TY - CONF A1 - Saber, Yassin A1 - Clague, Leighton T1 - Automated Fused Filament Fabrication of Ceramics and Metals - Remote and in Space N2 - Component manufacturing in remote (i.e., geographically isolated) settings poses significant challenges where access to conventional manufacturing facilities is limited or non-existent. Fused Filament Fabrication (FFF) enables the rapid manufacturing of plastic, metallic and ceramic components with complex geometries. Ceramic and metallic parts formed by FFF require subsequent debinding and sintering to reach full density. Debinding and sintering are typically executed in separate steps with different equipment, necessitating extensive human handling which hinders process automation and may be challenging for the operator in isolated environments. Here an innovative approach is presented: the integration of all process steps into a single, fully automated system, streamlining the process and minimizing human involvement. Our system combines a dual extrusion filament printer with a porous and heat-resistant ceramic print bed. The porous print bed enables mechanical interlocking of the first printed layers, ensuring adhesion and structural integrity during FFF. Ceramic and metallic parts are printed onto thin sacrificial rafts, which are built using an interface material with the same binder as the loaded filament. After the print is completed, the heat-resistant print bed with all parts is transferred seamlessly with a carrier system into a high-temperature furnace for debinding and sintering. During sintering the sacrificial raft is disintegrated, allowing for unconstrained sintering and easy removal of the finished parts. In conclusion, our integrated approach enables significant advancements in the fabrication of complex ceramic or metallic components in remote environments with increased efficiency and minimal human handling. T2 - AM Forum 2025 CY - Berlin, Germany DA - 17.03.2025 KW - Fused Filament Fabrication KW - Ceramics KW - Metalls KW - Process automation PY - 2025 AN - OPUS4-62745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Siefke, Lennart A1 - Linden, Anna T1 - Towards a robust automated surface inspection method for CT-scanned cannulas N2 - For certain cardiovascular diseases, cannulas are implanted into the blood circuit. To match the patients individual anatomy of the heart, there is research for cannulas to be custom-designed and manufactured aided by 3D printing. However, cannulas have to hold very high standards with regard to the smoothness of their surfaces, as rough patches can lead to formation of blood clots. Therefore, this work uses computer vision to detect such patches as part of quality assurance. First, the produced cannula is scanned using a precise CT scanner and transformed into a 3D mesh object. Rough patches in an otherwise smooth but curved surface are detected by using cosine similarity between neighboring faces and a statistical evaluation. In the end, this method is able to raise a warning when curved surfaces are not smooth enough and visualizes the problematic patches. However, there is just limited access to test data currently and the scanner used needs to be upgraded. T2 - 3D in Science & Applications (3D-iSA) 2024 CY - Berlin, Germany DA - 26.11.2024 KW - Algorithm KW - Additive manufacturing KW - Surface evaluation PY - 2025 UR - https://www.gfai.de SN - 978-3-942709-34-7 SP - 66 EP - 70 AN - OPUS4-63057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linden, Anna T1 - AMVAD - Additive manufacturing for ventricular assist devices N2 - Some children are born with a univentricular heart, meaning their heart has only one pumping chamber instead of two. To improve circulation, patients often undergo the Fontan procedure, which reroutes blood flow — but this can put stress on other organs. In some cases, ventricular assist devices, or VADs, are used to support the heart’s pumping function. This involves an artificial pump connected directly to the patient's heart via silicone-based cannulas. Unique anatomical conditions introduce special challenges for cannula geometry. Additive manufacturing offers innovative solutions by enabling the production of personalized medical devices. The aim of the project is to develop the manufacturing workflow for the individualized cannula from digital imaging of the patient and customized design to additive manufacturing. Besides technical feasibility, validating the entire process is crucial for regulatory approval. The selection and testing of suitable additive manufacturing processes and biocompatible materials for individualized silicone cannulas, ensuring compliance with quality standards for high-risk medical products, will be presented. T2 - AMBER Spotlight On: 3D Printing meets Health & Biotech CY - Berlin, Germany DA - 16.09.2025 KW - Additive manufacturing KW - Medical device KW - Liquid silicone rubber PY - 2025 AN - OPUS4-64101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clozel, Melanie A1 - Neumann, Christian A1 - Thore, Johannes A1 - Kolbe, Matthias A1 - Yang, Fan A1 - Gutowski, Olof A1 - Dippel, Ann-Christin A1 - Ruschel, Lucas M. A1 - Busch, Ralf A1 - Altenbach, Christoph A1 - Akuata, Chijioke Kenneth A1 - Zander, Daniela A1 - Wilbig, Janka A1 - Meyer, Andreas T1 - Microstructure formation during gas flow-assisted additive manufacturing of a metallic glass powder on ground and in microgravity N2 - We studied bulk metallic glasses produced from gas flow-assisted laser-based powder bed fusion process, which is capable of additive manufacturing metallic parts in microgravity. A Zr-based bulk metallic glass composition Zr₅₉ˏ₃Cu₂₈ˏ₈Al₁₀ˏ₄Nb₁ˏ₅ has been processed on ground and in microgravity in a compact sounding rocket payload MARS-M. Microstructure characterization was performed using electron microscopy and X-ray diffraction computed tomography, which cope with small amounts of sample materials, especially for those fabricated under microgravity conditions. Very similar microstructures and crystalline fractions are observed in sample manufactured on ground and in microgravity, which shows that process parameters of conventional laser powder bed fusion for manufacturing metallic glasses can be transferred to the processes in microgravity. Two different origins of crystallization have been identified in the Zr₅₉ˏ₃Cu₂₈ˏ₈Al₁₀ˏ₄Nb₁ˏ₅ sample. The preferred occurrence of CuZr₂ at the interlayer boundaries is likely a result of recrystallization from the undercooled melt and hence associated with laser scanning strategy. In contrast, the more uniformly distributed Al₃Zr₄ phase is considered to be triggered by the formation of Cu₂Zr₄O. Thus, for the fabrication of fully amorphous builds both on ground and in space, our findings point to higher scanning speeds and lower oxygen contents, while the latter can also be used to tune the crystalline fractions in the sample. KW - Gas flow-assisted laser-based powder bed fusion KW - Microgravity KW - Glass-forming alloys KW - X-ray diffraction tomography PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-641253 DO - https://doi.org/10.1007/s40964-025-01275-2 SN - 2363-9512 SP - 1 EP - 14 PB - Springer Science and Business Media LLC CY - Cham, Switzerland AN - OPUS4-64125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller-Elmau, Johanna A1 - Göbel, Artur A1 - Junge, Paul A1 - Müller, Julian A1 - Rousseau, Tom A1 - Görke, Oliver A1 - Nikasch, Christian A1 - Kiliani, Stefan T1 - Thermal cycling of YAG infiltration and plasma sprayed coatings as environmental barrier coating on ceramic heat shields for use in hydrogen operating gas turbines N2 - Environmental barrier coatings (EBC) are intended to protect alumina ceramic tiles in hot water vapor conditions, enabling gas turbines to operate with higher hydrogen content or even pure hydrogen. For these operating conditions, yttrium aluminum garnet (YAG) promises the highest protection against hydrolysis, which can be applied via atmospheric plasmaspraying (APS). To enhance the protection efficiency, the coating is combined with a prior infiltration of the base material. The obtained design acts as in-depth protection even if the coating exhibits cracks. KW - Thermal shock KW - Thermal cycles KW - Environmental barrier coating (EBC) KW - Water vapor corrosion PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639829 DO - https://doi.org/10.1016/j.oceram.2025.100837 VL - 23 SP - 1 EP - 7 PB - Elsevier Ltd. AN - OPUS4-63982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belli, Renan A1 - Hartmann, Sabine A1 - Lubauer, Julia A1 - Pereira, Raíssa Monteiro A1 - Hurle, Katrin A1 - Yin, Ling A1 - Mieller, Björn A1 - Lohbauer, Ulrich T1 - Improving the chipping resistance of pre-sintered zirconia white-bodies N2 - Objectives: The high occurrence of fractures, cracking and chipping of zirconia pre-sintered blanks and blocks during machining decreases their yield and can transfer lifetime-limiting racks to the final sintered restoration. This study has the objective of characterizing the mechanical and fracture properties of two zirconia compositions while varying temperature and time of pre-sintering, in order to assess the space for possible improvement. Methods: We selected two typical granular powders with 3 mol% (3YSZ, Zpex®, Tosoh) or 5 mol% (5YSZ, Zpex Smile®, Tosoh) yttria-stabilized zirconia and two pre-sintered commercial analogs (IPS e.max® ZirCAD MO, Ivoclar and Katana™ STML, Kuraray). The debinding and pre-sintering stages of the experimental powders were characterized using thermal analyses (differential scanning calorimetry and thermogravimetry), and the crystal phase composition was quantified using X-ray diffraction (XRD). Physical and mechanical properties such as density, hardness, flexural modulus, biaxial flexural strength and fracture toughness were measured for two pre-sintering temperatures (1000 ◦C, 1100 ◦C) and increasing holding times at those temperatures (2 h, 4 h, 6 h). The chipping resistance for those conditions was quantified using the edge chipping test using a Vickers diamond indenter. Results: Thermal analyses revealed that both powders show comparable debinding behavior and contained approx. 3.8 mass % organic binder, which burns-out completely between 300 and 400 ◦C. The crystallographic phase changes occurring during the 2–6 h at 1000 ◦C and 1100 ◦C was not detectable in the DSC signal, but quantifiable by XRD. Namely, a major content of monoclinic phase in both powders transforms completely into the two tetragonal phases, starting below 1000 ◦C and concluding above 1100 ◦C. All physical and mechanical properties increased with holding time for both temperatures, though more steeply for pre-sintering at 1100◦C. Edge chipping resistance response was well aligned with other fracture properties, with a more marked improvement for 3YSZ pre-sintered at 1100 ◦C. For all properties, the 3YSZ zirconia showed statistically-higher values for the same temperature-time conditions, in agreement with the values obtained for the commercial materials as well. Significance: The results demonstrate the weakness of pre-sintered zirconia products concerning fracture properties, but also the potential for improvement as related to type of zirconia and pre-sintering conditions. This study outlines the use of a set of mechanical tests that can characterize chipping resistance and guide future research engaging in optimizing the machining resistance of pre-sintered zirconia products. KW - Zirconia KW - Fracture KW - White body KW - Dental materials KW - Pre-sintering PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653457 DO - https://doi.org/10.1016/j.dental.2025.12.012 SN - 0109-5641 SP - 1 EP - 12 PB - Elsevier Inc. AN - OPUS4-65345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cornelio, Andrea T1 - NASICON Electrolytes for Room-Temperature Sodium-Sulfur Batteries with NaK Alloy Negative Electrode Interface N2 - The aim of the research is to develop a novel NASICON (NA Super Ionic CONductor) electrolyte for room-temperature (RT) sodium-sulfur (Na-S) cells employing a liquid sodium-potassium (NaK) alloy at the negative-electrode interface. The NaK alloy can improve the interfacial contact between the sodium-metal electrode and the solid electrolyte. The synthesized NASICON material must be stable with the alkali-metal alloy and provide good electrochemical performance at RT. T2 - 6th Sodium Battery Symposium CY - Dresden, Germany DA - 03.09.2025 KW - Solid Electrolyte KW - NASICON KW - Solid-state batteries KW - Sodium conductors KW - Material synthesis PY - 2025 AN - OPUS4-64080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė T1 - Structural evolution of ZrV2O7: supercell persistence revealing local and global structure duality N2 - In the AM2O7 family of negative thermal expansion materials (NTE), evidence of supercell at room temperature was reported following the Völlenke et al. discovery of missed superlattice due to the apparent linearity of the M-O-M bond in GeP2O7. Korthuis et al. and Khosrovani et al. demonstrated it to be true for cubic ZrV2O7 as well. It was concluded that at room temperature, the structure consists of 27 'subcells' with bent M2O7 groups that appear to form a linear configuration due to refinement of averaged position. However, around 100 °C, the transition to the “parent” cell was reported, where the cell volume increases, and the M-O-M angles are constrained by the Pa-3 space group symmetry to be 180°. We followed structural changes in the ZrV2O7 at high temperatures to demonstrate partial disorder within the crystal, local and global structural duality and supercell persistence at high temperatures. Total scattering measurements and Pair Distribution Function (PDF) analysis revealed that the experimental pattern cannot be fitted with the “parent structure” model, and only the 3×3×3 supercell model can correspond to local and global structures throughout the full 25-700 °C temperature range. We also show how short and long-range order within the crystal changes when approaching the phase transition, which might indicate the existence of coherent structural domains that evolve between order and disorder with increasing temperature. We further hypothesize how this can be related to the negative thermal expansion mechanism and the interpretation of structure solutions presenting data from high-temperature X-ray absorption fine structure (XAFS) and Transmission Electron Microscopy (TEM) measurements. T2 - 5th International Symposium on Negative Thermal Expansion and Related Materials (ISNTE-5) CY - Porto, Portugal DA - 29.07.2025 KW - NTE KW - Ab initio KW - PDF KW - CSM PY - 2025 AN - OPUS4-63874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė T1 - Theoretical and experimental development of negative thermal expansion material ZrV2O7 N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material which stands out for its remarkable isotropic unit cell contraction over a broad temperature range (130°C < T < 800°C). This enables the fabrication of composites where the overall expansion coefficient can be tailored to a specific negative, positive, or neutral value. Consequently, such composite materials are attractive for many device applications because they can compensate for damage caused by thermal expansion. They are relevant to optical systems, electronic and biomedical applications. In this study, we implement ab-initio-based vibrational computations with partially treated anharmonicity (quasi-harmonic approximation (QHA), temperature-dependent effective harmonic potentials (TDEP)[5]) in combination with experimental methods to follow and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder, microstructure, and defects. In analytical techniques that can provide structural information such as pair distribution function analysis (PDF), X-ray diffraction (XRD), and Extended X-ray Absorption Fine Structure (EXAFS), molecules and atoms are fit geometrically without consideration of atom interactions. Therefore, in combination with these methods, we also consider potential energy surfaces and conclude what structures are likely to form energetically in the full NTE temperature range, in addition to fitting experimental data geometrically. We also optimise experimentally fitted structures to their lowest energy configurations and re-generate comparative data to observe what differences would be visible experimentally. T2 - XLVIII International Congress of Theoretical Chemists of Latin Expression CY - Cartagena de Indias, Colombia DA - 13.07.2025 KW - NTE KW - Ab initio KW - QHA KW - TDEP KW - anharmonicity PY - 2025 AN - OPUS4-63873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė T1 - How experimental and computational methods allow us to design negative thermal expansion materials N2 - Combined experimental and computational methods allow comprehensive understanding, design, and tailoring of material properties. We focus on a well-known negative thermal expansion (NTE) material, zirconium vanadate (ZrV2O7), and address synthesis, characterisation and validation of results with computational simulations. Experimental and computational X-ray diffraction and Raman spectroscopy data highlighted differences between phase-pure and multiphase ceramics. These techniques allowed us to distinguish subtle differences in the structure of the material. Based on ab initio simulated phonon data, unaffected by impurities or instrumental errors, we could interpret the Raman spectra and visualise Raman active atom vibrations. These computational models allowed better insight and further experimental improvement while high-quality experimental data granted the validation and improvement of computational simulation strategy. T2 - Application of Neutrons and Synchrotron Radiation in Engineering Materials Science CY - Hamburg, Germany DA - 23.03.2025 KW - NTE KW - Sol-gel KW - Ab initio KW - Raman KW - XRD PY - 2025 AN - OPUS4-62832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Synthesis and testing of beta aluminate sodium electrolyte (BASE) for sodium ion battery development N2 - Sodium beta aluminate, or beta aluminate solid electrolyte (BASE), is an established material for tubular electrolytes in NaNiCl2 and NaS batteries, and a promising candidate for planar electrolytes in safe all solid-state batteries. The synthesis of BASE with high ionic conductivity is still challenging due to process dependent formation of different phases in the sintered material. However, to drive forward the development of active materials for all solid-state sodium ion batteries, the fabrication of solid electrolyte specimens with reproducible performance is required. With respect to the various testing scenarios in the field, for example cell assembly for cycling, electrolyte parts are needed in various shapes, sizes, and thicknesses in the lab. Different ceramic shaping technologies can be applied to produce such geometries, including pressing combined with green or hard machining, or tape casting combined with punching. Typically, different shaping technologies require adapted pre-treatment of the powder which might affect the resulting properties and thus need to be investigated. In this contribution, starting from the raw materials mixture, aspects of milling, drying, aqueous slurry preparation for tape casting, and firing are discussed with respect to particle size distribution, stability, energy consumption and resulting material properties. Finally, the fabrication and cyclic testing of Na/electrolyte/Na coin cells is presented. T2 - XIXth Conference of the European Ceramic Society / SBS6 International Sodium Battery Symposium CY - Dresden, Germany DA - 01.09.2025 KW - Ceramics KW - Beta aluminate solid electrolyte KW - Sodium ion battery PY - 2025 AN - OPUS4-64054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Characterization of Beta-Alumina Solid Electrolyte by Coin Cell Testing N2 - All solid-state batteries (ASSBs) are the subject of widespread research, one reason being their predicted increased safety [1]. Variants of beta-alumina solid electrolyte (BASE), a promising solid electrolyte for sodium ion batteries, exhibit ion conductivities up to 5 mS/cm at room temperature, which motivates targeted research and testing [2]. Dedicated measurement cells for conductivity measurements and cycling of ASSBs are available, providing even pressure and temperature control. However, these are often costly and thus unsuitable for long-term studies with many cells. In contrast, coin cells are a practical and scalable approach for such ASSB studies, despite poor pressure control and other influencing factors that may affect the reproducibility of results [3]. This study investigates the extent to which reliable measurement data can be obtained from symmetrical Na/BASE/Na coin cells. Therefore, several testing procedures and different cell architectures are considered. The experiments are supported by an electrical equivalent circuit model. The modeling approach and both measured and numerically simulated data are presented. The coin cell results are compared to data acquired using a designated ASSB setup (CompreCell and CompreFrame by RHD). T2 - XIXth Conference of the EuropeanCeramic Society / SBS6 InternationalSodium Battery Symposium CY - Dresden, Germany DA - 01.09.2025 KW - Beta aluminate solid electrolyte KW - Coin cell PY - 2025 AN - OPUS4-64055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -