TY - CONF A1 - Galleani, Gustavo A1 - Lodi, Thiago A1 - Merízio, Leonnam A1 - de Jesus, Vinícius A1 - de Camargo, Andrea Simone Stucchi T1 - Scintillators, persistent luminescent and white light emitters: Progresses on UV and X-ray converting glasses and composites N2 - Recently, detection and conversion of high energy radiation such as ultraviolet and X-rays has gained renewed attention. In part, technological applications in radioimaging and tomography have developed considerably as to allow lower dosages and higher resolutions, which require optimized scintillators and dosimeters. On the other hand, the increasing effort to reduce carbon footprint in energy production has triggered an intensive search for materials that can be excited with sunlight, ranging from photocatalysts to solar concentrators. At LEMAF – Laboratory of Spectroscopy of Functional Materials at IFSC/USP, we have been developing bulk glasses, polycrystalline and composite materials designed to target both challenges and, in this work an overview of recent progresses and of the state of art of these materials will be given. For instance, the few available comercial scintillators are crystalline materials with costly and time consuming growth which hinders the development of new compositions. Glasses and glass ceramics, such as the NaPGaW composition developed in our lab, present high density, very good optical properties and high chemical stability which allow them radioluminescent response when doped with low concentrations of Ce3+, Eu3+ and Tb3+ offering a promise as alternatives to crystal scintillators. On the other hand, phosphor in glass (PiG) composites based on the persistent luminescent polycrystalline material Sr2MgSi2O7:Eu2+,Dy3+ (SMSO) embedded into NaPGa glasses offer interesting perspectives for the of UV light into visible, useful for white light generation (lighting), improved harvesting and conversion of solar light when coupled to c-Si PV cells and photocatalysis. These and other examples will be discussed. The glasses are prepared through the conventional melt quenching technique, followed by controlled heating when glass ceramics are desired. The persistent luminescent phosphor is prepared by the microwave assisted technique (MAS) much faster and with considerable energy consumption reduction than in the usual solid state synthesis. The materials are characterized from the structural, morphological and spectroscopic (optical – UV-Vis, PL, PLE, and structural – NMR, EPR) points of view such that structure-property correlations are constantly sought to feedback synthesis and processing. Fig. 1, illustrates two examples of scintillator glasses doped with Tb3+ and PiG composites doped with Eu2+ and Dy3+. T2 - 11th International Conference on f Elements (ICFE-11) CY - Strasbourg, France DA - 22.08.2023 KW - Scintillators KW - Persistent luminescence KW - White light emitters PY - 2023 AN - OPUS4-60361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Schaarschmidt, J. A1 - von Hartrott, P. A1 - Bruns, M. A1 - Birkholz, H. A1 - Waitelonis, J. A1 - Hickel, Tilmann T1 - Seamless Science with the Platform MaterialDigital (PMD): Demonstration of Semantic Data Integration as Good Practices N2 - Following the new paradigm of materials development, design, and optimization, digitalization is the main goal in materials sciences and engineering (MSE) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. The project ‘platform MaterialDigital’ (PMD) aims to bring together and support interested parties from both industrial and academic sectors in a sustainable manner in solving digitalization tasks and implementing digital solutions. Therefore, the establishment of a virtual material data space and the systematization of the handling of hierarchical, process-dependent material data are focused. Core points to be dealt with are the development of agreements on data structures and interfaces implemented in distinct software tools and to offer users specific support in their projects. Furthermore, the platform contributes to a standardized description of data processing methods in materials research. In this respect, selected MSE methods are semantically represented on a prototypical basis which are supposed to serve as best practice examples with respect to knowledge representation and the creation of knowledge graphs used for material data. Accordingly, this poster presentation illustrates demonstrators developed and deployed within the PMD project. Semantically anchored using the mid-level PMD Core Ontology (PMDco), they address data transformation leading to a novel data management which is based on semantic integrated data. The PMD data acquisition pipeline (DAP), which is fueled by traditional, diverse data formats, and a pipeline applying an electronic laboratory notebook (ELN) as data source are displayed. Additionally, the efficient combination of diverse datasets originating from different sources is demonstrated by the representation of a use case dealing with the well-known Orowan relation. T2 - 9. Dresdner Werkstoffsymposium CY - Dresden, Germany DA - 16.05.2024 KW - Semantic Data KW - Data Integration KW - Plattform MaterialDigital KW - Demonstrators KW - Electronic Lab Notebook PY - 2024 AN - OPUS4-60102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Han, Ying T1 - Segmented primary phases of Al-alloy EN AW-2618A in the T61 state using synchrotron computed tomography N2 - This video shows the primary phases of the aluminum alloy EN AW-2618A in the T61 state measured by synchrotron computed tomography. Further information is provided in the file content.pdf. KW - Aluminum alloy KW - EN AW-2618A KW - Computed tomography KW - Primary phases PY - 2024 DO - https://doi.org/10.5281/zenodo.12730717 PB - Zenodo CY - Geneva AN - OPUS4-60657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simkin, Roman A1 - Kranzmann, Axel A1 - Pfennig, Anja T1 - Selective oxidation of FeCr and FeCrCo model alloys in dry synthetic air N2 - The life time of mechanical components in high temperature applications is basically determined by their workings. Corrosion determines the loss of material corresponding to the loss of the effective load-bearing section and consequently increasing stress levels. To improve the material selection for such applications a numerical life prediction corrosion model for different alloys and environments is needed. Based on the ferritic alloys FeCr and FeCrCo a first quantitative model is to be developed. For this purpose, the alloys are aged at 600 °C, 650 °C and 700 °C in synthetic air under normal pressure for between 10 and 240 hours. The first objective is to establish a quantitative relationship between the oxidation rate as a function of composition and microstructure of the alloys. The influence of the inner interface as an essential parameter for transport by diffusion on the oxidation kinetics is discussed in this paper. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.11.2019 KW - High temperature corrosion KW - Ooxidation KW - Synthetic air KW - Modeling KW - FeCr- alloys PY - 2019 AN - OPUS4-49465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Rehmer, Birgit A1 - Avila, Luis A1 - Haubrich, J. A1 - Serrano Munoz, Itziar A1 - Requena, G. A1 - Bruno, Giovanni T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature (Keynote) N2 - Ti-6Al-4V alloy is intensively used in the aerospace industry because of its high specific strength. However, the application of Laser Powder Bed Fusion (LPBF) Ti-6Al-4V alloy for structurally critical load-bearing components is limited. One of the main limiting factors affecting the structural integrity, are manufacturing defects. Additionally, the high cooling rates associated with LPBF process result in the formation of large residual stress (RS) with complex fields. Such RS can cause cracking and geometrical distortions of the part even right after production. Also, the microstructure of LPBF Ti-6Al-4V in the as-built condition is significantly different from that of the conventionally produced alloy. All these factors affect the mechanical behavior of the material. Therefore, to improve the material performance it is important to evaluate the individual effect of RS, defects, and microstructure on fatigue life. To this aim Ti-6Al-4V LPBF material in as-built condition and subjected to different post-processing, including two heat treatments (for stress relief and microstructural modification) and Hot Isostatic Pressing (HIP, for densification), were investigated. Prior to fatigue tests at elevated temperature, the microstructure, the mesostructure, and subsurface RS on the fatigue samples were investigated. It was found that the fatigue performance of HIPped samples is similar to that of conventionally produced Ti-6Al-4V. The tensile RS found at the surface of as-built samples decreased the fatigue life compared to heat-treated samples. Additionally, the modification of the microstructure (by heat treatment) did not affect the fatigue performance in the regime of mostly elastic strain. This shows that in the absence of tensile RS the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. T2 - EUROMAT 2021 CY - Online meeting DA - 12.09.2021 KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance PY - 2021 AN - OPUS4-53278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Sommer, Konstantin A1 - Sprengel, Maximilian A1 - Zerbst, Uwe T1 - Short fatigue crack propagation in L-PBF 316L stainless steel N2 - Fracture mechanics is a key to fatigue assessment in AM metal components. Short fatigue cracks are initiated at defects and pronounced surface roughness intrinsic to AM. The subsequent crack-propagation is strongly influenced by microstructural interactions and the build-up of crack-closure. The aim of the present study is to give an insight into short-crack propagation in AM-metals. Fatigue crack propagation resistance curves were determined experimentally for AISI 316L manufactured by Laser Powder Bed Fusion (L-PBF) which was heat treated at three different temperatures. Differences in the build-up of the fatigue-crack propagation threshold in between the L-PBF specimens and compared to wrought material are due to the residual stress states, a pronounced roughness of the crack-faces in the L-PBF specimens and phase transformation in the vicinity of the crack-tip, resulting in increased crack-closure. This, together with crack-branching found along the crack path, enhances the resistance to the propagation of fatigue cracks. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Cyclic R-Curve KW - Component assessment KW - L-PBF KW - 316L KW - Residual Stress KW - Fatigue Crack Growth PY - 2020 AN - OPUS4-51585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Kohl, Anka T1 - Short-term exposure tests of ɣ-Al2O3 Sol-gel coating on X20Cr13 in artificial geothermal waters with different pH N2 - The suitability of an Al2O3 coating for corrosion protection on X20Cr13 was evaluated in various artificial geothermal brines, focusing on the influence of different pH (4, 6 and 8) and their chemical compositions on the coating properties. All experiments were performed in the laboratory using autoclaves at 150 ◦C and 1 MPa in deaerated condition for 1 and 7 days. Results showed that the pH of geothermal waters is the most detrimental factor in the transformation of ɣ-Al2O3 and its protective abilities. Delaminations were found in the Coating exposed to geothermal brines with pH 4. FTIR spectra indicated a transformation of ɣ-Al2O3 to boehmite AlOOH after exposure to pH 4 and 6, and bayerite Al(OH)3 was formed after exposure to pH 8. Different Crystal structures of the hydrated Al2O3 also contribute to the stability of the coatings, observed by the SEM- EDX of the surface and cross-section of coatings. This study indicated that ɣ-Al2O3 sol-gel coating presents a promising aspect of corrosion protection in geothermal environment with a neutral pH. KW - Al2O3 KW - Corrosion KW - Coating KW - Martensitic steel PY - 2021 DO - https://doi.org/10.1016/j.geothermics.2021.102193 SN - 0375-6505 VL - 96 SP - 102193 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Welter, T. A1 - Marzok, Ulrich A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Deubener, J. T1 - Silicate glass structures with low hydrogen permeability N2 - Efficient energy provision using fuel cells requires effective hydrogen storage capacities. Glass is a material of low intrinsic hydrogen permeability and is therefore a promising material for hydrogen storage containers or diffusion barriers. Pioneer work on oxidic glasses seems to indicate a correlation between glass composition and hydrogen permeation, which was mainly derived from the behavior of silica glass. In this study, we focus on the relationship between topologic (free volume; network polymerization) and thermodynamic (configurational entropy) glass parameters. Experiments were performed well below the glass transition temperature, which excludes significant structural relaxation and chemical dissolution of hydrogen. The compositional dependence of seven glasses on the SiO2-NaAlO2 join pointed out that in fully polymerized glasses the H2 permeability cannot be solely derived from the total free volume of the glass structure. Hence, evidence is provided that the size distribution of free volume contributes to hydrogen diffusion and solubility. Additionally, results indicate that hydrogen permeability of the glasses is affected by the configurational heat capacity ΔCp at Tg. T2 - 15th International Conference on the Physics of Non-Crystalline Solids & 14th European Society of Glass Conference CY - Saint Malo, France DA - 09.07.2018 KW - Diffusion coefficient KW - 3D glass structure model KW - Glass composition KW - Hydrogen permeation PY - 2018 AN - OPUS4-45911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Sobek, P. A1 - Körner, S. A1 - Müller, Ralf T1 - Silver - alkali borate glass pastes N2 - Network modifier ions can decisively influence properties and structure of low melting alkali-zinc-borate glasses and thus cause complex effects on the liquid phase sintering of silver-glass metallization pastes. This effect was studied for X2O-ZnO-B2O3 (X = Li, Na, Rb) glasses for silver-glass metallization pastes. Viscosity and the glass transition temperature, Tg, were measured with rotational viscometry and dilatometry. Dried model pastes with 30 vol% LZB, NZB or RZB glass were prepared for sintering studies by means of heating microscopy measuring the silhouette area shrinkage of uniaxially pressed powder compacts during heating at 5 K/min. For comparison, the silhouette area shrinkage of pure glass and silver powder compacts were determined. Glass-silver wetting was investigated during heating of bulk glass cylinders placed on silver substrates. Glass RZB turned out to have the lowest viscosity among the glasses under study. Its glass transformation temperature, Tg, was found at 444 °C and it caused the lowest sintering onset for its glass and paste powder compacts. Slightly increased values of Tg were found for NZB and LZB (468 °C and 466 °C, respectively) and a slightly retarded sintering was found for both paste powder compacts. These results indicate that liquid phase sintering of silver-glass pastes under air atmosphere is mainly influenced by glass viscosity. T2 - GLASS MEETING 2020 CY - Online meeting DA - 07.12.2020 KW - Silver-glass metallization paste KW - Sintering KW - Alkali ions KW - Viscosity KW - Silver precipitates PY - 2020 AN - OPUS4-52871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Agudo Jácome, Leonardo A1 - Feldmann, Ines A1 - Deubener, J. T1 - Silver diffusion in low-melting alkali zinc borate model glasses studied by means of SNMS, TEM and XAS N2 - In many late-breaking research fields as in photovoltaics, microelectronics, nuclear waste glasses or at least mirror glasses silver diffusion in glasses is relevant to the issues of high-level functionality and recycling. The present study is focused on silver diffusion in innovative, low-melting alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb) potentially usable for silver metallization-pastes in solar cells. The glasses were coated with a thin metallic silver layer and heat treatments in air and nitrogen close to Tg at 470 °C for 2 h were performed. After heat treatment under air and nitrogen atmospheres the coating thickness, measured by a white light interferometer, was about 1.8 µm thick. Silver depth profiles determined by means of secondary neutral mass spectrometry (SNMS) indicate the fastest silver diffusion to a depth of 3.5 µm for Li2O-ZnO-B2O3 (LZB) glass. Nevertheless, the influence of the different alkali ions on the silver diffusion is small. The oxygen availability determines the silver diffusion into the glasses. The oxygen promotes the oxidation of the silver layer enabling Ag+ to diffuse into the glass and to precipitate as Ag0. Both species were detected by x-ray absorption spectroscopy (XAS). The precipitated metallic silver particles in Na2O-ZnO-B2O3 (NZB) glass have a mean size of 5.9 nm ± 1.2 nm diameter, which was determined using transmission electron microscopy (TEM). Phase separation in zinc-rich and zinc-poor phases with a mean diameter of 75 nm ± 20 nm occurred in NZB glass after heat treatment. Ion diffusion of the glasses into the silver layer was suggested by EDX-line scans. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Silver diffusion KW - Alkali zinc borate glass KW - Metallic silver precipitates KW - Phase separation PY - 2021 AN - OPUS4-52861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -