TY - CONF A1 - Schmid, Thomas A1 - Hodoroaba, Vasile-Dan T1 - Correlative Analysis by Raman and other Micro & Nanospectroscopic Imaging Techniques N2 - In the present talk the basics of the Raman spectroscopy and particularly of Raman microscopy are explained. Advantages and disadvantages of the method are highlighted through selected case studies. In the second part of the lecture examples of correlative imaging with electron, X-ray, ion and optical microscopies from micro- to the nanoscale are highlighted. T2 - Charisma School on Raman Harmonisation CY - Turin, Italy DA - 19.10.2022 KW - Raman KW - Correlative Imaging KW - Microscopy KW - Hyperspectral imaging PY - 2022 UR - https://amdgroup.inrim.it/events/vamas-sc-meeting-47/program-sc47 AN - OPUS4-56094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Heilmann, Maria T1 - Nanoparticle Populations N2 - Two new projects P15 Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension and P16 Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension have been started at VAMAS/TWA 34 under the lead of BAM. First results are presented and discussed. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 47th Steering Committee Meeting CY - Turin, Italy DA - 18.10.2022 KW - VAMAS KW - Nanoparticles KW - Inter-laboratory comparison KW - Particle size distribution KW - Nanoparticle concentration PY - 2022 AN - OPUS4-56196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative Microstructural Analysis - VAMAS TWA 37 & Liaison with ISO/TC 202 Microbeam Analysis N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the possibility of identifying and launching related VAMAS projects. The recently started project FIB sample processing for TEM is highlighted. Need of more promotion for the engagement of more participants from industry and academia at national, European and international level is highlighted. Also, the competition with the other technical working areas (on 'nano' or materials-related) is critically discussed. Further, a short overview of the VAMAS areas of activities is given where Germany is involved. Planed regional VAMAS Workshops in Germany in 2023 are announced. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 47th Steering Committee Meeting CY - Torino, Italy DA - 18.10.2022 KW - VAMAS KW - Microbeam analysis KW - FIB KW - TEM KW - Sample preparation KW - EBSD PY - 2022 UR - https://amdgroup.inrim.it/events/vamas-sc-meeting-47 AN - OPUS4-56146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement - What nPSize can offer to ISO/TC 229? N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities, e.g. reference materials, sample preparation protocols, measurement procedures, and data analysis, to be standardized and implemented in accredited analytical laboratories is discussed. Complementation and/or filling gaps of published and ongoing standardisation projects on size, shape and number concentration measurements under ISO/TC 229/JWG 2 are offered. The two VAMAS inter-laboratory comparisons resulted from the nSPize project and just started under TWA 34 Nanoparticle Populations (Projects #15 and #16) of bipyramidal TiO2 anatase and bimodal SiO2 nanoparticles are presented in detail. T2 - Interim Meeting of ISO/TC 229 Nanotechnologies - Strategy and Metrology Group CY - Online meeting DA - 09.05.2022 KW - Nanoparticles KW - Particle size distribution KW - Inter-laboratory comparison KW - Electron microscopy KW - AFM KW - SAXS KW - ISO/TC229 PY - 2022 AN - OPUS4-54819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Advanced Characterization of the Surface Morphology and Chemistry within nano@BAM N2 - Both essential aspects of the surface of solid matter, its morphology and chemistry, are studied traditionally at BAM starting in the 60’s with different cyclical research focus areas, mostly related either to applicative research or method development. In the recent years, the focus has shifted almost exclusively to the nano-analytics of advanced materials such as complex nanoparticles, (ultra)thin films/coatings, nanocomposites, 2D materials, energy materials, etc. This is also the reason why BAM has established recently the new Competence Center nano@BAM (www.bam.de/Navigation/DE/Themen/Material/Nanotechnologie/sichere-nanomaterialien.html) with the five sub-fields nanoCharacterisation, nanoMaterial, nanoSafety, nanoData and nanoTechnology. The link to the BAM central guidelines to the safety in technology and chemistry is given by the development of reference products such as reference measurement procedures, reference (nano)materials, and newly reference data sets. Thus, an internationally well-networked group in surface analysis has been established @BAM, with regular contributions to integral analytical characterization with metrological and standardization background. Examples of newly developed methodical approaches will be given with an emphasis on correlative nano-analysis of morphology and chemistry of nanomaterials. Correlative imaging by STEM-in-SEM with high-resolution SEM and EDX, and further with AFM or the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for surface chemistry will be highlighted. The panoply of advanced surface characterization methods @BAM is completed by discussing examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy with the highest surface-sensitive methods X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Particularly for the analysis of the surface chemistry of nanostructures, such as the completeness of the shells of core-shell nanoparticles or in-depth and lateral gradients of chemistry within mesoporous thin layers, the latter methods are inherent. Other special developments like approaches for the quantitative determination of the roughness of particle surface by electron microscopy or for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM will be presented. T2 - Seminar of the Academic Centre for Materials and Nanotechnology CY - Online meeting DA - 12.05.2022 KW - Nanoparticles KW - Thin films KW - Nano Characterisation KW - Nanomaterials KW - Surface morphology KW - Surface chemistry PY - 2022 UR - https://www.agh.edu.pl/en/info/article/seminar-advanced-characterization-of-the-surface-morphology-and-chemistry-within-nanobam/ AN - OPUS4-54820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Liaison report from VAMAS with ISO/TC 202 Microbeam Analysis N2 - The progress in the activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the possibility of identifying and launching related VAMAS projects/inter-laboratory comparisons. The recently started project FIB sample processing for TEM is presented. Next projects in the pipeline involving EBSD and TKD are shortly announced. The need of more promotion for the engagement of more experts from industry and academia at national, European and international level is highlighted. Also, the competition with the other technical working areas (on 'nano' or materials-related) is critically discussed. T2 - 29th Annual Meeting of ISO/TC 202 Microbeam Analysis CY - Online meeting DA - 28.11.2022 KW - VAMAS KW - ISO/TC 202 KW - Microbeam Analysis KW - EBSD KW - Electron microscopy KW - Thin films PY - 2022 AN - OPUS4-56424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Advanced Characterization of the Surface Morphology and Chemistry within nano@BAM N2 - Both essential aspects of the surface of solid matter, its morphology and chemistry, are studied traditionally at BAM starting in the 60’s with different cyclical research focus areas, mostly related either to applicative research or method development. In the recent years, the focus has shifted almost exclusively to the nano-analytics of advanced materials such as complex nanoparticles, (ultra)thin films/coatings, nanocomposites, 2D materials, energy materials, etc. This is also the reason why BAM has established recently the new Competence Center nano@BAM (www.bam.de/Navigation/DE/Themen/Material/Nanotechnologie/sichere-nanomaterialien.html) with the five sub-fields nanoCharacterisation, nanoMaterial, nanoSafety, nanoData and nanoTechnology. The link to the BAM central guidelines to the safety in technology and chemistry is given by the development of reference products such as reference measurement procedures, reference (nano)materials, and newly reference data sets. Thus, an internationally well-networked group in surface analysis has been established @BAM, with regular contributions to integral analytical characterization with metrological and standardization background. Examples of newly developed methodical approaches will be given with an emphasis on correlative nano-analysis of morphology and chemistry of nanomaterials. Correlative imaging by STEM-in-SEM with high-resolution SEM and EDX, and further with AFM or the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for surface chemistry will be highlighted. The panoply of advanced surface characterization methods @BAM is completed by discussing examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy with the highest surface-sensitive methods X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Particularly for the analysis of the surface chemistry of nanostructures, such as the completeness of the shells of core-shell nanoparticles or in-depth and lateral gradients of chemistry within mesoporous thin layers, the latter methods are inherent. Other special developments like approaches for the quantitative determination of the roughness of particle surface by electron microscopy or for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM will be presented in conjunction with the corresponding advanced materials studied. Current research projects, promising ideas, including ongoing (pre-)standardization activities in the field of the challenging nano/surface analysis will be touched systematically, with the open goal of identifying future bilateral cooperation possibilities between EMPA and BAM. T2 - EMPA-Kolloquium CY - Online meeting DA - 01.12.2021 KW - Nanoparticles KW - Nano@BAM KW - Nanomaterials KW - Surface morphology and chemistry KW - Correlative analysis PY - 2021 AN - OPUS4-54039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement N2 - In order to assess new nanomaterials and nanoparticles for potential risks to health and the environment, they need to be well-characterised. The measurement of constituent nanoparticle size, shape, and size distribution are important factors for the risk evaluation process. EMPIR project Improved traceability chain of nanoparticle size measurements (17NRM04, nPSize) is working to assess a range of traceable nanoparticle measurement approaches, including Electron Microscopy (SEM, TEM, STEM-in-SEM), Atomic Force Microscopy and Small Angle X-ray Scattering, and deliver improved calibration methods to users. For the techniques under investigation, physical models of their response to a range of nanoparticle types are developed. Validated reference materials are also used for inter-comparisons of measurement systems, with an evaluation of the associated measurement uncertainty. With project contributions to standards development work, manufacturers will be better placed to assess the human and environmental risks posed by nanomaterials across a whole range of products. T2 - EMPIR nPSize Training Course "Traceable Characterization of Nanoparticles by SAXS" CY - Online meeting DA - 01.02.2021 KW - Nanoparticles KW - Particle size distribution KW - Traceability KW - nPSize KW - SAXS PY - 2021 AN - OPUS4-53883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Report ISO/TC202/WG4 X-Ray Spectroscopy, Liaisons with VAMAS and ISO/TC229 Nanotechnologies N2 - The presentation is structured in the following three parts: i) Report of the Working Group 4 X-Ray Spectroscopy including the publication of ISO 15632:2021 Microbeam analysis — Selected instrumental performance parameters for the specification and checking of energy-dispersive X-ray spectrometers for use in electron probe microanalysis, ii) Liaison activities between ISO/TC202 Microbeam Anaylsis and VAMAS/TWA34 Quantitative Microstructural Analysis, and iii) Liaison activities from ISO/TC202 Microbeam Analysis for ISO/TC229 Nanotechnologies. Most relevant projects are highlighted for information and further discussions. New initiatives and better promotion of strategic projects are addressed. T2 - Annual Meeting of ISO/TC 202 Microbeam Analysis CY - Online meeting DA - 25.10.2021 KW - Microbeam Analysis KW - VAMAS KW - ISO/TC 202 KW - ISO/TC 229 KW - electron microscopy KW - X-Ray Spectroscopy KW - EBSD KW - FIB PY - 2021 AN - OPUS4-53625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - VAMAS TWA 37 - Quantitative Microstructural Analysis & Liaison with ISO/TC 202 Microbeam Analysis, Liaison with ISO N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the possibility of identifying and launching related VAMAS projects. Need of more promotion for the engagement of more participants from industry and academia at national, European and international level is highlighted. Also, the competition with the other technical working areas (on 'nano' or materials-related) is critically discussed. Further, a short overview of the VAMAS areas of activities is given where Germany is involved. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 46th Steering Committee Meeting CY - Online meeting DA - 08.09.2021 KW - VAMAS KW - Nanoparticles KW - Standardisation KW - Inter-laboratory comparison KW - ISO/TC 202 KW - ISO/TC 229 KW - ISO/TC 201 KW - Microstructure KW - EBSD PY - 2021 UR - http://www.vamas.org/twa/ AN - OPUS4-53237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -