TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Durand, B. A1 - Taché, O. T1 - Nanoparticle size, shape, and concentration measurement at once – two VAMAS pre-standardization projects ready to start JF - Microscopy and Microanalysis N2 - A case study on the TEM analysis of the size and shape distribution of TiO2 bipyramidal nanoparticles prepared on TEM grids was included in the recently published ISO standard ISO 21363. It was agreed to organize at a later stage a second inter-lab comparison with the nanoparticles distributed to the participants as a liquid suspension. Protocols for uniform nanoparticle deposition on suited supports developed and optimized within the EMPIR nPSize project are also prepared to be distributed. For this, we have chosen the VAMAS platform (www.vamas.org) which offers an excellent international infrastructure of laboratories with high competence in nanoparticle measurement. The VAMAS technical working area dedicated to nanoparticle measurement is TWA 34 ‘Nanoparticle populations’. For this type of nanoparticles, the size and shape distributions are the primary parameters to be reported. Due to the good deposition protocols developed, an automated image analysis is enabled (in contrast to the manual analysis of irregular TiO2 nanoparticles. In parallel with the TiO2 nanoparticle exercise, two spherical SiO2 nanoparticle samples with bi-modal size distributions (nominal relative number concentrations of 1:1 and 10:1) are prepared for a second VAMAS inter-lab comparison. Here, the nanoparticle concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations of the two modes. For the absolute nanoparticle concentration to be measured by imaging methods it is necessary to control the volume of the liquid suspension deposited on the substrate and to obtain such a homogeneous nanoparticle deposition on the substrate which allows to count (or extrapolate) all the deposited particles. KW - Electron microscopy KW - Inter-laboratory comparison KW - Nanoparticles KW - SiO2 KW - TiO2 KW - VAMAS PY - 2021 DO - https://doi.org/10.1017/S1431927621008126 VL - 27 IS - Suppl. 1 SP - 2250 EP - 2251 PB - Cambridge University Press AN - OPUS4-53124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticle from suspensions via microarray printing and SEM analysis JF - Journal of Physics: Conference Series N2 - As part of the development of a library of accurate and efficient methods for measurement of nanoparticle properties, we develop and optimize a method for the efficient analysis of nanoparticle size distribution from suspensions via microprinting and digital analysis of electron microscopy (SEM and TEM) images, with the ultimate aim of automated quantitative concentration analysis (calculated from drop volume). A series of different nanoparticle suspensions (gold, latex, and SiO2 in varying sizes and concentrations) were printed onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 nanoparticles/mL and imaged with SEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee-ring effect. KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Microarray printing KW - Sample preparation KW - Nanoparticle concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528455 DO - https://doi.org/10.1088/1742-6596/1953/1/012002 VL - 1953 SP - 012002 PB - IOP Publishing AN - OPUS4-52845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knigge, Xenia A1 - Guo, Z. A1 - Valsami-Jones, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Influence of Sterilization on the Surface of Nanoparticles Studied with XPS / HAXPES in Comparison to SEM / EDS JF - Microscopy and Microanalysis N2 - Nanosafety is becoming increasingly important as nanomaterials are widely used in industrial processes and consumer products. For nanotoxicity measurements prior sterilization of the samples is necessary, but as structure activity relationships are made with properties of pristine particles, the question arises, if the sterilization process has an impact on the physico-chemical properties of nanoparticles and thus on the biological behavior. This question will be addressed in this talk. For this purpose, results from SEM and EDS measurements are combined with those of a novel lab-based HAXPES spectrometer in order to obtain a more complete picture. At the end, an influence of sterilization will be evident, which indicates a restructuring of the nanoparticles owing to sterilization. T2 - Microscopy & Microanalysis 2022 CY - Portland, USA DA - 31.07.2022 KW - XPS KW - HAXPES KW - SEM KW - EDS KW - Nanoparticles PY - 2022 DO - https://doi.org/10.1017/S1431927622004287 VL - 28 SP - 986 EP - 988 PB - Cambridge University Press AN - OPUS4-55352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Morphological Characterization and Chemical Identification of TiO2 Nanoparticles Doped with Ultrafine Metal Particles for Enhanced Photocatalytical Activity JF - Microscopy and Microanalysis N2 - The conversion of solar energy into electricity and solar fuels is of crucial importance for a green and sustainable future. Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen (H2) fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, etc) and metal concentrations will be discussed. KW - Nanoparticles KW - Photocatalysis KW - Electron microscopy KW - EDS KW - Metal-semiconductor PY - 2022 DO - https://doi.org/10.1017/S1431927622010078 VL - 28 IS - Suppl. 1 SP - 2658 EP - 2660 PB - Cambridge University Press AN - OPUS4-55436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Hodoroaba, Vasile-Dan T1 - Towards accurate analysis of particle size distribution for non-spherically shaped nanoparticles as quality control materials JF - Microscopy and Microanalysis N2 - Most industrial nanoparticles have non-spherical shapes and also possess polydisperse size distributions, and due to their agglomeration/ aggregation state are difficult (or even impossible) to be addressed individually. Further, driven by regulatory purposes related to the identification of a material as a nanomaterial, the accurate measurement of the smallest dimension of a (nano)particulate material makes the analysis even more complex. In the first phase of the EU Project nPSize - Improved traceability chain of nanoparticle size measurements (https://www.bam.de/Content/DE/Projekte/laufend/nPSize/npsize.html), the efforts are focused on synthesis of nanoparticles of well-defined, non-spherical shape. Following candidates of reference materials (CRM) with certifiable particle size (distribution) are under characterization with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-60 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). KW - Nanoparticles KW - Imaging KW - Non-spherical KW - Reference material KW - Particle size distribution PY - 2019 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/towards-accurate-analysis-of-particle-size-distribution-for-nonspherically-shaped-nanoparticles-as-quality-control-materials/CD48E9298865410124E22837D8CF73A0 DO - https://doi.org/10.1017/S1431927619012376 SN - 1431-9276 SN - 1435-8115 VL - 25 IS - Suppl. 2 SP - 2328 EP - 2329 PB - Cambridge University Press AN - OPUS4-48856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörenz, Christoph A1 - Tache, O. A1 - Bartczak, D. A1 - Nunez, S. A1 - Abad Alvaro, I. A1 - Goenaga-Infante, H. A1 - Hodoroaba, Vasile-Dan T1 - A Study on the Analysis of Particle Size Distribution for Bimodal Model Nanoparticles by Electron Microscopy JF - Microscopy and Microanalysis N2 - The present study addresses the capability of measurement of relative particle number concentration by scanning electron microscopy for model bimodal silica and gold samples prepared in the frame of the European research project “nPSize - Improved traceability chain of nanoparticle size measurements” as candidate reference nanoparticles. KW - Nanoparticles KW - Particle size distribution KW - Bimodal size distribution KW - Traceability PY - 2020 DO - https://doi.org/10.1017/S1431927620021054 VL - 26 IS - S2 SP - 2282 EP - 2283 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D Understanding of Non-spherical Nanoparticles by Transmission Kikuchi Diffraction (TKD) for Improved Particle Size Distribution by Electron Microscopy JF - Microscopy and Microanalysis N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Electron microscopy KW - TiO2 KW - 3D PY - 2020 DO - https://doi.org/10.1017/S1431927620013999 VL - 26 IS - S2 SP - 260 EP - 261 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Towards Automated Electron Microscopy Image Segmentation for Nanoparticles of Complex Shape by Convolutional Neural Networks JF - Microscopy and Microanalysis N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. KW - Nanoparticles KW - Convolutional neural networks KW - Image segmentation KW - Electron microscopy KW - Automatisation PY - 2020 DO - https://doi.org/10.1017/S1431927620017262 VL - 26 IS - S2 SP - 1188 EP - 1189 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin M. A1 - Plarre, Rüdiger A1 - Hübert, Thomas A1 - Kemnitz, E. ED - Richter, K. ED - Van de Kulien, J.-W. T1 - Termite resistance of pine wood treated with nano metal fluorides JF - European Journal of Wood and Wood Products N2 - Fluorides are well-known as wood preservatives. One of the limitations of fluoride-based wood preservatives is their high leachability. Alternative to current fluoride salts such as NaF used in wood protection are low water-soluble fluorides. However, impregnation of low water-soluble fluorides into wood poses a challenge. To address this challenge, low water-soluble fluorides like calcium fluoride (CaF2) and magnesium fluoride (MgF2) were synthesized as nanoparticles via the fluorolytic sol−gel synthesis and then impregnated into wood specimens. In this study, the toxicity of nano metal fluorides was assessed by termite mortality, mass loss and visual analysis of treated specimens after eight weeks of exposure to termites, Coptotermes formosanus. Nano metal fluorides with sol concentrations of 0.5 M and higher were found to be effective against termites resulting in 100% termite mortality and significantly inhibited termite feeding. Among the formulations tested, the least damage was found for specimens treated with combinations of CaF2 and MgF2 with an average mass loss less than 1% and visual rating of “1”. These results demonstrate the efficacy of low water-soluble nano metal fluorides to protect wood from termite attack. KW - Holzschutzmittel KW - Nanoparticles KW - Fluorides KW - Termites PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514325 DO - https://doi.org/10.1007/s00107-020-01522-z VL - 78 SP - 493 EP - 499 PB - Springer CY - Berlin AN - OPUS4-51432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaillard, C. A1 - Mech, A. A1 - Wohlleben, W. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Ghanem, A. A1 - Weigel, S. A1 - Rauscher, H. T1 - A technique-driven materials categorisation scheme to support regulatory identification of nanomaterials JF - Nanoscale Advances N2 - Worldwide there is a variety of regulatory provisions addressing nanomaterials. The identification as nanomaterial in a regulatory context often has the consequence that specific legal rules apply. In identifying nanomaterials, and to find out whether nanomaterial-specific provisions apply, the external size of particles is globally used as a criterion. For legal certainty, its assessment for regulatory purposes should be based on measurements and methods that are robust, fit for the purpose and ready to be accepted by different stakeholders and authorities. This should help to assure the safety of nanomaterials and at the same time facilitate their international trading. Therefore, we propose a categorisation scheme which is driven by the capabilities of common characterisation techniques for particle size measurement. Categorising materials according to this scheme takes into account the particle properties that are most important for a determination of their size. The categorisation is exemplified for the specific particle number based size metric of the European Commission's recommendation on the definition of nanomaterial, but it is applicable to other metrics as well. Matching the performance profiles of the measurement techniques with the material property profiles (i) allows selecting the most appropriate size determination technique for every type of material considered, (ii) enables proper identification of nanomaterials, and (iii) has the potential to be accepted by regulators, industry and consumers alike. Having such a scheme in place would facilitate the regulatory assessment of nanomaterials in regional legislation as well as in international relations between different regulatory regions assuring the safe trade of nanomaterials. KW - Nanomaterial KW - Nanoparticles KW - Categorisation scheme KW - EC definition of a nanomaterial KW - Regulatory identification of nanomaterials PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471623 DO - https://doi.org/10.1039/C8NA00175H SN - 2516-0230 SP - 1 EP - 11 PB - The Royal Society of Chemistry AN - OPUS4-47162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -