TY - JOUR A1 - Zutta Villate, J. M. A1 - Viviana Rojas, J. A1 - Hahn, Marc Benjamin A1 - Anselmo Puerta, J. T1 - Synthesis of 198Au nanoparticles sub 10 nm due optimization on local dose by Monte Carlo simulations for cancer treatment N2 - To enhance the biological effects of radiation damage in cancerous cells, we present an alternative approach to the use of gold nanoparticles (AuNP), focusing on the synthesis and characterization of highly monodisperse, spherical radioactive gold nanoparticles 198AuNP. The size of the AuNP size was optimized with the help of Geant4/TOPAS particle scattering simulations, and energy deposition per nm3 per decay for varying radii (2–10 nm) was evaluated. This work is the foundation for ongoing experimental work to evaluate cell death induced by 198AuNP which aims for the use of radioactive gold nanoparticles in cancer treatment. KW - AuNP KW - Beta decay KW - Beta particle KW - Brachytherapy KW - Cancer treatment KW - Nanoparticles KW - Nanoparticle KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Gamma ray KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - Synthesis KW - TEM KW - OH radicals KW - Particle scattering KW - Radiation damage KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio PY - 2022 U6 - https://doi.org/10.1007/s10967-022-08355-5 SN - 1588-2780 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-55132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined.[1] Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. [2] These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for ongoing experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. T2 - NALS 2022 CY - Santander, Spain DA - 27.04.2022 KW - AuNP KW - Beta decay KW - beta particle KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - particle scattering KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio PY - 2022 AN - OPUS4-54775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Radnik, Jörg A1 - Dietrich, P. M. T1 - Near-Ambient-Pressure XPS to investigate radiation damage to DNA N2 - X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - Physical and Chemical Analysis of Polymers seminar CY - Online meeting DA - 12.10.2021 KW - Base damage KW - Base loss KW - Cancer therapy KW - DNA KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Dosimetry KW - Double-strand break KW - DSB KW - Dry DNA KW - Geant4 KW - Geant4-DNA KW - Hydrated DNA KW - Hydrated electron KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionization KW - LEE KW - Low energy electrons KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Prehydrated electron KW - Quasi-direct damage KW - ROS KW - Radiation damage KW - Radiation therapy KW - Radical KW - Reactive oxygen species KW - Single-strand break KW - SSB KW - TOPAS KW - TOPAS-nbio KW - XPS KW - Xray KW - Xray photo electron spectrocopy PY - 2021 AN - OPUS4-53611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - BioSAXS models for TOPAS/Geant4 N2 - Models for TOPAS/Geant4 to estimate the microscopic dose received by biomolecules during bioSAXS experiments. The C++ classes in this repository extend the functionality of the TOPAS (http://www.topasmc.org/) Monte-Carlo program, which is itself a wrapper of the Geant4 MCS Toolkit (http://geant4.org). KW - TOPAS KW - TOPAS-nBio KW - Geant4 KW - Geant4-DNA KW - MCS KW - Microdosimetry KW - Protein KW - Proteins KW - Particle scattering KW - G5P KW - GV5 KW - SAXS KW - Monte-Carlo simulation KW - Dosimetry KW - Micorscopic dose-damage relation PY - 2022 UR - https://github.com/MarcBHahn/TOPAS-bioSAXS-dosimetry U6 - https://doi.org/10.26272/opus4-55751 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-55751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Dietrich, P. M. A1 - Radnik, Jörg T1 - The change of DNA radiation damage upon hydration: In-situ observations by near-ambient-pressure XPS N2 - Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - Cancer treatment KW - DNA KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - TOPAS KW - TOPAS-nbio KW - particle scattering KW - Simulation KW - Radiolysis KW - Radiation therapy KW - Radiotherapy KW - LEE KW - Low energy electrons KW - MCS KW - Base damage KW - Base loss KW - DNA radiation damage KW - Direct damage KW - Dissociative electron transfer (DET) KW - Dissociative electron attachment (DEA) KW - Double-strand break (DSB) KW - Hydrated DNA KW - Hydrated electron KW - Ionization KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Prehydrated electron KW - Quasi-direct damage KW - Radiation damage KW - Radical KW - Reactive oxygen species KW - ROS KW - Single-strand break (SSB) KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - presolvated electron PY - 2023 UR - https://www.nature.com/articles/s42004-021-00487-1 AN - OPUS4-57063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - TOPAS cell model with nanoparticles N2 - These files contain cell models for TOPAS/Geant4 and the inclusion of nano particles in particle scattering simulations. A simple spherical cell with nanoparticles can be generated in a fast manner. The user has the option to include the following organelles: nucleus, mitochondria, cell membrane. Additionally nanoparticles can be included in the cytosol and at the surface of the nucleus and/or the mitochondria. The C++ classes in this repository extend the functionality of the TOPAS (http://www.topasmc.org/) Monte-Carlo program, which is itself a wrapper of the Geant4 MCS Toolkit (http://geant4.org). The sourcecode together with examples and scorers are provided. "If you use this extension please cite the following literature: Hahn, M.B., Zutta Villate, J.M. "Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles." Sci Rep 11, 6721 (2021). https://doi.org/10.1038/s41598-021-85964-2 " KW - Monte-Carlo simulation KW - MCS KW - Geant4 KW - TOPAS KW - TOPAS-nBio KW - Dosimetry KW - Nanoparticles KW - Nanoparticle KW - AuNP KW - Gold KW - Microdosimetry KW - Targeted nanoparticle KW - Simulation KW - Particle scattering KW - Cell KW - Nucleus KW - Mitochondria KW - Cancer therapy KW - Radiation therapy PY - 2020 UR - https://github.com/BAMresearch/TOPAS-CellModels UR - https://github.com/MarcBHahn/TOPAS-CellModels U6 - https://doi.org/10.26272/opus4-51150 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - Behind the paper: Radiation, DNA and water: New techniques for deeper insights N2 - To gain deeper insights into the old questions about the influence of water on radiation interaction with DNA, new spectroscopic techniques had to be applied. KW - DNA KW - DNA radiation damage KW - XPS KW - Geant4 KW - Low energy electrons KW - OH radical KW - Hydrated DNA KW - Hydration shell KW - Double-strand break (DSB) KW - Dissociative electron attachment (DEA) KW - Single-strand break (SSB) KW - LEE KW - PES KW - Ionization KW - Reactive oxygen species KW - ROS KW - Base damage KW - Base loss KW - Cancer therapy KW - TOPAS KW - TOPAS-nbio PY - 2021 UR - https://go.nature.com/3gjZVWG SP - 1 EP - 3 PB - Springer Nature CY - London AN - OPUS4-52461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. ED - Zutta Villate, J. M. T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of Radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for future experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - Ectoine KW - OH radicals KW - Radiation damage KW - Radiationtherapy KW - Radioactive decay KW - Simulation KW - Beta particle KW - Clustered nanoparticles KW - Gamma ray KW - Low energy electrons KW - Particle scattering KW - Radiolysis KW - Livermore model KW - Penelope model KW - TOPAS KW - TOPAS-nbio PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-523276 SN - 2045-2322 VL - 11 IS - 1 SP - 6721 PB - Springer Nature AN - OPUS4-52327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Dietrich, P. M. A1 - Radnik, Jörg T1 - In situ monitoring of the influence of water on DNA radiation damage by near-ambient pressure X-ray photoelectron spectroscopy N2 - Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS xperiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. KW - DNA KW - XPS KW - NAP-XPS KW - Radiation damage KW - Single-strand break (SSB) KW - Double-strand break (DSB) KW - Xray KW - OH radical KW - Hydroxyl radical KW - LEE KW - Low energy electrons KW - Dosimetry KW - Geant4 KW - Geant4-DNA KW - TOPAS KW - TOPAS-nbio KW - Microdosimetry KW - DNA radiation damage KW - Direct damage KW - Indirect damage KW - Quasi-direct damage KW - Hydration shell KW - Dry DNA KW - Hydrated DNA KW - ROS KW - Radical KW - Reactive oxygen species KW - Net-ionization reaction KW - Radiation therapy KW - Cancer therapy KW - Xray photo electron spectrocopy KW - Near ambient pressure xray photo electron spectroscopy KW - Base damage KW - Base loss KW - Dissociative electron transfer (DET) KW - Dissociative electron attachment (DEA) KW - Hydrated electron KW - Prehydrated electron KW - Ionization KW - PES PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-524060 SN - 2399-3669 VL - 4 IS - 1 SP - 50 PB - Springer Nature CY - London AN - OPUS4-52406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Dietrich, P. M. A1 - Radnik, Jörg A1 - Solomun, Tihomir A1 - Hallier, Dorothea C. A1 - Seitz, H. T1 - The change of dna and protein radiation damage upon hydration: in-situ observations by near-ambient-pressure xps N2 - X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. Furthermore, first data about the degradation of single-stranded DNA binding-proteins (G5P / GV5 and hmtSSB) under vacuum and NAP-XPS conditions are presented. T2 - AVS69 CY - Portland, USA DA - 05.11.2023 KW - Base damage KW - Base loss KW - Cancer treatment KW - DNA KW - Protein KW - Proteins KW - Geant4 KW - Dosimetry KW - Microdosimetry KW - NAP-XPS KW - Xray photo electron spectrocopy KW - Radiation damage KW - Geant4-DNA KW - G5P KW - GVP KW - Hydroxyl radical KW - LEE KW - DEA KW - DET KW - ROS KW - Prehydrated electron KW - TOPAS KW - Near ambient pressure xray photo electron spectroscopy KW - SSB KW - DSB KW - Single-strand break (SSB) KW - ESCA KW - Single-stranded DNA-binding proteins KW - Reactive oxygen species PY - 2023 AN - OPUS4-58761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -