TY - JOUR A1 - Zocca, Andrea A1 - Fateri, M. A1 - Al-Sabbagh, Dominik A1 - Günster, Jens T1 - Investigation of the sintering and melting of JSC-2A lunar regolith simulant N2 - Future lunar exploration can benefit greatly from In-Situ Resource Utilization. Accordingly, the in-Situ Resource Utilization approach highlights the need for detailed analysis of lunar regolith. In this study, JSC-2A Simulant was studied regarding its sintering and melting behaviour using Differential Thermal Analysis under ambient and inert conditions. The minerals at the crystalline peaks were determined using X-Ray Diffraction analysis. Moreover, melting droplet shape and wetting behaviour of pressed regolith samples of different particle size distributions were studied by Hot Stage Microscopy technique. Hot Stage Microscopy experiments were performed at different heating rates under ambient conditions. Bloating effects within the solidified samples were then qualitatively examined by X-ray tomography. Lastly, the optimization of processing strategies for the Additive Manufacturing of lunar regolith is discussed. KW - Lunar regolith KW - Sintering KW - Melting KW - Hot stage microscopy PY - 2020 DO - https://doi.org/10.1016/j.ceramint.2020.02.212 VL - 46 IS - 9 SP - 14097 EP - 14104 PB - Elsevier Ltd. AN - OPUS4-50869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karl, D. A1 - Duminy, T. A1 - Lima, P. A1 - Kamutzki, F. A1 - Gili, A. A1 - Zocca, Andrea A1 - Günster, Jens A1 - Gurlo, A. T1 - Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies N2 - The wet processing of regolith simulant for clay in situ resource utilization (ISRU) on Mars is presented. The two raw materials from the Mars global simulant family, one without clay (MGS-1) and one with clay - sodium montmorillonite smectite - (MGS-1C) were milled and mixed to produce a simulant with small particle size and reduced clay content (MGS-1C/8). All three simulants and the pure clay raw material were extensively characterized using XRF, synchrotron XRD, gas adsorption and gas pycnometry methods. In a straightforward processing approach, MGS-1C/8 was mixed with water and different dispersant approaches were investigated, all of which gave stable slurries. Particle size distribution, rheology, ion concentration, pH and electrical conductivity of these slurries were characterized. The slurry systems can easily be adapted to fit all typical ceramic shaping routes and here parts of varying complexity from slip casting, throwing on a potter's wheel and additive manufacturing, including material extrusion (robocasting) and binder jetting (powder bed 3D printing) were produced. The unique properties of the sodium montmorillonite clay, which is readily accessible in conjunction with magnesium sulfate on the Martian surface, acted as a natural nanosized binder and produced high strength green bodies (unfired ceramic body) with compressive strength from 3.3 to 7.5 MPa. The most elaborate additive manufacturing technique layerwise slurry deposition (LSD) produced water-resistant green bodies with a compressive strength of 30.8 ± 2.5 MPa by employing a polymeric binder, which is similar or higher than the strength of standard concrete. The unfired green bodies show sufficient strength to be used for remote Habitat building on Mars using additive manufacturing without humans being present. KW - Mars KW - Smectite KW - Clay ISRU KW - MGS-1 regolith simulant KW - 3D printing KW - Additive manufacturing PY - 2020 DO - https://doi.org/10.1016/j.actaastro.2020.04.064 VL - 174 SP - 241 EP - 253 PB - Elsevier Ltd. AN - OPUS4-50870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hlavacek, Petr A1 - Gluth, Gregor A1 - Lüchtenborg, Jörg A1 - Sturm, Patrick A1 - Mühler, T. A1 - Kühne, Hans-Carsten A1 - Günster, Jens T1 - A Novel Approach to Additive Manufacturing of Alkali-activated Materials: Laser-induced Slip Casting (LIS) of Lithium Aluminate/Silica Slurries N2 - Additive manufacturing of alkali-activated materials currently attracts a lot of attention, because of the possibility to produce customized high-performance elements for a range of applications, potentially being more resource-efficient than conventionally produced parts. Here, we describe a new additive manufacturing process for alkali-activated materials that is based on selective laser-heating of lithium aluminate/microsilica slurries. The new process-material combination allows to manufacture elements with complex geometries at high building rates and high accuracy. The process is versatile and transferrable to structures of sizes differing by orders of magnitude. The mechanical strength of the obtained materials was in the range of values reported for conventional metakaolin-based geopolymers, and superior to what has been hitherto reported for alkali-activated materials produced by additive manufacturing. This mechanical performance was obtained despite the fact that the degree of reaction of the lithium aluminate and the microsilica was low, suggesting that significant reactions took place only at the surface of the microsilica particles. KW - Laser-induced slip casting KW - Alkali-activated materials KW - Additive manufacturing PY - 2019 DO - https://doi.org/10.29272/cmt.2018.0011 SN - 2612-4882 VL - 1 IS - 2 SP - 138 EP - 144 PB - Techna Group AN - OPUS4-49142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, F. A1 - Ren, H. A1 - Zheng, M. A1 - Shao, X. A1 - Dai, T. A1 - Wu, Y. A1 - Tian, L. A1 - Liu, Y. A1 - Liu, B. A1 - Günster, Jens A1 - Liu, Y. A1 - Liu, Y. T1 - Development of biodegradable bioactive glass ceramics by DLP printed containing EPCs/BMSCs for bone tissue engineering of rabbit mandible defects N2 - Bioactive glass ceramics have excellent biocompatibility and osteoconductivity; and can form direct chemical bonds with human bones; thus, these ceramic are considered as “Smart” materials. In this study, we develop a new type of bioactive glass ceramic (AP40mod) as a scaffold containing Endothelial progenitor cells (EPCs) and Mesenchymal stem cells (BMSCs) to repair critical-sized bone defects in rabbit mandibles. For in vitro experiments: AP40mod was prepared by Dgital light processing (DLP) system and the optimal ratio of EPCs/BMSCs was screened by analyzing cell proliferation and ALP activity, as well as the influence of genes related to osteogenesis and angiogenesis by direct inoculation into scaffolds. The scaffold showed suitable mechanical properties, with a Bending strength 52.7 MPa and a good biological activity. Additionally, when EPCs/BMSCs ratio were combined at a ratio of 2:1 with AP40mod, the ALP activity, osteogenesis and angiogenesis were significantly increased. For in vivo experiments: application of AP40mod/EPCs/BMSCs (after 7 days of in vitro spin culture) to repair and reconstruct critical-sized mandible defect in rabbit showed that all scaffolds were successfully accurately implanted into the defect area. As revealed by macroscopically and CT at the end of 9 months, defects in the AP40mod/EPCs/BMSCs group were nearly completely covered by normal bone and the degradation rate was 29.9% compared to 20.1% in the AP40mod group by the 3D reconstruction. As revealed by HE and Masson staining analyses, newly formed blood vessels, bone marrow and collagen maturity were significantly increased in the AP40mod/EPCs/BMSCs group compared to those in the AP40mod group. We directly inoculated cells on the novel material to screen for the best inoculation ratio. It is concluded that the AP40mod combination of EPCs/BMSCs is a promising approach for repairing and reconstructing large load bearing bone defect. KW - Three-dimensional Bone tissue engineering KW - Endothelial progenitor cell KW - Bone marrow-derived mesenchymal stem cell KW - Bioactive glass scaffold PY - 2020 DO - https://doi.org/10.1016/j.jmbbm.2019.103532 SN - 1751-6161 VL - 103 SP - 103532 EP - 103532 PB - Elsevier Ltd. AN - OPUS4-50491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lima, P. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - Additive manufacturing of SiSiC by layerwise slurry deposition and binder jetting (LSD-print) N2 - The current work presents for the first time results on the Additive Manufacturing of SiSiC complex parts based on the Layerwise Slurry Deposition (LSD) process. This technology allows to deposit highly packed powder layers by spreading a ceramic slurry and drying. The capillary forces acting during the process are responsible for the dense powder packing and the good joining between layers. The LSD process can be combined with binder jetting to print 2D cross-sections of an object in each successive layer, thus forming a 3D part. This process is named LSD-print. By LSD-print and silicon infiltration, SiSiC parts with complex geometries and features down to 1mm and an aspect ratio up to 4:1 could be demonstrated. The density and morphology were investigated for a large number of samples. Furthermore, the density and the mechanical properties, measured by ball-on-three-balls method, were in all three building directions close to isostatic pressed references. KW - Silicon Carbide KW - Additive Manufacturing KW - 3D printing KW - Layerwise slurry deposition KW - LSD print PY - 2019 DO - https://doi.org/10.1016/j.jeurceramsoc.2019.05.009 VL - 2019 IS - 39 SP - 3527 EP - 3533 PB - Elsevier Ltd. AN - OPUS4-48546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hmood, F. A1 - Schmidt, Franziska A1 - Görke, O. A1 - Günster, Jens T1 - Investigation of chemically modified ICIE16 bioactive glass, part II N2 - Chemically modified bioactive glasses based on ICIE16 were prepared with the melt-quenching method using water as a quenching medium. The sinterability of these bioactive glasses was investigated and is discussed in this article. The sintering experiments were conducted with different sintering temperatures, sintering times and heating rates. Those parameters are crucial for dense glass with an amorphous structure. The particle size (d50) of the starting glass powder was determined at 88 μm and kept constant. The pre-pressed glass pellets were cold-isostatically pressed at 300 MPa to a green density of around 63 %. Density development, phase identification, shrinkage behavior and the microstructure were investigated to determine the sinterability of the developed glasses. The glass powders were sintered at different temperatures inside the processing window while crystallization was monitored. The results have shown that the sinterability of the developed glasses strongly dependsonthe proposed chemical additions. The highest density reached was 96 %, which belongs to BP1 glass with sintering conditions of 20 K/min heating rate for 60 min at 750 °C. KW - Bioactive glass KW - Viscous sintering KW - Crystallization KW - Processing window KW - Grain boundary PY - 2019 DO - https://doi.org/10.4416/JCST2019-00031 VL - 11 IS - 1 SP - 1 EP - 9 PB - Göller Verlag AN - OPUS4-49913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Orlov, N. K. A1 - Evdokimov, P. V. A1 - Milkin, P. A. A1 - Garshev, A. V. A1 - Putlayev, V. I. A1 - Grebenev, V. V. A1 - Günster, Jens T1 - Phase equilibria in CaNaPO4-CaKPO4 system and their influence on formation of bioceramics based on mixed Ca-K-Na phosphates N2 - An investigation of the two-component phase diagram of the CaNaPO4- CaKPO4system performed using various analysis techniques is reported. The continuous solid solution series of α-CaMPO4 existing above 700 °C undergoes eutectoid decomposition during cooling to β-CaMPO4-based solid solutions enriched with Na and K, and to an intermediate nonstoichiometric compound with an ideal composition of CaK0.6Na0.4PO4. All three compounds exhibit significant volumetric effects associated with first-order phase transitions, with positive volume changes under cooling for the intermediate compound. Increased K content in ceramics based on CaKyNa1-yPO4 compositions enhances the strength properties of those ceramics, including their fracture toughness, which is associated with increased density. Increased K content also has a smaller effect of inducing phase transformations accompanied by strong volume changes. KW - Phase transformations KW - Bioceramics KW - Mixed Ca-K-Na phosphates KW - Na and K rhenanites KW - Phase diagram PY - 2019 DO - https://doi.org/10.1016/j.jeurceramsoc.2019.07.044 VL - 39 IS - 16 SP - 5410 EP - 5422 PB - Elsevier Ltd. AN - OPUS4-49621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Zocca, Andrea T1 - Dense Powder Beds for the Additive Manufacturing of Ceramics N2 - Many of the most successful and precise additive manufacturing (AM) technologies are based on the deposition layer-by-layer of a flowable powder. Since the first pioneering work at the end of the 1980th many developments have been introduced, greatly extending the use of different materials, improving the physical properties of the components built and enhancing the accuracy of the process. Still very important issues remain nowadays, hampering a completely autonomous production of parts and even restricting the freedom of design by means of these technologies. One of the major issues is the low density and stability of the parts during the building process, which implies the need of support structures: The powder bed surrounding the part has an essential role, since it should support the structure during building, until it’s ready for removal. Moreover, the microstructure of the powder bed is a template for the microstructure of the part produced. In this context, the use of submicron ceramic powders is still a challenge. Three approaches for the stabilization and densification of powder beds will be presented: The Layerwise Slurry Deposition process LSD, the gas flow assisted powder deposition and the Laser Induced Slipcasting (LIS) of ceramic powder compacts. T2 - 43rd International Conference and Exposition on Advanced Ceramics and Composites (ICACC 2019) CY - Daytona Beach, FL, USA DA - 27.01.2019 KW - Ceramics KW - Additive Manufacturing PY - 2019 AN - OPUS4-49627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 1st Sino-German Workshop on 3D Printing in Space CY - Beijing, China DA - 20.02.2019 KW - Zero-g KW - Additive Manufacturing KW - µ-gravity PY - 2019 AN - OPUS4-49628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 2nd Sino-German Workshop on 3D Printing in Space CY - Berlin, Germany DA - 28.10.2019 KW - µ-gravity KW - Additive Manufacturing KW - Zero-g PY - 2019 AN - OPUS4-49629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Gojani, Ardian A1 - Völker, Tobias A1 - Günther, Tobias A1 - Gornushkin, Igor B. A1 - Wilsch, Gerd A1 - Günster, Jens T1 - Investigation of grain sizes in cement-based materials and their influence on laser-induced plasmas by shadowgraphy and plasma imaging N2 - The effect of particle grain sizes in different cement-based mixtures on the laser-induced plasma evolution is studied using two experimental methods: (i) temporal and spatial evolution of the laser-induced shock wave is investigated using shadowgraphy and two-dimensional plasma imaging, and (ii) temporal and spatial distribution of elements in the plasma is investigated using two-dimensional spectral imaging. This study is motivated by the interest in applying laser-induced breakdown spectroscopy (LIBS) for chemical analysis of concrete, and subsequently obtain information related to damage assessment of structures like bridges and parking decks. The distribution of grain sizes is of major interest in civil engineering as for making concrete different aggregate grain sizes defined by a sieving curve (64mm to 0.125 mm) are needed. Aggregates up to a size of 180 μm can be excluded from the data set, therefore only the amount of small aggregates with a grain size below 180 μm must be considered with LIBS. All components of the concrete with a grain size smaller than 0.125mm are related to the flour grain content. Tested samples consisted of dry and hardened cement paste (water-cement ratio w/z=0.5), which served as a reference. Aggregate mixtures were made by adding flour grains (size 40 μm) and silica fume (size 0.1 μm) in different ratios to cement: 10%, 30%, 50% and 60%, all combined to the remaining percentage of dry or hydrated cement. The visualization results show that a dependance in the evolution of the plasma as a function of sample grain size can be detected only in the initial stages of the plasma formation, that is, at the initial 3 μs of the plasma life. Spectral information reveals the elemental distribution of the silicon and calcium in plasma, in both neutral and ionized form. Here also, a significant effect is observed in the first 1 μs of the plasma lifetime. KW - LIBS KW - Cement-based materials KW - Particle size KW - Shadowgraphy KW - Plasma imaging PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105772 VL - 165 SP - 105772 PB - Elsevier B.V. AN - OPUS4-50319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Orlov, Nikolai A1 - Kiseleva, A. K. A1 - Milkini, P. A. A1 - Evdokimov, P. V. A1 - Putlayev, V. I. A1 - Günster, Jens T1 - Potentialities of Reaction Sintering in the Fabrication of High-Strength Macroporous Ceramics Based on Substituted Calcium Phosphate N2 - Calcium alkali metal (potassium and sodium) double and triple phosphates have been synthesized in different ways. Was for the first time used reaction sintering to produce ceramics based on calcium alkali metal mixed phosphates and investigated the densification behavior of mixed phosphate-based multiphase materials during sintering by this method. Was presented the microstructure of polished surfaces of sintered samples differing in phase composition and determined the density of ceramics prepared using reaction mixtures differing in composition. The effect of reaction sintering on the porosity of the ceramics has been assessed. Using stereolithographic printing and reaction sintering, was produced macroporous mixed Calcium phosphate-based ceramic implants. Their compressive strength has been determined to be 0.78 ± 0.21 MPa for two-phase samples and 1.02 ± 0.13 MPa for three-phase samples. KW - Reaction Sintering KW - Bio Ceramics PY - 2020 DO - https://doi.org/10.1134/s0020168520120146 VL - 56 IS - 12 SP - 1298 EP - 1306 PB - Pleiades Publishing LTD AN - OPUS4-52004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karl, D. A1 - Kamutzki, F. A1 - Zocca, Andrea A1 - Görke, O. A1 - Günster, Jens A1 - Gurlo, A. T1 - Towards the colonization of Mars by in-situ resource utilization: Slip cast ceramics from Martian soil simulant N2 - Here we demonstrate that by applying exclusively Martian resources a processing route involving suspensions of mineral particles called slurries or slips can be established for manufacturing ceramics on Mars. We developed water-based slurries without the use of additives that had a 51 wt. % solid load resembling commercial porcelain slurries in respect to the particle size distribution and rheological properties. These slurries were used to slip cast discs, rings and vases that were sintered at temperatures between 1000 and 1130 °C using different sintering schedules, the latter were set-up according the results of hot-stage microscopic characterization. The microstructure, porosity and the mechanical properties were characterized by SEM, X-ray Computer tomography and Weibull analysis. Our wet processing of minerals yields ceramics with complex shapes that show similar mechanical properties to porcelain and could serve as a technology for future Mars colonization. The best quality parts with completely vitrificated matrix supporting a few idiomorphic crystals are obtained at 1130 °C with 10 h dwell time with volume and linear shrinkage as much as ~62% and ~17% and a characteristic compressive strength of 51 MPa. KW - Ceramic KW - Mars PY - 2018 DO - https://doi.org/10.1371/journal.pone.0204025 SN - 1932-6203 VL - 13 IS - 10 SP - e0204025, 1 EP - 7 PB - Public Library of Science CY - San Francisco, Kalifornien, Vereinigte Staaten AN - OPUS4-46612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Orlov, Nikolai A1 - Milkin, P. A1 - Evdokimov, P A1 - Putlayev, V. A1 - Günster, Jens A1 - Nicolaides, Dagmar T1 - Bioceramics from Ca3(PO4)2 - CaKPO4 - CaNaPO4 system for bone replacement and grafting N2 - Biomaterials for bone replacement and grafting should possess sufficient strength, be bioresorbable and demonstrate osteoconductivity/osteoinductivity. Nowadays, hydroxyapatite (HA) and tricalcium phosphate (TCP) are the most widespread ceramics for bone grafting at the market, however, their resorption is reported, in some cases, to be not enough. This is why the search for more soluble ceramics compared to HA and TCP looks rather viable. A possible way to increase ceramics solubility leads to partial substitution of Ca2+-ions in Ca3(PO4)2 by alkali castions, like Na+ or/and K+. Improvement of solubility stems from decreasing lattice energy of a substituted phase, as well as increase in hydration energy of the ions releasing from the phase to ambient solution. From this viewpoint, bioceramics based on compositions from Ca3(PO4)2 - CaKPO4 - CaNaPO4 ternary system seems to be prospective for bone replacement and grafting in sense of resorption properties. At the same time, one should bear in mind that solubility level (resorbability) is governed not only by reduction of lattice energy, but also by microstructure features. Grain sizes and porosity contribute much to dissolution rate making study of sintering of aforementioned ceramics highly important. T2 - Biomaterials and Novel Technologies for Healthcare, 2nd International Biennial Conference BioMaH CY - Frascati (Rome), Italy DA - 08.10.2018 KW - Bio Ceramics KW - Bioresorbable PY - 2018 AN - OPUS4-46035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lüchtenborg, Jörg A1 - Kober, D. A1 - Weber, A. P. A1 - Melcher, J. A1 - Günster, Jens T1 - Textured dense zinc oxide layers for active noise canceling windows N2 - Dense ZnO films with a strong c‐axis texture have been deposited on transparent conductive oxide glass, glass, and Si wafers, respectively, with a two‐step pressureless wet chemical method using zinc acetate dihydrate as Zn‐precursor. The crystallographic structure of the films has been studied with XRD and scanning electron microscopy. Optical measurements reveal a high transparency of the ZnO films with a thickness of up to 10 μm. This new cost‐effective route for ZnO film deposition does not require expensive sophisticated equipment and is easily upscaled. KW - ZnO PY - 2019 DO - https://doi.org/10.1111/jace.15928 SN - 0002-7820 VL - 102 IS - 3 SP - 988 EP - 996 PB - Wiley AN - OPUS4-47519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian T1 - Two-Photon-Polymerization for Ceramics Powder Processing N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with laser light into the volume of a ceramic powder compound its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP) for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - DKG Jahrestagung 2023 CY - Jena, Germany DA - 27.03.2023 KW - Additive Manufacturing KW - Transparent ceramics PY - 2023 AN - OPUS4-59880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian T1 - Two-Photon-Polymerization for Ceramics Powder Processing N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with laser light into the volume of a ceramic powder compound its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP) for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ECerSXVIII Conference Exhebition of the European Ceramic Society CY - Lyon, France DA - 02.07.2023 KW - Additive Manufacturing KW - Transparent ceramics PY - 2023 AN - OPUS4-59883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Moritz A1 - Stawarczyk, Bogna A1 - Günster, Jens A1 - Zocca, Andrea T1 - Influence of additives and binder on the physical properties of dental silicate glass-ceramic feedstock for additive manufacturing N2 - Objectives The aim of the study was to investigate the impact of organic additives (binder, plasticizer, and the cross-linking ink) in the formulation of water-based feedstocks on the properties of a dental feldspathic glass-ceramic material developed for the slurry-based additive manufacturing technology “LSD-print.” Material and methods Three water-based feldspathic feedstocks were produced to study the effects of polyvinyl alcohol (AC1) and poly (sodium 4-styrenesulfonate) (AC2) as binder systems. A feedstock without organic additives was tested as the control group (CG). Disc-shaped (n = 15) and bar (n = 7) specimens were slip-cast and characterized in the green and fired states. In the green state, density and flexural strength were measured. In the fired state, density, shrinkage, flexural strength (FS), Weibull modulus, fracture toughness (KIC), Martens parameters, and microstructure were analyzed. Disc-shaped and bar specimens were also cut from commercially available CAD/CAM blocks and used as a target reference (TR) for the fired state. Results In the green state, CG showed the highest bulk density but the lowest FS, while the highest FS in the green state was achieved with the addition of a cross-linking ink. After firing, no significant differences in density and a similar microstructure were observed for all slip-cast groups, indicating that almost complete densification could be achieved. The CAD/CAM specimens showed the highest mean FS, Weibull modulus, and KIC, with significant differences between some of the slip-cast groups. Significance These results suggest that the investigated feedstocks are promising candidates for the slurry-based additive manufacturing of restorations meeting the class 1a requirements according to DIN EN ISO 6871:2019–01. KW - Firing KW - 3D-printing KW - Silicate glass-ceramics KW - Debinding PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600516 DO - https://doi.org/10.1016/j.jmbbm.2024.106563 SN - 1751-6161 VL - 155 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-60051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diener, S. A1 - Schubert, Hendrik A1 - Günster, Jens A1 - Zocca, Andrea T1 - Ink development for the additive manufacturing of strong green parts by layerwise slurry deposition (LSD-print) N2 - Obtaining dense fine ceramics by the binder jetting additive manufacturing process is challenging. A slurry-based binder jetting process, such as the layerwise slurry deposition (LSD-print) process, can enable the printing of dense ceramic parts. This work describes a procedure to develop and qualify a suitable ink to manufacture silicon carbide green parts by LSD-print. Not only the printability but also the compatibility of the ink with the powder bed and the effect of the binding agent on the properties of the green parts are considered. Both aspects are important to obtain high green strength, which is necessary for printing large or thin-walled parts. Characterization methods, such as rheological and surface tension measurements, are applied to optimize three selected inks. The interplay between ink and powder bed is tested by contact angle measurements and by comparing the biaxial strength of cast and additively manufactured specimens. Out of the three binding agents tested, a polyethyleneimine and a phenolic resin have a high potential for their use in the LSD-print of silicon carbide green bodies, whereas a polyacrylate binding agent did not show the required properties. KW - Silicon carbide KW - Binders/binding KW - Inkjet KW - Printing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567911 DO - https://doi.org/10.1111/jace.18951 SN - 0002-7820 SP - 1 EP - 12 PB - Wiley online library AN - OPUS4-56791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ginés-Palomares, Juan Carlos A1 - Fateri, Miranda A1 - Kalhöfer, Eckhard A1 - Schubert, Tim A1 - Meyer, Lena A1 - Kolsch, Nico A1 - Brandic Lipinska, Monica A1 - Davenport, Robert A1 - Imhof, Barbara A1 - Waclavicek, René A1 - Sperl, Matthias A1 - Makaya, Advenit A1 - Günster, Jens T1 - Laser melting manufacturing of large elements of lunar regolith simulant for paving on the Moon N2 - The next steps for the expansion of the human presence in the solar system will be taken on the Moon. However, due to the low lunar gravity, the suspended dust generated when lunar rovers move across the lunar soil is a significant risk for lunar missions as it can affect the systems of the exploration vehicles. One solution to mitigate this problem is the construction of roads and landing pads on the Moon. In addition, to increase the sustainability of future lunar missions, in-situ resource utilization (ISRU) techniques must be developed. In this paper, the use of concentrated light for paving on the Moon by melting the lunar regolith is investigated. As a substitute of the concentrated sunlight, a high-power CO2 laser is used in the experiments. With this set-up, a maximum laser spot diameter of 100 mm can be achieved, which translates in high thicknesses of the consolidated layers. Furthermore, the lunar regolith simulant EAC-1A is used as a substitute of the actual lunar soil. At the end of the study, large samples (approximately 250 × 250 mm) with interlocking capabilities were fabricated by melting the lunar simulant with the laser directly on the powder bed. Large areas of lunar soil can be covered with these samples and serve as roads and landing pads, decreasing the propagation of lunar dust. These manufactured samples were analysed regarding their ineralogical composition, internal structure and mechanical properties. KW - Regolith KW - ISRU KW - Moon KW - Laser KW - Additive manufacturing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585985 DO - https://doi.org/10.1038/s41598-023-42008-1 SN - 2045-2322 VL - 13 SP - 1 EP - 10 PB - Springer AN - OPUS4-58598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -