TY - CONF A1 - Müller, Ralf A1 - Agea Blanco, Boris A1 - Blaeß, Carsten A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Behrens, H. T1 - Sintering and foaming of silicate N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites or glass bonded ceramics with properties and complex shape. Powder processing, however, can substantially affect sinterability, e.g. by promoting surface crystallization. On the other hand, densification can be hindered by gas bubble formation for slow crystallizing glass powders. Against this background, we studied sintering and foaming of silicate glass powders with different crystallization tendency for wet milling and dry milling in air, Ar, N2, and CO2 by means of heating microscopy, DTA, Vacuum Hot Extraction (VHE), SEM, IR spectroscopy, XPS, and ToF-SIMS. In any case, foaming activity increased significantly with progressive milling. For moderately milled glass powders, subsequent storage in air could also promote foaming. Contrarily, foaming could be substantially reduced by milling in water and 10 wt% HCl. Although all powder compacts were uniaxially pressed and sintered in air, foaming was significantly affected by different milling atmosphere and was found most pronounced for milling in CO2 atmosphere. Conformingly, VHE studies revealed that foaming is mainly driven by carbonaceous species, even for powders milled in other gases. Current results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. T2 - ICG Annual Meeting 2018 CY - Yokohama, Japan DA - 23.09.2018 KW - Foaming KW - Glass KW - Powder KW - Sintering PY - 2018 AN - OPUS4-46474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Analysis of the fatigue strength of various repair concepts for wind turbine rotor blades N2 - High-performance composites, including glass-fiber reinforced plastic (GFRP) materials, are favored as a construction material for wind turbine rotor blades due to their high specific strength and stiffness properties. During the manufacturing process, however, imperfections are often introduced, then further propagated due to harsh environmental conditions and a variety of loads. This leads to failure significantly before their projected 20-year lifespan. As replacement of entire blades can be a costly potential outcome, localized repair of the damaged region to restore structural integrity and thus lengthen its lifespan has become an important issue in recent years. Rotor blades are often repaired using a common technique for composite laminates: adhesively bonded structural repair patches. These methods involve replacing the lost load path with a new material that is joined to the parent structure, and include scarf or plug repairs. However, there currently do not exist any standardized repair procedures for wind turbine rotor blades, as comparisons of blade properties repaired with the existing methods have not been studied in depth. Namely, there is a lack of understanding about the effects of various repair methods on the fatigue life of the shells of rotor blades. This study therefore aims to begin to fill this knowledge gap by testing the influence of different repair patches on the blades’ mechanical properties. Manufactured with the vacuum-assisted resin infusion process, the test specimens are produced as a curved structure with GFRP sandwiching a polyvinyl chloride foam core to best represent a portion of a rotor blade shell. Scarf repairs are then introduced with varying layup techniques, and material properties are examined with cyclical fatigue tests. Crack growth and development is monitored during fatigue testing by various non-destructive testing methods, including passive thermography with an infrared camera system, and a 3D deformation analysis system with ARAMIS. Large deformation fields and detection of in- and out-of-plane deformations is thus possible in-situ. The mechanical behavior and development of defects in the various repaired specimens is compared to each other as well as to reference test specimens with no repair patches. In-situ test data is combined with further non-destructive testing methods, including laminography, and active thermography, to develop a robust understanding of the effects of repair concepts. T2 - MSE Congress 2018 CY - Darmstadt, Germany DA - 26.09.2018 KW - Glass fiber reinforced polymers KW - Lightweight materials KW - Fatigue of sandwich structures KW - Wind turbine blades KW - Sandwich PY - 2018 AN - OPUS4-46102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive Manufacturing of Dense Ceramics with Laser Induced Slip Casting (LIS) N2 - Most additive manufacturing processes which produce dense ceramics are nowadays limited in size because of inevitable post-processing steps like for example binder removal in stereolithography. The additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - CIMTEC 2018 14th Ceramics Congress CY - Perugia, Italy DA - 04.06.2018 KW - Additive Manufacturing PY - 2018 AN - OPUS4-45781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive manufacturing of dense ceramics with laser induced slip casting (LIS) N2 - Most additive manufacturing processes which produce dense ceramics are nowadays limited in size because of inevitable post-processing steps like for example binder removal in stereolithography. The additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - yCAM (Young Ceramists Additive Manufacturing Forum) CY - Padua, Italy DA - 03.05.2018 KW - Additive manufacturing PY - 2018 AN - OPUS4-45782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Busch, R. T1 - Surface Initiated Microstructure Formation in Glass -Ceramics N2 - Übersicht zur Oberflächeninitiierten Mikrostrukturbildung in Glasoberflächen. Dabei wird auf die Kristallvorzugsorientierung senkrecht zur Oberfläche der sich unter Temperatureinfluss behandelten Glasproben eingegangen. Zudem werden die ersten Experimente zur Eingrenzung des Ursprungs dieser Orientierung vorgestellt. N2 - Overview about the surface initiated microstructure formation in glass surfaces. Samples which are exposed to a temperature treatment, can develop a crystalline microstructure above Tg at the surface. These separated crystals can be preferably oriented towards the surface of the sample. First experiments about the origin of these orientation phenomenon as well as the potentially causing mechanisms are presented and discussed within the presentation. T2 - AK Glasig-kristalline Multifunktionswerkstoffe 2019 CY - TU Clausthal, Germany DA - 21.02.2019 KW - Orientation KW - Glass KW - Crystallization KW - Diopside PY - 2019 AN - OPUS4-47537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Diener, S. A1 - Lima, P. A1 - Katsikis, N. T1 - Layerwise Slurry Deposition for the Additive Manufacturing of Ceramics N2 - In powder bed Additive Manufacturing (AM) technologies, a part is produced by depositing and piling up thin powder layers. In each layer, the cross section of the object to build is defined by locally consolidating the powder, by sintering/melting the material (powder bed fusion technologies) or by ink jetting a binder (binder jetting technologies). These are already leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been challenging so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of SLS/SLM and 3DP technologies for advanced ceramic materials. LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade. Each layer is deposited and dried to achieve a highly packed powder layer. The LSD offers high flexibility in the ceramic feedstock used, especially concerning material and particle size, and enables the production of parts with physical and mechanical properties comparable to pressed or slip-casted parts. In this presentation, the LSD technique will be introduced and several examples of application to porcelain, SiC and alumina products will be reported. T2 - ICACC 2019 - 43rd International Conference and Exposition on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 27.01.2019 KW - Additive Manufacturing KW - Ceramic KW - Layerwise KW - Slurry PY - 2019 AN - OPUS4-47865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, P. A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Günster, Jens T1 - Advanced ceramics by powder bed 3D printing N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. However, the flowability of the powder used in these processes is essential to achieve defect-free and densely packed powder layers. For standard powder bed AM technologies, this limits the use of many raw materials which are too fine or too cohesive. This presentation will discuss the possibilities to either optimize the powder raw material to adapt it to the specific AM process, or to develop novel AM technologies which are able to process powders in a wider range of conditions. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of very fine ceramic particles. Another technology, the Gas Flow Assisted Powder Deposition, can increase the stability of the powder bed and the packing density, even in extreme conditions such as in absence of gravitational forces. T2 - yCAM 2019 - young Ceramists Additive Manufacturing Forum CY - Mons, Belgium DA - 03.04.2019 KW - Additive Manufacturing KW - Flowability KW - Ceramic KW - Powder PY - 2019 AN - OPUS4-47867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Lima, P. A1 - Günster, Jens T1 - Additive Manufacturing of Ceramic Materials N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of SLS/SLM and 3DP technologies for advanced ceramic materials. LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade. Each layer is deposited and dried to achieve a highly packed powder layer, which can be used for SLM or for 3DP. This technique offers high flexibility in the ceramic feedstock used, especially concerning material and particle size, and is capable of producing parts with physical and mechanical properties comparable to traditionally shaped parts. In this presentation, the LSD technique will be introduced and several examples of application to porcelain, SiC and alumina products will be reported. T2 - First Sino-German Workshop on 3D Printing in Space CY - Beijin, China DA - 20.02.2019 KW - Additive Manufacturing KW - Ceramic KW - Layerwise PY - 2019 AN - OPUS4-47868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Waitelonis, Jörg A1 - v. Hartrott, Phillip A1 - Hanke, Thomas A1 - Birkholz, Henk A1 - Lau, June A1 - Skrotzki, Birgit T1 - Adapting FAIR Practices in Materials Science: Digital Representation of Material-Specific Characterization Methods N2 - Age-hardenable aluminum alloys undergo precise heat treatments to yield nanometer-sized precipitates that increase their strength and durability by hindering the dislocation mobility. Tensile tests provide mechanical properties, while microstructure evaluation relies on transmission electron microscopy (TEM), specifically the use of dark-field TEM images for precise dimensional analysis of the precipitates. However, this manual process is time consuming, skill dependent, and prone to errors and reproducibility issues. Our primary goal is to digitally represent these processes while adhering to FAIR principles. Ontologies play a critical role in facilitating semantic annotation of (meta)data and form the basis for advanced data management. Publishing raw data, digital workflows, and ontologies ensures reproducibility. This work introduces innovative solutions to traditional bottlenecks and offers new perspectives on digitalization challenges in materials science. We support advanced data management by leveraging knowledge graphs and foster collaborative and open data ecosystems that potentially revolutionize materials research and discovery. T2 - TMS - Specialty Congress 2024 CY - Cleveland, Ohio, US DA - 16.06.2024 KW - FAIR KW - Research Data Management KW - Semantic Interoperability KW - Ontologies KW - Materials and Processes Data Reusability PY - 2024 AN - OPUS4-60375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, P. A1 - Müller, Ralf T1 - The contribution of the Platform MaterialDigital (PMD) in building up a Materials Data Space - Application to glass design and manufacturing N2 - Suitable material solutions are of key importance in designing and producing components for engineering systems – either for functional or structural applications. Materials data are generated, transferred, and introduced at each step along the complete life cycle of a component. A reliable materials data space is therefore crucial in the digital transformation of an industrial branch. A great challenge in establishing a materials data space lies in the complexity and diversity of materials science and engineering. It must be able to handle data from different knowledge areas over several magnitudes of length scale. The Platform MaterialDigital (PMD) is expected to network a large number of repositories of materials data, allowing the direct contact of different stakeholders as materials producers, testing labs, designers and end users. Following the FAIR principles, it will promote the semantic interoperability across the frontiers of materials classes. In the frame of a large joint initiative, PMD works intensively together with currently near 20 research consortia in promoting this exchange (www.material-digital.de). In this presentation we will describe the status of our Platform MaterialDigital. We will also present in more detail the activities of GlasDigital, one of the joint projects mentioned above dealing with the digitalization of glass design and manufacturing. (https://www.bam.de/Content/EN/Projects/GlasDigital/glasdigital.html) T2 - OntoCommons Workshop CY - Berlin, Germany DA - 04.04.2023 KW - Ontology KW - Materials Data Space KW - PMD KW - Glass PY - 2023 AN - OPUS4-60371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kilo, M. A1 - Contreras, A. A1 - Diegeler, A. A1 - Niebergall, R. A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Reinsch, Stefan T1 - New Approaches for the Preparation and Characterisation of New Glasses N2 - The new robot-assisted glass melting device at BAM is presented by the manufacturing team within the joint project GlasDigital together with an automatic thermo-optical measurement technique. T2 - USTV-DGG joint meeting CY - Orleans, France DA - 22.05.2023 KW - Glass KW - Robotic melting PY - 2023 AN - OPUS4-60374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Bruns, S. A1 - Birkholz, H. A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Lau, J. W. A1 - Skrotzki, Birgit T1 - Transforming Materials Science with ontologies, ELN, and LIMS: Semantic Web Solutions for Digitalization and Data Excellence N2 - Following the new paradigm of materials development, design and optimization, digitalization is the main goal in materials sciences (MS) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR (findability, accessibility, interoperability, reusability) principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web Technologies (SWT) are used since they allow for machine-understandable and human-readable knowledge representations needed for data management, retrieval, and (re)use. The project ‘platform MaterialDigital’ (PMD) is part of an initiative that aims to bring together and support interested parties from both industrial and academic sectors in a sustainable manner in solving digitalization tasks and implementing digital solutions. Therefore, the establishment of a virtual material data space and the systematization of the handling of hierarchical, process-dependent material data are focused. Core points to be dealt with are the development of agreements on data structures and interfaces implemented in distinct software tools and to offer users specific added values in their projects. Furthermore, the platform contributes to a standardized description of data processing methods in materials research. In this respect, selected MSE methods are ontologically represented which are supposed to serve as best practice examples with respect to knowledge representation and the creation of knowledge graphs used for material data. Accordingly, this presentation shows the efforts taken within the PMD project to store data in accordance with a testing standard compliant ontological representation of a tensile test of metals at room temperature (ISO 6892-1:2019-11). This includes the path from developing an ontology in accordance with the respective standard up to connecting the ontology and data. The semantic connection of the ontology and data leads to interoperability and an enhanced ability of querying. For further enhanced reusability of data and knowledge from synthesis, production, and characterization of materials, the PMD core ontology (PMDco) was developed as mid-level ontology in the field of MSE. The semantic connection of the tensile test ontology (TTO) to the PMDco leads to enhanced expressivity and interoperability. Moreover, as a best practice example, generation and acquisition of test data semantically connected to the ontology (data mapping) was realized by applying an electronic laboratory notebook (ELN). Corresponding tensile tests were performed by materials science students at university. This enabled a fully digitally integrated experimental procedure that can be transferred to other test series and experiments. In addition to facilitating the acquisition, analysis, processing, and (re)usability of data, this also raises the awareness of students with respect to data structuring and semantic technologies in the sense of education and training. The entire data pipeline is further seamlessly integrable in a laboratory information management system (LIMS). More specifically, the integration of semantic conceptualization and knowledge graphs may become essential parts in LIMS as this would be very beneficial. Therefore, some first approaches of SWT integration in LIMS will also be presented briefly. T2 - TMS Specialty Congress 2024 CY - Cleveland, OH, USA DA - 16.06.2024 KW - Semantic Data KW - Plattform Material Digital KW - Tensile Test Ontology KW - Electronic Lab Notebook KW - Material Life Cycle PY - 2024 AN - OPUS4-60394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S. A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels N2 - In this work, the focus was set on the corrosion process of condensate as drops on the surface of carbon steels (X52, X70), martensitic steel UNS S41500, and superaustenite UNS 08031 in CO2 atmosphere with impurities at 278 K (to simulate the transportation condition in a buried pipeline). Exposure tests were performed at both normal pressure and high pressure where CO2 is supercritical or in dense phase. The drop, 1 ‑ 10 µL in volume, was prepared by dropping CO2 saturated ultra-pure water onto the surface of steel coupons in a one-liter-autoclave. The CO2 gas stream, simulating the oxyfuel flue gas with varying concentration of impurities (SO2 and O2), was then pumped into the autoclave to observe the condensation and corrosion impacts of impurities. Comparable exposure tests were carried out with the same gas mixture and the same volume of water as vapor to observe the drop formation and the corrosion process that follows. The wettability and stability of drops on the surface of steel coupons in CO2 supercritical/dense phase environment was evaluated additionally by contact angle measurement. T2 - NACE 2018 CY - Phoenix, Arizona, USA DA - 15.04.2018 KW - Droplet corrosion KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel PY - 2018 AN - OPUS4-44767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Stargardt, Patrick A1 - Töpfer, Jörg A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Development of textured multilayer thermoelectric generators based on calcium cobaltite N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Multilayer thermoelectric generators (ML-TEGs) are a promising alternative to conventional π-type generators due to their high filling factor, high capability of automated production and the texturing potential during the production process. Calcium cobaltite is a promising thermoelectric oxide (p-type) with highly anisotropic properties. The following study shows the development of a textured unileg ML-TEG using ceramic multilayer technology. Tape-casting and pressure assisted sintering are applied to fabricate textured calcium cobaltite. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10. Thermoelectric properties can be tuned either towards maximum power factor or towards maximum figure of merit depending on the pressure level. As electrical insulation material, a screen-printable glass-ceramic with high resistivity and adapted coefficient of thermal expansion is developed. From various commercial pastes a metallization with low contact resistance is chosen. The unileg ML-TEG is co-fired in one single step. The demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). These results provide the first proof-of-concept for fabricating co-fired multilayer generators based on textured calcium cobaltite with high power factor, high density, and high strength. T2 - Virtual Conference on Thermoelectrics 2021 (VCT) CY - Online meeting DA - 20.07.2021 KW - Thermoelectrics KW - Multilayertechnik KW - Screen printing PY - 2021 AN - OPUS4-52993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Improved thermoelectric properties of CaMnO3 and Ca3Co4O9 by increasing the driving force for sintering N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (Ca3Co4O9, p-type) and calcium manganate (CaMnO3, n-type) are two of the most promising oxide thermoelectric materials. The performance of these materials is evaluated by the power factor PF = S²∙σ and the figure of merit ZT = (PF ∙ T) / κ, demanding high Seebeck coefficient S, high electrical conductivity σ and low thermal conductivity κ. The latter two are increasing with increasing relative sinter density. According to theory, the relative density of ceramics can be improved by increasing the driving force for sintering. This study investigates different approaches to increase the driving force for sintering of Ca3Co4O9 and CaMnO3 to improve densities and thermoelectric properties. The following approaches were applied: minimizing the energy input during powder synthesis by calcination, fine milling of the powder, using reaction-sintering without a powder synthesis step, and adding a transient liquid phase by sinter additives. All different approaches led to an increased densification and thus higher electrical conductivity and higher PF. Thermal conductivity increased as well but not to the same extent. E.g. reaction-sintering increased the densification of Ca3Co4O9 (p-type) and CaMnO3 (n-type). Consequently, the electrical conductivities improved by about 100 % for both oxides leading to superior power factors (PF = 230 µW/mK² for CaMnO3). Although the thermal conductivity increased as well by 8 %, the figures of merit (ZT) were significantly higher compared to conventionally sintered bars. The addition of 4 wt% CuO as a sinter additive to CaMnO3 lowers the sinter temperature from above 1250 °C to below 1100 °C and increases the relative density. Due to the increased density, both electrical conductivity and PF increased by more than 200 % even though the sintering temperature was 150 K lower. T2 - Electroceramics XVII CY - Online meeting DA - 24.08.2020 KW - Thermoelectrics KW - Reaction sintering KW - Sintering additives PY - 2020 AN - OPUS4-51163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Reaction sintering and sintering additives for cost-effective production of thermoelectric oxides N2 - Thermoelectric oxides attract much interest recently. Although their thermoelectric properties are inferior to non-oxides, they exhibit distinct advantages. Thermoelectric oxides are stable in air at higher temperatures, their raw materials are less toxic, and more abundant. To enhance attractivity of these materials for industrial applications, production costs need to be reduced. Conventionally, the legs of thermoelectric generators are sintered from green bodies of previously synthesized powder. Reaction-sintering is a fabrication method without a powder synthesis step, as the final phase is formed during the sintering from a raw material mixture. Moreover, the reduction of chemical potential during reaction-sintering is effective as an additional driving force for sintering. We show that reaction-sintering increases the densification of CaMnO3 (n-type, Sm doped). Consequently, the electrical conductivities improved by about 100 % leading to superior power factors (PF = 230 µW/mK² for CaMnO3). Another approach to reduce the production costs is to lower the sintering temperature by adding sinter additives. The addition of 4 wt% CuO to CaMnO3 lowers the sinter temperature from 1250 °C to 1050 °C. The achieved power factor PF = 264 µW/mK is more than two times higher as reported in literature for the same dopant. T2 - Virtual Conference on Thermoelectrics (VCT) CY - Online meeting DA - 21.07.2020 KW - Thermoelectrics KW - Reaction sintering KW - Sintering additives KW - Calcium manganate KW - Calcium cobaltite PY - 2020 AN - OPUS4-51070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, R. A1 - Rabe, Torsten T1 - Lowering the sintering temperature of calcium manganate CaMnO3 for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (p-type) and calcium manganate (n-type) are two of the most promising oxide thermoelectric materials. The development of cost-effective multilayer thermoelectric generators requires the co-firing of these materials and therefore the adjustment of sintering temperatures. Calcium manganate is conventionally sintered between 1200 °C and 1350 °C. Calcium cobaltite exhibits an undesired phase transition at 926 °C but can be sintered to high relative density of 95 % at 900 °C under axial pressure of 7.5 MPa. Hence, co-firing at 900 °C would be favourable. Therefore, strategies for lowering the sintering temperature of calcium manganate have been investigated. Basically, two approaches are common: i) addition of low melting additives like Bi2O3-ZnO-B2O3-SiO2 (BBSZ) glass or Bi2O3, and ii) addition of additives that form low-melting eutectics with the base material, for example CuO. In this study, several low melting additives including BBSZ glass and Bi2O3, as well as CuO were tested regarding their effect on calcium manganate densification. Bi2O3 did not improve the densification, whereas BBSZ glass led to 10 % higher relative density at 1200 °C. An addition of 4 wt% CuO decreases the temperature of maximum sinter rate from above 1200 °C to 1040 °C. By reducing the particle size of the raw materials from 2 μm to 0.7 μm the maximum sinter rate could be further shifted 20 K towards lower temperatures and the sinter begin decreased from 920 °C to 740 °C. It is shown that eutectic phase formation is more effective in lowering sintering temperature and accelerating densification than low-melting additives. T2 - 93. DKG-Jahrestagung und Symposium Hochleistungskeramik 2018 CY - Munich, Germany DA - 10.04.2018 KW - Thermoelectrics KW - Sinter additive PY - 2018 AN - OPUS4-44818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - López-Galilea, I. A1 - Ruttert, B. A1 - Theisen, W. A1 - Agudo Jácome, Leonardo T1 - Microstructural characterization of the AlMo 0.5 NbTa 0.5 ZrTi refractory complex concentrated alloy N2 - A set of some unexpected and interesting microstructures has put the so-called complex concentrated alloys (CCAs) in the eye of the scientific community and the AlMo0.5NbTa0.5TiZr refractory (r)CCA, aimed at substituting Ni-base superalloys in gas turbine applications, belongs to this alloy family. The AlMo0.5NbTa0.5TiZr rCCA was studied by SEM, EDX, EBSD and TEM, showing the presence of a nanoscopic basket-wave structure inside the grains, with two BCC phases. Additionally, thermodynamic calculations on the AlMo0.5NbTa0.5TiZr alloy were done with two different proprietary databases that anticipate two BCC-disordered phases with distinct constitutions as well as an HCP phase. T2 - Symposium on Advanced Mechanical and Microstructural Characterization of High-Entropy Alloys CY - Bochum, Germany DA - 03.02.2020 KW - High Entropy Alloy KW - EBSD KW - Microstructure Characterization PY - 2020 AN - OPUS4-50729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Creep and fracture behavior of conventionally and additively manufactured stainless steel 316L N2 - A critical task within the frame of establishing process-structure-property-performance relationships in additive manufacturing (AM) of metals is producing reliable and well-documented material behavior’s data and knowledge regarding the structure-property correlation, including the role of defects. After all, it represents the basis for developing more targeted process optimizations and more reliable predictions of performance in the future. Within this context, this contribution aims to close the actual gap of limited historical data and knowledge concerning the creep behavior of the widely used austenitic stainless steel 316L, manufactured by Laser-Powder-Bed-Fusion (L-PBF). To address this objective, specimens from conventional hot-rolled and AM material were tested under application-relevant conditions according to existing standards for conventional material, and microstructurally characterized before and after failure. The test specimens were machined from single blocks from the AM material. The blocks were manufactured using a standard scan and build-up strategy and were subsequently heat-treated. The creep behavior is described and comparatively assessed based on the creep lifetime and selected creep curves and characteristic values. The effect of defects and microstructure on the material’s behavior is analyzed based on destructive and non-destructive evaluations on selected specimens. The AM material shows shorter creep lives, reaches the secondary creep stage much faster and at a lower strain, and features lower creep ductility compared to its conventional counterpart. The creep damage behavior of the AM material is more microstructure than defect controlled and is characterized by the formation and accumulation of single intergranular damage along the whole volume. Critical features identified are the grain morphology and the grain-boundary as well as the dislocation’s density. Micro-computed tomography (µCT) proves to be an alternative to metallography to analyze the creep damage. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - 316L KW - Creep behavior KW - Laser powder bed fusion KW - Additive manufacturing KW - Microstructure PY - 2020 AN - OPUS4-51823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Gadelmeier, C. A1 - Gratzel, U. A1 - Agudo Jácome, Leonardo T1 - High temperature and low stress creep behavior of the refractory chemically complex alloy AlMo 0.5 NbTa 0.5 TiZr N2 - The refractory chemically complex alloy (rCCA) AlMo0.5NbTa0.5TiZr, with a density of 7.4 g/cm3, shows a compressive ultimate strength of 772 MPa at 1000 °C, comparatively surpassing Ni-base and other rCCAs. Its dual-phase microstructure, with a high volume fraction (≈ 62%) of cuboidal and plate-like particles coherently embedded in a continuous matrix, resembles the well-known pattern of the γ/γ" in Ni-base superalloys. Its developers have thus implied that it could stand as structural alloy for high temperature (HT) applications. Here, we report the HT creep properties and the underlying microstructural changes of the rCCA AlMo0.5NbTa0.5TiZr to propose deformation and degradation micromecanisms for this regime. The material was produced by arc-melting and subsequently heat treated in argon: at 1400 °C for 24 h plus a hot isostatic pressure treatment at 1370 °C and 170 MPa for 4 h, with a cooling rate of 10 K/min. Miniaturized tensile specimens (≈ 28 x 7 x 2 mm) were cut and polished to a quality of 1 μm. Creep tests were conducted in vacuum in the respective temperature and stress range 800-1200 °C and 30-120 MPa. For observation, thin slices were extracted from the gauge length, away from the fracture surface, grinded to a thickness of 100 μm, and electropolished to electron transparency. The microstructure was observed on the electropolished specimens using scanning (S) as well as transmission (T) electron microscopy (EM). The Norton plot gives Norton exponents of about 3.1 and 3.2 for temperatures of 1000 and 1100 °C, respectively. Curiously, creep rate minima are very close for a stress level of 30. The starting microstructure reflects a macroscopically lean coarse grain structure and a microscopically fine-meshed basketweave structure with coherency dislocations only around coarsened particles usually close to subgrain boundaries. Results are discussed on the base of variations of this starting microstructure after interrupted and ruptured creep tests. T2 - 15th International Conference on Creep and Fracture of Engineering Materials and Structures CY - Online meeting DA - 14.06.2021 KW - Creep behavior KW - Chemically complex alloy KW - Cow stress PY - 2021 AN - OPUS4-53388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Theissen, W. A1 - Agudo Jácome, Leonardo T1 - Effect of the heat treatment in the microstructure of a refractory chemically complex alloy N2 - A set of some unexpected and interesting microstructures has put the so-called complex concentrated alloys (CCAs) in the eye of the scientific community. The AlMo0.5NbTa0.5TiZr refractory (r)CCA, aimed at substituting Ni-base superalloys in gas turbine applications, belongs to this alloy family. After a two-stage heat treatment, this rCCA morphologically resembles the typical a two-phase microstructure of the latter. The objective of this work consists in determining the effect of the two stages of the heat treatment on the microstructure of the AlMo0.5NbTa0.5TiZr alloy to eventually improve it in terms of homogeneity and porosity. T2 - Third International Conference on High Entropy Materials (2020) CY - Berlin, Germany DA - 27.09.2020 KW - Annealing KW - Hot isostatic pressing KW - Refractory chemically complex alloy KW - Microstructure PY - 2020 AN - OPUS4-53386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehmann, N. A1 - Lenting, C. A1 - Stawski, T. M. A1 - Agudo Jácome, Leonardo T1 - Anhydrite formation in planetary surface environments - The case of the Atacama Desert N2 - Gypsum (CaSO4∙2H2O), bassanite (CaSO4∙0.5H2O), and anhydrite (CaSO4) are essential evaporite minerals for the evolution of hyper-arid surface environments on Earth and Mars (Voigt et al. 2019; Vaniman et al. 2018). The formation mechanism of especially anhydrite has been a matter of scientific debate for more than a century (van’t Hoff et al. 1903). To date, there exists no model that can reliably predict anhydrite formation at earth’s surface conditions. While thermodynamics favor its formation, it is hardly achieved on laboratory time scales at conditions fitting either the Atacama Desert on Earth, or the surface of Mars (Wehmann et al. 2023). In light of most recent developments (e.g. Stawski et al. 2016), that advocate for a complex, non-classical nucleation mechanism for all calcium sulphates, we present an analysis of natural samples from the Atacama Desert to identify key features that promote the nucleation and growth of anhydrite under planetary surface conditions. Our analyses reveal at least three distinct anhydrite facies, with differing mineralogy and micro- to nano-structures. The facies are (1) aeolian deposits with sub-μm grain sizes, (2) (sub-)surface nodules that formed from aeolian deposits and (3) selenites with secondary anhydrite rims. Possible mechanisms of their formation will be discussed. T2 - 10th Granada-Münster Discussion Meeting CY - Münster, Germany DA - 29.11.2023 KW - Calcium sulfates KW - Nucleation KW - Planetary surface KW - Hyper-arid PY - 2023 AN - OPUS4-59111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, O. A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Corrosive CO2-stream components, challenging for materials to be used in CC(U)S applications N2 - This contribution provides current findings regarding materials susceptibility for CCUS applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2 stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide the following recommendations for certain parts. Commercially available carbon steels are suitable for compression and pipelines as long as moisture content and impurities are limited (water 50 to 100 ppmv, SO2 and NO2 ca. 100 ppmv). Corrosion rates increase with increasing water content (0.2 – 20 mm/a). Condensation of acids and therefore droplet formation is always possible, even at low water contents. A low SO2 content within the CO2-stream might be more important than a low water content. Cr13-steels showed a general susceptibility to shallow pitting and pitting. So, they seem to be not suitable for CCUS applications. Low alloyed steels showed better corrosion behavior (predictable uniform corrosion). For direct contact with saline aquifer fluids only high alloyed steels shall be used. T2 - WCO Webinar on the occasion of Corrosion Awareness Day - Corrosion and Low-Carbon Energies CY - Frankfurt, Germany DA - 24.04.2020 KW - CO2-corrosion KW - CCUS KW - Pipeline KW - Carbon Capture PY - 2020 AN - OPUS4-50699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Gadelmeier, C. A1 - Gratzel, U. A1 - Agudo Jácome, Leonardo T1 - Creep Properties of the Refractory Chemically Complex AlMo 0.5 NbTa 0.5 TiZr Alloy N2 - The development of refractory CCAs has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy, which resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. The aim of this work is to evaluate the alloy’s mechanical behavior under tension in the temperature range 800-1000°C, by applying creep tests under vacuum (excluding oxidation effects). Some little temperature influence on minimum creep rate @ 1000 and 1100 °C was found and at a first glance, and Norton plots shows that deformation is probably both diffusion and dislocation controlled. However, further work is needed to stablish deformation and degradation micro mechanisms in the studied creep regime. T2 - SPP Kick-Off Meeting 2nd Phase CY - Online meeting DA - 14.04.2021 KW - Creep behavior KW - Chemically complex alloy KW - Microstructure PY - 2021 AN - OPUS4-53389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Analysis of reaction layers and cooling simulations of co-fired thermoelectric multilayers N2 - Ceramic multilayer technology is an attractive approach for the cost-effective fabrication of thermoelectric generators. Therefore, efforts are being made to co-sinter two promising thermoelectric oxides, namely calcium cobaltite and calcium manganate. In this study, calcium cobaltite, calcium manganate and release tapes were pressure assisted sintered. A major challenge here is the cracking of calcium manganate during cooling. A relationship between the properties of the release tape used in pressure-assisted sintering and the cracking behavior was observed experimentally. To understand the origin of failure, formed reaction layers in the multilayer were analyzed by EDX and grazing incident XRD. Based on this analysis, bulk samples were prepared, and thermal expansion and Young's modulus and were determined thereon, if they were not known from the literature. The biaxial strength of the thermoelectric oxides was determined by the ball on three ball method. The thermal stresses during cooling of different multilayer designs were estimated by finite element simulations. The stresses caused by the reaction layers turned out to be negligible. The FEM study indicated further, and a validation experiment proved, that the thickness of the release tape has the main effect on thermal stresses during cooling in single material. For best performance, the design of a thermoelectric multilayer generator needs to consider thermoelectric performance and thermal stresses during cooling. T2 - Virtual Conference on Thermoelectrics CY - Online meeting DA - 20.07.2021 KW - Ceramic multilayer KW - Cooling simulations KW - Thermal stress KW - Thermoelectric PY - 2021 AN - OPUS4-52994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning A1 - Dayani, Shahabeddin A1 - Mishurova, Tatiana A1 - Eddah, Mustapha A1 - Mieller, Björn A1 - Böttcher, Nils A1 - Bruno, Giovanni T1 - Tomographic Imaging Capabilities with hard X-Rays at BAMline (Bessy II) N2 - The BAMline at the synchrotron X-ray source BESSY II (Berlin, Germany) is supporting researchers especially in materials science. As a non-destructive characterization method, synchrotron X-ray imaging, especially tomography with hard X-Rays, plays an important role in structural 3D characterization. The imaging capabilities allow for in-situ and operando experiments. In this presentation the equipment, data handling pipeline as well as various examples from material science are presented. T2 - Correlative Materials Characterization Workshop 2023 CY - Brno, Czech Republic DA - 09.11.2023 KW - Tomography KW - X-ray imaging KW - Li-ion battery PY - 2023 AN - OPUS4-58958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Ávila Calderón, Luis A. A1 - Rehmer, Birgit A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Effect of heat treatment on the hierarchical microstructure and properties of 316L stainless steel produced by Laser Powder Bed Fusion (PBF-LB/M). N2 - Laser Powder Bed Fusion (PBF-LB/M) of AISI 316L stainless steel has gained popularity due to its exceptional capacity to produce complex geometries and hierarchical microstructures, which can increase the yield strength while maintaining good ductility. Nevertheless, owing to high thermal gradients encountered during the process, the as printed 316L stainless steel often exhibit microstructural heterogeneities and residual stresses, which can limit its performance in demanding environments. Hence, employing heat treatments which balance the reduction of residual stresses while retaining improved static strength may be beneficial in various scenarios and applications. This study investigates the impact of post-processing heat treatments on the microstructure of 316L stainless steel manufactured via PBF-LB/M, along with its correlation with micro-hardness properties. To this end, 6 different heat treatments, i.e., 450 °C for 4h, 700 °C for 1h, 700 °C for 3h, 800 °C for 1h, 800 °C for 3h, and 900 °C for 1h, were applied to different specimens and Vickers hardness measurements (HV1) were performed in all states. At 800 °C, although the cellular structure appears to be retained, there is an observable increase in cellular size. However, while treatments exceeding 900 °C indicate no significant grain growth compared to other conditions, the cellular structure is entirely dissolved, which leads to a reduced Vickers hardness. The effect of the heat treatments on other microstructural features such as grain size and morphology, melt pool boundaries (MPB), crystallographic texture, chemical segregation, dispersoids and phase stability are also discussed in the present work T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Heat treatment KW - Microstructure PY - 2024 AN - OPUS4-60304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Influence of testing conditions on dielectric strength of alumina N2 - Dielectric strength testing of ceramics is simple and yet challenging. The execution of a breakthrough voltage measurement of a given sample is fast and straightforward. ASTM D149 describes the standardized procedure. But, there are versatile effects of test conditions and sample properties that affect the result of such a measurement. As one example, ASTM D149 allows different sizes of test electrodes and does not unambiguously prescribe the condition of the electrodes. Thus, different electrode configurations are used in the field. We conducted several test series on alumina samples to comprehensively quantify the effect of test conditions and sample properties on dielectric strength results. In our study, testing of alumina substrates using different electrode configurations resulted in differences of mean values of up to 20%. Further test series on alumina focused on the effect of voltage ramp rate. The results are complemented by calculations of failure probability at different voltage levels and corresponding withstand voltage tests. We conclude that a communication and comparison of single dielectric strength values is insufficient and may be misleading. A meaningful comparison of dielectric strength studies from different sources requires a thorough consideration of test conditions. T2 - 93rd DKG Annual Meeting CY - Munich, Germany DA - 10.04.2018 KW - Alumina KW - Dielectric strength KW - Withstand voltage tests PY - 2018 AN - OPUS4-44692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Bresch, Sophie A1 - Marucha, P. A1 - Moos, R. A1 - Rabe, Torsten T1 - Sintering and interconnecting thermoelectric oxides for energy applications N2 - Today, more than 12% of the primary energy is lost in the form of waste heat. Thermoelectric generators (TEGs) can convert waste heat directly into electrical power by utilizing the Seebeck effect. The performance of such a generator is defined by a dimensionless figure of merit ZT of the thermoelectric pairs and the resistance R of the metallic contacts between these pairs. The figure of merit of thermoelectric oxides is considerably smaller compared to semiconductors. Still, thermoelectric oxides like calcium cobaltite (Ca3Co4O9) are attractive for applications at elevated temperatures in air. In contrast to the established π-type architecture of common TEGs, tape casting and multilayer technology may be applied for cost-effective manufacturing of oxide TEGs. Promising demonstrations of multilayer TEGs have been published in the last years. Still, the development of reliable and scalable manufacturing processes and proper material combinations is necessary. The aim of our project is to evaluate the feasibility of low temperature co-fired ceramics (LTCC) technology for a practical manufacturing of oxide multilayer TEGs of Ca3Co4O9 (p-type) and calcium manganate (CaMnO3, n-type). Ca3Co4O9 exhibits an undesired phase decomposition at 926 °C. Because of that, the application of sintering strategies and interconnect concepts well known from LTCC technology is a promising approach. We present results of pressure-assisted sintering of Ca3Co4O9 multilayer at 900 °C and axial pressures of up to 7.5 MPa. Ca3Co4O9 was produced by solid state reaction of CaCO3 and cobalt(II,III)oxide at 900 °C. Green tapes were prepared by a doctor-blade process, manually stacked and laminated by uniaxial thermocompression. Sintering was conducted in a LTCC sintering press between SiC setter plates. The thickness shrinkage was recorded by an in-situ technique. After sintering under 7.5 MPa, the microstructure of the single phase material shows a high density of 95 % and an advantageous alignment of the platelet grains. This results in good electrical conductivity and a comparatively high ZT of 0.018 at room temperature. However, the lowering of CaMnO3 sintering temperature from above 1200 °C to below 920 °C remains a challenge. To select a proper metal paste for interconnections of an oxide TEG, several pastes have been investigated regarding contact resistance of internal and external (soldered) connections in a preliminary study. Commercial pastes containing Ag, Au, Au/Pt, Ag/Pd, and Ag/Pd/Bi were manually applied and post-fired on sintered test bars of Ca3Co4O9 and CaMnO3 at 900 °C for 2 h. All tested pastes formed mechanically stable metallization after firing. For resistance measurement, 4-wire method and a custom-made probe head were used. The contacts on Ca3Co4O9 exhibit significantly (2-sample t-test, α = 5%) higher resistance compared to contacts on CaMnO3. Pure silver paste exhibits the lowest resistance for internal contacts on both materials, lower than 5 mΩ on CaMnO3. Ag/Pd/Bi paste resulted in conspicuously high variance of resistance. EDX analyses clarified an enrichment of Bi in the thermoelectric material near the interface and thereby the formation of an oxide layer with probably high electrical resistance. The thickness of that layer varies with the thickness of metallization. In conclusion, the use of Bi containing pastes is not advisable. Pure Ag paste shows the best results regarding resistance and solderability. T2 - CICMT 2018 CY - Aveiro, Portugal DA - 18.04.2018 KW - Thermoelectric oxide KW - Thermoelectric generator KW - Multilayer technology KW - Pressure-assisted sintering PY - 2018 AN - OPUS4-44740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Practical breakdown voltage calculations using dielectric breakdown strength reference values N2 - Dielectric breakdown is a catastrophic failure of ceramic substrates and insulators. The use of dielectric breakdown strength (DBS) reference values for the dimensioning of such components is not straightforward, as the DBS depends on sample thickness and electrode area. This fact also hampers a valid comparison of data taken from different literature sources. Based on the empirically confirmed proportionality of DBS to the reciprocal square root of sample thickness and an approach to account for the influence of electrode area on the failure probability, a practical equation is derived to calculate the breakdown voltage for arbitrary sample thickness and electrode area from one set of DBS reference data. To validate the equation, the AC DBS of commercial alumina substrates with thicknesses ranging from 0.3 mm to 1.0 mm was performed using different printed electrodes with varying areas. The breakdown voltages comprise a range from 18 kV for thick samples to 8.5 kV for thin samples, resulting in DBS values from 17 kV/mm for 1.0 mm thick samples to 29 kV/mm for 0.3 mm thin samples, all made from the same material. The influence of electrode area is comparatively smaller. The results calculated with the proposed equation are in reasonable accordance with the measured data. Thus, the equation can be applied for a proper comparison of literature DBS data measured in different setups and for a reasonable estimation of breakdown voltages in DBS tests and applications based on reference data. T2 - Electroceramics Conference XVII CY - Online meeting DA - 24.08.2020 KW - Ceramics KW - Dielectric breakdown KW - Weibull distribution PY - 2020 AN - OPUS4-51151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kianinejad, kaveh A1 - Fedelich, Bernard A1 - Darvishi Kamachali, Reza A1 - Schriever, Sina A1 - Manzoni, Anna Maria A1 - Agudo Jácome, Leonardo A1 - Megahed, Sandra A1 - Kamrani, Sepideh A1 - Saliwan-Neumann, Romeo T1 - Experimentally informed multiscale creep modelling of additive manufactured Ni-based superalloys N2 - Excellent creep resistance at elevated temperatures, i.e. T / T_m> 0.5, due to γ-γ’ microstructure is one of the main properties of nickel-based superalloys. Due to its great importance for industrial applications, a remarkable amount of research has been devoted to understanding the underlying deformation mechanism in a wide spectrum of temperature and loading conditions. Additive manufactured (AM) nickel-based superalloys while being governed by similar γ-γ’ microstructure, exhibit AM-process specific microstructural characteristics, such as columnar grains, strong crystallographic texture (typically <001> fiber texture parallel to build direction) and compositional inhomogeneity, which in turn leads to anisotropic creep response in both stationary and tertiary phases. Despite the deep insights achieved recently on the correlation between process parameters and the resulting microstructure, the anisotropic creep behavior and corresponding deformation mechanism of these materials are insufficiently understood so far. One reason for this is the lack of capable material models that can link the microstructure to the mechanical behavior. To overcome this challenge, a multiscale microstructure-based approach has been applied by coupling crystal plasticity (CP) and polycrystal model which enables the inclusion of different deformation mechanisms and microstructural characteristics such as crystallographic texture and grain morphology. The method has been applied to experimental data for AM-manufactured INCONEL-738LC (IN738). The effect of different slip systems, texture, and morphology on creep anisotropy at 850°C has been investigated. Results suggest a strong correlation between superlattice extrinsic stacking fault (SESF) and microtwinning and observed creep anisotropy. T2 - EUROMAT 23 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - IN738LC KW - Creep anisotropy KW - Crystal plasticity PY - 2023 AN - OPUS4-58263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2023 AN - OPUS4-58285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Werner, Tiago A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Microstructure Based Study on the Low Cycle Fatigue Behavior of Stainless Steel 316L manufactured by Laser Powder Bed Fusion N2 - Due to the advantages of Laser Powder Bed Fusion (PBF-LB), i.e., design freedom and the possibility to manufacture parts with filigree structures, and the considerable amount of knowledge available for 316L in its conventional variant, the mechanical behavior, and related microstructure-property relationships of PBF-LB/316L are increasingly subject of research. However, many aspects regarding the - application-relevant - mechanical behavior at high temperatures are not yet fully understood. Here, we present the results of an experimental study on the LCF behavior of PBF-LB/316L featuring a low defect population, which makes this study more microstructure-focused than most of the studies in the literature. The LCF tests were performed between room temperature (RT) and 600 °C. The mechanical response is characterized by strain-life curves, and hysteresis and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, and optical and electron microscopy. The PBF-LB/M/316L was heat treated at 450 °C for 4 h, and a hot‑rolled (HR) 316L variant with a fully recrystallized equiaxed microstructure was tested as a reference. Besides, selected investigations were performed after a subsequent heat treatment at 900 °C for 1 h. The PBF-LB/316L exhibits higher cyclic stresses than HR/316L for most of the fatigue life, especially at room temperature. At the smallest strain amplitudes, the fatigue lives of PBF-LB/M/316L are markedly shorter than in HR/316L. The main damage mechanisms are multiple cracking at slip bands (RT) and intergranular cracking (600 °C). Neither the melt pool boundaries nor the gas porosity have a significant influence on the LCF damage mechanism. The cyclic stress-strain deformation behavior of PBF-LB/M/316L features an initial hardening followed by a continuous softening. The additional heat treatment at 900 °C for 1 h led to decreased cyclic stresses, and a longer fatigue life. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - AGIL KW - 316L KW - Microstructure KW - Low Cycle Fatigue KW - Heat Treatment KW - Laser Poeder Bed Fusion PY - 2024 AN - OPUS4-60432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Jan Zia, Ghezal Ahmad A1 - Hanke, Thomas A1 - Völker, Christoph A1 - Bayerlein, Bernd T1 - Improving the Reproducibility of Characterization and Quantification of Precipitates through Automated Image Processing and Digital Representation of Processing Steps N2 - The strength of age-hardenable aluminum alloys is based on the controlled formation of nm-sized precipitates, which represent obstacles to dislocation movement. Transmission electron microscopy (TEM) is generally used to identify precipitate types and orientations and to determine their size. This geometric quantification (e.g., length, diameter) is often performed by manual image analysis, which is very time consuming and sometimes poses reproducibility problems. The present work aims at the digital representation of this characterization method by proposing an automatable digital approach. Based on DF-TEM images of different precipitation states of alloy EN AW-2618A, a modularizable digital workflow is described for the quantitative analysis of precipitate dimensions. The integration of this workflow into a data pipeline concept is also presented. The semantic structuring of data allows data to be shared and reused for other applications and purposes, which enables interoperability. T2 - ICAA19 International Conference on Aluminum Alloys CY - Atlanta, GA, USA DA - 23.06.2024 KW - Digital representation KW - Automatable digital approach KW - Digital workflow KW - Quantitative image analysis KW - Data pipeline concept KW - Semantic structuring KW - Interoperability KW - FAIR data management PY - 2024 AN - OPUS4-60427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Han, Ying A1 - Kruse, Julius A1 - Radners, Jan A1 - Madia, Mauro A1 - von Hartrott, Philipp T1 - Fatigue Behavior at Elevated Temperature of Alloy EN AW-2618A N2 - The influence of test temperature and frequency on the fatigue life of the alloy EN AW-2618A (2618A) was characterized. The overaged condition (T61 followed by 1000 h/230 °C) was investigated in load-controlled tests with a stress ratio of R = -1 and two test frequencies (0.2 Hz, 20 Hz) at room temperature and at 230°C, respectively. An increase in the test temperature reduces fatigue life, whereby this effect is more pronounced at lower stress amplitudes. Decreasing the test frequency in tests at high temperatures further reduces the service life. T2 - ICAA19 International Conference on Aluminum Alloys CY - Atlanta, GA, USA DA - 23.06.2024 KW - Aluminium alloy KW - EN AW 2618A KW - Fatigue KW - Overaging KW - Damage behavior PY - 2024 AN - OPUS4-60426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Oriented Surface Crystallization in Glasses N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. For silicate glasses we found a good correlation between the calculated surface energy of crystal faces and oriented surface nucleation. Surface energies were estimated assuming that crystal surfaces resemble minimum energy crack paths along the given crystal plane. This concept was successfully applied at the Institute of Physics of Rennes in calculating fracture surface energies of glasses. Several oriented nucleation phenomena can be herby explained assuming that high energy crystal surfaces tend to be wetted by the melt. This would minimize the total interfacial energy of the nucleus. Furthermore, we will discuss the evolution of the microstructure and its effect on the preferred crystal orientation. T2 - ACerS GOMD 2024- Glass & Optical Materials Division Meeting CY - Las Vegas, NV, USA DA - 19.05.2024 KW - Surface nucleation KW - Oriented surface crystallization KW - Surface energy PY - 2024 AN - OPUS4-60238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Undesired Foaming of Silicate Glass Powders N2 - The manufacture of sintered glasses and glass-ceramics, glass matrix composites, and glass-bounded ceramics or pastes is often affected by un-expected gas bubble formation also named foaming. Against this background, in this presentation the main aspects and possible reasons of foaming are shown for completely different glass powders: a barium silicate glass powders used as SOFC sealants, and bioactive glass powders using different powder milling procedures. Sintering and foaming were measured by means of heating microscopy backed up by XRD, differential thermal analysis (DTA), vacuum hot extraction (VHE), optical and electron microscopy, and infrared spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Different densification was reached followed by significant foaming starting partly immediately, partly at higher temperature. Foaming increased significantly as milling progressed. For moderately milled glass powders, subsequent storage in air could also promote foaming. Although the milling atmosphere significantly affects the foaming of uniaxially pressed powder compacts sintered in air. VHE studies show that foaming is driven by carbon gases and carbonates were detected by Infrared spectroscopy to provide the major foaming source. Carbonates could be detected even after heating to 750 °C, which hints on a thermally very stable species or mechanical trapping or encapsulating of CO2. Otherwise, dark gray compact colors for milling in isopropanol indicate the presence of residual carbon as well. Its significant contribution to foaming, however, could not be proved and might be limited by the diffusivity of oxygen needed for carbon oxidation to carbon gas. T2 - Seminário de Laboratório de Materiais Vítreos (LaMaV) de Departamento de Engenharia de Materiais (DEMa), Universidade Federal São Carlos UFSCar) CY - Saint Charles, Brazil DA - 06.06.2024 KW - Bioactive KW - Foaming KW - Glass KW - Crystallization KW - Viscose sintering PY - 2024 AN - OPUS4-60245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian Richard T1 - Two-Photon-Polymerization for Ceramics Powder Processing N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with laser light into the volume of a ceramic powder compound its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP) for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ECerSXVIII Conference Exhebition of the European Ceramic Society CY - Lyon, France DA - 02.07.2023 KW - Additive Manufacturing KW - Transparent ceramics PY - 2023 AN - OPUS4-59883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Ávila Calderón, Luis Alexander A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Formation of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2024 AN - OPUS4-60295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila Calderon, Luis Alexander A1 - Rehmer, Birgit A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Low-cycle-fatigue behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This contribution presents the results of an experimental study on the LCF behavior of an austenitic 316L stainless steel produced by laser powder bed fusion featuring a low defect population, which allows for an improved understanding of the role of other typical aspects of a PBF‑LB microstructure. The LCF tests were performed between room temperature and 600 °C. A hot‑rolled 316L variant was tested as a reference. The mechanical response is characterized by strain-life curves, a Coffin‑Manson‑Basquin fitting, and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, optical and electron microscopy. The PBF‑LB/M/316L exhibits lower fatigue lives at lower strain amplitudes. The crack propagation is mainly transgranular. The solidification cellular structure seems to be the most relevant underlying microstructural feature determining the cyclic deformation behavior. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, US DA - 03.03.2024 KW - AGIL KW - Additive Fertigung KW - Mikrostruktur KW - LCF KW - 316L PY - 2024 AN - OPUS4-59782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian Richard T1 - Tailoring powder properties for the light based volumetric additive manufacture of Ceramics N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with light into the volume of a ceramic powder compound, its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP), and other volumetric methods for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ICACC 2024 CY - Daytona Beach, Florida, USA DA - 28.01.2024 KW - Additive Manufacturing KW - Two Photon Polymerization KW - Advanced ceramics PY - 2024 AN - OPUS4-59889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Suitability of Metallic Materials in CC(U)S Applications N2 - Commercially available carbon steels are suitable for compression and pipelines as long as moisture content and impurities are limited. (water 50 to 100 ppmv, SO2 and NO2 ca. 100 ppmv). Corrosion rates increase with increasing water content. (0.2 – 20 mm/a). Condensation of acids and therefore droplet formation is always possible, even at low water contents. A low SO2 content within the CO2-stream might be more important than a low water content. Cr13-steels showed a general susceptibility to shallow pitting and pitting. So, they seem to be not suitable for CCUS applications. Low alloyed steels showed better corrosion behavior. � (predictable uniform corrosion) For direct contact with saline aquifer fluids only high alloyed steels shall be used. T2 - EUROCORR 2021 CY - Budapest, Hungary DA - 20.09.2021 KW - Carbon capture storage KW - Corrosion KW - Steel KW - CCS KW - CCU KW - CO2 PY - 2021 AN - OPUS4-53461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Heldmann, A. A1 - Hofmann, M. A1 - Polatidis, E. A1 - Čapek, J. A1 - Petry, W. A1 - Serrano-Munoz, Itziar A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer-wise additive manufacturing process that provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of a diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative lattice plane suitable for residual stress analysis. In this contribution, the selection of a suitable lattice plane family for residual stress analysis is explored. Furthermore, the determination of an appropriate set of diffraction and single-crystal elastic constants depending on the underlying microstructure is addressed. In-situ loading experiments have been performed at the Swiss Spallation Neutron Source with the main scope to study the deformation behaviour of laser powder bed fused Inconel 718. Cylindrical tensile bars have been subjected to an increasing mechanical load. At pre-defined steps, neutron diffraction data has been collected. After reaching the yield limit, unloads have been performed to study the accumulation of intergranular strain among various lattice plane families. T2 - 11th European Conference on Residual Stresses CY - Prag, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction Elastic Constants KW - Microstructure KW - Electron Backscatter Diffraction PY - 2024 AN - OPUS4-60289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as CRM for Size and Shape N2 - Due to their unique physico-chemical properties, nanoparticles are well established in research and industrial applications. A reliable characterization of their size, shape, and size distribution is not only mandatory to fully understand and exploit their potential and develop reproducible syntheses, but also to manage environmental and health risks related to their exposure and for regulatory requirements. To validate and standardize methods for the accurate and reliable particle size determination nanoscale reference materials (nanoRMs) are necessary. However, there is only a very small number of nanoRMs for particle size offered by key distributors such as the National Institute of Standards and Technology (NIST) and the Joint Research Centre (JRC) and, moreover, few provide certified values. In addition, these materials are currently restricted to polymers, silica, titanium dioxide, gold and silver, which have a spherical shape except for titania nanorods. To expand this list with other relevant nanomaterials of different shapes and elemental composition, that can be used for more than one sizing technique, we are currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance for the material and life sciences. T2 - Microscopy and Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Certified Referencematerial KW - Cubical Iron Oxide KW - Nanoparticles KW - Electron Microscopy KW - Small-Angle X-ray Scattering PY - 2022 AN - OPUS4-57035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - George, Janine A1 - Mieller, Björn A1 - Stawski, Tomasz T1 - ZrV2O7 negative thermal expansion (NTE) material N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material that exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). Therefore, it can be used to create composites with controllable expansion coefficients and prevent thermal stress, fatigue, cracking, and deformation at interfaces. We implement interdisciplinary research to analyze such material. We study the influence of the synthesis methods and their parameters on the sample's purity, crystallinity, and homogeneity. Moreover, we implement ab initio-based vibrational computations with partially treated anharmonicity in combination with experimental methods to follow temperature-induced structural changes and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder. T2 - SALSA Make and Measure Conference CY - Berlin, Germany DA - 13.09.2023 KW - NTE KW - Composites KW - TEM PY - 2023 AN - OPUS4-58367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Günster, Jens T1 - A comparison of layerwise slurry deposition and (LSD-print) laser induced slip casting (LIS) for the additive manufacturing of advanced ceramics N2 - The presentation gives an overview of two slurry-based additive manufacturing (AM) technologies specifically developed for advanced ceramic materials. The “Layerwise Slurry Deposition” (LSD-print) is a modification of Binder Jetting making use of a ceramic slurry instead of a dry powder as a feedstock. In this process, a slurry is deposited layer-by-layer by means of a doctor blade and dried to achieve a highly packed powder layer, which is then printed by jetting a binder. The LSD-print technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. The Laser Induced Slip casting (LIS) technology follows a novel working principle by locally drying and selectively consolidating layer-by-layer a ceramic green body in a vat of slurry, using a laser as energy source. LIS combines elements of Vat Photopolymerization with the use of water-based feedstocks containing a minimal amount of organic additives. The resulting technology can be directly integrated into a traditional ceramic process chain by manufacturing green bodies that are sintered without the need of a dedicated debinding. Both technologies offer high flexibility in the ceramic feedstock used, especially concerning material and particle size. Advantages and disadvantages are briefly described to outline the specific features of LSD-print and LIS depending on the targeted application. T2 - AM Ceramics CY - Vienna, Austria DA - 27.09.2023 KW - Additive Manufacturing KW - Dental KW - Ceramics KW - Feldspar PY - 2023 AN - OPUS4-58468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Schubert, Hendrik A1 - Günster, Jens A1 - Hoffman, Moritz A1 - Bogna Stawarczyk, Bogna T1 - Additive Manufacturing for dental restorations by layerwise slurry deposition (LSD-print) technology N2 - The growing market of custom-made dental restorations offers a major potential for an application of ceramic additive manufacturing (AM). The possibility to individualize patient specific design and to establish new efficient workflows, from model generation to manufacturing, can be fully exploited by AM technologies. However, for mass customization to be truly envisioned, ceramic AM needs to achieve a level of maturity, aesthetic quality, and productivity comparable to established manufacturing processes. In this presentation, the potential of the “layerwise slurry deposition” LSD-print technology for dental applications will be explored. It has been shown in the past years that the LSD-print can be applied to advanced ceramic materials such as alumina and silicon-infiltrated silicon carbide. For these materials, the LSD-print technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics. The current development deals with the challenges of applying this technology to a feldspar dental material, comparing the quality of AM restorations with the equivalent material for an established CAD/CAM workflow. Preliminary results not only indicate that the AM material produced by LSD-print can be competitive in terms of mechanical properties, but also that aesthetically satisfactory restorations can be manufactured for veneers, inlays and onlays as well as single unit fixed dental prostheses (FDPs). The presentation focuses on the material and technological challenges alongside the process chain, from the printing process, to debinding, firing and finishing the restorations. T2 - XVIIIth Conference of the European Ceramic Society CY - Lyon, France DA - 02.07.2023 KW - Additive Manufacturing KW - Layerwise slurry deposition KW - dental KW - ceramic PY - 2023 AN - OPUS4-58469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Zia, Ghezal Ahmad A1 - Schilling, Markus A1 - Waitelonis, J. A1 - v. Hartrott, P. A1 - Hanke, T. A1 - Skrotzki, Birgit T1 - Towards interoperability: Digital representation of a material specific characterization method N2 - Certain metallic materials gain better mechanical properties through controlled heat treatments. In age-hardenable aluminum alloys, the strengthening mechanism is based on the controlled formation of nanometer sized precipitates, which hinder dislocation movement. Analysis of the microstructure and especially the precipitates by transmission electron microscopy allows identification of precipitate types and orientations. Dark-field imaging is often used to image the precipitates and quantify their relevant dimensions. The present work aims at the digital representation of this material-specific characterization method. Instead of a time-consuming, manual image analysis, a digital approach is demonstrated. The integration of an exemplary digital workflow for quantitative precipitation analysis into a data pipeline concept is presented. Here ontologies enable linking of contextual information to the resulting output data in a triplestore. Publishing digital workflow and ontologies ensures the reproducibility of the data. The semantic structure enables data sharing and reuse for other applications and purposes, demonstrating interoperability. T2 - TMS - 7th World Congress on Integrated Computational Materials Engineering (ICME) CY - Orlando, Florida, USA DA - 21.05.2023 KW - Ontology KW - Semantic Interoperability KW - Digtial Representation KW - Data Management KW - Reproducibility KW - FAIR PY - 2023 AN - OPUS4-57548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - v. Hartrott, P. A1 - Waitelonis, J. A1 - Birkholz, H. A1 - Grundmann, J. A1 - Portella, Pedro Dolabella A1 - Skrotzki, Birgit T1 - FAIR data in PMD: Development of MSE mid-level and standard-compliant application ontologies N2 - The efforts taken within the project ‘platform MaterialDigital’ (PMD, materialdigital.de) to store FAIR data in accordance with a standard-compliant ontological representation (‘application ontology’) of a tensile test of metals at room temperature (ISO 6892-1:2019-11) will be presented. This includes the path from developing an ontology in accordance with the respective standard, converting ordinary data obtained from standard tests into the interoperable RDF format, up to connecting the ontology and data. The semantic connection of the ontology and data leads to interoperability and an enhanced ability of querying. For further reusability of data and knowledge semantically stored, the PMD core ontology (PMDco) was developed, which is a mid-level ontology in the field of MSE. The semantic connection of the tensile test application ontology to the PMDco is also presented. Moreover, Ontopanel, a tool for domain experts facilitating visual ontology development and mapping for FAIR data sharing in MSE, is introduced briefly. T2 - World Congress on Integrated Computational Materials and Engineering (ICME) CY - Orlando, Florida, USA DA - 21.05.2023 KW - Digitalization KW - Semantic Web Technologies KW - FAIR KW - Data Interoperability KW - PMD Core Ontology KW - Tensile Test Ontology PY - 2023 AN - OPUS4-57549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönauer-Kamin, D. A1 - Bresch, Sophie A1 - Paulus, D. A1 - Moos, R. T1 - Powder Aerosol deposited (PAD) calcium cobaltite as textured p type thermoelectric material N2 - Oxide thermoelectric semiconducting materials like p-type calcium cobaltite Ca3Co4O9 are investigated as oxidation- and temperature-resistant thermoelectric materials for thermoelectric generators (TEGs). To realize TEGs in planar film technology, the powder aerosol deposition (PAD) method is emerging recently. PAD is a method to obtain dense ceramic films directly from the synthesized starting powders without a subsequent high temperature step. In the present work, Ca3Co4O9 (CCO) powders are processed by PAD to ceramic films at room temperature. The thermoelectric properties of the films (film thickness 10 – 20 µm) are characterized from room temperature to 900°C. Additionally, the layer morphology and texture of the films will be investigated. As result, the Seebeck coefficient of the CCO-PAD film is comparable to pressed and sintered CCO-bulk materials during the 1st heating cycle to 900°C. The morphology of the films after the thermal treatment shows strong aligned crystallites resulting in a strong texture of the films. The electrical conductivity increases strongly during the 1st heating cycle to 900°C and stays almost constant afterwards. Compared to CCO-bulks, the films provide higher electrical conductivity which could be explained by the oriented crystal growth in-plane direction of the film. The relationship between thermoelectric properties and layer morphology as a function of thermal annealing parameters will be further investigated. T2 - KERAMIK 2023 / 98. DKG-Jahrestagung CY - Jena, Germany DA - 27.03.2023 KW - Layer depostion KW - Texture KW - Heat treatment PY - 2023 AN - OPUS4-57285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -