TY - JOUR A1 - Dal Molin, E. S. A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Robocasting of ordered mesoporous silica‐based monoliths: Rheological, textural, and mechanical characterization JF - Nano Select N2 - Hierarchically porous, high‐surface‐area silica materials are excellent candidates for multiple applications like catalysis and environmental remediation. Shaping these materials with additive manufacturing (AM) techniques, like robocasting, could enable their use with the benefit of on‐demand, customized shaping and maximizing performance. Herein, ordered mesoporous silica COK‐12 slurries were robocasted into monoliths, containing different ratios of uncalcined COK‐12 and sodium bentonite (0–25 wt.%). The rheology of the mixed slurries is characterized by lower flow indexes (0.69 vs. 0.32) and higher yield stresses (96 vs. 259 Pa) compared to pure COK‐12 ones. Monoliths were printed in woodpile structures and calcined at 600°C. Micro‐CT measurements showed a linear shrinkage of 25% after calcination. Mechanical characterization showed increased uniaxial strength (0.20 ± 0.07 to 1.0 ± 0.3 MPa) with increasing binder/solids ratio from 13 to 25%. The amorphous, mesoporous structure of COK‐12 was retained. The structures exhibited open porosities of 52 ± 4% and showed higher specific mesopore volumes, and increased average mesopore size (6 vs. 8 nm) compared to COK‐12. Small‐angle x‐ray scattering analysis revealed an increased lattice parameter (10.3 vs. 11.0 nm) and reduced wall thickness (3.1 nm vs. 4.1 nm) of the COK‐12 in the monoliths. These properties indicate suitability for their application as porous supports and adsorbents. KW - Industrial and Manufacturing Engineering KW - Additive manufacturing KW - OMS KW - Porous materials KW - Robocasting KW - X-ray scattering KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582503 DO - https://doi.org/10.1002/nano.202300109 VL - 4 IS - 11-12 SP - 615 EP - 631 PB - Wiley-VCH GmbH AN - OPUS4-58250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Foroutan, F. A1 - Kyffin, B. A. A1 - Nikolaou, A. A1 - Merino-Gutierrez, J. A1 - Abrahams, I. A1 - Kanwal, N. A1 - Knowles, J. C. A1 - Smith, A. J. A1 - Smales, Glen Jacob A1 - Carta, D. T1 - Highly porous phosphate-based glasses for controlled delivery of antibacterial Cu ions prepared via sol–gel chemistry JF - RSC Advances N2 - Mesoporous glasses are a promising class of bioresorbable biomaterials characterized by high surface area and extended porosity in the range of 2 to 50 nm. These peculiar properties make them ideal materials for the controlled release of therapeutic ions and molecules. Whilst mesoporous silicate-based glasses (MSG) have been widely investigated, much less work has been done on mesoporous phosphate-based glasses (MPG). In the present study, MPG in the P2O5–CaO–Na2O system, undoped and doped with 1, 3, and 5 mol% of Cu ions were synthesized via a combination of the sol–gel method and supramolecular templating. The non-ionic triblock copolymer Pluronic P123 was used as a templating agent. The porous structure was studied via a combination of Scanning Electron Microscopy (SEM), Small-Angle X-ray Scattering (SAXS), and N2 adsorption–desorption analysis at 77 K. The structure of the phosphate network was investigated via solid state 31P Magic Angle Spinning Nuclear Magnetic Resonance (31P MAS-NMR) and Fourier Transform Infrared (FTIR) spectroscopy. Degradation studies, performed in water via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), showed that phosphates, Ca2+, Na+ and Cu ions are released in a controlled manner over a 7 days period. The controlled release of Cu, proportional to the copper loading, imbues antibacterial properties to MPG. A significant statistical reduction of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial viability was observed over a 3 days period. E. coli appeared to be more resistant than S. aureus to the antibacterial effect of copper. This study shows that copper doped MPG have great potential as bioresorbable materials for controlled delivery of antibacterial ions. KW - Bioresorbable Biomaterials KW - Mesoporous phosphate-based glasses KW - Synthesis KW - Degradation studies KW - X-ray scattering KW - MOUSE KW - Antibacterial properties KW - Aantimicrobial PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578101 DO - https://doi.org/10.1039/D3RA02958A VL - 13 IS - 29 SP - 19662 EP - 19673 PB - Royal Society of Chemistry AN - OPUS4-57810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krauss, S. W. A1 - Eckardt, M. A1 - Will, J. A1 - Spiecker, E. A1 - Siegel, R. A1 - Dulle, M. A1 - Schweins, R. A1 - Pauw, Brian Richard A1 - Senker, J. A1 - Zobel, M. T1 - H-D-isotope effect of heavy water affecting ligand-mediated nanoparticle formation in SANS and NMR experiments JF - Nanoscale N2 - An isotopic effect of normal (H2O) vs. heavy water (D2O) is well known to fundamentally affect structure and chemical properties of proteins, for instance. Here we correlate results from small angle X-ray and neutron scattering (SAXS, SANS) with high-resolution scanning transmission electron microscopy to track the evolution of CdS nanoparticle size and crystallinity from aqeuous solution in presence of the organic ligand ethylenediaminetetraacetate (EDTA) at room temperature in both H2O and D2O. We provide evidence via SANS experiments that exchanging H2O by D2O impacts nanoparticle formation by changing the equilibria and dynamics of EDTA clusters in solution as investigated by nuclear magnetic resonance. The colloidal stability of the CdS nanoparticles, covered by a layer of [Cd(EDTA)]2- complexes, is significantly reduced in D2O despite the strong stabilizing effect of EDTA in suspensions of normal water. Hence, conclusions about nanoparticle formation mechanisms from D2O solutions can bare limited transferability to reactions in normal water due to isotopic effects, which thus need to be discussed for contrast match experiments. KW - General Materials Science KW - Quantum dots KW - CdS KW - Deuterium KW - X-ray scattering KW - MOUSE PY - 2023 DO - https://doi.org/10.1039/D3NR02419A SN - 2040-3364 VL - 15 IS - 40 SP - 16413 EP - 16424 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, W. A1 - Schweins, R. A1 - Nöcker, B. A1 - Kohlbrecher, J. A1 - Smales, Glen Jacob A1 - Huber, K. T1 - Comparative study of the co-assembly behaviour of 3-chloro-4-hydroxy-phenylazo dyes with DTAB JF - Soft Matter N2 - The co-assembly of three one-fold negatively charged 3-chloro-4-hydroxy-phenylazo dyes (Yellow, Blue and Red) with the cationic surfactant dodecyltrimethylammoniumbromide (DTAB) was studied to probe dye–DTAB binding stoichiometry and assembly morphology. For each dye, phase separation was observed above a given dye : DTAB ratio with the ratio depending on the dye. While Yellow and DTAB showed liquid/liquid phase separation above Yellow : DTAB = 1 : 1.67, crystalline dye–DTAB complexes were observed for Blue–DTAB and Red–DTAB above Blue : DTAB = 1 : 2.56 and Red : DTAB = 1 : 2.94 respecively. In homogeneous solution, UV/vis spectroscopic investigations suggest stochiometries of Yellow : DTAB = 1 : 2, Blue : DTAB = 1 : 3 and Red : DTAB = 1 : 4. It was concluded, that Yellow exhibits the highest dye : DTAB binding stoichiometry in both, dye–surfactant complexes in the 2-phase region and in solution, whereas the lowest dye : DTAB binding stoichiometry was observed for Red–DTAB in both cases. The observed stoichiometries are inversely correlated to the impact dye addition has on the morphology of DTAB micelles. Generally, addition of dye to DTAB micelles leads to a reduction in spontaneous curvature of these micelles and to the formation of triaxial ellipsoidal or cylindrical micelles from oblate ellipsoidal DTAB micelles. At a DTAB concentration of 30 mM and a dye concentration of 5 mM, this effect was most pronounced for Red and least pronounced for Yellow, whilst Blue showed an intermediate effect. KW - Dye KW - DTAB KW - SAXS KW - Small-angle X-ray scattering KW - X-ray scattering KW - Data analysis KW - Micelle PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576978 DO - https://doi.org/10.1039/D3SM00501A SN - 1744-683X VL - 19 IS - 24 SP - 4588 EP - 4598 PB - Royal Society of Chemistry AN - OPUS4-57697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine JF - Physical chemistry chemical physics (PCCP) N2 - Small-angle X-ray scattering (SAXS) can be used for structural determination of biological macromolecules and polymers in their native states (e.g. liquid phase). This means that the structural changes of (bio-)polymers, such as proteins and DNA, can be monitored in situ to understand their sensitivity to changes in chemical environments. In an attempt to improve the reliability of such experiments, the reduction of radiation damage occurring from exposure to X-rays is required. One such method, is to use scavenger molecules to protect macromolecules against radicals produced during radiation exposure, such as reactive oxygen species (ROS). In this study we investigate the feasibility of applying the compatible solute, osmolyte and radiation protector Ectoine (THP(B)), as a scavenger molecule during SAXS measurements of the single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). In this case, we monitor the radiation induced changes of G5P during bio-SAXS measurments and the resulting microscopic energy-damage relation was determined from microdosimetric calculations by Monte-Carlo based particle scattering simulations with TOPAS/Geant4 and a custom target-model. This resulted in a median-lethal energy deposit of pure G5P at 4 mg mL−1 of E1/2 = 7 ± 5 eV, whereas a threefold increase of energy-deposit was needed under the presence of Ectoine to reach the same level of damage. This indicates that Ectoine increases the possible exposure time before radiation-damage to G5P is observed. Furthermore, the dominant type of damage shifted from aggregation in pure solutions towards a fragmentation for solutions containing Ectoine as a cosolute. These results are interpreted in terms of indirect radiation damage by reactive secondary species, as well as post-irradiation effects, related to preferential-exclusion of the cosolute from the protein surface. Hence, Ectoine is shown to provide a non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies. KW - BioSAXS KW - Bio-SAXS KW - Cosolute KW - Ectoine KW - G5P KW - GVP KW - Radiation damage KW - Radical Scavenger KW - Single-stranded DNA-binding proteins KW - X-ray scattering KW - DNA KW - ssDNA KW - Protein KW - SAXS KW - Small-angle xray scattering KW - McSAS3 KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - Geant4-DNA KW - Topas KW - Topas-MC KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Topas-nBio KW - OH Radical KW - OH radical scavenger KW - LEE KW - Ionizing radiation damage KW - Protein unfolding KW - Ectoin PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568909 DO - https://doi.org/10.1039/d2cp05053f SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5372 EP - 5382 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin T1 - Accessing radiation damage to biomolecules on the nanoscale by particle-scattering simulations JF - Journal of Physics Communications N2 - Radiation damage to DNA plays a central role in radiation therapy to cure cancer. The physico-chemical and biological processes involved encompass huge time and spatial scales. To obtain a comprehensive understanding on the nano and the macro scale is a very challenging tasks for experimental techniques alone. Therefore particle-scattering simulations are often applied to complement measurements and aide their interpretation, to help in the planning of experiments, to predict their outcome and to test damage models. In the last years, powerful multipurpose particle-scattering framework based on the Monte-Carlo simulation (MCS) method, such as Geant4 and Geant4-DNA, were extended by user friendly interfaces such as TOPAS and TOPAS-nBio. This shifts their applicability from the realm of dedicated specialists to a broader range of scientists. In the present review we aim to give an overview over MCS based approaches to understand radiation interaction on a broad scale, ranging from cancerous tissue, cells and their organelles including the nucleus, mitochondria and membranes, over radiosensitizer such as metallic nanoparticles, and water with additional radical scavenger, down to isolated biomolecules in the form of DNA, RNA, proteins and DNA-protein complexes. Hereby the degradation of biomolecules by direct damage from inelastic scattering processes during the physical stage, and the indirect damage caused by radicals during the chemical stage as well as some parts of the early biological response is covered. Due to their high abundance the action of hydroxyl radicals (•OH) and secondary low energy electrons (LEE) as well as prehydrated electrons are covered in additional detail. Applications in the prediction of DNA damage, DNA repair processes, cell survival and apoptosis, influence of radiosensitizer on the dose distribution within cells and their organelles, the study of linear energy transfer (LET), the relative biological effectiveness (RBE), ion beam cancer therapy, microbeam radiation therapy (MRT), the FLASH effect, and the radiation induced bystander effect are reviewed. KW - DNA KW - Protein KW - G5P KW - OH KW - Au KW - AuNP KW - Radiation KW - SSB KW - DSB KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Particle scattering KW - Penelope model KW - Proteins KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Radiotherapy KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - Base damage KW - Base loss KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Double-strand break (DSB) KW - ESCA KW - Hydrated DNA KW - Hydrated electron KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionization KW - Ionisation KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - Prehydrated electron KW - Presolvated electron KW - Quasi-direct damage KW - ROS KW - Radical KW - Reactive oxygen species KW - Single-strand break (SSB) KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - Cosolute KW - Ectoin KW - Ectoine KW - GVP KW - Gene five protein KW - Hydroxyectoine KW - Ionizing radiation damage KW - OH radical scavenger KW - Monte-Carlo simulations KW - Nanodosimetry KW - Osmolyte KW - Particle scattering simulations KW - Protein unfolding KW - Radical Scavenge KW - Radical scavenger KW - Single-stranded DNA-binding proteins KW - SAXS KW - Bio-SAXS KW - X-ray scattering KW - ssDNA KW - dsDNA KW - FLASH effect KW - Bystander effect KW - Ion beam therapy KW - Bragg peak KW - LET KW - MCNP KW - Photons KW - Electrons KW - Carbon ions KW - MRT KW - RNA KW - RBE KW - base loss KW - abasic side KW - DMSO KW - Cells PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573240 DO - https://doi.org/10.1088/2399-6528/accb3f SN - 2399-6528 VL - 7 IS - 4 SP - 042001 PB - Institute of Physics (IOP) Publishing CY - London AN - OPUS4-57324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -