TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Epperlein, Nadja A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Surface functionalization by laser-induced periodic surface structures (LIPSS) N2 - In this contribution the mechanisms of formation and current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting properties, the mimicry of the natural texture of animal integuments, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - 10th Stuttgart Laser Technology Forum 2018 CY - Stuttgart, Germany DA - 05.06.2018 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Surface functionalization KW - Wetting KW - Tribology KW - Biofilms PY - 2018 SP - 35 AN - OPUS4-45128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zubia Aranburu, Judith A1 - Cappella, Brunero A1 - Zabala Eguren, A. A1 - Buruaga Lamarain, L. A1 - Aginagalde Lopez, A. A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Quantification of the adhesion force of E. coli on Ti via single-cell force spectroscopy N2 - Antibiotic resistance is a growing global problem which poses a massive threat to human health. Although human activity contributes to the acceleration of the process, bacteria have a self-driven stabilisation mechanism to protect themselves from such and other external threats: biofilm formation. Nonetheless, it is the adhesion of a single bacterial cell to a surface that triggers the formation of such network of biomolecules and microorganisms, as well as its hazardous consequences. The main objective of this work was to quantify the adhesion force of a single E. coli cell on a Ti substrate via the AFM-related single-cell force spectroscopy, with both the cell and the substrate material being of high clinical relevance. A set of 25 x 25 force displacement curves was acquired with a maximum force of 3.2 nN without dwell time, yielding a topography map and an adhesion force map that showed to be correlated. A mean adhesion force of 0.85 ± 0.175 nN was measured and the presence of cell appendages on the bacterial cell wall was verified through individual force-displacement curves. Bacterial viability was assessed after the measurements via live/dead staining. T2 - XL Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2022 CY - Valladolid, Spain DA - 23.11.2022 KW - Bacteria KW - Atomic force microscopy KW - Force distance curve PY - 2022 SN - 978-84-09-45972-8 SP - 217 EP - 220 AN - OPUS4-57039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -