-49557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Malpass-Evans, R. A1 - McKeown, N. A1 - Jalarvo, N. A1 - Tyagi, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Microscopic molecular mobility of high-performance polymers of intrinsic microporosity revealed by neutron scattering – bend fluctuations and signature of methyl group rotation N2 - Polymers of intrinsic microporosity exhibit a combination of high gas permeability and reasonable permselectivity, which makes them attractive candidates for gas separation membrane materials. The diffusional selective gas transport properties are connected to the molecular mobility of these polymers in the condensed state. Incoherent quasielastic neutron scattering was carried out on two polymers of intrinsic microporosity, PIM-EA-TB(CH3) and its demethylated counterpart PIM-EA-TB(H2), which have high Brunauer–Emmett–Teller surface area values of 1030 m2 g-1 and 836 m2 g-1, respectively. As these two polymers only differ in the presence of two methyl groups at the ethanoanthracene unit, the effect of methyl group rotation can be investigated solely. To cover a broad dynamic range, neutron time-of-flight was combined with neutron backscattering. The demethylated PIM-EA-TB(H2) exhibits a relaxation process with a weak intensity at short times. As the backbone is rigid and stiff this process was assigned to bendand-flex fluctuations. This process was also observed for the PIM-EA-TB(CH3). A further relaxation process is found for PIM-EA-TB(CH3), which is the methyl group rotation. It was analyzed by a jump-diffusion in a three-fold potential considering also the fact that only a fraction of the present hydrogens in PIM-EATB(CH3) participate in the methyl group rotation. This analysis can quantitatively describe the q dependence of the elastic incoherent structure factor. Furthermore, a relaxation time for the methyl group rotation can be extracted. A high activation energy of 35 kJ mol-1 was deduced. This high activation energy evidences a strong hindrance of the methyl group rotation in the bridged PIM-EA-TB(CH3) structure. KW - Polymers of Intrinsic Microporosity KW - Neutron Scattering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604114 DO - https://doi.org/10.1039/d4sm00520a SP - 1 EP - 11 PB - RSC AN - OPUS4-60411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Szymoniak, Paulina A1 - Sentker, K. A1 - Butschies, M. A1 - Bühlmeyer, A. A1 - Huber, P. A1 - Laschat, S. A1 - Schönhals, Andreas T1 - Dynamics and ionic conductivity of ionic liquid crystals forming a hexagonal columnar mesophase N2 - For the first time, the molecular mobility of two linear-shaped tetramethylated guanidinium triflate ionic liquid crystals (ILCs) having different length of alkyl chains were investigated by a combination of broadband dielectric spectroscopy (BDS) and specific heat spectroscopy (SHS). By self-assembly, these ILCs can form a hexagonal ordered mesophase besides plastic crystalline phases and the isotropic state. Three dielectric active processes were found by BDS for both samples. At low temperatures, a γ-process in the plastic crystalline state is observed which is assigned to localized fluctuations of methyl groups including nitrogen atoms in the guanidinium head. At higher temperatures but still in the plastic crystalline state, an α1-process takes place. An α2 process was detected by SHS but with a completely different temperature dependence of the relaxation times than that of the α1-relaxation. This result is discussed in detail, and different molecular assignments of the processes are suggested. At even higher temperatures, electrical conductivity is detected and an increase in the DC conductivity by four orders of magnitude at the phase transition from the plastic crystalline to the hexagonal columnar mesophase is found. This result is traced to a change in the charge transport mechanism from a delocalized electron hopping in the stacked aromatic systems (in the plastic phase) to one dominated by an ionic conduction in the quasi-1D ion channels formed along the supermolecular columns in the ILCs hexagonal mesophases. KW - Ionic liquid crystalls PY - 2018 DO - https://doi.org/10.1039/c7cp08186c SN - 1463-9084 SN - 1463-9076 VL - 20 IS - 8 SP - 5626 EP - 5635 PB - Royal Society of Chemistry AN - OPUS4-44254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, A. A1 - Anis, B. A1 - Szymoniak, Paulina A1 - Altmann, Korinna A1 - Schönhals, Andreas T1 - Graphene Oxide/Polyvinyl Alcohol–Formaldehyde Composite Loaded by Pb Ions: Structure and Electrochemical Performance N2 - An immobilization of graphene oxide (GO) into a matrix of polyvinyl formaldehyde (PVF) foam as an eco-friendly, low cost, superior, and easily recovered sorbent of Pb ions from an aqueous solution is described. The relationships between the structure and electrochemical properties of PVF/GO composite with implanted Pb ions are discussed for the first time. The number of alcohol groups decreased by 41% and 63% for PVF/GO and the PVF/GO/Pb composite, respectively, compared to pure PVF. This means that chemical bonds are formed between the Pb ions and the PVF/GO composite based on the OH groups. This bond formation causes an increase in the Tg values attributed to the formation of a strong surface complexation between adjacent layers of PVF/GO composite. The conductivity increases by about 2.8 orders of magnitude compared to the values of the PVF/GO/Pb composite compared to the PVF. This means the presence of Pb ions is the main factor for enhancing the conductivity where the conduction mechanism is changed from ionic for PVF to electronic conduction for PVF/GO and PVF/GO/Pb. KW - Graphene oxide KW - Polyvinyl formaldehyde KW - Lead ions KW - Conductivity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549588 DO - https://doi.org/10.3390/polym14112303 SN - 2073-4360 VL - 14 IS - 11 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-54958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fornacon-Wood, Christoph A1 - Stühler, Merlin R. A1 - Millanvois, Alexandre A1 - Steiner, Luca A1 - Weimann, Christiane A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Paulus, Beate A1 - Plajer, Alex J. T1 - Fluoride recovery in degradable fluorinated polyesters N2 - We report a new class of degradable fluorinated polymers through the copolymerization of tetrafluorophthalic anhydride and propylene oxide or trifluoropropylene oxide which show up to 20 times quicker degradation than the non-fluorinated equivalents and allow for fluoride recovery. KW - Fluoropolymers KW - Recycling KW - PFAS KW - AFM force distance curves KW - AFM plastic deformation KW - AFM friction analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606768 DO - https://doi.org/10.1039/d4cc02513j VL - 60 SP - 7479 EP - 7482 PB - Royal Society of Chemistry AN - OPUS4-60676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waniek, Tassilo A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - The influence of water released from particles in epoxy‐based nanocomposites N2 - AbstractRecent studies have hypothesized that the reinforcing effects of boehmite nanoparticles (BNPs) in polymer nanocomposites (PNCs) are partly related to the particles themselves and partly to the water released from the BNP during curing. In this work, PNCs made from dried BNP (dBNP) with concentrations up to 15 wt% are investigated to differentiate particle and water related effects. The observed trend of the storage modulus in dynamic mechanical thermal analysis measurements was found to be independent of the drying procedure. Stiffness maps from intermodulation atomic force microscopy showed that dBNP leads to a stiffening of the interphase surrounding the particles compared with the unaffected epoxy matrix, while a softer interphase was reported for PNCs with as received BNP. A slight decrease in the glass transition temperature was observed by broadband dielectric spectroscopy related to a lowered crosslink density due to the particles. A significantly higher decrease was reported for PNCs with BNP, attributed to water influencing the curing process. In conclusion, the stiffening of PNC with BNP is related to the particles themselves, while the release of water causes the formation of a soft interphase in the vicinity of the particles and a significant decrease in crosslink density. KW - AFM stiffness of interface KW - Aluminium oxide hydroxide KW - Boehmit nanoparticle KW - Glass transition temperature KW - Broadband dielectric spectroscopy KW - Crosslink density control KW - Structure–property relationship KW - Nanocomposites KW - Thermoset PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606772 DO - https://doi.org/10.1002/app.55937 SN - 0021-8995 SP - 1 EP - 16 PB - Wiley AN - OPUS4-60677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, Caroline A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Wiesner, Yosri A1 - Schartel, Bernhard A1 - Klack, Patrick A1 - Braun, Ulrike T1 - Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples N2 - Microplastic particles are currently detected in almost all environmental compartments. The results of detection vary widely, as a multitude of very different methods are used with very different requirements for analytical validity. In this work four thermoanalytical methods are compared and their advantages and limitations are discussed. One of them is thermal extraction-desorption gas chromatography mass spectrometry (TED-GC/MS), an analysis method for microplastic detection that has become established in recent years. In addition, thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS) were applied, two methods that are less common in this field but are still used in other research areas. Finally, microscale combustion calorimeter (MCC) was applied, a method not yet used for microplastic detection. The presented results are taken from a recently published interlaboratory comparison test by Becker et al. (2020). Here a reference material consisting of suspended matter and specified added polymer masses was examined, and only the results of the recoveries were presented. In the present paper, however, the results for the individual polymers are discussed in detail and individual perspectives for all instruments are shown. It was found that TED-GC/MS is the most suitable method for samples with unknown matrix and unknown, variable kinds and contents of microplastic. TGA-FTIR is a robust method for samples with known matrix and with defined kinds of microplastic. TGA-MS may offer a solution for the detection of PVC particles in the future. MCC can be used as a very fast and simple screening method for the identification of a potential microplastic load of standard polymers in unknown samples. KW - Microplastic KW - TED-GC/MS KW - TGA-MS KW - TGA-FTIR KW - MCC KW - Thermal analysis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516687 DO - https://doi.org/10.1016/j.jaap.2020.104961 VL - 152 SP - 104961 PB - Elsevier B.V. AN - OPUS4-51668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stajanca, Pavol A1 - Topolniak, Ievgeniia A1 - Pötschke, Samuel A1 - Krebber, Katerina T1 - Solution-mediated cladding doping of commercial polymer optical fibers N2 - Solution doping of commercial polymethyl methacrylate (PMMA) polymer optical fibers (POFs) is presented as a novel approach for preparation of custom cladding-doped POFs (CD-POFs). The presented method is based on a solution-mediated diffusion of dopant molecules into the fiber cladding upon soaking of POFs in a methanol-dopant solution. The method was tested on three different commercial POFs using Rhodamine B as a fluorescent dopant. The dynamics of the diffusion process was studied in order to optimize the doping procedure in terms of selection of the most suitable POF, doping time and conditions. Using the optimized procedure, longer segment of fluorescent CD-POF was prepared and its performance was characterized. Fiber’s potential for sensing and illumination applications was demonstrated and discussed. The proposed method represents a simple and cheap way for fabrication of custom, short to medium length CD-POFs with various dopants. KW - Polymer optical fiber KW - Solution doping KW - Polymethyl methacrylate KW - Rhodamine B KW - Dye-doped fiber KW - Fluorescent optical fiber PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-441045 DO - https://doi.org/10.1016/j.yofte.2018.02.008 SN - 1068-5200 SN - 1095-9912 VL - 41 SP - 227 EP - 234 PB - Elsevier Inc. AN - OPUS4-44104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -