TY - CONF A1 - Ávila Calderón, Luis T1 - Creep and fracture behavior of conventionally and additively manufactured stainless steel 316L N2 - A critical task within the frame of establishing process-structure-property-performance relationships in additive manufacturing (AM) of metals is producing reliable and well-documented material behavior’s data and knowledge regarding the structure-property correlation, including the role of defects. After all, it represents the basis for developing more targeted process optimizations and more reliable predictions of performance in the future. Within this context, this contribution aims to close the actual gap of limited historical data and knowledge concerning the creep behavior of the widely used austenitic stainless steel 316L, manufactured by Laser-Powder-Bed-Fusion (L-PBF). To address this objective, specimens from conventional hot-rolled and AM material were tested under application-relevant conditions according to existing standards for conventional material, and microstructurally characterized before and after failure. The test specimens were machined from single blocks from the AM material. The blocks were manufactured using a standard scan and build-up strategy and were subsequently heat-treated. The creep behavior is described and comparatively assessed based on the creep lifetime and selected creep curves and characteristic values. The effect of defects and microstructure on the material’s behavior is analyzed based on destructive and non-destructive evaluations on selected specimens. The AM material shows shorter creep lives, reaches the secondary creep stage much faster and at a lower strain, and features lower creep ductility compared to its conventional counterpart. The creep damage behavior of the AM material is more microstructure than defect controlled and is characterized by the formation and accumulation of single intergranular damage along the whole volume. Critical features identified are the grain morphology and the grain-boundary as well as the dislocation’s density. Micro-computed tomography (µCT) proves to be an alternative to metallography to analyze the creep damage. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - 316L KW - Creep behavior KW - Laser powder bed fusion KW - Additive manufacturing KW - Microstructure PY - 2020 AN - OPUS4-51823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Low cycle fatigue behavior of DED-L Ti-6AL-4V N2 - Laser powder-based directed energy deposition (DED-L) is a technology that offers the possibility for 3D material deposition over hundreds of layers and has thus the potential for application in additive manufacturing (AM). However, to achieve broad industrial application as AM technology, more data and knowledge about the fabricated materials regarding the achieved properties and their relationship to the manufacturing process and the resulting microstructure is still needed. In this work, we present data regarding the low-cycle fatigue (LCF) behavior of Ti-6Al-4V. The material was fabricated using an optimized DED-L process. It features a low defect population and excellent tensile properties. To assess its LCF behavior two conventionally manufactured variants of the same alloy featuring different microstructures were additionally tested. The strain-controlled LCF tests were carried out in fully reversed mode with 0.3 % to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behavior and failure mechanisms are described. For characterization, optical microscopy (OM), scanning electron microscopy (SEM), and micro-computed tomography (µCT) were used. The low defect population allows for a better understanding of the intrinsic material’s properties and enables a fairer comparison against the conventional variants. The fatigue lifetimes of the DED-L material are nearly independent of the test temperature. At elevated test temperatures, they are similar or higher than the lifetimes of the conventional counterparts. At room temperature, they are only surpassed by the lifetimes of one of them. The principal failure mechanism involves multiple crack initiation sites. T2 - Ninth International Conference on Low Cycle Fatigue (LCF9) CY - Berlin, Germany DA - 21.06.2022 KW - AGIL KW - Additive Manufacturing KW - Ti-6Al-4V KW - Low-Cycle-Fatigue KW - Microstructure PY - 2022 AN - OPUS4-55123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Creep Behavior of Stainless Steel 316L Manufactured by Laser Powder Bed Fusion N2 - The broader industrial adoption of metal AM in safety-critical applications is limited, among others, by the still in-sufficient understanding of process–structure–property relationships and a lack of reliable mate-rial data. The content presented here approaches this limitation regarding the creep behavior of one of the most studied AM alloys: PBF-LB/M/316L stainless steel. A nearly as-built and a condition heat treated at 900 °C for 1 h, along with a conventionally manufactured variant are investigated. The creep behavior until reaching the minimum creep rate is mainly determined by the solidification cell structure. The damage is overall mainly intergranular, independent of the heat treated condition. The heat treatment at 900 °C for 1 h partially influenced the microstructure (mainly in terms of cell structure). The creep behavior until reaching the minimum creep rate remained nearly unchanged. The creep lifetime and ductility were enhanced. The crystallographic texture evolved after creep deformation. T2 - TMS 2025 Annual Meeting & Exhibition CY - Las Vegas, NV, USA DA - 23.03.2025 KW - AGIL KW - Creep KW - 316L KW - Microstructure PY - 2025 AN - OPUS4-63456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suarez Ocano, Patricia T1 - Influence of heat-treatment-induced microstructural evolution on the Low Cycle Fatigue behavior of 316L stainless steel fabricated by Laser Powder Bed Fusion N2 - Additive manufacturing, particularly the laser powder bed fusion (PBF-LB/M) process, has gained significant attention in recent years due to its ability to produce complex geometries with enhanced mechanical properties. Among the various materials used, 316L stainless steel is highly favored for cyclically loaded components due to its exceptional mechanical strength, high-temperature performance, and corrosion resistance, making it widely applicable across various industries. 316L SS fabricated by PBF-LB/M (PBF-LB/M/316L) exhibits a unique hierarchical microstructure, with high density of low-angle grain boundaries (LAGBs), nano-dispersed silicates, chemical micro-segregations, and solidification-induced cellular structures. Particularly, the submicron-sized cellular features enriched with chromium (Cr) and molybdenum (Mo), along with high dislocation densities, contribute to a superior strength-ductility balance compared to conventionally manufactured 316L SS. The dispersed silicate particles act also as a strengthening phase, impeding dislocation movement and enhancing plastic deformation resistance. This study explores the effect of heat treatments on the low-cycle fatigue (LCF) behavior of PBF-LB/M/316L at room temperature (RT) and 600 °C. First, three heat treatment conditions were applied to the as-built material: 450 °C for 4 hours (HT450/4), 800 °C for 3 hours (HT800/3), and 900 °C for 1 hour (HT900/1) to investigate their influence on microstructural evolution. Microstructural analysis revealed that the HT450/4 condition preserved the cellular structure with high dislocation density, while the HT800/3 condition showed partial dissolution of cells together with reduction in segregated elements along the cell walls and a reduced dislocation density. The HT900/1 condition resulted in complete segregation and cellular structure dissolution with comparable dislocation density to HT800/3 while maintaining the crystallographic texture and grain morphology. Intermetallic χ phase was mostly observed at the grain boundaries in HT800/3, but not in HT900/1. Fully reversed LCF tests were conducted under strain-controlled conditions with a strain amplitude of 0.8 %. Tests were interrupted at specific intervals to analyze the interaction between hierarchical microstructural features and deformation mechanisms in the three heat-treated conditions. Due to the pronounced dislocation cell structures and elemental segregation, the microstructure of the HT450/4 condition significantly impact deformation and damage mechanisms during cyclic loading, which in turn, differ from the conventional produced counterparts. The results provide insights into the relationship between microstructural features and fatigue performance, highlighting key deformation and failure mechanisms under cyclic loading. T2 - FEMS 2025 EUROMAT 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 14.09.2025 KW - Additive manufacturing KW - 316L stainless steel KW - Heat treatments KW - Low Cycle Fatigue KW - Microstructure PY - 2025 AN - OPUS4-64238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - The Al4-xZr5(Ox-y) Trojan horse in the AlMo0.5NbTiTa0.5Zr refractory high entropy superalloy N2 - Unlike conventional alloys, which typically consist of one main element, high-entropy alloys (HEAs) contain five or more principal elements, which broaden chemical complexity and with it a realm of synergistic mechanisms. The AlMo0.5NbTa0.5TiZr HEA initiated a subclass of Al-containing refractory (r)HEAs that has recently drawn attention [2]. The alloy has a superalloy-resembling B2/bcc nanostructure, which inspired its name refractory high entropy superalloy (RSA). With high-temperature (HT) compressive strengths beyond conventional Ni-based superalloys, this nanostructure could be used for improved HT structural applications. However, in the application-relevant HT regime the Al-Zr-rich B2 phase decomposes to form a hexagonal Al-Zr-based intermetallic (Al4-xZr5; x: 0..1) [3,4]. This work explores the fascinating yet fatal micromechanisms associated to this phase transformation, in the context of creep, annealing and oxidation experiments performed between 800 and 1200 °C. The material was produced by arc-melting and heat treatment in argon, which lead to grain boundaries decorated with up to 7%. Interrupted constant-load creep tests were performed under vacuum (at 10-4 Pa), at 900–1100 °C with external tensile stresses of 30–120 MPa. Oxidation experiments were separately conducted for 24 hours at 800 and 1000 °C in both dry (21% O2 + 79% N2) and humid (8% O2 + 74% N2 + 18% H2O) air. After the experiments, the samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy to reveal degradation mechanisms. Crystallographic texture, orientation relationships and stabilization of an oxygen-containing iso structure (Al4-xZr5(Ox-y); y: 0..x) of the Al-Zr-rich intermetallic are found and discussed. T2 - BCC Superalloy Network Opening Workshop CY - Reutte, Austria DA - 08.02.2024 KW - High entropy alloy KW - Superalloy KW - Degradation KW - Electron microscopy KW - Microstructure PY - 2024 AN - OPUS4-59833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -