TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - Zwitterionic polymerization of glycolide catalyzed by pyridine N2 - The usefulness of various N- and P-based catalysts for syntheses of cyclic polyglycolide via zwitterionic polymerization of glycolide was examined. Most catalysts produced discolored, largely insoluble polyglycolides consisting of cycles and unidentified byproducts. Soluble, cyclic polyglycolides were obtained using neat pyridine as catalyst at 120 °C, 100 °C, 80 °C, and even at 60 °C. The number-average molecular weights were extremely low and depended slightly on the glycolide-to-pyridine ratio. Three different mass distributions of the cycles were detected by mass spectrometry, depending on the reaction conditions. The cyclic polyglycolides were also characterized by differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) measurements. The SAXS data in combination with the mass spectra indicate that the majority of the cycles form extended-ring crystallites KW - MALDI-TOF MS KW - Polylactide KW - Polymerization KW - Zitterions PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639748 DO - https://doi.org/10.1039/d5py00762c SN - 1759-9954 SP - 1 EP - 9 PB - Royal Society of Chemistry (RSC) AN - OPUS4-63974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Roy, Arkendu A1 - Karafiludis, Stephanos A1 - Kumar, Sourabh A1 - de Oliveira Guilherme Buzanich, Ana A1 - Stawski, Tomasz M. A1 - Miliūtė, Aistė A1 - von der Au, Marcus A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - Zirconium fluoride-supported high-entropy fluoride: a catalyst for enhanced oxygen evolution reaction N2 - Extended hydrogen initiatives promote the urgency of research on water splitting technologies and, therein, oxygen evolution reaction catalysts being developed. A route to access a ZrF4 supported high-entropy fluoride catalyst using a facile sol–gel route is presented. The high-entropy character of the catalyst was confirmed by scanning transmission electron microscopy and energy dispersive X-ray spectroscopy (STEM-EDX) as well as inductively coupled plasma-mass spectrometry (ICP-MS). Additional investigations on the local structure were performed using extended X-ray absorption fine structure spectroscopy (EXAFS) and pair distribution function (PDF) analysis. The catalyst shows significant potential for oxygen evolution reaction (OER) in alkaline media with a current density of 100 mA cm−2 at approximately 1.60 V, thus outperforming benchmark materials such as IrO2, despite a significant reduction in electrochemical mass loading. A potential mechanism is suggested based on free energy calculation using DFT calculations. KW - OER KW - HEA KW - CCMAT PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637116 DO - https://doi.org/10.1039/D4TA08664C SN - 2050-7488 VL - 13 IS - 26 SP - 20383 EP - 20393 PB - Royal Society of Chemistry (RSC) AN - OPUS4-63711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Smales, Glen Jacob A1 - Clark, Adam H. A1 - Thünemann, Andreas T1 - Zinc Phosphate Nanoparticles Produced in Saliva N2 - This paper reports the formation of zinc phosphate nanoparticles from the artificial digestion of zinc chloride. Initially, the formation of amorphous primary particles with a mean radius of 1.1 nm is observed, alongside the formation of larger, protein stabilized aggregates. These aggregates, with a radius of gyration of 37 nm, are observed after 5 minutes of exposure to artificial saliva and are shown to be colloidally stable for a minimum time of two weeks. The initially formed primary particles are thought to consist of amorphous zinc phosphate, which is then transformed into crystalline Zn3(PO4)2·4H2O over the course of two weeks. Our results demonstrate that the interaction of inorganic salts with bodily fluids can induce the formation of de novo nanoparticles, which in turn, provides insights into how zinc‐enriched foods may also facilitate the formation of nanoparticles upon contact with saliva. As such, this may be considered as an undesirable (bio)mineralization. KW - SAXS KW - Digestion KW - Zinc phosphate PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514239 DO - https://doi.org/10.1002/ejic.202000521 IS - 38 SP - 3654 EP - 3661 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-51423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Schwab, Alexander A1 - Carraro, Francesco A1 - Tavernaro, Isabella A1 - Falkenhagen, Jana A1 - Villajos, Jose A1 - Falcaro, Paolo A1 - Emmerling, Franziska T1 - ZIF-8-based biocomposites via reactive extrusion: towards industrial-scale manufacturing N2 - Mechanochemistry, a sustainable synthetic method that minimizes solvent use, has shown great promise in producing metal–organic framework (MOF)-based biocomposites through ball milling. While ball milling offers fast reaction times, biocompatible conditions, and access to previously unattainable biocomposites, it is a batch-type process typically limited to gram-scale production, which is insufficient to meet commercial capacity. We introduce a scalable approach for the continuous solid-state production of MOF-based biocomposites. Our study commences with model batch reactions to examine the encapsulation of various biomolecules into Zeolitic Imidazolate Framework-8 (ZIF-8) via hand mixing, establishing a foundation for upscaling. Subsequently, the process is scaled up using reactive extrusion, enabling continuous and reproducible kilogram-scale production of bovine serum albumin (BSA)@ZIF-8 with tunable protein loading. Furthermore, we achieve the one-step formation of shaped ZIF-8 extrudates encapsulating clinical therapeutic hyaluronic acid (HA). Upon release of HA from the composite, the molecular weight of HA is preserved, highlighting the industrial potential of reactive extrusion for the cost-effective and reliable manufacturing of biocomposites for drug-delivery applications. KW - Mechanochemistry KW - Extrusion KW - Biocompoites KW - MOFs PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654777 DO - https://doi.org/10.1039/D5TA08276E SN - 2050-7496 SP - 1 EP - 14 PB - Royal Society of Chemistry AN - OPUS4-65477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraft, Sebastian A1 - Schille, J. A1 - Bonse, Jörn A1 - Löschner, U. A1 - Krüger, Jörg T1 - X‑ray emission during the ablative processing of biological materials by ultrashort laser pulses N2 - The ablative laser processing with ultrashort pulsed laser beams may cause secondary emission of hazardous X-rays. While the effect has recently been proven to be considered in working safety regulations when processing technical materials, such as metals, the X-ray emission rates during the ablative processing of biological tissue materials are widely unexplored yet. Therefore, biological materials like water, isotonic saline solution, pig eyes, and human teeth were ablated with ultrashort laser pulses of 1030 nm wavelength, 600 fs pulse duration and 5 kHz pulse repetition rate, aiming to mimic typical surgery situations. Simultaneously, in-situ X-ray dose rate measurements were performed at a short distance from the plasma to display potential X-ray emission. For all four studied biological materials, our measurements prove the secondary emission of laser-induced X-rays. KW - Ultrashort pulsed laser KW - Laser-induced X-ray emission KW - Ophthalmology KW - Dentistry KW - Secondary hazard PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569960 DO - https://doi.org/10.1007/s00339-023-06440-4 SN - 0947-8396 VL - 129 IS - 3 SP - 1 EP - 8 PB - Springer AN - OPUS4-56996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - XPS–SEM/EDS Tandem Analysis for the Elemental Composition of Functionalized Graphene Nanoplatelets N2 - Over the past decade, energy-dispersive X-ray spectrometry (EDS) with scanning electron microscopy (SEM) has advanced to enable the accurate analysis of light elements such as C, N, or O. For this reason, EDS is becoming increasingly interesting as an analytical method for the elemental analysis of functionalized graphene and could be an attractive alternative to Xray photoelectron spectroscopy (XPS), which is considered the most important method for elemental analysis. In this study, comparative XPS and EDS investigations under different excitation conditions are carried out on commercially available powders containing graphene particles with different morphologies. The slightly different XPS/HAXPES and EDS results can be explained by the different information depths of the methods and the functionalization of the particle surfaces. For the material with smaller graphene particles and higher O/C ratios, all methods reported a lower O/C ratio in pellets compared with the unpressed powder samples. This clearly shows that sample preparation has a significant influence on the quantification results, especially for such a type of morphology. Overall, the study demonstrates that EDS is a reliable and fast alternative to XPS for the elemental quantification of functionalized graphene particles, provided that differences in the information depth are taken into account. Particle morphology can be examined in parallel with quantitative element analysis, since EDS spectrometers are typically coupled with SEM, which are available in a huge number of analytical laboratories. KW - Graphene oxide KW - SEM/EDS KW - XPS/HAXPES KW - Elemental composition KW - Functionalization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647294 DO - https://doi.org/10.1021/acsomega.5c07830 SN - 2470-1343 SP - 1 EP - 7 PB - American Chemical Society (ACS) AN - OPUS4-64729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Jaenisch, Gerd-Rüdiger A1 - Pavasaryte, Lina A1 - Funk, Alexander T1 - XCT and DLW: Synergies of Two Techniques at Sub-Micrometer Resolution N2 - Direct Laser Writing (DLW) and X-ray computed tomography (XCT) both offer unique possibilities in their respective fields. DLW produces full three-dimensional (3D) polymer structures on the microscale with resolutions below 100 nm. The fabricated structures can be analysed by XCT or X-ray microscopy (XRM), which incorporates additional X-ray lenses, in three dimensions down to a minimal basic spatial resolution of about 500 nm or 50 nm, respectively. In this work, two different DLW structures are analysed via XCT. Internal defects are detected and analysed for the purpose of quality control. Defects and structures with sizes down to 1.5 µm are successfully analysed. A 3D reconstruction and internal, hidden features of the fabricated structures are shown and discussed. In a first-of-its-kind study, we demonstrate the detectability of a single-voxel line inside a fabricated structure that would not be detectable with SEM or light microscopy. Furthermore, the direct fabrication on a PET substrate is shown to overcome the high X-ray absorbance of commonly used glass substrates. Attenuation spectra of SZ2080 and glass substrates are compared to a fabrication route direct on a 170 µm PET foil. The practical aspects of XCT measurements for DLW structures on different substrates will be discussed. KW - Non-destructive testing KW - Two-photon polymerization KW - X-ray microscopy KW - XCT KW - 2PP KW - Direct laser writing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560525 DO - https://doi.org/10.3390/app122010488 VL - 12 IS - 20 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-56052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray radiation protection aspects during ultrashort laser processing N2 - Ultrashort pulse laser processing of materials allows for precise machining with high accuracy. By increasing the repetition rate to several 100 kHz, laser machining becomes quick and cost-effective. Ultrafast laser processing at high repetition rates and peak intensities above 10^13 W/cm^2 can cause a potential hazard by generation of unwanted x-ray radiation. Therefore, radiation protection must be considered. For 925 fs pulse duration at a center wavelength of 1030 nm, the x-ray emission in air at a repetition rate of 400 kHz was investigated up to a peak intensity of 2.6 × 10^14 W/cm^2. Based on the presented measurements, the properties of potential shielding materials will be discussed. By extending our previous works, a scaling of the x-ray radiation emission to higher peak intensities up to 10^15 W/cm^2 is described, and emitted x-ray doses are predicted. KW - Laser ablation KW - Ultrashort pulse laser processing KW - Laser-induced x-ray emission KW - Radiation protection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505677 DO - https://doi.org/10.2351/1.5134778 VL - 32 IS - 2 SP - 022004 AN - OPUS4-50567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stolzenberg, U. A1 - Schmitt Rahner, M. A1 - Pullner, B. A1 - Legall, Herbert A1 - Bonse, Jörn A1 - Kluge, M. A1 - Ortner, A. A1 - Hoppe, B. A1 - Krüger, Jörg T1 - X-ray emission hazards from ultrashort pulsed laser material processing in an industrial setting N2 - Interactions between ultrashort laser pulses with intensities larger than 10^13 W/cm^2 and solids during material processing can lead to the emission of X-rays with photon energies above 5 keV, causing radiation hazards to operators. A framework for inspecting X-ray emission hazards during laser material processing has yet to be developed. One requirement for conducting radiation protection inspections is using a reference scenario, i.e., laser settings and process parameters that will lead to an almost constant and high level of X-ray emissions. To study the feasibility of setting up a reference scenario in practice, ambient dose rates and photon energies were measured using traceable measurement equipment in an industrial setting at SCHOTT AG. Ultrashort pulsed (USP) lasers with a maximum average power of 220 W provided the opportunity to measure X-ray emissions at laser peak intensities of up to 3.3 × 10^15 W/cm^2 at pulse durations of ~1 ps. The results indicate that increasing the laser peak intensity is insufficient to generate high dose rates. The investigations were affected by various constraints which prevented measuring high ambient dose rates. In this work, a list of issues which may be encountered when performing measurements at USP-laser machines in industrial settings is identified. KW - X-ray emission hazards KW - Ultrashort pulsed laser KW - Radiation protection KW - Industrial applications KW - Protection housing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538632 DO - https://doi.org/10.3390/ma14237163 SN - 1996-1944 VL - 14 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-53863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böttcher, Katrin A1 - Kraft, Sebastian A1 - Weise, Matthias A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray emission during ultrafast laser grooving N2 - Ultrashort pulse lasers offer the possibility to process materials with minimal heat input and high precision. However, the X-ray emission at high laser peak intensities represents an undesirable side effect. A laser system (1030 nm wavelength, 40 W maximum average laser power, 925 fs pulse duration, 100 μJ maximum pulse energy, 400 kHz pulse repetition frequency) was used to analyze the X-ray skin dose rates for applied peak intensities between 9.2 × 10^12 W/cm^2 and 1.3 × 10^14 W/cm^2 for mild steel, stainless steel and tungsten during groove processing. The lowest laser peak intensity at which X-ray emission could be measured was 9.2 × 10^12 W/cm^2 for processing of stainless steel. The X-ray emission showed a characteristic evolution in dependence on the number of overscans at the same line positions. For low peak intensities, a measurable X-ray emission only begins after a few passes. The number of scans to reach the maximum dose rate increases with lower laser peak intensity. Analysis of the evolving surface topography by white light interference microscopy in connection with ray-tracing simulations led to the interpretation that the increase in X-ray emission is due to the local intensity redistribution by multiple reflection within the laser-generated grooves which is promoted by a particular choice of the linear laser polarization. KW - Ultrashort pulsed laser KW - Laser-induced X-rays KW - X-ray hazard KW - X-ray emission PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639483 DO - https://doi.org/10.1007/s00339-025-08728-z SN - 1432-0630 VL - 131 IS - 8 SP - 1 EP - 12 PB - Springer CY - Berlin AN - OPUS4-63948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -