TY - CONF A1 - Radnik, Jörg A1 - Hesse, R. A1 - Denecke, R. T1 - Improved estimation of the transmission function with UNIFIT 2022 N2 - The recent development of x-ray photoelectron spectroscopy using excitation sources different from the usual lab-source Mg Kα and Al Kα and spectrometers with more sophisticated lens systems requires flexible approaches for determining the transmission function. Therefore, the approach using quantified peak areas (QPA) was refined.1 A new algorithm allows a more precise estimation of the transmission function which could be shown by comparing the results obtained with the new version with former calculations. Furthermore, next to the established reference materials Cu, Ag and Au, ionic liquids can be used for estimating the transmission function at beamlines with variable excitation energies. Comparison between the measured and stoichiometric composition shows that a transmission function was determined which allows a reasonable quantification. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Synchrotron radiation KW - Iionic liquid PY - 2022 AN - OPUS4-54962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Kim, K.J. T1 - Elemental Composition and Thickness Determination of Thin Films by Electron Probe Microanalysis (EPMA) N2 - microscopy (AFM), or X-ray reflectometry. For the additional determination of thin film composition, techniques like X-ray photoelectron spectroscopy (XPS) or mass spectrometry-based techniques can be used. An alternative non-destructive technique is electron probe microanalysis (EPMA). This method assumes a sample of homogenous (bulk) chemical composition, so that it cannot be usually applied to thin film samples. However, in combination with the thin film software StrataGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). These samples were used for an international round robin test. In 2021, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BadgerFilm software package and compared the resulting composition and thickness with the results of the established StrataGEM software and other reference methods. With the current evaluation, the BadgerFilm software shows good agreement with the composition and thickness calculated by StrataGEM and as the reference values provided by the KRISS. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Thin films KW - Electron Probe Microanalysis KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz T1 - Trash to treasure: recovery of transition metal phosphates for (electro-)catalytical applications N2 - Wastewaters containing high concentrations of NH4+, PO43- and transition metals are environmentally harmful and toxic pollutants. At the same time phosphorous and transition metals constitute valuable resources. Here, we report the synthesis routes for Co- and Ni-struvites (NH4MPO4∙6H2O, M = Ni2+, Co2+) out of aqueous solutions resembling synthetic/industrial waste water compositions, and allowing for P, ammonia and metal co-precipitation. Furthermore, the as-obtained struvites were further up-cycled. When heated, these transition metal phosphates (TMPs) demonstrate significant changes in the degree of crystallinity/coordination environment involving a high amount of amorphous phases and importantly develop mesoporosity (Figure 1). In this regard, amorphous and mesoporous TMPs are known to be highly promising (electro-)catalysts. Amorphous phases do not represent a simple “disordered” crystal but more a complex system with a broad range of compositions and physicochemical properties, which remain mostly unknown. Consequently, we investigated the recrystallization and amorphization process during thermal treatment and a resolved the complex amorphous/crystalline structures (Figure 2). As a proof-of-principle for their applicational use, the as-obtained TMPs demonstrate significant proton conductivity properties similar to apatite-like structures from room to high temperatures (>800°C). Hence, we have developed a promising recycling route in which environmental harmful contaminants like PO43-, NH4+ and 3d metals would be extracted out of waste waters in the form of precursor raw materials. These raw materials can be then further up-cycled through a simple thermal treatment for their specific application in electrocatalysis. T2 - Goldschmidt Conference 2022 CY - Hawai'i, USA DA - 10.07.2022 KW - Mesoporosity KW - Amorphous phases KW - Transition metals KW - Struvite KW - Phosphates PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552852 UR - https://conf.goldschmidt.info/goldschmidt/2022/meetingapp.cgi/Paper/9501 AN - OPUS4-55285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Pellegrino, F. A1 - Maurino, V. T1 - Morpho-Chemical Characterisation of Me-TiO2 Nanoparticles for Enhanced Photocatalytical Activity N2 - The conversion of solar energy into electricity and solar fuels is of crucial importance for a green and sustainable future. Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen (H2) fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, etc) and metal concentrations will be discussed. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Titania nanoparticles KW - Photocatalysis KW - Scanning electron microscopy KW - Energy dispersive X-ray spectroscopy PY - 2022 AN - OPUS4-54977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cifci, G. C. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Polydopamine micropatterning for selective substrate bio-functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA) exhibits strong adhesion to nearly any kind of organic or inorganic surface and shows high ability for surface post-modification and secondary reactions. As a result, PDA has been widely used as a base adlayer to enable versatile surface chemistry and functionalization. It has shown great potential in wide range of applications including biomedical field (e.g., drug delivery, adhesives, photothermal therapy, bone and tissue engineering, cell adhesion, biosensing). However, implementation of PDA in microdevices is still hindered by insufficient spatial and temporal control of excited deposition methods. In this work we present a novel approach to fabricate tunable micropatterned substrates where mussel-inspired chemistry provides base for various surface modification [2]. Current approach applies Multiphoton Lithography (MPL) to initiate local PDA formation, and, therefore, does not require use of microstamp or photomask. As a result, the microstructures of complex designs can be produced with the spatial resolution down to 0.8 μm (Figure 1). The desired design can be easily altered by adjusting the stl model or the fabrication code. Unlike the conventional deposition of PDA based on dopamine auto-oxidation, our method does not require presence of strong oxidants, metal ions or alkaline pH. Herein-demonstrated deposition approach will significantly facilitate applications of polydopamine and other mussel-inspired materials in microdevices and high-resolution active microcomponents (e.g., in MEMS and microfluidics). Adjustment of MPL parameters revealed that the morphology and thickness of resulted PDA microstructures can be controlled by altering the laser power and its scanning velocity. As a result, it also enables the production of micropatterns with structural gradient. Apart from the glass substrate, we performed PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. We tested different composition of dopamine solution for its ability of PDA buildup. Solutions containing Tris buffer, phosphate buffer or DI water only as well as different pH (6.0, 7.0 and 8.5) could be successfully applied for high-precision PDA micropatterning. Moreover, the effect of antioxidants and purging of the solution with oxygen and nitrogen was investigated. In all cases, no decrease of deposition efficiency was observed. The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. To ensure post-modification potential of MPL deposited PDA we demonstrated one-step deposition of micropatterns with trypsin. Obtained bio-functionalised surface can be further applied as a protein sensing active microelement. T2 - Laser Precision Microfabrication CY - Dresden, Germany DA - 07.06.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-55064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linberg, Kevin A1 - Röder, Bettina A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Polymorphism in molecular cocrystals controlled by variable temperature ball milling N2 - Mechanochemistry offers a unique opportunity to modify or synthesize new crystal forms. Although the method is very promising, little is known about the mechanochemical means to control the synthesis of a solid form. Using an polymorphic organic cocrystal system, we show here that mechanochemistry can be used to obtain a polymorph transformation under the apparently conventional (thermal) transition point. T2 - Bessy User Meeting 2022 CY - Online meeting DA - 08.12.2022 KW - Mechanochemistry KW - Polymorphism KW - TRIS PY - 2022 AN - OPUS4-56473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana T1 - Getting more efficient – The use of Bayesian optimization and Gaussian processes at the BAMline N2 - For more than 20 years, BAM is operating the BAMline at the synchrotron BESSY II in Berlin Adlershof. During this time, the complexity of the setup and the amount of data generated have multiplied. To increase the effectiveness and in preparation for BESSY III, algorithms from the field of machine learning are increasingly used. After a short introduction to BO and GP, the first example is the automatic alignment of our double multilayer monochromator (DMM). The second example is the optimization of measurement time in XRF scanning. T2 - SNI2022 conference CY - Berlin, Germany DA - 05.09.2022 KW - Artificial Inelligence KW - Machine Learning KW - Bayesian Statistics KW - Gaussian process KW - X-ray fluorescence KW - BAMline PY - 2022 AN - OPUS4-56255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, C. A1 - Radtke, Martin T1 - Bayesian optimization for depth resolved analysis of complex alloys with grazing exit XANES N2 - Compositionally complex alloys (CCAs) are a new class of alloys containing at least 5 elements with concentrations between 5 and 35 atomic percent. Due to their adjustable composition, which enables modifications of mechanical properties (such as hardness, strength and ductility etc) and their stability at high temperatures, CCAs have been the focus of various studies [1,2]. Especially the corrosion behavior of CCAs has been a wide research interest. However, there are only few studies that deals with the degradation process on such materials, which is highly relevant for the safety aspect for future component design. To thoroughly investigate the corrosion processes and to determine oxidation states of metal components within the reaction products, we need special analytical tools. Since the grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect notable information regarding the high temperature oxidation, we consider it as a useful method to investigate how CCAs behave in corrosive environments. The main idea of grazing geometry is to enhance the fluorescence signal of the surface. This enables highly sensitive surface analyses of thin protective film on surface in sub-micrometer scale [3]. When compared to a conventional CCD-based camera, the advantage and most important feature of the detector system (Color X-Ray Camera (CXC)) is that each pixel is an energy sensitive detector. The position and area sensitive detector, with 264x264 pixel detector area, provides information regarding the signal emitted from the sample as a function of the emission angle and thus allows depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which can be controlled with a resolution of 0.5 eV provides XANES data to determine oxidation states. In this contribution, we address the feasibility of our setup and new optimization procedure (Bayesian Optimization and Gaussian Regression). The results of a conceptual study regarding layer properties of the reference sample (Cr-Oxide layer (300nm) on Cr layer (500nm) on Si wafer) and CrCoNi (Cr-Oxide (>1µm) layer on CrCoNi substrate) medium entropy alloy. T2 - European Conference on X-ray Spectrometry. EXRS 2022 CY - Bruges, Belgium DA - 26.06.2022 KW - GEXRF KW - High entropy alloys KW - XANES KW - Grazing exit KW - High entropy materials KW - XAS KW - Optimization PY - 2022 AN - OPUS4-56272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - del Giorgio, Elena A1 - Kumari, P. A1 - Lymer, K. A1 - Connell, S. A1 - Zhang, S. A1 - Hodoroaba, Vasile-Dan A1 - Pikramenou, Z. T1 - Visible and NIR emissive lanthanide(III) surfaces for new luminescent materials N2 - Luminescent lanthanides(III) offer exceptional optical properties that can overcome issues often encountered with other fluorophores (e.g. organic dyes). Their long lifetimes up to milliseconds, low photobleaching and sharp and characteristic emission peaks make the lanthanides extremely valuable for the development of advanced luminescent materials. Previous work on Ru(II) and Ir(III) gold surfaces further highlights the potential of employing the luminescence of metal complexes for the fabrication of sensing platforms and devices. Here, we incorporate visible and NIR-emitting lanthanide(III) complexes Ln2L3 (Ln = Eu(III), Nd(III), Yb(III)) to gold and plasmonic surfaces, translating the unique optical properties of the lanthanides(III) to practical devices. The Ln2L3 complexes are deposited on the surfaces with different methods, ranging from polymer aided physisorption to the covalent attachment on the gold surface. Furthermore, we exploit the high sensitivity to the coordination environment of lanthanides(III) to design and prepare a sensing platform. T2 - 17th Conference on Methods and Applications in Fluorescence (MAF 2022) CY - Göteborg, Sweden DA - 11.09.2022 KW - Luminescent materials KW - Lanthanide(III) KW - Surface morphology KW - AFM KW - SEM/EDS PY - 2022 UR - https://maf2022.com/ AN - OPUS4-56126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naik, Aakash Ashok A1 - George, Janine T1 - New descriptors for materials properties based on bonding indicators N2 - Includes a summary of the Ph.D. project that deals with generating a database populated with materials bonding properties and how we intend to gain deeper insights into material properties through this research. T2 - SALSA 2022 CY - Berlin, Germany DA - 15.09.2022 KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry PY - 2022 AN - OPUS4-56142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -