TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, R. A1 - Rabe, Torsten T1 - Lowering the sintering temperature of calcium manganate CaMnO3 for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (p-type) and calcium manganate (n-type) are two of the most promising oxide thermoelectric materials. The development of cost-effective multilayer thermoelectric generators requires the co-firing of these materials and therefore the adjustment of sintering temperatures. Calcium manganate is conventionally sintered between 1200 °C and 1350 °C. Calcium cobaltite exhibits an undesired phase transition at 926 °C but can be sintered to high relative density of 95 % at 900 °C under axial pressure of 7.5 MPa. Hence, co-firing at 900 °C would be favourable. Therefore, strategies for lowering the sintering temperature of calcium manganate have been investigated. Basically, two approaches are common: i) addition of low melting additives like Bi2O3-ZnO-B2O3-SiO2 (BBSZ) glass or Bi2O3, and ii) addition of additives that form low-melting eutectics with the base material, for example CuO. In this study, several low melting additives including BBSZ glass and Bi2O3, as well as CuO were tested regarding their effect on calcium manganate densification. Bi2O3 did not improve the densification, whereas BBSZ glass led to 10 % higher relative density at 1200 °C. An addition of 4 wt% CuO decreases the temperature of maximum sinter rate from above 1200 °C to 1040 °C. By reducing the particle size of the raw materials from 2 μm to 0.7 μm the maximum sinter rate could be further shifted 20 K towards lower temperatures and the sinter begin decreased from 920 °C to 740 °C. It is shown that eutectic phase formation is more effective in lowering sintering temperature and accelerating densification than low-melting additives. T2 - 93. DKG-Jahrestagung und Symposium Hochleistungskeramik 2018 CY - Munich, Germany DA - 10.04.2018 KW - Thermoelectrics KW - Sinter additive PY - 2018 AN - OPUS4-44818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Pressure-assisted sintering of tape cast calcium cobaltite for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by using the Seebeck effect. Calcium cobaltite Ca3Co4O9 is a promising p-type oxide thermoelectric material for applications between 600 °C and 900 °C in air. The properties and morphology of Ca3Co4O9 are strongly anisotropic because of its crystal structure of alternating layers of CoO2 and Ca2CoO3. By aligning the plate-like grains, the anisotropic properties can be assigned to the component. Pressure-assisted sintering (PAS), as known from large-scale production of low temperature co-fired ceramics, was used to sinter multilayers of Ca3Co4O9 green tape at 900 °C with different pressures and dwell times. In-situ shrinkage measurements, microstructural investigations and electric measurements were performed. Pressure-less sintered multilayers have a 2.5 times higher electrical conductivity at room temperature than dry pressed test bars with randomly oriented particles. The combination of tape casting and PAS induces a pronounced alignment of the anisotropic grains. Relative density increases from 57 % after free sintering for 24 h to 94 % after 2 h of PAS with 10 MPa axial load. By applying a uniaxial pressure of 10 MPa during sintering, the electrical conductivity (at 25°C) improves by a factor of 15 compared to test bars with randomly oriented particles. The high temperature thermoelectric properties show the same dependencies. The smaller the applied axial load, the lower the relative densities, and the lower the electrical conductivity. Longer dwell times may increase the density and the electrical conductivity significantly if the microstructure is less densified as in the case of a small axial load like 2 MPa. At higher applied pressures the dwell time has no significant influence on the thermoelectric properties. This study shows that PAS is a proper technique to produce dense Ca3Co4O9 panels with good thermoelectric properties similar to hot-pressed tablets, even in large-scale production. T2 - Electroceramics XVI CY - Hasselt, Belgium DA - 09.07.2018 KW - Texturation KW - Hot Press KW - Calcination KW - Multilayer PY - 2018 AN - OPUS4-45491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Effect of CO2 gas on carbon steel corrosion in an acidic-saline based geothermal fluid N2 - Geothermal energy is one of the most promising energy resources to replace fossil fuel. To extract this energy, hot fluids of various salts and gases are pumped up from a geothermal well having a certain depth and location. Geothermal wells in volcanic regions often contain highly corrosive CO2 and H2S gases that can be corrosive to the geothermal power-plants, which are commonly constructed of different steels, such as carbon steel. This research focuses on the corrosion behaviour of carbon steel exposed to an artificial geothermal fluid containing CO2 gas, using an artificial acidic-saline geothermal brine as found in Sibayak, Indonesia. This medium has a pH of 4 and a chloride content of 1,500 mg/L. Exposure tests were conducted for seven days at 70 °C and 150 °C to simulate the operating temperatures for low and medium enthalpy geothermal sources. Surface morphology and cross-section of the specimens from the above experiments were analysed using scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Electrochemical tests via open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were performed to understand the corrosion processes of carbon steel in CO2-containing solution both at 70 °C and 150 °C. Localized corrosion was observed to a greater extent at 70 °C due to the less protectiveness of corrosion product layer compared to that at 150 °C, where FeCO3 has a high corrosion resistance. However, a longer exposure test for 28 days revealed the occurrence of localized corrosion with deeper pits compared to the seven-day exposed carbon steel. In addition, corrosion product transformation was observed after 28 days, indicating that more Ca2+ cations incorporate into the FeCO3 structure. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Carbon steel KW - CO2 KW - EIS KW - Geothermal KW - Corrosion PY - 2019 SP - Paper 200245, 1 EP - 5 CY - Madrid, Spain AN - OPUS4-49099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Agudo Jácome, Leonardo A1 - Feldmann, Ines A1 - Deubener, J. T1 - Silver diffusion in low-melting alkali zinc borate model glasses studied by means of SNMS, TEM and XAS N2 - In many late-breaking research fields as in photovoltaics, microelectronics, nuclear waste glasses or at least mirror glasses silver diffusion in glasses is relevant to the issues of high-level functionality and recycling. The present study is focused on silver diffusion in innovative, low-melting alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb) potentially usable for silver metallization-pastes in solar cells. The glasses were coated with a thin metallic silver layer and heat treatments in air and nitrogen close to Tg at 470 °C for 2 h were performed. After heat treatment under air and nitrogen atmospheres the coating thickness, measured by a white light interferometer, was about 1.8 µm thick. Silver depth profiles determined by means of secondary neutral mass spectrometry (SNMS) indicate the fastest silver diffusion to a depth of 3.5 µm for Li2O-ZnO-B2O3 (LZB) glass. Nevertheless, the influence of the different alkali ions on the silver diffusion is small. The oxygen availability determines the silver diffusion into the glasses. The oxygen promotes the oxidation of the silver layer enabling Ag+ to diffuse into the glass and to precipitate as Ag0. Both species were detected by x-ray absorption spectroscopy (XAS). The precipitated metallic silver particles in Na2O-ZnO-B2O3 (NZB) glass have a mean size of 5.9 nm ± 1.2 nm diameter, which was determined using transmission electron microscopy (TEM). Phase separation in zinc-rich and zinc-poor phases with a mean diameter of 75 nm ± 20 nm occurred in NZB glass after heat treatment. Ion diffusion of the glasses into the silver layer was suggested by EDX-line scans. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Silver diffusion KW - Alkali zinc borate glass KW - Metallic silver precipitates KW - Phase separation PY - 2021 AN - OPUS4-52861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Jürgens, Maria A1 - Mosquera Feijoo, Maria A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Saliwan Neumann, Romeo A1 - Nolze, Gert A1 - Fedelich, Bernard A1 - Kranzmann, Axel A1 - Skrotzki, Birgit T1 - Performance of 9-12%Cr steels under cyclic loading and cyclic oxidation conditions N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in power plants due to their excellent creep and oxidation resistance. The growing share of renewable energy sources in power generation forces many of these plants into more flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue. The present contribution reports on current findings obtained in a multidisciplinary project which combines cyclic mechanical and cyclic oxidation testing with detailed microstructural analyses. Mechanical analyses are carried out on P92 and P91 steel grades to give an overview of softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of creep and fatigue periods (creep-fatigue interaction). Oxidation testing focuses on the grades P92 and VM12 with the intention of clarifying the impact of frequent passes through intermediate temperature levels on the kinetics of steam-side oxidation and the characteristics of the evolving oxide scales. An attempt is made to evaluate their composition, strength, integrity and adhesion after up to 250 temperature cycles. Flat coupons as well as curved tube sections are tested to assess the mutual influence of geometry on oxide scale integrity. Complementary microstructural investigations by scanning and transmission electron microscopy plus EBSD are used for phase identification and substrate/oxide interface characterisation. The evolutions of grain size and dislocation density under different test conditions are quantified. T2 - International Conference on Power Plant Operation & Flexibility CY - London, UK DA - 04.07.2018 KW - Ferritic-martensitic steels KW - Low cycle fatigue KW - Thermo-mechanical fatigue KW - Cyclic oxidation PY - 2018 AN - OPUS4-47115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Jürgens, Maria A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Cyclic loading and creep-fatigue performance of P92 N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in power plants due to their excellent creep and oxidation resistance. The growing share of renewable energy sources in power generation forces many of these plants into more flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue. The present contribution reports on current findings obtained in a multidisciplinary project which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses. Mechanical analyses are carried out on P92 and P91 steel grades to give an overview of softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of creep and fatigue periods. Complementary microstructural investigations by scanning and transmission electron microscopy plus EBSD are used for phase identification, substrate/oxide interface characterization and quantification of the microstructure evolution under cyclic conditions. T2 - 44th MPA-Seminar CY - Leinfelden/Stuttgart, Germany DA - 17.10.2018 KW - Ferritic-martensitic steels KW - Fatigue KW - Creep-fatigue PY - 2018 AN - OPUS4-47116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning A1 - Dayani, Shahabeddin A1 - Mishurova, Tatiana A1 - Eddah, Mustapha A1 - Mieller, Björn A1 - Böttcher, Nils A1 - Bruno, Giovanni T1 - Tomographic Imaging Capabilities with hard X-Rays at BAMline (Bessy II) N2 - The BAMline at the synchrotron X-ray source BESSY II (Berlin, Germany) is supporting researchers especially in materials science. As a non-destructive characterization method, synchrotron X-ray imaging, especially tomography with hard X-Rays, plays an important role in structural 3D characterization. The imaging capabilities allow for in-situ and operando experiments. In this presentation the equipment, data handling pipeline as well as various examples from material science are presented. T2 - Correlative Materials Characterization Workshop 2023 CY - Brno, Czech Republic DA - 09.11.2023 KW - Tomography KW - X-ray imaging KW - Li-ion battery PY - 2023 AN - OPUS4-58958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geyler, Paul A1 - Rabe, Torsten A1 - Mieller, Björn A1 - Léonard, Fabien T1 - Machine learning assisted evaluation of the shape of VIAs in a LTCC multilayer N2 - The introduction of the 5G technology and automotive radar applications moving into higher frequency ranges trigger further miniaturization of LTCC technology (low temperature co-fired ceramics). To assess dimensional tolerances of inner metal structures of an industrially produced LTCC multilayer, computer tomography (CT) scans were evaluated by machine learning segmentation. The tested multilayer consists of several layers of a glass ceramic substrate with low resistance silver-based vertical interconnect access (VIA). The VIAs are punched into the LTCC green tape and then filled with silver-based pastes before stacking and sintering. These geometries must abide by strict tolerance requirements to ensure the high frequency properties. This poster presents a method to extract shape and size specific data from these VIAs. For this purpose, 4 measurements, each containing 3 to 4 samples, were segmented using the trainable WEKA segmentation, a non-commercial machine learning tool. The dimensional stability of the VIA can be evaluated regarding the edge-displacement as well as the cross-sectional area. Deviation from the ideal tubular shape is best measured by aspect ratio of each individual layer. The herein described method allows for a fast and semi-automatic analysis of considerable amount of structural data. This data can then be quantified by shape descriptors to illustrate 3-dimensional information in a concise manner. Inter alia, a 45 % periodical change of cross-sectional area is demonstrated. T2 - DKG Jahrestagung 2019 CY - Leoben, Austria DA - 06.05.2019 KW - Machine Learning KW - LTCC multilayer KW - 5G PY - 2019 AN - OPUS4-48289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Ávila Calderón, Luis A. A1 - Rehmer, Birgit A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Effect of heat treatment on the hierarchical microstructure and properties of 316L stainless steel produced by Laser Powder Bed Fusion (PBF-LB/M). N2 - Laser Powder Bed Fusion (PBF-LB/M) of AISI 316L stainless steel has gained popularity due to its exceptional capacity to produce complex geometries and hierarchical microstructures, which can increase the yield strength while maintaining good ductility. Nevertheless, owing to high thermal gradients encountered during the process, the as printed 316L stainless steel often exhibit microstructural heterogeneities and residual stresses, which can limit its performance in demanding environments. Hence, employing heat treatments which balance the reduction of residual stresses while retaining improved static strength may be beneficial in various scenarios and applications. This study investigates the impact of post-processing heat treatments on the microstructure of 316L stainless steel manufactured via PBF-LB/M, along with its correlation with micro-hardness properties. To this end, 6 different heat treatments, i.e., 450 °C for 4h, 700 °C for 1h, 700 °C for 3h, 800 °C for 1h, 800 °C for 3h, and 900 °C for 1h, were applied to different specimens and Vickers hardness measurements (HV1) were performed in all states. At 800 °C, although the cellular structure appears to be retained, there is an observable increase in cellular size. However, while treatments exceeding 900 °C indicate no significant grain growth compared to other conditions, the cellular structure is entirely dissolved, which leads to a reduced Vickers hardness. The effect of the heat treatments on other microstructural features such as grain size and morphology, melt pool boundaries (MPB), crystallographic texture, chemical segregation, dispersoids and phase stability are also discussed in the present work T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Heat treatment KW - Microstructure PY - 2024 AN - OPUS4-60304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Influence of testing conditions on dielectric strength of alumina N2 - Dielectric strength testing of ceramics is simple and yet challenging. The execution of a breakthrough voltage measurement of a given sample is fast and straightforward. ASTM D149 describes the standardized procedure. But, there are versatile effects of test conditions and sample properties that affect the result of such a measurement. As one example, ASTM D149 allows different sizes of test electrodes and does not unambiguously prescribe the condition of the electrodes. Thus, different electrode configurations are used in the field. We conducted several test series on alumina samples to comprehensively quantify the effect of test conditions and sample properties on dielectric strength results. In our study, testing of alumina substrates using different electrode configurations resulted in differences of mean values of up to 20%. Further test series on alumina focused on the effect of voltage ramp rate. The results are complemented by calculations of failure probability at different voltage levels and corresponding withstand voltage tests. We conclude that a communication and comparison of single dielectric strength values is insufficient and may be misleading. A meaningful comparison of dielectric strength studies from different sources requires a thorough consideration of test conditions. T2 - 93rd DKG Annual Meeting CY - Munich, Germany DA - 10.04.2018 KW - Alumina KW - Dielectric strength KW - Withstand voltage tests PY - 2018 AN - OPUS4-44692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Bresch, Sophie A1 - Marucha, P. A1 - Moos, R. A1 - Rabe, Torsten T1 - Sintering and interconnecting thermoelectric oxides for energy applications N2 - Today, more than 12% of the primary energy is lost in the form of waste heat. Thermoelectric generators (TEGs) can convert waste heat directly into electrical power by utilizing the Seebeck effect. The performance of such a generator is defined by a dimensionless figure of merit ZT of the thermoelectric pairs and the resistance R of the metallic contacts between these pairs. The figure of merit of thermoelectric oxides is considerably smaller compared to semiconductors. Still, thermoelectric oxides like calcium cobaltite (Ca3Co4O9) are attractive for applications at elevated temperatures in air. In contrast to the established π-type architecture of common TEGs, tape casting and multilayer technology may be applied for cost-effective manufacturing of oxide TEGs. Promising demonstrations of multilayer TEGs have been published in the last years. Still, the development of reliable and scalable manufacturing processes and proper material combinations is necessary. The aim of our project is to evaluate the feasibility of low temperature co-fired ceramics (LTCC) technology for a practical manufacturing of oxide multilayer TEGs of Ca3Co4O9 (p-type) and calcium manganate (CaMnO3, n-type). Ca3Co4O9 exhibits an undesired phase decomposition at 926 °C. Because of that, the application of sintering strategies and interconnect concepts well known from LTCC technology is a promising approach. We present results of pressure-assisted sintering of Ca3Co4O9 multilayer at 900 °C and axial pressures of up to 7.5 MPa. Ca3Co4O9 was produced by solid state reaction of CaCO3 and cobalt(II,III)oxide at 900 °C. Green tapes were prepared by a doctor-blade process, manually stacked and laminated by uniaxial thermocompression. Sintering was conducted in a LTCC sintering press between SiC setter plates. The thickness shrinkage was recorded by an in-situ technique. After sintering under 7.5 MPa, the microstructure of the single phase material shows a high density of 95 % and an advantageous alignment of the platelet grains. This results in good electrical conductivity and a comparatively high ZT of 0.018 at room temperature. However, the lowering of CaMnO3 sintering temperature from above 1200 °C to below 920 °C remains a challenge. To select a proper metal paste for interconnections of an oxide TEG, several pastes have been investigated regarding contact resistance of internal and external (soldered) connections in a preliminary study. Commercial pastes containing Ag, Au, Au/Pt, Ag/Pd, and Ag/Pd/Bi were manually applied and post-fired on sintered test bars of Ca3Co4O9 and CaMnO3 at 900 °C for 2 h. All tested pastes formed mechanically stable metallization after firing. For resistance measurement, 4-wire method and a custom-made probe head were used. The contacts on Ca3Co4O9 exhibit significantly (2-sample t-test, α = 5%) higher resistance compared to contacts on CaMnO3. Pure silver paste exhibits the lowest resistance for internal contacts on both materials, lower than 5 mΩ on CaMnO3. Ag/Pd/Bi paste resulted in conspicuously high variance of resistance. EDX analyses clarified an enrichment of Bi in the thermoelectric material near the interface and thereby the formation of an oxide layer with probably high electrical resistance. The thickness of that layer varies with the thickness of metallization. In conclusion, the use of Bi containing pastes is not advisable. Pure Ag paste shows the best results regarding resistance and solderability. T2 - CICMT 2018 CY - Aveiro, Portugal DA - 18.04.2018 KW - Thermoelectric oxide KW - Thermoelectric generator KW - Multilayer technology KW - Pressure-assisted sintering PY - 2018 AN - OPUS4-44740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin A1 - Menneken, Martina A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, Christiane T1 - Orientation dependent corrosion N2 - Ferritic-martensitic Fe-Cr alloys are widely utilised as materials for high temperature applications such as super heater tubes in coal, biomass or co-fired power plants. Various corrosive gases are produced in combustion processes, but especially SO2 is known to cause catastrophic application failure. In order to understand the effect of orientation and grain size of the alloy on the initial corrosion processes we analysed metal coupons of Fe-Cr- alloys (2-13 wt. % Cr) by electron backscattered diffraction (EBSD) before and after exposure to SO2 containing atmospheres in 650°C for short time spans (2 min – 12 h). An infra red heated furnace with integrated water-cooling was used for the ageing procedures to conduct short time experiments and to keep the reaction products in a ‘frozen’ state. EBSD characterization of oxides formed on the surface of the alloys showed a topotactic relationship between grain orientation of the alloys and the oxides. With increasing scale thickness this relation diminishes possibly due to lattice strain. There appears to be no correlation between oxide growth and absolute, initial orientation, grain size, or the quality of polishing. An initially topotactic relationship between scale and steel had been already described for the formation of magnetite in hot steam environments, indicating that the initial corrosion mechanisms are mainly depending on the presence of Oxygen, and not changed by the presence of Sulphur. However, Sulphur is incorporated into the oxide scale in the low Cr alloy, and mainly observable in the inner corrosion zone for the higher alloyed material. Furthermore, oxides formed directly on grain boundaries in higher Cr alloyed materials are enriched in Cr compared to oxides on grain faces. T2 - EFC Workshop Dechema CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - Crystal Orientation KW - High Temperature Corrosion PY - 2018 AN - OPUS4-47279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Pöthkow, K. A1 - Paetsch, O. A1 - Hege, H.-C. T1 - 3D reconstruction and quantification of dislocation substructures from TEM stereo pairs N2 - Dislocations are the carriers of plastic deformation. As such, their characterization offers important information on the properties they affect. In this contribution, a new tool is presented, which is incorporated in Amira ZIB Edition and allows for three-dimensional (3D) imaging and quantification of dislocations substructures from thick regions an electron-transparent specimen. In the tool, the dislocation segments are traced on diffraction contrast images that are obtained in the transmission electron microscope (TEM). The uncertainties related to the experimental setup and to the proposed method are discussed on the base of a tilt series. T2 - AVIZO / AMIRA User Meeting CY - Berlin, Germany DA - 14.11.2018 KW - Dislocation KW - Diffraction contrast KW - Scanning transmission electron microscopy (STEM) PY - 2018 AN - OPUS4-47394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Mieller, Björn A1 - Rabe, Torsten A1 - Markötter, Henning T1 - Machine learning assisted characterization of a Low Temperature Co-fired Ceramic (LTCC) module measured by synchrotron computed tomography. N2 - The 5G technology promises real time data transmission for industrial processes, autonomous driving, virtual and augmented reality, E-health applications and many more. The Low Temperature Co-fired Ceramics (LTCC) technology is well suited for the manufacturing of microelectronic components for such applications. Still, improvement of the technology such as further miniaturization is required. This study focuses on the characterization of inner metallization of LTCC multilayer modules, especially on the vertical interconnect access (VIA). Critical considerations for this characterization are delamination, pore clustering in and at the edge of the VIA, deformation, and stacking offset. A LTCC multilayer consisting of a glassy crystalline matrix with silver based VIAs was investigated by synchrotron x-ray tomography (CT). The aim of this study is to propose a multitude of structural characteristic values to maximize the information gained from the available dataset. Data analysis has been done with the open source software ImageJ as well as several additional plugins. The high-resolution CT data was evaluated through 2D slices for accessibility reasons. The segmentation of all 2000 slices to assess the different regions e.g. pores, silver and glass ceramic was done by a supervised machine learning algorithm. A quantitative evaluation of shape, deformation, and porosity of the VIA with respect to its dimensions is presented and the suitability of the characterization approach is assessed. T2 - 54. Metallographie Tagung CY - Online meeting DA - 16.09.2020 KW - Machine Learning KW - LTCC KW - Synchrotron Tomography PY - 2020 AN - OPUS4-51299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Practical breakdown voltage calculations using dielectric breakdown strength reference values N2 - Dielectric breakdown is a catastrophic failure of ceramic substrates and insulators. The use of dielectric breakdown strength (DBS) reference values for the dimensioning of such components is not straightforward, as the DBS depends on sample thickness and electrode area. This fact also hampers a valid comparison of data taken from different literature sources. Based on the empirically confirmed proportionality of DBS to the reciprocal square root of sample thickness and an approach to account for the influence of electrode area on the failure probability, a practical equation is derived to calculate the breakdown voltage for arbitrary sample thickness and electrode area from one set of DBS reference data. To validate the equation, the AC DBS of commercial alumina substrates with thicknesses ranging from 0.3 mm to 1.0 mm was performed using different printed electrodes with varying areas. The breakdown voltages comprise a range from 18 kV for thick samples to 8.5 kV for thin samples, resulting in DBS values from 17 kV/mm for 1.0 mm thick samples to 29 kV/mm for 0.3 mm thin samples, all made from the same material. The influence of electrode area is comparatively smaller. The results calculated with the proposed equation are in reasonable accordance with the measured data. Thus, the equation can be applied for a proper comparison of literature DBS data measured in different setups and for a reasonable estimation of breakdown voltages in DBS tests and applications based on reference data. T2 - Electroceramics Conference XVII CY - Online meeting DA - 24.08.2020 KW - Ceramics KW - Dielectric breakdown KW - Weibull distribution PY - 2020 AN - OPUS4-51151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Junge, P. A1 - Greinacher, M. A1 - Kober, D. A1 - Mieller, Björn T1 - Bulk vs thermal sprayed alumina for insulation applications: A comparison of electrical and dielectrical properties N2 - Additive manufacturing (AM) processes are opening new design possibilities for large scale electrical devices such as power generators. Conventional manufacturing methods use copper rods which are wrapped, vacuum impregnated, bend and welded. These processes are labor-intensive and time-consuming. The introduction of AM methods for manufacturing the copper conductor and electrical insulation can reduce the size of the generator head, the most complex part of the generator. In this study, the electrical and dielectrical properties of additively deposited ceramic layers are investigated and compared with the properties of conventionally fabricated bulk ceramics. The ceramic layers are thermally deposited by atmospheric plasma spraying of a commercially available alumina powder. Bulk ceramics are fabricated by dry pressing and sintering of the same powder. Microstructure and porosity were analyzed by scanning electron microscopy (SEM). Electrical and dielectrical properties such as DC resistance, dielectric strength, dielectric loss, and relative permittivity were determined according to the standards. The microstructures of sprayed and sintered alumina show significant differences with respect to grain form and porosity. The density of the bulk ceramic is lower than the density of the sprayed layer due to the coarse particle size (d50 = 33 μm). Therefore, data from dense samples of the same chemical composition but lower particle size alumina powder were used for comparison. T2 - Keramik 2022 CY - Online meeting DA - 07.03.2022 KW - High Voltage Insulation KW - Thermal Spray KW - Dielectric Spectroscopy KW - Atmospheric Plasma Spraying PY - 2022 AN - OPUS4-54446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gadelmeier, C. A1 - Agudo Jácome, Leonardo A1 - Suárez Ocano, Patricia A1 - Haas, S. A1 - Feuerbach, M. A1 - Glatzel, U. T1 - Strengthening mechanisms of single crystalline CrCoNi and CrMnFeCoNi at creep temperatures above 700 °C N2 - The main deference between high entropy alloys and conventional alloys is the solid solution strengthening effect, which moves from a single element to a multi-element matrix. Little is known about the effectiveness of this effect at high temperatures. Investigation of temperature dependent solid solution strengthening in single phase multicomponent alloys with medium and high entropy using creep testing was performed. Creep tests carried out on single phase SX CrCoNi , CrMnFeCoNi and pure Ni from 700 to 1200 °C excluding oxidation, grain boundaries and multiphase effects. It was found that the influence of solid solution strengthening of CrCoNi and CrMnFeCoNi increases by decreasing temperature (1200 to 700 °C), and dislocation forests occur in CrCoNi and CrMnFeCoNi in comparison to pure Ni. T2 - SPP Kick-Off Meeting 2nd Phase CY - Online meeting DA - 14.04.2021 KW - High entropy alloys KW - Mechanical properties KW - Transmission electron microscopy KW - Solid solution strengthening PY - 2021 AN - OPUS4-54381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Schulz, Bärbel A1 - Mrkwitschka, Paul A1 - Rabe, Torsten T1 - Influence of surface treatment on the strength of a dental zirconia for implants N2 - Roughening of zirconia dental implants is a common clinical practice to improve ingrowth behavior. It depends on the manufacturer of the implant at which stage of the manufacturing process and by which method the surface is roughened. Systematic studies on this topic are rarely found in the literature. Therefore, the influence of surface treatment on the strength of a dental zirconia was investigated as part of a research project on the development of ceramic implants. The material under test was a commercial zirconia consisting of a Y-TZP matrix and Ce-TZP inclusions in the sintered state. This material is characterized by a slightly higher fracture toughness and slightly reduced strength compared to typical 3Y-TZP. Sets of samples were sandblasted in the white-fired or sintered condition. The ball-on-three-ball-strength of these samples was measured and compared to the strength of as-fired samples and polished samples. The complete study was performed two times for validation of the results. It is found that the average strength of TZP ceramics differs by almost 500 MPa depending on the surface treatment. Conventionally sintered specimens with as-fired surface exhibit a strength of 880 MPa. Sandblasting in the white fired state reduces the strength to 690 MPa. Both polishing and sandblasting in the sintered condition result in an increase in strength to about 1180 MPa. Comparative microstructural investigations, roughness measurements and X-ray phase analyses were carried out to determine the causes of these huge differences in strength. These findings may challenge the practice of white body surface treatment and give reason for further investigations on other commercial dental TZP materials. T2 - 97th DKG Annual Meeting - CERAMICS 2022 CY - Online meeting DA - 07.03.2022 KW - Ceramics KW - Implants KW - Biaxial strength PY - 2022 AN - OPUS4-54453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sonntag, Nadja A1 - Jürgens, Maria A1 - Roohbakhshan, Farshad A1 - Agudo Jácome, Leonardo A1 - Olbricht, Jürgen T1 - Dwell-Fatigue and Cyclic Softening of Grade P92 Steel under LCF and TMF Conditions N2 - Tempered martensite-ferritic steels, such as the grade P92 steel studied in this contribution, exhibit pronounced macroscopic cyclic softening under isothermal low-cycle fatigue (LCF) and non-isothermal thermomechanical fatigue (TMF) conditions, which is considered to be the predominant degradation mechanism in high-temperature fatigue in this and other material groups. However, such softening processes are highly complex since microscopic (e.g., recovery) and macroscopic (e.g., crack initiation and growth), as well as global and local effects superimpose, especially under creep-fatigue conditions. In this contribution, we discuss the cyclic deformation and softening behavior of P92 in strain-controlled LCF, in-phase (IP) TMF, and out-of-phase (OP) TMF tests with and without dwell times in the temperature range from 300 °C to 620°C. EBSD-based dislocation analysis on various fatigued material states confirms the continuous redistribution and annihilation of geometrically necessary dislocations in all studied states, which can be quantitatively correlated with macroscopic softening despite different damage mechanisms for different test types. Deviations from this correlation are observed for OP TMF and LCF with dwell times, i.e., for conditions where optical microscopy reveals pronounced crack-oxidation interactions at the specimen surfaces. T2 - LCF9 - Ninth International Conference on Low Cycle Fatigue CY - Berlin, Germany DA - 21.06.2022 KW - LCF KW - TMF KW - EBSD PY - 2022 DO - https://doi.org/10.48447/LCF9-2022-111 AN - OPUS4-55128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early Material Damage in Equimolar CrMnFeCoNi in Mixed Oxidizing/Sulfiding Hot Gas Atmosphere N2 - The challenges to use more varied fuels at medium and high temperatures above 500 °C need to be addressed by tuning the materials towards a better resistance against increased corrosion. As a first step the corrosion processes need to be better understood, especially in the case of the unavoidable and highly corrosive sulfur-based gases. In this work oxidation/sulfidation of an equimolar CrMnFeCoNi high entropy alloy is studied at an early stage after hot gas exposure at 600 °C for 6 h in 0.5% SO2 and 99.5% Ar. The oxidation process is studied by means of x-ray diffraction, scanning and transmission electron microscopy and supported by thermodynamic calculations. It is found that the sulfur does not enter the bulk material but interacts mainly with the fast-diffusing manganese at grain boundary triple junctions at the alloy surface. Sub-micrometer scaled Cr-S-O rich phases close to the grain boundaries complete the sulfur-based phase formation. The grains are covered in different Fe, Mn and Cr based spinels and other oxides. T2 - Priority Programme (Schwerpunktprogramm) Compositionally Complex Alloys - High Entropy Alloys (SPP CCA - HEA) CY - Bayreuth, Germany DA - 12.07.2022 KW - High entropy alloy KW - Corrosion KW - Sulfiding KW - Cantor alloy KW - Transmission electron microscopy PY - 2022 AN - OPUS4-55395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the Nature of Melt Pool Boundaries in Additively Manufactured Stainless Steel by Nano-sized Modulation N2 - Additive manufacturing (AM) of metallic alloys has gained momentum in the past decade for industrial applications. The microstructures of AM metallic alloys are complex and hierarchical from the macroscopic to the nanometer scale. When using laser-based powder bed fusion (L-PBF) process, two main microstructural features emerge at the nanoscale: the melt pool boundaries (MPB) and the solidification cellular substructure. Here, details of the MPB are revealed to clearly show the three-dimensional nature of MPBs with changes of cell growth of direction and their relation to their surrounding cellular substructure, as investigated by transmission electron microscopy (TEM) for L-PBF 316L austenitic stainless steel (cf. Figure 1). A hitherto unknown modulated substructure with a period of 21 nm is further discovered within cells as the result of a partial Ga+-focused ion beam-induced ferritic transformation of the austenite. Cell cores and cell boundaries differ notably regarding the modulated substructure. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 AN - OPUS4-54836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Stargardt, Patrick A1 - Greinacher, M. T1 - Numerical study of electric field distribution in breakdown strength testing of ceramics N2 - Dielectric breakdown of insulators is a combined electrical, thermal, and mechanical failure. The exact breakdown mechanism in ceramics and the formulation of useful models are still subject of investigation. Recent studies highlighted that several experimental aspects of dielectric breakdown strength testing affect the test results, and thus impede the recognition of fundamental principles. Excess field strength near the electrode can lead to premature breakdown in the insulating liquid. This would cause superficial damage to the test specimen and thus falsify the measurement results. The field strength distribution is influenced by the ratio of permittivity of the sample and the surrounding insulating liquid. Premature breakdown depends on the breakdown strength of the liquid and the actual test voltage. The test voltage again depends on the specimen thickness. To systematically investigate these relations, a numerical simulation study (FEM) of the electric field distribution in a typical testing rig with cylindrical electrodes was performed. The permittivity of the sample and the insulating liquid was parameterized, as well as the sample thickness. The electric field distribution was calculated for increasing test voltage. Field strength maxima are compared to experimental breakdown strength of typical insulating liquids and experimental breakdown locations on alumina. Strategies are discussed to adjust the insulation liquid and the sample thickness to reduce the influence of the testing setup on the dielectric breakdown strength results. T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Ceramics KW - Dielectric breakdown strength KW - Electric field distribution KW - Alumina PY - 2022 AN - OPUS4-55325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early Material Damage in Equimolar CrMnFeCoNi in Mixed Oxidizing/Sulfiding Hot Gas Atmosphere N2 - The use of more and more varied fuels implies an increased list of criteria that need to be addressed when choosing a material for a combustion chamber and its supply pipes. The materials must be very resistant against corrosion, especially when the process takes place at temperatures above 500°C. In this work the influence of SO2 on the surface of the “Cantor alloy” is investigated. T2 - HEA-Symposium "Potential for industrial applications" CY - Dresden, Germany DA - 12.05.2022 KW - High entropy alloy KW - Corrosion KW - Sulfiding KW - Transmission electron microscopy PY - 2022 AN - OPUS4-55397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Agudo Jácome, Leonardo A1 - Pauli, Jutta A1 - Nofz, Marianne A1 - Müller, Ralf T1 - Silver in low-melting alkali zinc borate glasses N2 - Ein aktuelles Forschungsziel ist die Substitution von Bleioxid in niedrig schmelzenden Gläsern z.B. zur Anwendung in Silber-Metallisationspasten. Im Fokus steht hier die Untersuchung der Silberdiffusion in Alkali-Zink-Boratgläsern (X2O-ZnO-B2O3, X = Li, Na, K, Rb). Zudem wird der Redoxzustand des Silbers (Ag) und somit die Art der diffundierenden Silberspezies bestimmt. Hierzu wurde eine metallische Silberschicht mittels Sputterns auf Glaswürfel aufgebracht. Die Wärmebehandlung erfolgte nahe der Glasübergangstemperatur bei 470 °C über 2 h unter Luft und Stickstoffatmosphäre. Die Schichtdicke der Silberbeschichtung betrug 1.8 µm nach der Wärmebehandlung, gemessen mittels Weißlicht-Interferometer. Die Silberdiffusionsprofile wurden mittels Sekundär-Neutral-Teilchen-Massenspektrometrie gemessen. Die Diffusionskoeffizienten des Silbers liegen in der Größenordnung von ~10-14 cm2/s und unterscheiden sich nur gering in Abhängigkeit des Alkali-Ions im Glas. Mittels Fluoreszenz-Spektroskopie ließen sich gelöste Ag+-Ionen und [Agm]n+-Cluster nach der Wärmebehandlung unterscheiden. Zusätzlich konnten ausgeschiedene metallische Silber-Partikel im Natrium-enthaltenden Glas mittels Transmissionselektronenmikroskopie beobachtet werden. Diese haben einen mittleren Durchmesser von ~6 nm. N2 - Substitution of lead oxide in low-melting glasses, e.g., for application in silver metallization pastes, is a current research goal. This work is focused on the investigation of silver diffusion in alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb). In addition, the redox state of silver (Ag) and thus the type of diffusing silver species were studied. For this purpose, a metallic silver coating was applied on glass cubes by means of sputtering. Heat treatment of the samples was performed close to the glass transition temperatures at 470 °C for 2 h under air and nitrogen atmosphere. Coating thickness was 1.8 µm after heat treatment, measured by a white light interferometer. Silver diffusion profiles were measured by means of secondary neutral mass spectrometry. The silver diffusion coefficients are in the range of ~10-14 cm2/s and indicate no significant differences depending on the type of alkali ions in the glass. Dissolved Ag+-ions and [Agm]n+-clusters in the glasses were differentiated using fluorescence spectroscopy. Precipitated metallic silver particles in the sodium containing glass were observed by means of transmission electron microcopy. Their mean particle diameter was ~6 nm. T2 - Living Glass Surfaces XI - Year of Glass CY - Ilmenau, Germany DA - 14.09.2022 KW - Alkali zinc borate glasses KW - Silver diffusion KW - Transmission electron microscopy KW - Fluorescence spectroscopy KW - Silver cluster PY - 2022 AN - OPUS4-55736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Walter, P A1 - Stargardt, Patrick A1 - Höhne, Patrick A1 - Moos, R A1 - Mieller, Björn T1 - Comparison of design concepts for ceramic oxide thermoelectric multilayer generators N2 - Multilayer thermoelectric generators are a promising perspective to the conventional π-type generators. Ceramic multilayer technology is well established for production of microelectronics and piezo-stacks. Key features of ceramic multilayer technology are full-automation, cost-effectiveness, and the co-firing of all materials in one single step. This requires similar sintering temperatures of all used materials. The development of multilayer thermoelectric generators is a subject of current research due to the advantages of this technology. One of the challenges is the compatibility of the different materials with respect to the specific design. The presented study compares three different designs of multilayer generators based on a given set of material properties. Dualleg, unileg and transverse multilayer generators are compared to conventional π-type generators., the designs are evaluated regarding the expected maximum output power and power density using analytical calculations and FEM simulations. Additionally, the complexity of the production process and material requirements are assessed and design optimizations to simplify production are discussed. Besides the theoretical aspects, unileg multilayer generator prototypes were produced by tape-casting and pressure-assisted sintering. These prototypes are compared to other multilayer generators from literature regarding the power factors of the used material system and the power density. Improvements of the power output by design optimizations are discussed T2 - 18th European Conference on Thermoelectrics CY - Barcelona, Spain DA - 13.09.2022 KW - Thermoelectric oxides KW - Thermoelectric generator design PY - 2022 AN - OPUS4-55820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - Bustamante, Joana A1 - Mieller, Björn A1 - Stawski, Tomasz A1 - George, Janine A1 - Knoop, F. T1 - High-quality zirconium vanadate samples for negative thermal expansion (NTE) analysis N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material which exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). The linear thermal expansion coefficient of ZrV2O7 is −7.1×10-6 K-. Therefore, it can be used to create composites with controllable expansion coefficients and prevent destruction by thermal shock. Material characterization, leading to application, requires pure, homogenous samples of high crystallinity via a reliable synthesis route. While there is a selection of described syntheses in the literature, it still needs to be addressed which synthesis route leads to truly pure and homogenous samples. Here, we study the influence of the synthesis methods (solid-state, sol-gel, solvothermal) and their parameters on the sample's purity, crystallinity, and homogeneity. The reproducibility of results and data obtained with scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry, and thermogravimetric analysis (DSC/TGA) were analyzed extensively. The sol-gel method proves superior to the solid-state method and produces higher-quality samples over varying parameters. Sample purity also plays an important role in NTE micro and macro-scale characterizations that explain the impact of porosity versus structural changes. Moreover, we implement ab-initio-based vibrational computations with partially treated anharmonicity (quasi-harmonic approximation, temperature-dependent effective harmonic potentials) in combination with experimental methods to follow and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder, microstructure, and defects. Khosrovani et al. and Korthuis et al., in a series of diffraction experiments, attributed the thermal contraction of ZrV2O7 to the transverse thermal motion of oxygen atoms in V-O-V linkages. In addition to previous explanations, we hypothesize that local disorder develops in ZrV2O7 crystals during heating. We are working on the experimental ZrV2O7 development and discuss difficulties one might face in the process as well as high-quality sample significance in further investigation. The obtained samples are currently used in the ongoing research of structure analysis and the negative thermal expansion mechanism. T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - NTE KW - Sol-gel KW - Solid-state KW - Ab-initio KW - TDEP PY - 2023 AN - OPUS4-58134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by glow-discharge optical emission spectroscopy N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs.[1] Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - European Winter Conference on Plasma Spectrochemistry (EWCPS 2023) CY - Ljubljana, Slovenia DA - 29.01.2023 KW - Lithium-ion batteries KW - Aging mechanisms KW - Depth-profiling PY - 2023 AN - OPUS4-56992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Eddah, Mustapha A1 - Bajer, Evgenia A1 - Markötter, Henning A1 - Kranzmann, Axel T1 - Destructive and non-destructive 3D-characterization of inner metal structures in ceramic packages N2 - Ceramic multilayer packages provide successful solutions for manifold applications in telecommunication, microsystem, and sensor technology. In such packages, three-dimensional circuitry is generated by combination of structured and metallized ceramic layers by means of tape casting and multilayer technology. During development and for quality assurance in manufacturing, characterization of integrity, deformation, and positioning of the inner metal features is necessary. Visualization with high resolution and material contrast is needed. Robot-assisted 3D-materialography is a useful technique to characterize such multimaterial structures. In that, many sections of the specimen are polished and imaged automatically. A three-dimensional representation of the structure is created by digital combination of the image stack. A quasi non-destructive approach is to perform X-ray computer tomography (CT) with different beam energies. The energies are chosen to achieve a good imaging of either the metal features, or the ceramic matrix of the structure. The combination of the respective tomograms results in a high contrast representation of the entire structure. Both methods were tested to characterize Ag and Ag/Pd conductors in a ceramic multilayer package. The results were compared in terms of information content, effort, and applicability of the methods. T2 - 98th DKG Annual Meeting - CERAMICS 2023 CY - Jena, Germany DA - 27.03.2023 KW - Ceramics KW - Synchrotron CT KW - 3D materialography PY - 2023 AN - OPUS4-57268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kianinejad, kaveh A1 - Fedelich, Bernard A1 - Darvishi Kamachali, Reza A1 - Schriever, Sina A1 - Manzoni, Anna Maria A1 - Agudo Jácome, Leonardo A1 - Megahed, Sandra A1 - Kamrani, Sepideh A1 - Saliwan-Neumann, Romeo T1 - Experimentally informed multiscale creep modelling of additive manufactured Ni-based superalloys N2 - Excellent creep resistance at elevated temperatures, i.e. T / T_m> 0.5, due to γ-γ’ microstructure is one of the main properties of nickel-based superalloys. Due to its great importance for industrial applications, a remarkable amount of research has been devoted to understanding the underlying deformation mechanism in a wide spectrum of temperature and loading conditions. Additive manufactured (AM) nickel-based superalloys while being governed by similar γ-γ’ microstructure, exhibit AM-process specific microstructural characteristics, such as columnar grains, strong crystallographic texture (typically <001> fiber texture parallel to build direction) and compositional inhomogeneity, which in turn leads to anisotropic creep response in both stationary and tertiary phases. Despite the deep insights achieved recently on the correlation between process parameters and the resulting microstructure, the anisotropic creep behavior and corresponding deformation mechanism of these materials are insufficiently understood so far. One reason for this is the lack of capable material models that can link the microstructure to the mechanical behavior. To overcome this challenge, a multiscale microstructure-based approach has been applied by coupling crystal plasticity (CP) and polycrystal model which enables the inclusion of different deformation mechanisms and microstructural characteristics such as crystallographic texture and grain morphology. The method has been applied to experimental data for AM-manufactured INCONEL-738LC (IN738). The effect of different slip systems, texture, and morphology on creep anisotropy at 850°C has been investigated. Results suggest a strong correlation between superlattice extrinsic stacking fault (SESF) and microtwinning and observed creep anisotropy. T2 - EUROMAT 23 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - IN738LC KW - Creep anisotropy KW - Crystal plasticity PY - 2023 AN - OPUS4-58263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Gonzalez-Martinez, I. T1 - Complex artificial features on a TEM transparent membrane N2 - The phenomenon of expelling nanomaterial from microparticles of different materials, such as Au, WO3 or B2O3 under the influence of a convergent electron beam (CB) of a transmission electron microscope (TEM) was reviewed by Ignacio Gonzalez-Martinez [1]. Converging the e-beam in a TEM means that a high amount of energy enters the microparticle at a very local place and interact with the matter. Obviously, during the convergent beam protocol, no imaging with the electron beam is possible, but at the end, nanoparticles with different appearances lie down next to the microparticle while its size is reduced. Hence, there is a blind spot in the observation, which we want to fill, as we want to help clarify the nature of the expelling phenomenon. One hypothesis that explains the phenomenon is the so-called damage (of the microparticle) induced by an electric field (DIEF). Within this theory, the material is ionized and expelled in form of ionic waves. Our aim is therefore to fabricate specimens with artificial microlandscapes, as schematically exemplified in figure 1a), using the focused ion beam (FIB) and micromanipulators, as experimental setups to follow the paths of the expelled material. As a first step towards the fabrication of such specimen, we make experimental feasibility studies for each fabrication method, FIB structuring with Ga+ ion beam and micromanipulated microparticle deposition. Bridges (gray regions in Fig. 1) are created by milling a commercially available electron transparent membrane (silicon oxide or carbon) of a Cu-TEM grid. Platinum or carbon walls (blue features in Fig. 1) are built to stand on those bridges. Microparticles (yellow sphere in Fig. 1) of gold or other material are deposited in the center of the bridges. Figure 2a) shows four square holes (black area) and between them the residual silicon oxide membrane bridges (dark grey). On top of the bridges, walls (light grey) are deposited. The width of the bridges is different, the walls overlap the holes as well as the distance between the walls is very small, so these and other parameters need to be optimized. Figure 2b) shows a square hole (black) with bridges (white) on the right side on top of a carbon membrane (grey). There are still some obstacles which needs to be eliminated. For instance, the deposition process of the walls is not reliable as visible at the wall on top where a hole arises instead of a wall. These studies are still in progress and the results are further discussed in terms of the applicability for the DIEF experiment in the TEM. T2 - 4th EuFN and FIT4NANO Joint Workshop / Meeting CY - Vienna, Austria DA - 27.09.2021 KW - Transmission electron microscope (TEM) KW - Sample preparation KW - Micromanipulation KW - Focussed ion beam growth KW - Nano-landscape PY - 2021 AN - OPUS4-58259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Suárez Ocano, Patricia T1 - Thermodynamic and microstructural stabilities at high temperatures and their effects on mechanical properties in an AlMo0.5NbTa0.5TiZr refractory high entropy superalloy N2 - Today’s industrial demands challenge the research and development sector to make advances in the design and properties of materials that can withstand harsh environments. The AlMo0.5NbTa0.5TiZr refractory high-entropy superalloy (RSA), with a remarkable morphological similarity to the γ/γ' microstructure of Ni-based superalloys and promising high-temperature compressive properties, has been considered as a candidate for structural applications. However, additional properties need to be investigated in order to assess the suitability of this alloy for high temperature applications. Therefore, this work investigates the thermodynamic and microstructural stabilities of the RSA at room temperature and between 900 and 1100 °C, and their influence on the mechanical properties. Although it is possible to improve the mechanical properties at 20 °C by tuning the cooling rate, long-term high temperature exposures lead to phase instabilities that negatively influence the creep behavior. N2 - Die heutigen industriellen Anforderungen erfordern Fortschritte bei Werkstoffdesign und -entwicklung, insbesondere für raue Umgebungen. Die hochentropische Refraktärsuperlegierung (RSA) AlMo0.5NbTa0.5TiZr, die eine bemerkenswerte morphologische Ähnlichkeit mit der γ/γ'-Mikrostruktur von Ni-Basis-Superlegierungen und vielversprechende Hochtemperatur-Druckeigenschaften aufweist, wurde als Kandidat für strukturelle Anwendungen erwägt. Weitere Eigenschaften müssen untersucht werden, um die Eignung dieser Legierung für Hochtemperaturanwendungen zu beurteilen. In dieser Arbeit werden die thermodynamischen und mikrostrukturellen Stabilitäten von RSA bei Raumtemperatur und zwischen 900 und 1100°C sowie deren Einfluss auf die mechanischen Eigenschaften untersucht. Obwohl es möglich ist, die mechanischen Eigenschaften bei 20 °C durch Abstimmung der Abkühlrate zu verbessern, führen langfristige Hochtemperaturexpositionen zu Phaseninstabilitäten, die das Kriechverhalten negativ beeinflussen. KW - Hochentropielegierung KW - Gefüge (Werkstoffkunde) KW - Mikrostruktur KW - Kriechen KW - Thermodynamische Stabilität KW - High entropy alloys KW - Microstructure KW - Creep KW - Thermodynamic stability PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:hbz:294-108415 DO - https://doi.org/10.13154/294-10841 SP - 1 EP - 170 CY - Bochum AN - OPUS4-59929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kianinejad, Kaveh A1 - Darvishi Kamachali, Reza A1 - Khedkar, Abhinav A1 - Manzoni, Anna A1 - Agudo Jácome, Leonardo A1 - Schriever, Sina A1 - Saliwan Neumann, romeo A1 - Megahed, Sandra A1 - Heinze, Christoph A1 - Kamrani, Sepideh A1 - Fedelich, Bernard T1 - Creep anisotropy of additively manufactured Inconel-738LC: Combined experiments and microstructure-based modeling N2 - The current lack of quantitative knowledge on processing-microstructure–property relationships is one of the major bottlenecks in today’s rapidly expanding field of additive manufacturing. This is centrally rooted in the nature of the processing, leading to complex microstructural features. Experimentally-guided modeling can offer reliable solutions for the safe application of additively manufactured materials. In this work, we combine a set of systematic experiments and modeling to address creep anisotropy and its correlation with microstructural characteristics in laser-based powder bed fusion (PBF-LB/M) additively manufactured Inconel-738LC (IN738LC). Three sample orientations (with the tensile axis parallel, perpendicular, and 45° tilted, relative to the building direction) are crept at 850 °C, accompanied by electron backscatter secondary diffraction (EBSD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. A crystal plasticity (CP) model for Ni-base superalloys, capable of modeling different types of slip systems, is developed and combined with various polycrystalline representative volume elements (RVEs) built on the experimental measurements. Besides our experiments, we verify our modeling framework on electron beam powder bed fusion (PBF-EB/M) additively manufactured Inconel-738LC. The results of our simulations show that while the crystallographic texture alone cannot explain the observed creep anisotropy, the superlattice extrinsic stacking faults (SESF) and related microtwinning slip systems play major roles as active deformation mechanisms. We confirm this using TEM investigations, revealing evidence of SESFs in crept specimens. We also show that the elongated grain morphology can result in higher creep rates, especially in the specimens with a tilted tensile axis. KW - Additive manufactured Ni-base superalloys KW - Creep KW - Crystal plasticity KW - Superlattice extrinsic stacking faults PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601576 DO - https://doi.org/10.1016/j.msea.2024.146690 SN - 0921-5093 VL - 907 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-60157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Gadelmeier, C. A1 - Gratzel, U. A1 - Agudo Jácome, Leonardo T1 - Creep Properties of the Refractory Chemically Complex AlMo 0.5 NbTa 0.5 TiZr Alloy N2 - The development of refractory CCAs has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy, which resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. The aim of this work is to evaluate the alloy’s mechanical behavior under tension in the temperature range 800-1000°C, by applying creep tests under vacuum (excluding oxidation effects). Some little temperature influence on minimum creep rate @ 1000 and 1100 °C was found and at a first glance, and Norton plots shows that deformation is probably both diffusion and dislocation controlled. However, further work is needed to stablish deformation and degradation micro mechanisms in the studied creep regime. T2 - SPP Kick-Off Meeting 2nd Phase CY - Online meeting DA - 14.04.2021 KW - Creep behavior KW - Chemically complex alloy KW - Microstructure PY - 2021 AN - OPUS4-53389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Suárez Ocano, Patricia A1 - Agudo Jácome, Leonardo A1 - Lopez-Galilea, I. A1 - Darvishi Kamachali, Reza A1 - Fries, S. G. T1 - Data regarding the experimental findings compared with CALPHAD calculations of the AlMo0.5NbTa0.5TiZr refractory high entropy superalloy N2 - This contribution contains the raw data used to compare experimental results with thermodynamic calculations using the CALPHAD method, which is related to the research article “The AlMo0.5NbTa0.5TiZr refractory high entropy superalloy: experimental findings and comparison with calculations using the CALPHAD method” [1] , and therefore this article can be used as a basis for interpreting the data contained therein. The AlMo0.5NbTa0.5TiZr refractory superalloy was characterized in the cast and annealed condition (1400 °C for 24 h) in order to measure grain size and to identify and measure the size and area fraction of the phases present. The raw data of this article include X-ray diffraction (XRD) measurements, microstructural characterization by scanning and transmission electron microscopy (SEM and TEM), and elemental analysis by energy dispersive X-ray spectroscopy (EDX). XRD includes the determination of phases and the lattice parameters (A2, B2, and hexagonal structure). Microstructural analysis by scanning and transmission electron microscopy includes (1) identification of composition, size, and volume fraction of the present phases and (2) determination of grain size. Based on these experimental data, it is possible to identify similarities and discrepancies with the data calculated using the CALPHAD method for the alloy under study in Ref. [1] , which provides the basis for better and more efficient development of reliable databases. KW - Microstructural characterization KW - Refractory high entropy alloys KW - Scanning electron microscopy KW - Transmission electron microscopy PY - 2023 DO - https://doi.org/10.17632/d742ccty5f.4 PB - Mendeley Data CY - Oxford, UK AN - OPUS4-56861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Navigating the Nanoworld: Understanding Materials Properties with the Transmission Electron Microscope N2 - The field of materials science is defined as “the study of the properties of solid materials and how those properties are determined by a material’s composition and structure.”. Many –if not most– of the materials that are produced nowadays owe their properties to structures engineered down to the nanoscopic level. This need has been partly realized thanks to the understanding of materials’ building blocks via characterization techniques that reach this level of resolution. Transmission electron microscopy, since its first implementation in the early 1930s (in Berlin), has been implemented to achieve imaging –and spectral– analysis at lateral resolutions down to the atomic level. In this contribution, a series of practical examples will be presented, where applied materials are characterized by a range of transmission electron microscopy techniques to understand structural and functional properties of a wide range of materials. Among these materials examples will be presented on structural conventionally and additively manufactured metallic alloys, high entropy alloys, dissimilar aluminum-to-steel welds, magnetic nanoparticles, ceramic coatings, high temperature oxidation products. Addressed will be either the effect of processing route or that of the exposure to experimental conditions similar to those found in the respective intended applications. T2 - UA/UAB/UAH MSE Graduate Seminar CY - Online meeting DA - 19.01.2022 KW - Transmission electron microscopy (TEM) KW - Characterization KW - Microstructure KW - 3D PY - 2022 AN - OPUS4-54238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Croteau, Jean-Francois A1 - Pai Kulyadi, E. A1 - Agudo Jácome, Leonardo A1 - Kale, C. A1 - García-Tabarés Valdivieso, E. A1 - Perez Fontenla, A. T. A1 - Siu, D. A1 - Kang, D. A1 - Eisenlohr, P. A1 - Bieler, T. R. A1 - Solanki, K. N. A1 - Manzoni, Anna Maria A1 - Atieh, S. A1 - Balint, D. A1 - Hooper, P. A1 - Jacques, N. A1 - Cantergiani, E. T1 - Electro-hydraulic forming of SRF cavities: Effect of strain rate on niobium single crystals N2 - An investigation of the dislocation substructure and mechanical properties of high-purity niobium single crystals with different initial crystal orientations deformed in tension at strain rates of 10^{-4} to 10^3 s^{-1} is presented. Specimens were cut from a large grain niobium disk used for the manufacturing of SRF cavities. Different crystallographic tensile directions exhibited significantly different softening and hardening behaviors and elongation at fracture. Such anisotropy is reduced at high strain rates. Also, different dislocation substructures were observed with TEM at low and high strain rates. At low strain rates, dislocation cells with a high density of long dislocations were observed. At high strain rates, homogeneously distributed dislocations with a higher dislocation dipole density were observed. The relationship between the differences in dislocation substructures and mechanical properties at low and high strain rates and the potential effects on the superconducting properties are discussed. T2 - 2021 International Conference on RF Superconductivity (SRF'21) CY - Online meeting DA - 28.06.2021 KW - Dislocation substructure KW - Strain rate dependence KW - Transmission electron microscopy (TEM) PY - 2021 UR - https://indico.frib.msu.edu/event/38/attachments/158/1089/TUPCAV012_poster.pdf AN - OPUS4-54540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yesilcicek, Yasemin A1 - Haas, S. A1 - Suárez Ocano, Patricia A1 - Zaiser, E. A1 - Hesse, René A1 - Többens, D. M. A1 - Glatzel, U. A1 - Manzoni, Anna Maria T1 - Controlling Lattice Misfit and Creep Rate Through the γ' Cube Shapes in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy with Hf and W Additions N2 - Trace elements play an important role in the fine-tuning of complex material properties. This study focuses on the correlation of microstructure, lattice misfit and creep properties. The compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 (in at. %) was tuned with high melting trace elements Hf and W. The microstructure consists of a γ matrix, γ' precipitates and the Heusler phase and it is accompanied by good mechanical properties for high temperature applications. The addition of 0.5 at.% Hf to the Al10Co25Cr8Fe15Ni36Ti6 alloy resulted in more sharp-edged cubic γ′ precipitates and an increase in the Heusler phase amount. The addition of 1 at.% W led to more rounded γ′ precipitates and the dissolution of the Heusler phase. The shapes of the γ' precipitates of the alloys Al9.25Co25Cr8Fe15Ni36Ti6Hf0.25W0.5 and Al9.25Co25Cr8Fe15Ni36Ti6Hf0.5W0.25, that are the alloys of interest in this paper, create a transition from the well-rounded precipitates in the alloy with 1% W containing alloy to the sharp angular particles in the alloy with 0.5% Hf. While the lattice misfit has a direct correlation to the γ' precipitates shape, the creep rate is also related to the amount of the Heusler phase. The lattice misfit increases with decreasing corner radius of the γ' precipitates. So does the creep rate, but it also increases with the amount of Heusler phase. The microstructures were investigated by SEM and TEM, the lattice misfit was calculated from the lattice parameters obtained by synchrotron radiation measurements. KW - High entropy alloy KW - Lattice misfit KW - Creep KW - Transmission electron microscopy KW - X-ray diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565655 DO - https://doi.org/10.1007/s44210-022-00009-1 SP - 1 EP - 9 PB - Springer AN - OPUS4-56565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Agudo Jácome, Leonardo T1 - Incipient Oxidation and Deformation Mechanisms of the Chemically Complex Alloy AlMo 0.5 NbTa 0.5 TiZr in the high temperature regime N2 - The development of refractory chemically complex alloys (rCCAs) has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy. It was named as “high entropy superalloy” as it resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. However, the continuous phase in Ni Base alloys is an fcc solution and the cuboidal γ’ precipitates present the L12 intermetallic structure. On the opposite, this CCA has a reversed microstructure where the continuous matrix is formed by an ordered B2 phase which contains cuboidal precipitates of a disordered BCC phase. Some of the most importat results of microstructural analysis, creep test and oxidation are presented in the following work. The as-cast sample shows a bcc/B2 structure with hexagonal phase precipitates in amorphous state whereas the annealed sample also shows a combination of these phases but with larger bcc precipitates and a fully crystallized hexagonal intermetallic. It was found that porosity was higher in the annealed samples (Kinkerdall effect) and the hardness was higher in samples with faster cooling rate due smaller nanostructure. Norton plots show both diffusion and dislocation controlled deformation, and it was found different kinetics between dry and humid air oxidation with the presence of spallation. T2 - CONVEMI 2021 (Venezuelan congress of microscopy and microanalysis) CY - Online meeting DA - 29.10.2021 KW - High entropy superalloys KW - Mechanical properties KW - Oxidation behavior KW - Microstructural analysis PY - 2021 AN - OPUS4-54382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic operation performance of 9-12% Cr ferritic-martensitic steels part 2: Microstructural evolution during cyclic loading and its representation in a physically-based micromechanical model N2 - The current competitive situation on electricity markets forces conventional power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach. T2 - 45. MPA-Seminar CY - Leinfelden-Echterdingen, Germany DA - 01.10.2019 KW - Tempered Martensite Ferritic Steels KW - P92 KW - TEM KW - EBSD KW - Micromechanical model PY - 2019 SP - 80 EP - 85 PB - MPA (Materialprüfungsanstalt Universität Stuttgart) CY - Stuttgart AN - OPUS4-50052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kang, M. A1 - Czasny, M. A1 - Kober, D. A1 - Reschetnikow, A. A1 - Stargardt, Patrick A1 - Mieller, Björn A1 - Gurlo, A. T1 - Influence of mica particle content in composites for high voltage applications produced by additive manufacturing and mold casting N2 - The insulation system of high voltage electrical devices like generators and electrical motors has to withstand thermal, electrical, ambient and mechanical influences (TEAM) during operation. Especially the dielectric properties have to satisfy the requirements also under elevated temperatures and extreme environments. To provide this high quality, the conventional fabrication process uses partly manually applied insulation tapes combined with a cost-intensive and under safety concerns at least problematic vacuum pressure impregnation step (VPI). In order to reduce process costs by increasing the degree of automation and avoiding the VPI process, additively manufactured (AM) insulations were studied. This study focuses on the fabrication of ceramic/polymer compounds via AM technique. The AM technology used a rotating screw extrusion print head with air pressure to supply the paste. Plate-like samples with dimensions of 55 mm x 55 mm x1mm thickness were produced. This work focuses on the homogeneously high viscous paste with 12.5 to 50 volume % ratio of filler particles. Three types of mica powders as ceramic filler materials with different particle sizes from micro to mm scale were evaluated. The controlled volume % ratio of particles affects the paste viscosity which enables stacking of paste layers with a viscosity close to clay pastes. The mixed pastes were cured by heating and UV light to increase mechanical properties. A TG/DTA was performed, and electrical properties were investigated. First experiments with respect to the dielectric properties such as volume resistance, permittivity and dielectric strength revealed promising results and the possibility to use AM techniques for the fabrication of high voltage insulations for electrical machines. T2 - MaterialsWeek 2021 CY - Online meeting DA - 07.09.2021 KW - HV-Insulation KW - Polymer-Ceramic-Composite KW - Additive manufacturing PY - 2021 AN - OPUS4-54368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Mieller, Björn A1 - Rabe, Torsten A1 - Markötter, Henning ED - Petzow, G. ED - Mücklich, F. T1 - Machine learning assisted characterization of a Low Temperature Cofired Ceramic (LTCC) module measured by synchrotron computed tomography N2 - The 5G technology promises real time data transmission for industrial processes, autonomous driving, virtual and augmented reality, E-health applications and many more. The Low Temperature Co-fired Ceramics (LTCC) technology is well suited for the manufacturing of microelectronic components for such applications. Still, improvement of the technology such as further miniaturization is required. This study focuses on the characterization of inner metallization of LTCC multilayer modules, especially on the vertical interconnect access (VIA). Critical considerations for this characterization are delamination, pore clustering in and at the edge of the VIA, deformation, and stacking offset. A LTCC multilayer consisting of a glassy crystalline matrix with silver based VIAs was investigated by synchrotron x-ray tomography (CT). The aim of this study is to propose a multitude of structural characteristic values to maximize the information gained from the available dataset. Data analysis has been done with the open source software ImageJ as well as several additional plugins. The high-resolution CT data was evaluated through 2D slices for accessibility reasons. The segmentation of all 2000 slices to assess the different regions e.g. pores, silver and glass ceramic was done by a supervised machine learning algorithm. A quantitative evaluation of shape, deformation, and porosity of the VIA with respect to its dimensions is presented and the suitability of the characterization approach is assessed. T2 - 54. Metallographie Taagung CY - Online meeting DA - 16.09.2020 KW - Machine Learning KW - LTCC KW - Synchrotron Tomography PY - 2020 SN - 978-3-88355-422-8 VL - 54 SP - 136 EP - 141 PB - Deutsche Gesellschaft für Materialkunde e.V CY - Sankt Augustin AN - OPUS4-51298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Agudo Jácome, Leonardo A1 - Jürgens, Maria A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Cyclic loading performance and related microstructure evolution of ferritic-martensitic 9-12% Cr steels N2 - The current competitive situation on electricity markets forces power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach. T2 - 44th MPA-Seminar CY - Leinfelden/Stuttgart, Germany DA - 17.10.2018 KW - Ferritic-martensitic steels KW - Cyclic loading KW - Microstructure evolution PY - 2018 SP - 259 EP - 265 AN - OPUS4-47118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Junge, P. A1 - Greinacher, M. A1 - Kober, D. A1 - Mieller, Björn T1 - Dielectric properties of plasma sprayed coatings for insulation application N2 - Thermal spraying provides a rapid method for additive deposition of various ceramics as electrical insulation in applications where polymers are not suitable. New applications in complex shaped additive manufactured metal parts are emerging for example in large scale electrical devices. Microstructural and dielectric evaluation of coatings is crucial to the employment of such free-form processes. The properties and microstructure of the plasma sprayed alumina coatings are compared with dense reference samples of the same powder produced by spark plasma sintering (SPS). To obtain dense bulk samples from the coarse alumina powder for spray coating, SPS is used. Samples are fabricated by atmospheric plasma spraying (APS) of commercially available alumina powder (d50 = 33 µm) on copper substrates and by SPS of the same powder. Microstructure and porosity were analyzed by optical microscopy and scanning electron microscopy (SEM). Phase compositions were determined by X-ray diffraction (XRD). Dielectric properties such as DC resistance, dielectric strength, dielectric loss, and relative permittivity were determined according to the standards. The microstructure and dielectric properties of the coating and bulk material are compared to assess whether the coating is suitable for use in electrical insulation application. T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Dielectric characterization KW - Atmospheric plasma spraying KW - Spark plasma sintering KW - Electrical insulation PY - 2022 AN - OPUS4-55328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Gonzalez-Martinez, I. A1 - Agudo Jácome, Leonardo T1 - Damage induced by electric field of gold microparticles on silicon oxide substrate in the scanning electron microscope N2 - 1. Introduction A normally unwanted process that can arise when converging an electron beam onto, e.g. microparticles, has been called "damage induced by electric field" (DIEF) [1]. By DIEF, the convergent electron beam (CEB) imparts a high amount of energy to the microparticle locally and strongly interacts with its atoms. At a specific current density J, which can be controlled by the convergence angle α, the irradiated material begins to transform. The phenomenon of expelling nanomaterial from microparticles under the influence of a convergent electron beam (CB) in a transmission electron microscope (TEM) has been largely studied [2]. Several types of nanoparticles (NPs) have been observed for different metallic materials and metal oxides after specific CB protocols (P) in the TEM. Thus, DIEF can be used as a promising synthesis method controlled changes of micrometric material to create new nanometric material compositions and morphologies. While these reactions have been observed in situ at the high acceleration voltages associated with TEM, it remains unclear whether the SEM can also be used to fabricate NPs via DIEF. In contrast to TEM there is no possibility to statically convert the electron beam to a range of α to reach the needed J as in TEM. Instead, the scanning parameters and the magnification can be manipulated so as to find an integrated J. Considering that the scanning electron microscope (SEM) is easier to use, more accessible and cheaper than a TEM, here we explore the possibility to transfer the concepts of DIEF known to operate in the TEM for in situ NP generation SEM. 2. Objectives The main goal is to determine whether DIEF can be translated to the SEM perform to controlled in situ fabrication of nanoparticles from microparticles, using gold microparticles on amorphous SiO substrate as precursors. We determine what experimental parameters must be taken into account to create SEM-based CBPs for NP creation in the SEM with these materials. 3. Materials & methods Gold microparticles with diameter of around 1 to 3 µm were deposited on electron transparent amorphous SiO/SiO2 substrate. Using a convergent electron beam protocol (CBP) in a scanning electron microscope (SEM) at an acceleration voltage of 30 kV, the gold microparticles were irradiated until a production of NPs takes place as shown in figure 1. The beam current varied between 16 and 23 nA. 4. Results Depending on the CBP parameters, either only Au NPs or a mixture of Au and Si NPs are produced. The particle size ranges from a few nm up to 100 nm, and it depends on the distance of the NP to the initial position of the microparticle. Further beam parameters such as the dwell time, the effective irradiated volume and particle size determine whether NPs are produced or if the microparticles only are expelled from the substrate without reacting. 5. Conclusion The SEM can be used as an instrument for synthesizing nanomaterials via DIEF. Different CBP protocols can be applied for obtaining either gold nanoparticles or silicon + gold nanoparticles T2 - Microscopy Conference CY - Darmstadt, Germany DA - 26.02.2023 KW - Scanning electron microscopy (SEM) KW - Gold nanoparticles KW - Electron beam induced modification PY - 2023 AN - OPUS4-58261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Analysis of reaction layers and cooling simulations of co-fired thermoelectric multilayers N2 - Ceramic multilayer technology is an attractive approach for the cost-effective fabrication of thermoelectric generators. Therefore, efforts are being made to co-sinter two promising thermoelectric oxides, namely calcium cobaltite and calcium manganate. In this study, calcium cobaltite, calcium manganate and release tapes were pressure assisted sintered. A major challenge here is the cracking of calcium manganate during cooling. A relationship between the properties of the release tape used in pressure-assisted sintering and the cracking behavior was observed experimentally. To understand the origin of failure, formed reaction layers in the multilayer were analyzed by EDX and grazing incident XRD. Based on this analysis, bulk samples were prepared, and thermal expansion and Young's modulus and were determined thereon, if they were not known from the literature. The biaxial strength of the thermoelectric oxides was determined by the ball on three ball method. The thermal stresses during cooling of different multilayer designs were estimated by finite element simulations. The stresses caused by the reaction layers turned out to be negligible. The FEM study indicated further, and a validation experiment proved, that the thickness of the release tape has the main effect on thermal stresses during cooling in single material. For best performance, the design of a thermoelectric multilayer generator needs to consider thermoelectric performance and thermal stresses during cooling. T2 - Virtual Conference on Thermoelectrics CY - Online meeting DA - 20.07.2021 KW - Ceramic multilayer KW - Cooling simulations KW - Thermal stress KW - Thermoelectric PY - 2021 AN - OPUS4-52994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Jürgens, Maria A1 - Sonntag, Nadja A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic operation performance of 9 -12% cr ferritic martensitic steels part 1: cyclic mechanical behavior under fatigue and creep fatigue loading N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in fossil fueled power plants due to their excellent creep and oxidation resistance, but changes in electricity markets during the last two decades have considerably changed the typical working conditions of these facilities. The growing share of renewable energy sources in power generation forces most of these plants into flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue, raising the question which fundamental processes govern the reaction of ferritic-martensitic steels to cyclic load and temperature variations. The present contribution reports on current findings obtained in a multidisciplinary project funded by German Ministry of Education and Research (BMBF) which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses and related micromechanical modeling. In the present first part of our contribution, an overview will be given on the results obtained in the mechanical testing programme of the project. Mechanical analyses were carried out on P91 and (mainly) P92 steel grades, particularly looking at softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of creep and fatigue periods. For this purpose, cylindrical specimens were extracted from thick-walled steam pipes, orthogonal to the pipe axis, and subjected to strain controlled cyclic loading (± 0.2 to ±0.5 % mechanical strain) to different degrees of softening at temperatures up to 620 °C. The test results will be presented and discussed with a focus on the impact of hold periods (i.e. combined creep-fatigue conditions) on mechanical softening, lifetime and crack formation. Details on the microstructural evolution and their representation in a micromechanical model will be given in a second, complementary contribution to this conference. T2 - 45. MPA-Seminar CY - Stuttgart, Germany DA - 01.10.2019 KW - Tempered Martensite Ferritic Steels KW - Low Cycle Fatigue KW - Creep-Fatigue KW - Thermo-Mechanical Fatigue KW - P92 PY - 2019 AN - OPUS4-50050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Electric field distribution on ceramic samples during dielectric strength testing N2 - The dielectric breakdown strength of ceramics strongly depends on the test conditions. Thus, standardized test procedures and thorough documentation are indispensable. However, during dielectric strength testing the breakdown often occurs near the electrode edge or even outside the specified electrode area. This behavior is similarly observed for printed and cylindrical electrodes. The aim of the presented study was to calculate the electric field strength distribution in a ball-on-plate testing setup for metallized samples and to correlate the field distribution with the observed breakdown locations. Small misalignments in the test setup were also considered in the simulations. Furthermore, the field strength at the breakdown Location should be compared to the experimentally determined dielectric strength. Therefore, Finite Element Models of several test conditions with varying printed electrode areas and sample thicknesses were created and electrostatic calculations of the electric field Distribution were performed. The simulation results were compared to experimental data. Alumina (96 %) was used as test material. The calculations show that the electric field strength maxima match the experimentally observed locations of breakdown. Without any fitting of the model, the maximum calculated field strength is in reasonable agreement with the experimental dielectric strength. The FE analysis is a helpful tool to understand the observations in experimental dielectric strength testing. T2 - CERAMICS 2021 / 96th DKG Annual Meeting CY - Online Meeting DA - 19.04.2021 KW - Dielectric breakdown KW - Dielectric strength KW - Electric field strength KW - Ceramics PY - 2021 AN - OPUS4-52512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia T1 - I n situ monitoring of growing oxidation of the chemically complex alloy AlMo 0.5 NbTa 0.5 TiZr in the high temperature regime using synchrotron radiation Preliminary results N2 - The chemically complex alloys (CCAs) that contain mostly refractory elements (rCCAs), may be highly resistant to heat and load, which makes them attractive candidates for use at extremely high temperatures associated with many technological applications, e.g. aeroengine turbines. However, the field of CCAs, especially their resistance in harsh (oxidative) and hot environment is still young and not much experimental evidence for the understanding mechanisms in this regime is available, which the proposed study addresses. For safe use in structural applications, in addition to their mechanical performance, the environmental resistance of this alloy is also critical. Surface degradation can significantly decrease the mechanical resistance during high temperature exposure, leading to premature failure. The AlMo0.5NbTa0.5TiZr rCCA only contains Al as a protection candidate and it is composed of a coherent B2/bcc nanoscopic cube-on-cube interweave and an hexagonal phase. The evaluation of the oxidation process in the AlMo0.5NbTa0.5TiZr rCCA in the heat-treated state has not been assessed yet. The proposed study focusses on a deeper understanding of the formation mechanism and growth kinetics of oxides at high temperature in the AlMo0.5NbTa0.5TiZr rCCA using synchrotron radiation. Due to the envisaged high temperature structural applications, the alloy is evaluated in an oxidation environment specifically between 800°C and 1000°C. T2 - Large scale facility-based techniques SPP meeting CY - Online meeting DA - 02.11.2021 KW - Refractory chemically complex alloys KW - Oxidation behavior KW - Microstructural analysis KW - Synchrotron radiation PY - 2021 AN - OPUS4-54383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feng, Wen A1 - Gemming, Thomas A1 - Giebeler, Lars A1 - Qu, Jiang A1 - Weinel, Kristina A1 - Agudo Jácome, Leonardo A1 - Büchner, Bernd A1 - González-Martínez, Ignacio T1 - Influence of magnetic field on electron beam-induced Coulomb explosion of gold microparticles in transmission electron microscopy N2 - In this work we instigated the fragmentation of Au microparticles supported on a thin amorphous carbon film by irradiating them with a gradually convergent electron beam inside the Transmission Electron Microscope. This phenomenon has been generically labeled as “electron beam-induced fragmentation” or EBIF and its physical origin remains contested. On the one hand, EBIF has been primarily characterized as a consequence of beam-induced heating. On the other, EBIF has been attributed to beam-induced charging eventually leading to Coulomb explosion. To test the feasibility of the charging framework for EBIF, we instigated the fragmentation of Au particles under two different experimental conditions. First, with the magnetic objective lens of the microscope operating at full capacity, i.e. background magnetic field B = 2 T, and with the magnetic objective lens switched off (Lorenz mode), i.e. B = 0 T. We observe that the presence or absence of the magnetic field noticeably affects the critical current density at which EBIF occurs. This strongly suggests that magnetic field effects play a crucial role in instigating EBIF on the microparticles. The dependence of the value of the critical current density on the absence or presence of an ambient magnetic field cannot be accounted for by the beam-induced heating model. Consequently, this work presents robust experimental evidence suggesting that Coulomb explosion driven by electrostatic charging is the root cause of EBIF. KW - Electron beam-induced fragmentation KW - Coulomb explosion KW - X-ray diffraction KW - Lorenz transmission electron microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600247 DO - https://doi.org/10.1016/j.ultramic.2024.113978 SN - 0304-3991 VL - 262 SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-60024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by glow-discharge optical emission spectroscopy N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs. Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Lithium Ion Batteries KW - GD-OES KW - FIB KW - SEM KW - EDX PY - 2022 AN - OPUS4-56246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kling, I. C. S. A1 - Pauw, Brian Richard A1 - Agudo Jácome, Leonardo A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Starch KW - Starch nanoparticle KW - Silver nanoparticle PY - 2020 AN - OPUS4-51828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Evaluation of a multi-purpose measurement cell for standardized volume resistivity measurements at high temperatures N2 - The ProboStat is a multi-purpose measurement cell suitable for various electrical and physical measurements under different atmospheres and at high temperatures. Disc and bar shaped samples are sandwiched between platinum electrodes at the top of the tubular cell. The gas tight assembly can be inserted into a furnace. Different gases can be flushed through the tube. For this study, a ProboStat was adapted to measure volume resistivity of ceramic insulators at high temperatures according to standards. The standardized measurement of volume resistivity of ceramic insulators requires the consideration of many specifications including sample diameter, thickness, electrode design, and the proportion of these characteristics. Measurements are ideally performed in a state of dielectric equilibrium. The time-related slope of resistivity of a specific sample follows a power function. Thus, care must be taken when choosing a charge time or defining the duration of a measurement. As fringing of the guarded electrode occurs under high voltage, the effective electrode area for evaluation of the results should be corrected with respect to sample thickness and electrode design. The demands of effective standards on sample geometry and electrode design are stricter for room temperature measurements than for high temperature measurements. To perform high temperature measurements on ceramic samples that also fulfill the demands on room temperature measurements, a ProboStat was equipped with a dedicated large sample setup for discs with diameters of up to 60 mm. The volume resistivity of different alumina samples was first measured at room temperature in a standard test fixture and then compared to results obtained with the ProboStat. All measurements were performed for at least 100 min using a 26 mm guarded electrode. High temperature measurements at 500 °C were performed using the same samples. Room temperature values obtained with the standard test fixture are in the order of 10^17 Ohm·cm. The quantitative effect of electrode area correction is presented. Practical issues related to the use of the multi-purpose cell are addressed. These include electrode material selection, application of electrodes, and compensation of leakage currents. High temperature results of volume resistivity of the different alumina samples are presented. The validity is discussed with respect to the suitability of the multi-purpose cell for such measurements. T2 - XVI Conference and Exhibition of the European Ceramic Society (ECerS 2019) CY - Torino, Italy DA - 16.06.2019 KW - ceramics KW - alumina KW - volume resistivity PY - 2019 AN - OPUS4-48270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Nolze, Gert A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic Operation Performance of 9-12% Cr Ferritic-Martensitic Steels. Part 2: Microstructural Evolution during Cyclic Loading and its Representation in a Physically-based Micromechanical Model N2 - The current trend towards cyclic, “flexible” operation of fossil-fueled power plants constitutes a major issue regarding lifetime and operational safety of the respective installations and their components, as was outlined in our complementary contribution (Part 1). The present contribution reports on the investigation of the microstructure evolution in cyclically loaded ferritic-martensitic steels and its representation in a physically-based micromechanical model. For this purpose, specimens of P92 steel grade from the mechanical test programme outlined in our companion contribution (Part 1) were analyzed by scanning electron microscopy (SEM), including backscattered diffraction (EBSD) mapping, and transmission electron microscopy (TEM). A novel method was implemented to improve angular resolution of EBSD scans. Additionally, a correlative microscopy approach was developed and used to correlate EBSD and TEM measurements on the same locations of thick regions of electron transparent specimens. By applying these techniques, a detailed quantitative microstructure description of the as-received material condition, namely in terms of subgrain morphology and dislocation density/distributions, was established. Comparisons of as-received and cyclically loaded conditions from tests interrupted at different stages of lifetime indicate a rapid redistribution of in-grain dislocations with a strong interaction between mobile dislocations and low angle grain boundaries (LABs). The proposed micromechanical model is formulated in a viscoplastic self-consistent (VPSC) scheme, which is a mean-field approach that allows us to include the crystal details at the level of slip systems while avoiding the considerable computational costs of full-field approaches (such as the classical crystal plasticity finite element analysis). Being physically-based, the model uses dislocation densities and includes the interaction between dislocations, e.g. annihilation of mobile dislocations, and evolution of microstructure, e.g. the grain coarsening. Particularly, the constitutive laws for dislocation evolution and interaction between dislocations and low angle boundaries are calibrated based on two-dimensional discrete dislocation dynamic (2D DDD) simulations, which are performed at a micro-/meso-scale. The results of the beforementioned EBSD experiments are considered as a direct input, involving e.g. the amount of geometrically necessary dislocations, average misorientations and grain characteristics. T2 - 45th MPA-Seminar 2019 CY - Leinfelden-Echterdingen, Germany DA - 01.10.2019 KW - Tempered martensite ferritic steel KW - Dislocation KW - Electron backscattered diffraction (EBSD) KW - Transmission electron microscopy (TEM) KW - Microstructure KW - Physically based material model PY - 2019 AN - OPUS4-49346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Sonntag, Nadja A1 - Nolze, Gert A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit A1 - Jürgens, Maria T1 - Cyclic mechanical performance and microstructure evolution of P92 under LCF and TMF conditions N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in fossil fueled power plants due to their excellent creep and oxidation resistance, but changes in electricity markets during the last two decades have considerably changed the typical working conditions of these facilities. The growing contribution of renewable energy sources in power generation forces most of these plants into flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue, raising the question which fundamental processes govern the reaction of ferritic-martensitic steels to cyclic load and temperature variations. The present contribution reports on current findings obtained in a multidisciplinary project funded by German Ministry of Education and Research (BMBF) which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses and related micromechanical modeling. In this contribution, an overview will be given on the results obtained in the mechanical testing programme of the project. Mechanical analyses were carried out on P91 and (mainly) P92 steel grades, particularly looking at softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of fatigue and creep/relaxation periods. For this purpose, cylindrical specimens were extracted from thick-walled steam pipes, orthogonal to the pipe axis, and subjected to strain controlled cyclic loading (± 0.2 to ±0.5 % mechanical strain). Temperature intervals of TMF tests were chosen as either 300-620°C or 500-620°C, resembling so-called warm or hot start conditions of a power plant. The test results will be presented and discussed with a focus on the impact of hold periods during testing (combined creep/relaxation-fatigue conditions) on mechanical softening, lifetime and formation of cracks. The findings will be complemented by results on the modification of the hierarchical ferritic-martensitic microstructure under different loading scenarios. T2 - 4th International Workshop on Thermo-Mechanical Fatigue 2019 CY - Berlin, Germany DA - 13.11.2019 KW - Power plant KW - Tempered martensite ferritic steels KW - Thermo-Mechanical Fatigue KW - Microstructure modification KW - EBSD PY - 2019 AN - OPUS4-50053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - López-Galilea, I. A1 - Ruttert, B. A1 - Theisen, W. A1 - Agudo Jácome, Leonardo T1 - Microstructural characterization of the AlMo 0.5 NbTa 0.5 ZrTi refractory complex concentrated alloy N2 - A set of some unexpected and interesting microstructures has put the so-called complex concentrated alloys (CCAs) in the eye of the scientific community and the AlMo0.5NbTa0.5TiZr refractory (r)CCA, aimed at substituting Ni-base superalloys in gas turbine applications, belongs to this alloy family. The AlMo0.5NbTa0.5TiZr rCCA was studied by SEM, EDX, EBSD and TEM, showing the presence of a nanoscopic basket-wave structure inside the grains, with two BCC phases. Additionally, thermodynamic calculations on the AlMo0.5NbTa0.5TiZr alloy were done with two different proprietary databases that anticipate two BCC-disordered phases with distinct constitutions as well as an HCP phase. T2 - Symposium on Advanced Mechanical and Microstructural Characterization of High-Entropy Alloys CY - Bochum, Germany DA - 03.02.2020 KW - High Entropy Alloy KW - EBSD KW - Microstructure Characterization PY - 2020 AN - OPUS4-50729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Agudo Jácome, Leonardo T1 - Thermodynamic study of a refractory complex concentrated alloy (rCCA) using the CALPHAD method N2 - Multi-principal-element alloys (MPEAs), have recently come to the attention of the scientific community due to their potential for improving properties such as, e.g. mechanical strength and oxidation resistance in high temperature structural applications. The AlMo0.5NbTa0.5TiZr refractory (r)CCA is one such candidate, showing a two-phase microstructure after a two-stage heat treatment under argon atmosphere at a controlled cooling rate. Since the application conditions intended for this alloy require a long-term high temperature (> 700 °C) mechanical and oxidation resistance, it becomes necessary to assess the possible phase development in this regime. The diagrams reveal that two BCC-based phases could form during alloy solidification, where one phase would be enriched with Mo, Nb and Ta while the other phase, with Al, Ti and Zr. Activity oxides diagrams show that a stable form of aluminum oxide (α-Al2O3, Pearson symbol: hR10, corundum) can be formed. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Chemically Complex Alloy KW - CALPHAD KW - Electromicroscopy PY - 2019 AN - OPUS4-50730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Creep and fracture behavior of conventionally and additively manufactured stainless steel 316L N2 - A critical task within the frame of establishing process-structure-property-performance relationships in additive manufacturing (AM) of metals is producing reliable and well-documented material behavior’s data and knowledge regarding the structure-property correlation, including the role of defects. After all, it represents the basis for developing more targeted process optimizations and more reliable predictions of performance in the future. Within this context, this contribution aims to close the actual gap of limited historical data and knowledge concerning the creep behavior of the widely used austenitic stainless steel 316L, manufactured by Laser-Powder-Bed-Fusion (L-PBF). To address this objective, specimens from conventional hot-rolled and AM material were tested under application-relevant conditions according to existing standards for conventional material, and microstructurally characterized before and after failure. The test specimens were machined from single blocks from the AM material. The blocks were manufactured using a standard scan and build-up strategy and were subsequently heat-treated. The creep behavior is described and comparatively assessed based on the creep lifetime and selected creep curves and characteristic values. The effect of defects and microstructure on the material’s behavior is analyzed based on destructive and non-destructive evaluations on selected specimens. The AM material shows shorter creep lives, reaches the secondary creep stage much faster and at a lower strain, and features lower creep ductility compared to its conventional counterpart. The creep damage behavior of the AM material is more microstructure than defect controlled and is characterized by the formation and accumulation of single intergranular damage along the whole volume. Critical features identified are the grain morphology and the grain-boundary as well as the dislocation’s density. Micro-computed tomography (µCT) proves to be an alternative to metallography to analyze the creep damage. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - 316L KW - Creep behavior KW - Laser powder bed fusion KW - Additive manufacturing KW - Microstructure PY - 2020 AN - OPUS4-51823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Schulz, Bärbel A1 - Rabe, Torsten T1 - Tailoring the spring constant of ceramic helical compression springs N2 - Ceramic springs combine attractive properties for applications in machinery, metrology, and sensor technology. They are electrically insulating, non-magnetic, provide a linear stress-strain behavior, and are stable at high temperatures and in corrosive environments. Generally, the precise dimensioning of a ceramic spring with respect to the spring constant is challenging. Different models are described, but many of these calculations do not match the actual spring properties. We demonstrate a reliable approach for the dimensioning and manufacturing of helical compression springs with a rectangular winding cross-section. Based on the German standard DIN 2090, which is referring to metallic springs, the spring constant can be calculated based on shear modulus, diameter, height, widths, and number of windings. Different ceramic springs were produced by milling of sintered hollow cylinders of zirconia, alumina and silicon nitride. The experimental spring constants are in very good agreement with the calculated values. Spring constants of zirconia springs were varied over three orders of magnitude between 0.02 N/mm and 5 N/mm by purposeful adaption of the spring geometry. The combination of dimensioning based on DIN 2090 and precise hard machining offers a reliable technology for the fabrication of tailored ceramic springs for special applications. T2 - 45th International Conference and Exhibition on Advanced Ceramics and Composites (ICACC 2021) CY - Online meeting DA - 08.02.2021 KW - Ceramics KW - Hard machining KW - Spring constant PY - 2021 AN - OPUS4-52136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cornelsen Sampaio Kling, I. A1 - Pauw, Brian Richard A1 - Agudo Jácome, Leonardo A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Silver nanoparticle KW - Starch KW - Starch nanoparticle PY - 2020 SP - 1 EP - 2 AN - OPUS4-51940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Gadelmeier, C. A1 - Gratzel, U. A1 - Agudo Jácome, Leonardo T1 - High temperature and low stress creep behavior of the refractory chemically complex alloy AlMo 0.5 NbTa 0.5 TiZr N2 - The refractory chemically complex alloy (rCCA) AlMo0.5NbTa0.5TiZr, with a density of 7.4 g/cm3, shows a compressive ultimate strength of 772 MPa at 1000 °C, comparatively surpassing Ni-base and other rCCAs. Its dual-phase microstructure, with a high volume fraction (≈ 62%) of cuboidal and plate-like particles coherently embedded in a continuous matrix, resembles the well-known pattern of the γ/γ" in Ni-base superalloys. Its developers have thus implied that it could stand as structural alloy for high temperature (HT) applications. Here, we report the HT creep properties and the underlying microstructural changes of the rCCA AlMo0.5NbTa0.5TiZr to propose deformation and degradation micromecanisms for this regime. The material was produced by arc-melting and subsequently heat treated in argon: at 1400 °C for 24 h plus a hot isostatic pressure treatment at 1370 °C and 170 MPa for 4 h, with a cooling rate of 10 K/min. Miniaturized tensile specimens (≈ 28 x 7 x 2 mm) were cut and polished to a quality of 1 μm. Creep tests were conducted in vacuum in the respective temperature and stress range 800-1200 °C and 30-120 MPa. For observation, thin slices were extracted from the gauge length, away from the fracture surface, grinded to a thickness of 100 μm, and electropolished to electron transparency. The microstructure was observed on the electropolished specimens using scanning (S) as well as transmission (T) electron microscopy (EM). The Norton plot gives Norton exponents of about 3.1 and 3.2 for temperatures of 1000 and 1100 °C, respectively. Curiously, creep rate minima are very close for a stress level of 30. The starting microstructure reflects a macroscopically lean coarse grain structure and a microscopically fine-meshed basketweave structure with coherency dislocations only around coarsened particles usually close to subgrain boundaries. Results are discussed on the base of variations of this starting microstructure after interrupted and ruptured creep tests. T2 - 15th International Conference on Creep and Fracture of Engineering Materials and Structures CY - Online meeting DA - 14.06.2021 KW - Creep behavior KW - Chemically complex alloy KW - Cow stress PY - 2021 AN - OPUS4-53388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Theissen, W. A1 - Agudo Jácome, Leonardo T1 - Effect of the heat treatment in the microstructure of a refractory chemically complex alloy N2 - A set of some unexpected and interesting microstructures has put the so-called complex concentrated alloys (CCAs) in the eye of the scientific community. The AlMo0.5NbTa0.5TiZr refractory (r)CCA, aimed at substituting Ni-base superalloys in gas turbine applications, belongs to this alloy family. After a two-stage heat treatment, this rCCA morphologically resembles the typical a two-phase microstructure of the latter. The objective of this work consists in determining the effect of the two stages of the heat treatment on the microstructure of the AlMo0.5NbTa0.5TiZr alloy to eventually improve it in terms of homogeneity and porosity. T2 - Third International Conference on High Entropy Materials (2020) CY - Berlin, Germany DA - 27.09.2020 KW - Annealing KW - Hot isostatic pressing KW - Refractory chemically complex alloy KW - Microstructure PY - 2020 AN - OPUS4-53386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ferrari, Bruno A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Schicchi Said, D. A1 - Darvishi Kamachali, Reza A1 - Evans, Alexander A1 - Agudo Jácome, Leonardo A1 - Serrano-Munoz, Itziar T1 - Microstructural evolution of PBF-LB/M Inconel 718 during solution-aging heat treatments - an in-situ x-ray diffraction study N2 - Inconel 718 (IN718) is a traditional age-hardenable nickel-based alloy that has been increasingly processed by additive manufacturing (AM) in recent years. In the as-solidified condition, IN718 exhibits chemical segregation and the undesired Laves phase, requiring a solution annealing (SA) prior to aging. The material produced by AM does not respond to the established thermal routines in the same way as conventionally produced IN718, and there is still no consensus on which routine yields optimal results. This work aims to provide a fundamental understanding of the heat treatment (HT) response by continuously monitoring the microstructural evolution during SA via time-resolved synchrotron x-ray diffraction, complemented by ex-situ scanning electron microscopy (SEM). The samples were produced by laser powder bed fusion to a geometry of 10x20x90 mm³, from which Ø1x5 mm³ cylindric specimens were extracted. Two different scanning strategies – incremental 67° rotations, Rot, and alternating 0°/67° tracks, Alt – were used, leading to two different as-built conditions. 1-hour SAs were carried out in the beamline ID22 of the ESRF at 50 KeV. Two SA temperatures, SA1 = 1020 °C, and SA2 = 1080 °C were tested for each scanning strategy. Data were processed using the software PDIndexer. In the as-built state, all samples showed typical subgrain columnar cell structures with predominant Nb/Mo segregation and Laves phase at the cell walls, as seen by SEM. The Alt scan induced higher intensity on the Laves peaks than the Rot scan, suggesting a greater content of Laves. Chemical homogenization in the SA was largely achieved during the heating ramp (Fig. 1). SA2 eliminated the Laves peaks just before reaching 1080 °C, and mitigated differences between Rot and Alt samples. On the other hand, SA1 induced the precipitation of the generally detrimental δ phase, also observed by SEM. Furthermore, the Rot scan showed higher δ peak intensities than the Alt scan, indicating a higher content of δ in the latter. No signs of recrystallization were observed in any of the investigated SAs. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Additive Manufacturing KW - X-Ray Diffraction KW - Inconel 718 KW - Heat Treatments KW - Microstructure PY - 2023 AN - OPUS4-58392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehmann, N. A1 - Lenting, C. A1 - Stawski, Tomasz A1 - Agudo Jácome, Leonardo A1 - Jahn, S. T1 - Non classical nucleation in calcium sulfates Insights from the hyper arid Atacama Desert N2 - Gypsum (CaSO4∙2H2O) and anhydrite (CaSO4) are among the dominant evaporite minerals in the Atacama Desert [1]. They are distributed ubiquitously, and play a key role in local landscape evolution. The formation mechanism of especially anhydrite has been a matter of scientific debate for more than a century [2]. To date, there exists no model that can reliably predict anhydrite formation at earth’s surface conditions. While thermodynamics favor its formation [3], it is hardly achieved on laboratory time scales at conditions fitting the Atacama Desert. Long induction times for nucleation have recently been modeled by Ossorio et al. [4]. However, anhydrite can be readily found in the Atacama Desert. Recently, the mineral was synthesized in flow-through reactors as a byproduct of K-jarosite dissolution at high water activity (aw=0.98) and room temperature [5], even-though the thermodynamic stability field begins only under a value of ~0.8. Additionally, recent studies investigated the nano-structure of various calcium-sulfates, which advocate for highly non-classical crystallization behavior [6]. The specific roles of particulates, ionic or organic reagents working as catalysts for the non-classical crystallization pathway remain to be determined. Here, we present recent results from flow-through experiments as well as analyses of anhydrite samples from the Atacama Desert. Flow-through experiments were performed to systematically explore the domains of flow rate, composition, ionic-strengths and starting materials. Neither primary, nor secondary anhydrite was produced in any of these experiments. Analyses on Atacama samples reveal the existence of at least three distinct anhydrite facies, with differing mineralogy and micro- to nano-structures. The facies are (1) aeolian deposits with sub-µm grain sizes, (2) (sub-)surface nodules that formed from aeolian deposits and (3) selenites with secondary anhydrite rims. Possible mechanisms of their formation will be discussed. T2 - Goldschmidt2023 CY - Lyon, France DA - 13.07.2023 KW - Gypsum KW - Anhydrite KW - Atacama Desert KW - Local landscape evolution PY - 2023 AN - OPUS4-58988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Chemical characterization of aging processes in high energy-density lithium-ion batteries N2 - Introduction Lithium-ion batteries (LIBs) are one key technology to overcome the climate crisis and energy transition challenges. Demands of electric vehicles on higher capacity and power drives research on innovative cathode and anode materials. These high energy-density LIBs are operated at higher voltages, leading to increased electrolyte decay and the current collectors' degradation. Even though this fundamental corrosion process significantly affects battery performance, insufficient research is being done on the aluminum current collector. Fast and convenient analytical methods are needed for monitoring the aging processes in LIBs. Methods In this work glow-discharge optical emission spectrometry (GD-OES) was used for depth profile analysis of aged cathode material. The measurements were performed in pulsed radio frequency mode. Under soft and controlled plasma conditions, high-resolution local determination (in depth) of the elemental composition is possible. Scanning electron microscopy (SEM) combined with a focused ion beam (FIB) cutting and energy dispersive X-ray spectroscopy (EDX) was used to confirm GD-OES results and obtain additional information on elemental distribution. Results The aging of coin cells manufactured with different cathode materials (LCO, LMO, NMC111, NMC424, NMC532, NMC622, and NMC811) was studied. GD-OES depth profiling of new and aged cathode materials was performed. Quantitative analysis was possible through calibration with synthetic standards and correction by sputter rate. Different amounts of aluminum deposit on the cathode surface were found for different materials. The deposit has its origin in the corrosion of the aluminum current collector. The results are compatible with results from FIB-EDX. However, GD-OES is a faster and less laborious analytical method. Therefore, it will accelerate research on corrosion processes in high energy-density batteries. Innovative aspects - Quantitative depth profiling of cathode material -Monitoring of corrosion processes in high energy-density lithium-ion batteries - Systematic investigation of the influence of different cathode materials T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Lithium Ion Batteries KW - GD-OES KW - Depth-profiling PY - 2023 AN - OPUS4-58586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehmann, N. A1 - Lenting, C. A1 - Stawski, T. M. A1 - Agudo Jácome, Leonardo T1 - Anhydrite formation in planetary surface environments - The case of the Atacama Desert N2 - Gypsum (CaSO4∙2H2O), bassanite (CaSO4∙0.5H2O), and anhydrite (CaSO4) are essential evaporite minerals for the evolution of hyper-arid surface environments on Earth and Mars (Voigt et al. 2019; Vaniman et al. 2018). The formation mechanism of especially anhydrite has been a matter of scientific debate for more than a century (van’t Hoff et al. 1903). To date, there exists no model that can reliably predict anhydrite formation at earth’s surface conditions. While thermodynamics favor its formation, it is hardly achieved on laboratory time scales at conditions fitting either the Atacama Desert on Earth, or the surface of Mars (Wehmann et al. 2023). In light of most recent developments (e.g. Stawski et al. 2016), that advocate for a complex, non-classical nucleation mechanism for all calcium sulphates, we present an analysis of natural samples from the Atacama Desert to identify key features that promote the nucleation and growth of anhydrite under planetary surface conditions. Our analyses reveal at least three distinct anhydrite facies, with differing mineralogy and micro- to nano-structures. The facies are (1) aeolian deposits with sub-μm grain sizes, (2) (sub-)surface nodules that formed from aeolian deposits and (3) selenites with secondary anhydrite rims. Possible mechanisms of their formation will be discussed. T2 - 10th Granada-Münster Discussion Meeting CY - Münster, Germany DA - 29.11.2023 KW - Calcium sulfates KW - Nucleation KW - Planetary surface KW - Hyper-arid PY - 2023 AN - OPUS4-59111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Gonzalez-Martinez, I. A1 - Agudo Jácome, Leonardo T1 - Damage induced by electric field of microparticles in the electron microscope N2 - Damage induced by electric field (DIEF) that happens in the transmission electron microscope (TEM) when converging the electron beam (e-beam) on microparticles (MPs) can be used to synthesis new nanomaterial and nanomaterial compositions. The research questions are to clarify the limits and possibilities of the method regarding materials that can be produced, systems to which it is applicable and working beam parameters. Synthesis of nano-objects from microparticles using DIEF in TEM could be shown for different materials. Additionally, DIEF using the e-beam in a scanning electron microscope (SEM) can also be used to synthesis nano-objects. A deeper material analysis of this nano-objects was done using TEM and shows that the material of the nanoparticles (NPs) can be gold or/and silicon. Furthermore, the size of the NPs depends on the distance to the center of DIEF whereby the larger NPs are closer to the center. The areas of gold NPs are promising candidates for plasmonic or photonic devices for energy storage or transport. T2 - PhD-Day 2022 CY - Berlin, Germany DA - 06.09.2022 KW - Electron microscopy KW - Electron beam induced modification KW - Gold nanoparticles PY - 2022 AN - OPUS4-58264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - George, Janine A1 - Mieller, Björn A1 - Stawski, Tomasz T1 - ZrV2O7 negative thermal expansion (NTE) material N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material that exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). Therefore, it can be used to create composites with controllable expansion coefficients and prevent thermal stress, fatigue, cracking, and deformation at interfaces. We implement interdisciplinary research to analyze such material. We study the influence of the synthesis methods and their parameters on the sample's purity, crystallinity, and homogeneity. Moreover, we implement ab initio-based vibrational computations with partially treated anharmonicity in combination with experimental methods to follow temperature-induced structural changes and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder. T2 - SALSA Make and Measure Conference CY - Berlin, Germany DA - 13.09.2023 KW - NTE KW - Composites KW - TEM PY - 2023 AN - OPUS4-58367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Suárez Ocano, Patricia T1 - The Al4-xZr5(Ox-y) Trojan horse in the AlMo0.5NbTiTa0.5Zr refractory high entropy superalloy N2 - Unlike conventional alloys, which typically consist of one main element, high-entropy alloys (HEAs) contain five or more principal elements, which broaden chemical complexity and with it a realm of synergistic mechanisms. The AlMo0.5NbTa0.5TiZr HEA initiated a subclass of Al-containing refractory (r)HEAs that has recently drawn attention [2]. The alloy has a superalloy-resembling B2/bcc nanostructure, which inspired its name refractory high entropy superalloy (RSA). With high-temperature (HT) compressive strengths beyond conventional Ni-based superalloys, this nanostructure could be used for improved HT structural applications. However, in the application-relevant HT regime the Al-Zr-rich B2 phase decomposes to form a hexagonal Al-Zr-based intermetallic (Al4-xZr5; x: 0..1) [3,4]. This work explores the fascinating yet fatal micromechanisms associated to this phase transformation, in the context of creep, annealing and oxidation experiments performed between 800 and 1200 °C. The material was produced by arc-melting and heat treatment in argon, which lead to grain boundaries decorated with up to 7%. Interrupted constant-load creep tests were performed under vacuum (at 10-4 Pa), at 900–1100 °C with external tensile stresses of 30–120 MPa. Oxidation experiments were separately conducted for 24 hours at 800 and 1000 °C in both dry (21% O2 + 79% N2) and humid (8% O2 + 74% N2 + 18% H2O) air. After the experiments, the samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy to reveal degradation mechanisms. Crystallographic texture, orientation relationships and stabilization of an oxygen-containing iso structure (Al4-xZr5(Ox-y); y: 0..x) of the Al-Zr-rich intermetallic are found and discussed. T2 - BCC Superalloy Network Opening Workshop CY - Reutte, Austria DA - 08.02.2024 KW - High entropy alloy KW - Superalloy KW - Degradation KW - Electron microscopy KW - Microstructure PY - 2024 AN - OPUS4-59833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -