TY - JOUR A1 - da Costa, P. F. G. M. A1 - Merízio, L. G. A1 - Wolff, N. A1 - Terraschke, H. A1 - de Camargo, A. S. S. T1 - Real-time monitoring of CdTe quantum dots growth in aqueous solution N2 - Quantum dots (QDs) are remarkable semiconductor nanoparticles, whose optical properties are strongly size-dependent. Therefore, the real-time monitoring of crystal growth pathway during synthesis gives an excellent opportunity to a smart design of the QDs luminescence. In this work, we present a new approach for monitoring the formation of QDs in aqueous solution up to 90 °C, through in situ luminescence analysis, using CdTe as a model system. This technique allows a detailed examination of the evolution of their light emission. In contrast to in situ absorbance analysis, the in situ luminescence measurements in reflection geometry are particularly advantageous once they are not hindered by the concentration increase of the colloidal suspension. The synthesized particles were additionally characterized using X-ray diffraction analysis, transition electron microscopy, UV-Vis absorption and infrared spectroscopy. The infrared spectra showed that 3-mercaptopropionic acid (MPA)-based thiols are covalently bound on the surface of QDs and microscopy revealed the formation of CdS. Setting a total of 3 h of reaction time, for instance, the QDs synthesized at 70, 80 and 90 °C exhibit emission maxima centered at 550, 600 and 655 nm. The in situ monitoring approach opens doors for a more precise achievement of the desired emission wavelength of QDs. KW - CdTe quantum dots KW - In situ synthesis KW - Real time growth control PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603596 DO - https://doi.org/10.1038/s41598-024-57810-8 VL - 14 IS - 1 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-60359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Richter, Tim A1 - Rhode, Michael A1 - Schröpfer, Dirk T1 - Reliable welding of high-entropy alloys N2 - The importance of high-entropy alloy (HEAs) in the field of materials research is increasing continuously and numerous studies have been published, recently. These are mainly focused on manufacturing of different alloy systems having excellent structural properties from low to high temperatures. Therefore, HEAs are of high potential for many applications in very demanding conditions. However, this is so far limited by poor knowledge and experience regarding economic and reliable component manufacturing. The processability of HEAs has hardly been investigated so far, indicated by the small number of publications worldwide: welding <30 and machining <5. Hence, this contribution provides an overview about the current state of the art on processing of HEAs. Fundamental principles are shown for safe weld joints while ensuring high component integrity. For safe welding, the combined consideration of complex interactions of material, construction and process is necessary. Recent studies on different HEAs showed the influence of heat input by means of different welding processes on the microstructure and respective properties. Based on intensive literature survey and on our initial study, the main research objectives of processing HEAs are presented. T2 - ICHEM 2020 - Third International Conference on High Entropy Materials CY - Berlin, Germany DA - 27.09.2020 KW - High Entropy Alloy KW - Welding KW - Welding processing influences PY - 2020 AN - OPUS4-51591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günster, Jens T1 - Research and carrier in governmental research institute in Japan and Germany N2 - Being invited to Japan in 1996 as a Humboldt/STA was on of the most exciting things in my life. Not that it is on an absolute scale the most exciting thing still, but at that time, just after finalizing my PhD and thinking what is coming next, it was. KW - Networking PY - 2022 DO - https://doi.org/10.11470/oubutsu.91.2_115 SN - 0369-8009 VL - 91 IS - 2 SP - 115 EP - 117 PB - Gakkai CY - Tōkyō AN - OPUS4-54462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni T1 - Residual stress formation in selective laser melted parts of alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotron- and the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates a dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from both X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - Forschungsseminar OvGU Magdeburg CY - Magdeburg, Germany DA - 15.11.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-46876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni A1 - Portella, Pedro Dolabella T1 - Residual stress Formation in selective laser melted parts of Alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-45979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Popiela, Bartosz A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Restoration of structural integrity – a comparison of various repair concepts for wind turbine rotor blade shells N2 - Localized patches are a cost- and time-effective method for repairing fiber-reinforced polymer (FRP) sandwich wind turbine rotor blade shells. To increase the understanding of their effect on the fatigue of the blades, this study examines the effect of various layup methods of localized repair patches on the structural integrity of composite sandwich structures. Manufactured with the vacuum-assisted resin infusion (VARI) process, the shell test specimens are produced as a curved structure with glass fiber reinforced polymer (GFRP) sandwiching a polyvinyl chloride (PVC) foam core. Patch repairs are then introduced with varying layup techniques, and material properties are examined with cyclic fatigue tests. The transition region between patch and parent material is studied in greater detail with finite element method (FEM) simulations, with a focus on the effect of fiber orientation mismatch. Damage onset, crack development, and eventual failure are monitored with in-situ non-destructive testing methods to develop a robust understanding of the effects of repair concepts on material stiffness and strength. T2 - SMAR 2019 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Lightweight materials KW - Glass fiber reinforced polymers KW - Sandwich KW - Wind turbine blades PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-482170 SP - 1 EP - 8 PB - German Society for Non-Destructive Testing (DGZfP e.V.) AN - OPUS4-48217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Popiela, Bartosz A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Restoration of structural integrity – Repairs for wind turbine blade shells N2 - Wind turbine rotor blade shells are manufactured as sandwich structures with fiber-reinforced polymer (FRP) due to the material’s high specific stiffness and strength. With a growing renewable energy industry and thereby a spread of wind energy farms, especially in offshore applications, the need to fully utilize turbines through their designed lifespan is becoming increasingly essential. However, due to imperfections during manufacturing, which are then propagated by harsh environmental conditions and a variety of loads, blades often fail before their projected lifespan. Thus, the need for localized repair patch methods for the outer shell portions of the blades has become of greater interest in recent years, as it is crucial to the optimal compromise between continuation of wind energy production, cost efficiency, and restoration of structural performance. To increase the understanding of the effect on the fatigue life of the rotor blades, this study tests localized repair patch methods and compares them to each other as well as to reference, non-repaired specimens. Manufactured with the vacuum-assisted resin infusion process, the shell test specimens are produced as a curved structure with glass FRP sandwiching a polyvinyl chloride foam core to best represent a portion of a rotor blade shell. Patch repairs are then introduced with varying layup techniques, and material properties are examined with cyclic fatigue tests. The intermediate scale test specimens allow for the observation of material as well as structural variables, namely of interest being the stiffness and strength restoration due to the repair patches. Damage onset, crack development, and eventual failure are monitored with in-situ non-destructive testing methods to develop a robust understanding of the effects of repair concepts. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Wind turbine blade shells KW - Fiber reinforced polymers KW - Sandwich structures KW - Fatigue PY - 2019 AN - OPUS4-48859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker T1 - Restoring lightweight strength - Effect of localized repairs on the mechanical properties of composites sandwich structures N2 - As a type of high-performance composite material, glass-fiber reinforced plastics (GFRP) are favored for the construction of wind turbine rotor blades due to their high specific strength and stiffness properties (Grasse et al, 2010). During the blade manufacturing process, however, imperfections are often introduced, then further propagated due to harsh environmental conditions and a variety of loads (Caminero et al, 2013; Trappe et al, 2018). This leads to failure significantly before their designed lifespan. Since replacement of entire blades can be a costly potential outcome, localized repairs of the damaged region to restore structural integrity and thus lengthen its lifespan can executed in the field by technicians accessing the blades directly by suspended roping. These methods involve replacing the lost load path with a new material that is joined to the parent structure. In recent years, considerable studies have been conducted to investigate the influence of different repair parameters on the stress distribution, ultimate strength, impact behavior, and residual stresses of bonded repaired structures [Caminero et al, 2013; Trappe et al, 2018; Shufeng et al, 2014; Harman and Rider, 2011; Ahn and Springer, 2000; Lekou and Vionis, 2002). However, there currently do not exist any standardized repair procedures for wind turbine rotor blades. Namely, there is a lack of understanding about the effects of the layup of various repair methods, especially on the damage mechanism and fatigue life of the shells of rotor blades (Caminero et al, 2013; Trappe et al, 2018). This work therefore aims to begin to enrich this knowledge gap by testing the influence of different variables among repair patches on the mechanical properties of sandwich composite structures. Manufactured with the vacuum-assisted resin infusion (VARI) process, the test specimens are produced as a GFRP structure to represent the outer shell portion of a wind turbine blade, then repaired with a scarf joint. Scarf repairs are favored as the most efficient of the common structural joints, as the removal of the damaged area with angled walls leads to a nearly uniform shear stress distribution along the bond surface and no eccentricity in the load distribution (Caminero et al, 2013; Lekou and Vionis, 2002; Siener, 1992). The performance of specific layup methods of repair patches, namely a large-to-small versus small-to-large scheme of repair layers, is studied with static and load-controlled fatigue testing, then compared to pristine test specimens as well as to each other in terms of mechanical property restoration. The transition layer between repair and parent material is especially of interest in the performance of the structure. Damage onset, crack development and eventual failure are monitored in-situ with non-destructive testing methods, including thermography with an infrared camera system and a 3D deformation analysis system, to develop a more robust understanding of the effects of these repair concept variables on wind turbine blade shell structures. T2 - Wind Energy Science Conference CY - Online Meeting DA - 25.05.2021 KW - Glass fiber reinforced polymers KW - Wind turbine blade shell structures KW - Scarf joint repair PY - 2021 AN - OPUS4-52687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker T1 - Restoring structural integrity - localized repairs for wind turbine rotor blades N2 - The effect of localized repairs on the mechanical properties and thus the lifespan of wind turbine rotor blade shells is examined. T2 - SAMPE Symposium 2019 CY - Dresden, Germany DA - 06.02.2019 KW - Fatigue KW - Glass fiber reinforced polymers KW - Lightweight materials KW - Sandwich KW - Wind turbine blades PY - 2019 AN - OPUS4-47443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the Nature of Melt Pool Boundaries in Additively Manufactured Stainless Steel by Nano-sized Modulation N2 - Additive manufacturing (AM) of metallic alloys has gained momentum in the past decade for industrial applications. The microstructures of AM metallic alloys are complex and hierarchical from the macroscopic to the nanometer scale. When using laser-based powder bed fusion (L-PBF) process, two main microstructural features emerge at the nanoscale: the melt pool boundaries (MPB) and the solidification cellular substructure. Here, details of the MPB are revealed to clearly show the three-dimensional nature of MPBs with changes of cell growth of direction and their relation to their surrounding cellular substructure, as investigated by transmission electron microscopy (TEM) for L-PBF 316L austenitic stainless steel (cf. Figure 1). A hitherto unknown modulated substructure with a period of 21 nm is further discovered within cells as the result of a partial Ga+-focused ion beam-induced ferritic transformation of the austenite. Cell cores and cell boundaries differ notably regarding the modulated substructure. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 AN - OPUS4-54836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - von Hartrott, Philipp A1 - Skrotzki, Birgit T1 - Room temperature and elevated temperature tensile test and elastic properties data of Al-alloy EN AW-2618A after different aging times and temperatures N2 - The dataset contains two types of data: elastic properties (Young's and shear modulus, Poisson's ratio) between room temperature and 250 °C and a set of tensile tests at different aging times, aging temperatures, and test temperatures. KW - Aluminium alloy KW - Young's modulus KW - Shear modulus KW - Aging KW - Tensile test KW - Strength PY - 2023 UR - https://doi.org/10.5281/zenodo.10377164 DO - https://doi.org/10.5281/zenodo.10377163 PB - Zenodo CY - Geneva AN - OPUS4-59161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Sample Preparation of Nano-Powders for Particle Size Determination N2 - The use of increasingly finer starting powders up to nanopowders can also be observed in the field of ceramics. Their advantages consist, for example, in their lower activation energy, an increase in strength or unique optical properties. However, handling and characterization of the powders are much more difficult. The main reason for this is the very high adhesive forces between the particles and between particles and other surfaces, too. Therefore, submicron and even more so nanoparticles tend to agglomerate and their separation into primary particles during sample preparation prior to particle sizing is of particular challenge. A representative measurement sample is only obtained when it no longer contains agglomerates. The evaluation of the dispersion process and a decision on whether it was successful thus increases in importance for the reliability of the measurement results of particle sizing. The presentation uses examples to show possible approaches and provides information on possible sources of error. It is shown that successful granulometric characterisation of fine powders requires both an improved dispersion technique and very often an effective combination of two or more measurement methods. T2 - 96. Jahrestagung der Deutschen Keramischen Gesellschaft CY - Online Meeting DA - 19.04.2021 KW - Agglomerates KW - Nano-powder KW - Dispersion process PY - 2021 AN - OPUS4-52503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Ghafafian, Carineh T1 - Scarf-joint repairs under fatigue loading investigated for sandwich shell applications N2 - Wind turbine rotor blades are produced as aerodynamic, three-dimensionally formed sandwich shell structures using mainly glass fiber reinforced plastics (GFRP). The GFRP used today have the potential to withstand the harsh operating conditions of rotor blades over the projected service life of 20 years. Premature damages that occur can be traced primarily back to design and/or manufacturing imperfections, as well as unusually high load scenarios (for instance lightning strikes, or strong winds combined with system control errors). Therefore, rotor blades have to be repaired several times (on average 2-3 times) during their projected service life. Approximately 70% of these are repairs of small- to medium-sized sandwich shells, carried out by technicians directly accessing the blade by suspended roping at the wind turbine location. The goal is to execute repairs that will last over the remaining service life, i.e. be sustainable. Within the framework of a research project carried out at BAM, Division 5.3 Polymer Matrix Composites, Department 5 for Materials Engineering, not only was the geometric shape (round vs. square in relation to the top view) varied, but also the layup of the scarf repair structure, variables that have not been studied systematically to-date. Sub-component scale sandwich shell specimens with representative repairs were used in this work in addition to coupon-scale specimens that are more commonly seen in literature. These sub-component shell specimens were tested using a unique shell test bench under loading conditions representative of wind turbine blade shell operating conditions with respect to fatigue strength. Using non-destructive testing methods (field strain measurement and thermography), damage development and distribution was monitored and analyzed in-situ. As a result, a concept was developed in which the repaired areas showed at least equivalent if not higher fatigue strength than the reference shells that were not repaired. T2 - ICFC9 - The 9th International Conference on the Fatigue of Composites CY - Vicenza, Italy DA - 21.06.2023 KW - Repair of sandwich shell structures KW - Non-destructive testing KW - Wind turbine blades PY - 2023 AN - OPUS4-57929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Galleani, Gustavo A1 - Lodi, Thiago A1 - Merízio, Leonnam A1 - de Jesus, Vinícius A1 - de Camargo, Andrea T1 - Scintillators, persistent luminescent and white light emitters: Progresses on UV and X-ray converting glasses and composites N2 - Recently, detection and conversion of high energy radiation such as ultraviolet and X-rays has gained renewed attention. In part, technological applications in radioimaging and tomography have developed considerably as to allow lower dosages and higher resolutions, which require optimized scintillators and dosimeters. On the other hand, the increasing effort to reduce carbon footprint in energy production has triggered an intensive search for materials that can be excited with sunlight, ranging from photocatalysts to solar concentrators. At LEMAF – Laboratory of Spectroscopy of Functional Materials at IFSC/USP, we have been developing bulk glasses, polycrystalline and composite materials designed to target both challenges and, in this work an overview of recent progresses and of the state of art of these materials will be given. For instance, the few available comercial scintillators are crystalline materials with costly and time consuming growth which hinders the development of new compositions. Glasses and glass ceramics, such as the NaPGaW composition developed in our lab, present high density, very good optical properties and high chemical stability which allow them radioluminescent response when doped with low concentrations of Ce3+, Eu3+ and Tb3+ offering a promise as alternatives to crystal scintillators. On the other hand, phosphor in glass (PiG) composites based on the persistent luminescent polycrystalline material Sr2MgSi2O7:Eu2+,Dy3+ (SMSO) embedded into NaPGa glasses offer interesting perspectives for the of UV light into visible, useful for white light generation (lighting), improved harvesting and conversion of solar light when coupled to c-Si PV cells and photocatalysis. These and other examples will be discussed. The glasses are prepared through the conventional melt quenching technique, followed by controlled heating when glass ceramics are desired. The persistent luminescent phosphor is prepared by the microwave assisted technique (MAS) much faster and with considerable energy consumption reduction than in the usual solid state synthesis. The materials are characterized from the structural, morphological and spectroscopic (optical – UV-Vis, PL, PLE, and structural – NMR, EPR) points of view such that structure-property correlations are constantly sought to feedback synthesis and processing. Fig. 1, illustrates two examples of scintillator glasses doped with Tb3+ and PiG composites doped with Eu2+ and Dy3+. T2 - 11th International Conference on f Elements (ICFE-11) CY - Strasbourg, France DA - 22.08.2023 KW - Scintillators KW - Persistent luminescence KW - White light emitters PY - 2023 AN - OPUS4-60361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Schaarschmidt, J. A1 - von Hartrott, P. A1 - Bruns, M. A1 - Birkholz, H. A1 - Waitelonis, J. A1 - Hickel, Tilmann T1 - Seamless Science with the Platform MaterialDigital (PMD): Demonstration of Semantic Data Integration as Good Practices N2 - Following the new paradigm of materials development, design, and optimization, digitalization is the main goal in materials sciences and engineering (MSE) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. The project ‘platform MaterialDigital’ (PMD) aims to bring together and support interested parties from both industrial and academic sectors in a sustainable manner in solving digitalization tasks and implementing digital solutions. Therefore, the establishment of a virtual material data space and the systematization of the handling of hierarchical, process-dependent material data are focused. Core points to be dealt with are the development of agreements on data structures and interfaces implemented in distinct software tools and to offer users specific support in their projects. Furthermore, the platform contributes to a standardized description of data processing methods in materials research. In this respect, selected MSE methods are semantically represented on a prototypical basis which are supposed to serve as best practice examples with respect to knowledge representation and the creation of knowledge graphs used for material data. Accordingly, this poster presentation illustrates demonstrators developed and deployed within the PMD project. Semantically anchored using the mid-level PMD Core Ontology (PMDco), they address data transformation leading to a novel data management which is based on semantic integrated data. The PMD data acquisition pipeline (DAP), which is fueled by traditional, diverse data formats, and a pipeline applying an electronic laboratory notebook (ELN) as data source are displayed. Additionally, the efficient combination of diverse datasets originating from different sources is demonstrated by the representation of a use case dealing with the well-known Orowan relation. T2 - 9. Dresdner Werkstoffsymposium CY - Dresden, Germany DA - 16.05.2024 KW - Semantic Data KW - Data Integration KW - Plattform MaterialDigital KW - Demonstrators KW - Electronic Lab Notebook PY - 2024 AN - OPUS4-60102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simkin, Roman A1 - Kranzmann, Axel A1 - Pfennig, Anja T1 - Selective oxidation of FeCr and FeCrCo model alloys in dry synthetic air N2 - The life time of mechanical components in high temperature applications is basically determined by their workings. Corrosion determines the loss of material corresponding to the loss of the effective load-bearing section and consequently increasing stress levels. To improve the material selection for such applications a numerical life prediction corrosion model for different alloys and environments is needed. Based on the ferritic alloys FeCr and FeCrCo a first quantitative model is to be developed. For this purpose, the alloys are aged at 600 °C, 650 °C and 700 °C in synthetic air under normal pressure for between 10 and 240 hours. The first objective is to establish a quantitative relationship between the oxidation rate as a function of composition and microstructure of the alloys. The influence of the inner interface as an essential parameter for transport by diffusion on the oxidation kinetics is discussed in this paper. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.11.2019 KW - High temperature corrosion KW - Ooxidation KW - Synthetic air KW - Modeling KW - FeCr- alloys PY - 2019 AN - OPUS4-49465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Rehmer, Birgit A1 - Avila, Luis A1 - Haubrich, J. A1 - Serrano Munoz, Itziar A1 - Requena, G. A1 - Bruno, Giovanni T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature (Keynote) N2 - Ti-6Al-4V alloy is intensively used in the aerospace industry because of its high specific strength. However, the application of Laser Powder Bed Fusion (LPBF) Ti-6Al-4V alloy for structurally critical load-bearing components is limited. One of the main limiting factors affecting the structural integrity, are manufacturing defects. Additionally, the high cooling rates associated with LPBF process result in the formation of large residual stress (RS) with complex fields. Such RS can cause cracking and geometrical distortions of the part even right after production. Also, the microstructure of LPBF Ti-6Al-4V in the as-built condition is significantly different from that of the conventionally produced alloy. All these factors affect the mechanical behavior of the material. Therefore, to improve the material performance it is important to evaluate the individual effect of RS, defects, and microstructure on fatigue life. To this aim Ti-6Al-4V LPBF material in as-built condition and subjected to different post-processing, including two heat treatments (for stress relief and microstructural modification) and Hot Isostatic Pressing (HIP, for densification), were investigated. Prior to fatigue tests at elevated temperature, the microstructure, the mesostructure, and subsurface RS on the fatigue samples were investigated. It was found that the fatigue performance of HIPped samples is similar to that of conventionally produced Ti-6Al-4V. The tensile RS found at the surface of as-built samples decreased the fatigue life compared to heat-treated samples. Additionally, the modification of the microstructure (by heat treatment) did not affect the fatigue performance in the regime of mostly elastic strain. This shows that in the absence of tensile RS the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. T2 - EUROMAT 2021 CY - Online meeting DA - 12.09.2021 KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance PY - 2021 AN - OPUS4-53278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Sommer, Konstantin A1 - Sprengel, Maximilian A1 - Zerbst, Uwe T1 - Short fatigue crack propagation in L-PBF 316L stainless steel N2 - Fracture mechanics is a key to fatigue assessment in AM metal components. Short fatigue cracks are initiated at defects and pronounced surface roughness intrinsic to AM. The subsequent crack-propagation is strongly influenced by microstructural interactions and the build-up of crack-closure. The aim of the present study is to give an insight into short-crack propagation in AM-metals. Fatigue crack propagation resistance curves were determined experimentally for AISI 316L manufactured by Laser Powder Bed Fusion (L-PBF) which was heat treated at three different temperatures. Differences in the build-up of the fatigue-crack propagation threshold in between the L-PBF specimens and compared to wrought material are due to the residual stress states, a pronounced roughness of the crack-faces in the L-PBF specimens and phase transformation in the vicinity of the crack-tip, resulting in increased crack-closure. This, together with crack-branching found along the crack path, enhances the resistance to the propagation of fatigue cracks. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Cyclic R-Curve KW - Component assessment KW - L-PBF KW - 316L KW - Residual Stress KW - Fatigue Crack Growth PY - 2020 AN - OPUS4-51585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Kohl, Anka T1 - Short-term exposure tests of ɣ-Al2O3 Sol-gel coating on X20Cr13 in artificial geothermal waters with different pH N2 - The suitability of an Al2O3 coating for corrosion protection on X20Cr13 was evaluated in various artificial geothermal brines, focusing on the influence of different pH (4, 6 and 8) and their chemical compositions on the coating properties. All experiments were performed in the laboratory using autoclaves at 150 ◦C and 1 MPa in deaerated condition for 1 and 7 days. Results showed that the pH of geothermal waters is the most detrimental factor in the transformation of ɣ-Al2O3 and its protective abilities. Delaminations were found in the Coating exposed to geothermal brines with pH 4. FTIR spectra indicated a transformation of ɣ-Al2O3 to boehmite AlOOH after exposure to pH 4 and 6, and bayerite Al(OH)3 was formed after exposure to pH 8. Different Crystal structures of the hydrated Al2O3 also contribute to the stability of the coatings, observed by the SEM- EDX of the surface and cross-section of coatings. This study indicated that ɣ-Al2O3 sol-gel coating presents a promising aspect of corrosion protection in geothermal environment with a neutral pH. KW - Al2O3 KW - Corrosion KW - Coating KW - Martensitic steel PY - 2021 DO - https://doi.org/10.1016/j.geothermics.2021.102193 SN - 0375-6505 VL - 96 SP - 102193 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Welter, T. A1 - Marzok, Ulrich A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Deubener, J. T1 - Silicate glass structures with low hydrogen permeability N2 - Efficient energy provision using fuel cells requires effective hydrogen storage capacities. Glass is a material of low intrinsic hydrogen permeability and is therefore a promising material for hydrogen storage containers or diffusion barriers. Pioneer work on oxidic glasses seems to indicate a correlation between glass composition and hydrogen permeation, which was mainly derived from the behavior of silica glass. In this study, we focus on the relationship between topologic (free volume; network polymerization) and thermodynamic (configurational entropy) glass parameters. Experiments were performed well below the glass transition temperature, which excludes significant structural relaxation and chemical dissolution of hydrogen. The compositional dependence of seven glasses on the SiO2-NaAlO2 join pointed out that in fully polymerized glasses the H2 permeability cannot be solely derived from the total free volume of the glass structure. Hence, evidence is provided that the size distribution of free volume contributes to hydrogen diffusion and solubility. Additionally, results indicate that hydrogen permeability of the glasses is affected by the configurational heat capacity ΔCp at Tg. T2 - 15th International Conference on the Physics of Non-Crystalline Solids & 14th European Society of Glass Conference CY - Saint Malo, France DA - 09.07.2018 KW - Diffusion coefficient KW - 3D glass structure model KW - Glass composition KW - Hydrogen permeation PY - 2018 AN - OPUS4-45911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Sobek, P. A1 - Körner, S. A1 - Müller, Ralf T1 - Silver - alkali borate glass pastes N2 - Network modifier ions can decisively influence properties and structure of low melting alkali-zinc-borate glasses and thus cause complex effects on the liquid phase sintering of silver-glass metallization pastes. This effect was studied for X2O-ZnO-B2O3 (X = Li, Na, Rb) glasses for silver-glass metallization pastes. Viscosity and the glass transition temperature, Tg, were measured with rotational viscometry and dilatometry. Dried model pastes with 30 vol% LZB, NZB or RZB glass were prepared for sintering studies by means of heating microscopy measuring the silhouette area shrinkage of uniaxially pressed powder compacts during heating at 5 K/min. For comparison, the silhouette area shrinkage of pure glass and silver powder compacts were determined. Glass-silver wetting was investigated during heating of bulk glass cylinders placed on silver substrates. Glass RZB turned out to have the lowest viscosity among the glasses under study. Its glass transformation temperature, Tg, was found at 444 °C and it caused the lowest sintering onset for its glass and paste powder compacts. Slightly increased values of Tg were found for NZB and LZB (468 °C and 466 °C, respectively) and a slightly retarded sintering was found for both paste powder compacts. These results indicate that liquid phase sintering of silver-glass pastes under air atmosphere is mainly influenced by glass viscosity. T2 - GLASS MEETING 2020 CY - Online meeting DA - 07.12.2020 KW - Silver-glass metallization paste KW - Sintering KW - Alkali ions KW - Viscosity KW - Silver precipitates PY - 2020 AN - OPUS4-52871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Agudo Jácome, Leonardo A1 - Feldmann, Ines A1 - Deubener, J. T1 - Silver diffusion in low-melting alkali zinc borate model glasses studied by means of SNMS, TEM and XAS N2 - In many late-breaking research fields as in photovoltaics, microelectronics, nuclear waste glasses or at least mirror glasses silver diffusion in glasses is relevant to the issues of high-level functionality and recycling. The present study is focused on silver diffusion in innovative, low-melting alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb) potentially usable for silver metallization-pastes in solar cells. The glasses were coated with a thin metallic silver layer and heat treatments in air and nitrogen close to Tg at 470 °C for 2 h were performed. After heat treatment under air and nitrogen atmospheres the coating thickness, measured by a white light interferometer, was about 1.8 µm thick. Silver depth profiles determined by means of secondary neutral mass spectrometry (SNMS) indicate the fastest silver diffusion to a depth of 3.5 µm for Li2O-ZnO-B2O3 (LZB) glass. Nevertheless, the influence of the different alkali ions on the silver diffusion is small. The oxygen availability determines the silver diffusion into the glasses. The oxygen promotes the oxidation of the silver layer enabling Ag+ to diffuse into the glass and to precipitate as Ag0. Both species were detected by x-ray absorption spectroscopy (XAS). The precipitated metallic silver particles in Na2O-ZnO-B2O3 (NZB) glass have a mean size of 5.9 nm ± 1.2 nm diameter, which was determined using transmission electron microscopy (TEM). Phase separation in zinc-rich and zinc-poor phases with a mean diameter of 75 nm ± 20 nm occurred in NZB glass after heat treatment. Ion diffusion of the glasses into the silver layer was suggested by EDX-line scans. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Silver diffusion KW - Alkali zinc borate glass KW - Metallic silver precipitates KW - Phase separation PY - 2021 AN - OPUS4-52861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Agudo Jácome, Leonardo A1 - Pauli, Jutta A1 - Nofz, Marianne A1 - Müller, Ralf T1 - Silver in low-melting alkali zinc borate glasses N2 - Ein aktuelles Forschungsziel ist die Substitution von Bleioxid in niedrig schmelzenden Gläsern z.B. zur Anwendung in Silber-Metallisationspasten. Im Fokus steht hier die Untersuchung der Silberdiffusion in Alkali-Zink-Boratgläsern (X2O-ZnO-B2O3, X = Li, Na, K, Rb). Zudem wird der Redoxzustand des Silbers (Ag) und somit die Art der diffundierenden Silberspezies bestimmt. Hierzu wurde eine metallische Silberschicht mittels Sputterns auf Glaswürfel aufgebracht. Die Wärmebehandlung erfolgte nahe der Glasübergangstemperatur bei 470 °C über 2 h unter Luft und Stickstoffatmosphäre. Die Schichtdicke der Silberbeschichtung betrug 1.8 µm nach der Wärmebehandlung, gemessen mittels Weißlicht-Interferometer. Die Silberdiffusionsprofile wurden mittels Sekundär-Neutral-Teilchen-Massenspektrometrie gemessen. Die Diffusionskoeffizienten des Silbers liegen in der Größenordnung von ~10-14 cm2/s und unterscheiden sich nur gering in Abhängigkeit des Alkali-Ions im Glas. Mittels Fluoreszenz-Spektroskopie ließen sich gelöste Ag+-Ionen und [Agm]n+-Cluster nach der Wärmebehandlung unterscheiden. Zusätzlich konnten ausgeschiedene metallische Silber-Partikel im Natrium-enthaltenden Glas mittels Transmissionselektronenmikroskopie beobachtet werden. Diese haben einen mittleren Durchmesser von ~6 nm. N2 - Substitution of lead oxide in low-melting glasses, e.g., for application in silver metallization pastes, is a current research goal. This work is focused on the investigation of silver diffusion in alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb). In addition, the redox state of silver (Ag) and thus the type of diffusing silver species were studied. For this purpose, a metallic silver coating was applied on glass cubes by means of sputtering. Heat treatment of the samples was performed close to the glass transition temperatures at 470 °C for 2 h under air and nitrogen atmosphere. Coating thickness was 1.8 µm after heat treatment, measured by a white light interferometer. Silver diffusion profiles were measured by means of secondary neutral mass spectrometry. The silver diffusion coefficients are in the range of ~10-14 cm2/s and indicate no significant differences depending on the type of alkali ions in the glass. Dissolved Ag+-ions and [Agm]n+-clusters in the glasses were differentiated using fluorescence spectroscopy. Precipitated metallic silver particles in the sodium containing glass were observed by means of transmission electron microcopy. Their mean particle diameter was ~6 nm. T2 - Living Glass Surfaces XI - Year of Glass CY - Ilmenau, Germany DA - 14.09.2022 KW - Alkali zinc borate glasses KW - Silver diffusion KW - Transmission electron microscopy KW - Fluorescence spectroscopy KW - Silver cluster PY - 2022 AN - OPUS4-55736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Charmi, Amir A1 - Epishin, A. T1 - Simulation of pore shrinkage with crystal plasticity and dislocation transport N2 - Single crystal superalloys usually contain pores of sizes 5-10 micro-m after casting and heat treatment. These pores can be reduced under compression by combined creep and diffusion in a subsequent treatment called Hot Isostatic Pressing (HIP). The paper presents a methodology to simulate pore shrinkage under HIP conditions in two dimensions (2D). At the scale of the pores, which is also the scale of the sub-grains (<50 micro-m) the dislocation sources cannot be assumed to be homogeneously distributed. Thus, the applicability of classical crystal plasticity is questionable. In this case, the transport of dislocations under an applied stress from the location where they are nucleated must be explicitly modelled. This is done by solving the transport equations for the dislocation densities and the elasticity equations in 2D. The dislocations are assumed to be nucleated at Low Angle Boundaries. They glide or climb through the sub-grains with a stress dependent velocity. The transport equations are solved by the Flux-Corrected Transport method, which belongs to the predictor-corrector class of algorithms. In the first step, an artificial diffusion is introduced, which suppresses spurious oscillations of the solution. In a second step, the solution is corrected in such a way that no additional extremes appear and that the extremes do not grow. The algorithm is validated by simulating the transport of simple distributions with a constant velocity field. With the dislocation velocities and the computed dislocation densities, the inelastic shear rate at the slip system level is computed by integrating the Orowan equation. In the 2D-setting, three slip systems are considered. The contributions of these slip systems are summed up to obtain the total inelastic strain rate. Dislocation glide and climb and the coupling of climb with vacancies diffusion are considered. The resolution of the equilibrium equations from the inelastic strains turned out to be prone to numerical instabilities. As an alternative, the stresses are directly computed from the distribution of geometrically necessary dislocations following the method presented in. The resulting boundary value problem is solved by the Least-Square Finite Element method. Examples of simulations are presented for a representative region under creep tension and for a pore shrinking under external pressure. T2 - International Conference on Material Modelling, ICMM 6 CY - Lund, Sweden DA - 26.06.2019 KW - Superalloy KW - Pores KW - Creep KW - Dislocations PY - 2019 AN - OPUS4-48488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Feldmann, Ines A1 - Brauer, D.S. T1 - Sintering ability of fluoride-containing bioactive glass powder N2 - Sintered bioactive glass scaffolds of defined shape and porosity, e.g. made via additive manufacturing, must provide sufficient bioactivity and sinterability. As higher bioactivity is often linked to high corrosion and crystallization tendency, a certain compromise between sintering ability and bioactivity is therefore required. Groh et al. developed a fluoride-containing bioactive glass (F3), which allows fiber drawing and shows a bioactivity well comparable to that of Bioglass®45S5. To study whether and to what extent the sinterability of F3 glass powder is controlled by particle size, coarse and fine F3 glass powders (300-310µm and 0-32µm) were prepared by crushing, sieving and milling. Sintering, degassing and phase transformation during heating were studied with heating microscopy, vacuum hot extraction (VHE), DTA, XRD, and SEM. For the coarse glass powder, sintering proceeds slowly and is limited by surface crystallization of primary Na2CaSi2O6 crystals. Although the crystallization onset of Na2CaSi2O6 is shifted to lower temperature, full densification is attained for the fine powder. This finding indicate that certain porosity might be tuned via particle size variation. Above 900°C, intensive foaming is evident for the fine powder. VHE studies revealed that carbon species are the main foaming source. T2 - 92. Glastechnische Tagung CY - Bayreuth, Germany DA - 28.05.2018 KW - Sintering KW - Bioactive glass KW - Crystallization PY - 2018 AN - OPUS4-45568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Agea-Blanco, Boris A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Behrens, H T1 - Sintering and Foaming of Silicate Glass Powders N2 - The lecture focuses on the mechanisms of non-desired gas bubble formation and foaming during the sintering of glass powder compacts. It is shown that foaming is driven by carbon gases and that carbonates, encapsulated in micropores or mechaniacally dissolved beneath the glass surface, provide the major foaming source. T2 - Sandanski Workshop Sinter crystallization 27th-29th September 2021 PROJECT “THEORY AND APPLICATIONS OF SINTER-CYSTALLIZATION” DN 19/7 CY - Online meeting DA - 27.10. 2021 KW - Sintering KW - Non-desired foaming PY - 2021 AN - OPUS4-53772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Agea Blanco, Boris A1 - Blaeß, Carsten A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Behrens, H. T1 - Sintering and foaming of silicate N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites or glass bonded ceramics with properties and complex shape. Powder processing, however, can substantially affect sinterability, e.g. by promoting surface crystallization. On the other hand, densification can be hindered by gas bubble formation for slow crystallizing glass powders. Against this background, we studied sintering and foaming of silicate glass powders with different crystallization tendency for wet milling and dry milling in air, Ar, N2, and CO2 by means of heating microscopy, DTA, Vacuum Hot Extraction (VHE), SEM, IR spectroscopy, XPS, and ToF-SIMS. In any case, foaming activity increased significantly with progressive milling. For moderately milled glass powders, subsequent storage in air could also promote foaming. Contrarily, foaming could be substantially reduced by milling in water and 10 wt% HCl. Although all powder compacts were uniaxially pressed and sintered in air, foaming was significantly affected by different milling atmosphere and was found most pronounced for milling in CO2 atmosphere. Conformingly, VHE studies revealed that foaming is mainly driven by carbonaceous species, even for powders milled in other gases. Current results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. T2 - ICG Annual Meeting 2018 CY - Yokohama, Japan DA - 23.09.2018 KW - Foaming KW - Glass KW - Powder KW - Sintering PY - 2018 AN - OPUS4-46474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Agea-Blanco, Boris A1 - Blaeß, Carsten A1 - Waurischk, Tina T1 - Sintering and foaming of silicate glass powders N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites, glass bonded ceramics or pastes. Powder processing, however, can substantially affect sinterability, e.g. by promoting surface crystallization. On the other hand, densification can be hindered by gas bubble formation for slow crystallizing glass powders. Against this background, we studied sintering and foaming of silicate glass powders with different crystallization tendency for wet milling and dry milling in air, Ar, N2, and CO2 by means of heating microscopy, DTA, Vacuum Hot Extraction (VHE), SEM, IR spectroscopy, XPS, and ToF-SIMS. In any case, foaming activity increased significantly with progressive milling. For moderately milled glass powders, subsequent storage in air could also promote foaming. Contrarily, foaming could be substantially reduced by milling in water and 10 wt% HCl. Although all powder compacts were uniaxially pressed and sintered in air, foaming was significantly affected by different milling atmosphere and was found most pronounced for milling in CO2 atmosphere. Conformingly, VHE studies revealed that foaming is mainly driven by carbonaceous species, even for powders milled in other gases. Current results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. T2 - IMAPS/ACerS 15th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT 2019) CY - Shanghai, China DA - 16.04.2019 KW - Glass powder KW - Sintering KW - Foaming PY - 2019 AN - OPUS4-48196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Bresch, Sophie A1 - Marucha, P. A1 - Moos, R. A1 - Rabe, Torsten T1 - Sintering and interconnecting thermoelectric oxides for energy applications N2 - Today, more than 12% of the primary energy is lost in the form of waste heat. Thermoelectric generators (TEGs) can convert waste heat directly into electrical power by utilizing the Seebeck effect. The performance of such a generator is defined by a dimensionless figure of merit ZT of the thermoelectric pairs and the resistance R of the metallic contacts between these pairs. The figure of merit of thermoelectric oxides is considerably smaller compared to semiconductors. Still, thermoelectric oxides like calcium cobaltite (Ca3Co4O9) are attractive for applications at elevated temperatures in air. In contrast to the established π-type architecture of common TEGs, tape casting and multilayer technology may be applied for cost-effective manufacturing of oxide TEGs. Promising demonstrations of multilayer TEGs have been published in the last years. Still, the development of reliable and scalable manufacturing processes and proper material combinations is necessary. The aim of our project is to evaluate the feasibility of low temperature co-fired ceramics (LTCC) technology for a practical manufacturing of oxide multilayer TEGs of Ca3Co4O9 (p-type) and calcium manganate (CaMnO3, n-type). Ca3Co4O9 exhibits an undesired phase decomposition at 926 °C. Because of that, the application of sintering strategies and interconnect concepts well known from LTCC technology is a promising approach. We present results of pressure-assisted sintering of Ca3Co4O9 multilayer at 900 °C and axial pressures of up to 7.5 MPa. Ca3Co4O9 was produced by solid state reaction of CaCO3 and cobalt(II,III)oxide at 900 °C. Green tapes were prepared by a doctor-blade process, manually stacked and laminated by uniaxial thermocompression. Sintering was conducted in a LTCC sintering press between SiC setter plates. The thickness shrinkage was recorded by an in-situ technique. After sintering under 7.5 MPa, the microstructure of the single phase material shows a high density of 95 % and an advantageous alignment of the platelet grains. This results in good electrical conductivity and a comparatively high ZT of 0.018 at room temperature. However, the lowering of CaMnO3 sintering temperature from above 1200 °C to below 920 °C remains a challenge. To select a proper metal paste for interconnections of an oxide TEG, several pastes have been investigated regarding contact resistance of internal and external (soldered) connections in a preliminary study. Commercial pastes containing Ag, Au, Au/Pt, Ag/Pd, and Ag/Pd/Bi were manually applied and post-fired on sintered test bars of Ca3Co4O9 and CaMnO3 at 900 °C for 2 h. All tested pastes formed mechanically stable metallization after firing. For resistance measurement, 4-wire method and a custom-made probe head were used. The contacts on Ca3Co4O9 exhibit significantly (2-sample t-test, α = 5%) higher resistance compared to contacts on CaMnO3. Pure silver paste exhibits the lowest resistance for internal contacts on both materials, lower than 5 mΩ on CaMnO3. Ag/Pd/Bi paste resulted in conspicuously high variance of resistance. EDX analyses clarified an enrichment of Bi in the thermoelectric material near the interface and thereby the formation of an oxide layer with probably high electrical resistance. The thickness of that layer varies with the thickness of metallization. In conclusion, the use of Bi containing pastes is not advisable. Pure Ag paste shows the best results regarding resistance and solderability. T2 - CICMT 2018 CY - Aveiro, Portugal DA - 18.04.2018 KW - Thermoelectric oxide KW - Thermoelectric generator KW - Multilayer technology KW - Pressure-assisted sintering PY - 2018 AN - OPUS4-44740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Sobek, P. A1 - Körner, S. A1 - Müller, Ralf T1 - Sintering of silver-alkali zinc borate glass composites N2 - High conductive silver-glass-metallization-pastes are key components in photovoltaics and advanced microelectronics. However, the underlying mechanisms of liquid phase sintering as silver dissolution, diffusion and reprecipitation are poorly understood so far. In the current work, the influence of different network modifier in alkali-zinc-borate paste-glasses on liquid phase sintering of silver-glass-composites was studied. Therefore, silver-glass-composites containing 30 vol% glass were prepared, using low melting X2O-ZnO-B2O3 glasses with X = Na, Li, and Rb (NZB, LZB, and RZB). Glass transition temperature, viscosity, glass-silver wetting, crystallization and sintering behavior was studied by means of thermal analysis, dilatometry, heating microscopy and microscopy. Similar glass transition temperatures of 450 °C (RZB), 460 °C (LZB) and 465 °C (NZB) were found by means of thermal analysis for glasses under study. Also, all glasses have a similar crystallization onset at about 550 °C, even though exhibiting with a different degree of crystallization. Despite these similarities, however, the sintering behavior, measured in terms of area shrinkage, significantly differs for the composites. This finding indicates a different degree of silver dissolution. Assuming that dissolved silver reduces the viscosity, this effect could explain why glass crystallization starts at lower temperature in the composites. For example, the crystallization peak of LZB at 629 °C measured for pure glass powder compacts was decreased to 586 °C for the composite. Confirmatively, microstructure analyses indicate different degrees of silver dissolution, as e.g. revealed by different amount of silver precipitates within the residual glass phase, and reprecipitation. Best silver dissolution appeared for the RZB glass. Nevertheless, the final densification of RZB was retarded probably due to swelling and crystallization. T2 - XRM Workshop CY - Halle, Germany DA - 03.03.2020 KW - Silver-glass-metallization-paste KW - Sintering KW - Alkali ions PY - 2020 AN - OPUS4-51243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Sobek, P. A1 - Müller, Ralf A1 - Körner, S. T1 - Sintering of silver-glass composites N2 - High conductive silver metallization pastes are key components in advanced electronics and photovoltaics. Increasing demands on efficiency, miniaturization and ever shorter time-to-market require tailored glass-silver-pastes. In these pastes, low-melting glasses act as a sintering aid achieving better sintering, adhesion and contact formation for solar cells. Yet, the related liquid phase sintering of silver-glass-composites and the underlying mechanism of silver dissolution, transport and reprecipitation are rarely investigated. In this study, systematically varied low melting alkaline zinc borate, alkaline earth borate, and Pb- and Bi-glasses are investigated. Glass transition and crystallization are studied with dilatometry, DTA and XRD. Sintering of the pure glasses, pure silver and silver-glass-composites is analyzed with Hot Stage Microscopy, optical and electron microscopy. Since oxygen dissolved in silver powders can affect the silver dissolution as silver oxide in the matrix oxide glasses, the O2-content of silver powders is determined by Vacuum Hot Extraction. The glass transition temperature of the glasses under study varies between 370 °C and 590 °C whereas the sinter onset largely ranges between 400 °C and 600 °C. On the other hand, it scattered between 200 °C and 450 °C for selected commercial Ag-powders of different particle size and morphology. T2 - 93rd Annual Meeting of DGG in Conjunction with the Annual Meeting of  USTV CY - Nuremberg, Germany DA - 13.05.2019 KW - Silver glass paste KW - Sintering KW - Microstructure PY - 2019 AN - OPUS4-48906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - Sintering of silver‑alkali zinc borate glass‑composites N2 - Since decades electric contacts based on silver metallization pastes are key components of photovoltaics and advanced microelectronics. For the metallization of commercial Si solar cells, high conductive silver glass pastes are cost effectively applicated by screen printing. Nevertheless, silver pastes are still one of the most crucial and expensive none Si materials in solar cells. Ever shorter time to market as well as increasing demands on reduced Ag consumption and line width require the targeted development of silver-glass-pastes with increased sinter ability and electrical conductivity. As a main difficulty, however, the liquid phase sintering of silver glass pastes is poorly understood so far. In the present study, the influence of different network modifier in alkali-zinc-borate paste glasses on liquid phase sintering of silver-glass-pastes was investigated. Low melting X2O-ZnO-B2O3 glasses with X = Na, Li and Rb (abbr. LZB, NZB, and RZB) were utilized to prepare silver-glass-composites containing 30 %Vol glass. Shrinkage behavior of the silver-glass-composites compared with that of pure silver and pure glass powder compacts was studied with heating microscopy. The powder compacts were uniaxially pressed and heated at 5 K/min to the glass softening temperature. Glass transformation temperature and viscosity of the glasses were respectively measured with dilatometry and rotational viscometry. The thermal behavior of the pure glasses was analyzed with thermal analysis. Additionally, the contact angle of glass on pure silver foil was determined by means of heating microscopy between room temperature and 830 °C. Thermal analysis of the alkali-zinc-borate-glasses under study has shown transformation temperatures between 450 °C (RZB), 460 °C (LZB) and 465 °C (NZB). For all glasses crystallization was found to start approximately at about 550 °C. However, different peak areas hint on a different degree of crystallization. Conformingly, the sintering behavior, measured in terms of area shrinkage, significantly differed for the silver-pastes under study. For silver-pastes with NZB or LZB-glass, sintering starts at 464 °C for NZB Ag pastes and at 451 °C for LZB Ag pastes and ends at 597 °C for NZB Ag paste and at 594 °C for LZB Ag paste. The sintering of the RZB Ag paste proceeds between 426 °C and 703 °C. The final densification was retarded possibly due to crystallization or swelling. The low sinter onset at 426 °C seems to correlate with the good wetting behavior of the RZB glass. Thus, the lowest apparent contact angle between the just densified powder compact sintered at a silver substrate was found for this glass. Moreover, microstructure analyses of the various composites indicate differences in silver dissolution and reprecipitation. T2 - Technology Crossover Extravaganza, HiTEC/CICMT/APEPS CY - Online meeting DA - 26.04.2021 KW - Silver-glass-metallization-paste KW - Sintering KW - Crystallization KW - Alkali ions KW - Sintering atmosphere PY - 2021 AN - OPUS4-52872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Orlov, N. K. A1 - Milkin, P. V. A1 - Evdokimov, P. A. A1 - Putlayev, V. I. A1 - Günster, Jens T1 - Sintering of sodium and potassium tcp based ceramic for bone grafting application N2 - Biomaterials for bone replacement and grafting should possess sufficient strength, be bioresorbable and demonstrate osteoconductive and osteoinductive properties. However, resorption of modern materials for bone grafting (hydroxyapatite (HA) and tricalcium phosphate (TCP)) is reported, in some cases, to be not enough, this is why the search for more soluble compounds compared to HA and TCP looks very perspective. A possible way to increase ceramics solubility leads to partial substitution of Ca2+ -ions in Ca3(PO4)2 by alkali cations, like Na+ or/and K+. Improvement of solubility stems from decreasing lattice energy of a substituted phase, as well as the increase in hydration energy of the ions releasing from the phase to ambient solution. From this viewpoint, bioceramics based on compositions from Ca3(PO4)2 - CaKPO4 - CaNaPO4 ternary system seems to be prospective for bone replacement and grafting in the sense of resorption properties. At the same time, one should bear in mind that solubility level (resorbability) is governed not only by reduction of lattice energy but also by microstructure features. Grain sizes and porosity contribute much to dissolution rate making the study of sintering of the ceramics mentioned above highly important. To control Ca3(PO4)2 - CaKPO4 - CaNaPO4 based ceramic microstructure it is necessary to know possible phase transformations in the system and the way to manage microstructure by sintering schedule or sintering process. In this work, an isothermal section for phase diagram of Ca3(PO4)2 - CaKPO4 - CaNaPO4 ternary system is studied with several techniques. According to the XRD of quenched samples, this phase triangle has four single-phase areas at 1200˚C (Figure 1). It was shown that single-phase CaK0.6Na0.4PO4 cannot be sintered to full-dense ceramics by conventional sintering regardless time-temperature schedule. Two-step sintering technique, beneficial in the case of HA-ceramics, was unsuccessful in all cases of calcium-alkali phosphate compositions. However, field-assisted sintering techniques like, e.g. Spark Plasma Sintering (SPS), can overcome this problem due to significant impact on grain boundary diffusion. In connection with this fact, grains grow much slower retaining sintering process in a pore control regime. In this work CaK0.6Na0.4PO4 low-porous ceramics was also fabricated by FAST-methods of sintering. Moreover, other alternative sintering techniques, such as reaction sintering, may be useful in accelerating ions diffusion but stopping excessive grain growth.Strength properties of ceramics were evaluated by B3B-testing, micro- and nanoindentation techniques. Fracture toughness also becomes higher with potassium content increase, guiding porosity level. Resorption properties of sintered ceramics were studied in different solutions with pH=5 and 7.4. Acknowledgements. The research of sintering processes in calcium phosphate materials were funded by RFBR according to the research project № 18-33-00974. T2 - XVI ECerS Conference 2019 CY - Turin, Italy DA - 16.06.2019 KW - Phase transformations KW - Bioceramics KW - Mixed Ca-K-Na phosphates KW - Na and K rhenanites KW - Phase diagram PY - 2019 AN - OPUS4-49622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pimentel, A. S. O. A1 - Guesser, W. L. A1 - Portella, Pedro Dolabella A1 - Woydt, Mathias A1 - Burbank, J. T1 - Slip-rolling behavior of ductile and austempered ductile iron containing niobium or chromium N2 - The use of high niobium alloyed cast iron alloys is a relatively new approach in which the niobium addition intends to improve the properties of the material by the precipitation of hard niobium carbides during solidification. Steels can be replaced by ductile cast iron in some rolling applications, such as gears and cams, in order to reduce material costs. The aim of this work is to evaluate ductile iron alloyed with 1 weight percent (wt.%) niobium for the as cast specimens and with 1.8 wt.% and 2.4 wt.% niobium for the austempered specimens under lubricated slip-rolling tests using mixed/boundary conditions in an Amsler-type machine. Austempered ductile iron (ADI) alloyed with 1 wt.% chromium, or Carbidic ADI, was tested for comparison. For the as cast conditions, the niobium addition resulted in an increase of wear resistance owing to the low contact pressure of these tests. However, for the austempered specimens, the best performance was found for unalloyed ADI. The main factor acting in the initiation and propagation of cracks in ductile iron is the presence of the graphite nodules. The coarse carbides also contributed to the initiation of cracks and spalling of the material. KW - Ductile iron KW - Niobium alloying KW - Slip-rolling KW - Carbidic austempered ductile iron PY - 2019 DO - https://doi.org/10.1520/MPC20180188 SN - 2165-3992 SN - 2379-1365 VL - 8 IS - 1 SP - 402 EP - 418 PB - ASTM International CY - West Conshohocken, Pa. AN - OPUS4-51209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Small batch preparation of ready-to-press powder for systematic studies N2 - Efficient studies of scarce or expensive materials require material saving processes. Therefore, a high yield concept for small batch preparation of ready-to-press powder is exemplarily presented for yttria stabilized nano-zirconia (d50 < 50 nm). The concept involves small batch preparation in an ultrasound resonator, dispersant selection based on zeta potential measurements, evaluation of slurry stability using an analytical centrifuge, and preparation of ready-to-press powder by freeze drying. Freeze drying offers key advantages. Process efficiency and high yield above 95 % are independent of sample size. The dried product does not require further mechanical treatment like milling or grinding. Side effects like migration of additives are avoided. An optimized freeze drying process tolerates slurries with moderate stability. Thus, efforts for slurry development can be reduced. Generally, identifying a suitable dispersing agent requires only 3-5 zeta potential measurements. Slurry stability is rechecked using an analytical centrifuge, which also accounts for steric stabilization. An ultrasound resonator is used to disperse the powder without contamination, which becomes critical for small batches. The described route is exemplarily presented for the development of an additive recipe for nano-sized zirconia powder, targeting for good pressing behavior and high green density. Therefore, a variety of binding and lubricating agents were tested. Following the presented route, 80 g zirconia powder were sufficient to conduct a study including slurry development and five sample sets with varying composition, each set comprising five discs (d = 20 mm and h = 2 mm). T2 - 94. DKG Jahrestagung CY - Leoben, Austria DA - 05.05.2019 KW - Fine Powder KW - Slurry KW - Freeze Drying PY - 2019 AN - OPUS4-48293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Rosalie, Julian T1 - Small-angle Scattering Data Analysis Round Robin: anonymized results, figures and Jupyter notebook N2 - The intent of this round robin was to find out how comparable results from different researchers are, who analyse exactly the same processed, corrected dataset. This zip file contains the anonymized results and the jupyter notebook used to do the data processing, analysis and visualisation. Additionally, TEM images of the samples are included KW - Round Robin KW - Small-angle Scattering KW - Data analysis PY - 2023 DO - https://doi.org/10.5281/zenodo.7509710 PB - Zenodo CY - Geneva AN - OPUS4-56803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fareed, Adnan A1 - Rosalie, Julian M. A1 - Kar, Satyakam A1 - Fähler, Sebastian A1 - Maaß, Robert T1 - Small-scale functional fatigue of a Ni-Mn-Ga Heusler alloy N2 - Functional fatigue of shape-memory alloys is a considerable threat to the reliable service of actuation devices. Here, we demonstrate the essentially degradation-free cyclic phase-transformation behavior of Ni-Mn-Ga microcrystals up to one million stress-driven superelastic cycles. Cyclic dissipation amounts to about 1/5 of the bulk counterpart and remains unaffected during cycling, even after the introduction of dislocation structures via plastic straining. Plastic yielding and the transformation stress largely exceed the known bulk values. However, the transformation-stress is found to depend on plastic pre-straining, which suggests that the size-affected transformation stress is sensitive to the initial defect structure and that it can be tuned by a targeted introduction of dislocations. These findings demonstrate the high suitability of Ni-Mn-Ga as a robust shape-memory alloy in small-scale functional device engineering. KW - Superelasticity KW - Shape-memory alloys KW - Functional fatigue KW - Ni-Mn-Ga PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600695 DO - https://doi.org/10.1016/j.actamat.2024.119988 VL - 274 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-60069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - SOP and reference data for determination of the Volume-specific Surface Area (VSSA) of a commercially available CeO2 nano powder N2 - Detailed SOP and reference data for the determination of the VSSA of a commercially available CeO2 nano powder: specific (BET-) Surface Area by gas adsorption (Ar and N2) skeletal (true solid state) density by gas pycnometry. Estimation of the particle size by VSSA screening method. KW - Nano powder KW - VSSA KW - Volume specific surface area KW - Screening method KW - Ceria KW - CeO2 PY - 2023 DO - https://doi.org/10.5281/zenodo.10061235 PB - Zenodo CY - Geneva AN - OPUS4-58786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Spectroscopy Lectures N2 - As a guest professor of FUNGLASS, I delivered 3 lectures on spectroscopy to the Graduate School Program, the postdoctoral fellows and other researchers: 1) Introduction to spectroscopy applied to solid state materials (with focus on glass and glass ceramics); 2) Vibrational spectroscopy (Infrared and Raman); 3) Electron Paramagnetic Resonance T2 - FunGlass CY - Trencín, Slovakia DA - 03.06.2024 KW - Spectroscopy KW - Radiation-matter interaction KW - FT-IR KW - Raman KW - EPR PY - 2024 AN - OPUS4-60367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Röhsler, Andreas A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Sputtering derived artefacts in austenitic steel during Time-of-Flight Secondary Ion Mass Spectrometry analyses N2 - Among the very few techniques to localize hydrogen (H) at the microscale in steels, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. The necessity to detect hydrogen stems from its deleterious effects in metals, that are often used as structural components and to obtain better understanding of the underlying metallurgical mechanisms of hydrogen embrittlement (HE) which are still unclear. Austenitic stainless steels are nowadays commonly used in a wide variety of application, from hydrogen transport and storage facilities to petrochemical and offshore applications where they are exposed to aggressive environments and therefore prone to HE. One of the greater risks in the austenitic class is the embrittlement of the material due to the instability of the γ austenite and its transformation into a brittle α martensitic phase. This transformation takes place due to the local stresses that are induced by the uptake of hydrogen during service. Nonetheless, it was shown that this transformation can occur as an artefact during SIMS analysis itself where Cs-sputtering is necessary not only to remove surface contaminations but mainly to enhance H/D secondary ion yield. In the following contribution we show the influence of different sputtering conditions on AISI 304L austenitic stainless steel in order to distinguish the artefact from the hydrogen induced transformation. The material was charged electrochemically in a deuterium based electrolyte. Deuterium (D) must be in these experiments as a replacement for hydrogen which cannot be used because adsorbed hydrogen superimposes hydrogen originating from charging the sample in the SIMS images. ToF-SIMS analyses were conducted by ToF SIMS IV (IONTOF GmbH, Münster, Germany). The experiments were carried out on deuterium charged and non-charged samples. The structural characterization was carried out by SEM and EBSD examinations before and after charging, both with a Leo Gemeni 1530VP field-emission scanning electron microscope and a Zeiss Supra 40 instrument (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). The results showed that the use of 1keV Cs+ beam induces stacking faults while higher sputter beam energies results in γ→α transformation. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Austenitic steel KW - Hydrogen KW - ToF-SIMS KW - Artefact PY - 2018 AN - OPUS4-46701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Balzer, R. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Statistical analysis of subcritical crack growth in water bearing soda-lime silicate glasses N2 - The talk was given at the PNCS-ESG 2018 in Saint Malo and summarizes the actual findings about Vickers induced crack growth in water bearing soda-lime silicate glasses. T2 - 15th International Conference on the Physics of Non-Crystalline Solids & 14th European Society of Glass Conference CY - Saint Malo, France DA - 09.07.2018 KW - Water speciation KW - Vickers KW - Crack growth KW - Soda-lime silicate glass PY - 2018 AN - OPUS4-45707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. T1 - Statistical analysis of Vickers induced subcritical crack growth in soda-lime silicate glasses N2 - Studies on Vickers induced subcritical crack growth are controversially discussed since the stresses that drive the crack growth are distributed three dimensionally within the material and cannot be retraced by available methods. Hence, empirical approaches are used to calculate mechanical material parameters such as the stress intensity factor KI. However, the results of these approaches show large deviations from those measured by standardized techniques such as double cantilever beam (DCB) or double cleavage drilled compression (DCDC). Yet, small specimen sizes and low specimen quantities can prevent the execution of DCB and DCDC measurements. Here we present an approach that is based on a statistical analysis of Vickers induced radial cracks. For this purpose more than 150 single radial cracks were analyzed. The cracks were generated in a commercial soda-lime silicate glass. The experiments were performed in a glovebox purged with dry nitrogen gas to minimize the influence of atmospheric water on crack growth. The temporally resolved evolution of the radial cracks was monitored in-situ using an inverted microscope equipped with a camera system directly below the Vickers indenter. An automated image analysis software was used to determine the crack length over time. The data show that the crack propagation and thereby the crack velocities are not uniformly but statistically distributed. These findings allow, using the statistical mean value of the distributions in combination with DCB data, a precise formulation of KI for each measured crack length. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28.05.2018 KW - Crack growth KW - Soda-lime silicate glass KW - Vickers PY - 2018 AN - OPUS4-45703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Güther, Wolfgang A1 - Rabe, Torsten T1 - Strategies to improve spray dried multi-component granules N2 - Dry pressing of ceramic materials requires homogeneously soft granules with good flowability to allow rapid die filling and to avoid packing defects. Spray-drying granulation appears to be the best method for obtaining granules with high flowability in industrial scale. But, strength reducing internal microstructural defects caused by spray-dried granules with hollow and hard shells are often observed using nano and/or multi-component starting powders. Using the example of a ZTA composite, the potential of slurry optimization, ultrasound atomization and infrared drying for better granule properties and compaction behavior were investigated. Starting granules produced in a conventional spray dryer (Niro, Denmark) with a two fluid nozzle showed typical defects like large central pores and dimples. The early step of slurry preparation already possesses an essential optimization possibility in the form of stability adjustments. Granule compaction was clearly improved upon a specific reduction in slurry stability. The second optimization opportunity to improve the granule quality was the atomization step. Implementation of an ultrasound atomizing unit into the conventional spray dryer positively affected granule size distribution and therefor flowability and as well granule yield. But, a combination of both process optimizations delivered the best sinter bodies with highest density and strength due to further reduction in maximum size and fraction of pores. As last step of a spray drying process, the drying is the focus of further investigations. A current setup implying a spray dryer prototype utilizes stacked infrared heater in a countercurrent setup delivering a further increase in granule yield and enduring spraying process stability. T2 - 93. Jahrestagung der Deutschen Keramischen Gesellschaft CY - München, Germany DA - 10.04.2018 KW - Spray drying KW - Granules KW - Destabilization KW - Ultrasound PY - 2018 AN - OPUS4-44700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gadelmeier, C. A1 - Agudo Jácome, Leonardo A1 - Suárez Ocano, Patricia A1 - Haas, S. A1 - Feuerbach, M. A1 - Glatzel, U. T1 - Strengthening mechanisms of single crystalline CrCoNi and CrMnFeCoNi at creep temperatures above 700 °C N2 - The main deference between high entropy alloys and conventional alloys is the solid solution strengthening effect, which moves from a single element to a multi-element matrix. Little is known about the effectiveness of this effect at high temperatures. Investigation of temperature dependent solid solution strengthening in single phase multicomponent alloys with medium and high entropy using creep testing was performed. Creep tests carried out on single phase SX CrCoNi , CrMnFeCoNi and pure Ni from 700 to 1200 °C excluding oxidation, grain boundaries and multiphase effects. It was found that the influence of solid solution strengthening of CrCoNi and CrMnFeCoNi increases by decreasing temperature (1200 to 700 °C), and dislocation forests occur in CrCoNi and CrMnFeCoNi in comparison to pure Ni. T2 - SPP Kick-Off Meeting 2nd Phase CY - Online meeting DA - 14.04.2021 KW - High entropy alloys KW - Mechanical properties KW - Transmission electron microscopy KW - Solid solution strengthening PY - 2021 AN - OPUS4-54381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Structure-property correlations in RE-doped fluoride-phosphate glasses for scintillation N2 - As the development of optimized glass compositions by traditional trial-and-error methods is laborious, time consuming, and expensive, it is desirable to develop glass compositions based on a fundamental understanding of the glass structure and to establish structure-property relation models. Particularly, when it comes to optical applications of glasses doped with emissive trivalent rare earth ions (RE), the chemical environmental around the ions will have a direct influence on the radiative/non-radiative emission probabilities. The local vibrational environment and the chemical nature of the bonds in the first coordination sphere of the ions can be tailored, to good extent, based on structural information given by magnetic resonance techniques (NMR and EPR), associated to Raman and photophysical characterization. For the past 5 years, while still employed at the University of São Paulo, in Brazil, one of the interests of my research group has been the development of high-density fluoride-phosphate glasses as promising UV and X-ray scintillator materials. The targeted glasses offer a lower vibrational energy, less hygroscopic fluoride environment for the RE ions whereas the phosphate network provides better mechanical and chemical stability than a purely fluoride glass matrix. Different sets of glasses, based on the compositional system (Ba/Sr)F2-M(PO3)3-MF3-(Sc/Y)F3 where M = Al, In, Ga, and the phosphate component is substituted by the fluoride analogue in 10 - 30 mol%, were investigated, using Sc3+, Y3+, and the Eu3+ and Yb3+ dopants, as structural probes. Overall, results show that the desired RE coordination by fluorine, at a given F/P ratio, is proportional to the atomic mass of M (In> Ga> Al) and that the Ga- and In- based systems differ from the Al- one by near absence of P-O-P network linkages. That is, the network structures are dominated by Ga-O-P or In-O-P linkages, as evidenced by 31P MAS-NMR and Raman. These results are nicely corroborated by observation of decreased intensity of the vibronic band in Eu3+-doped glasses and marked increase in excited state lifetime values. Radioluminescence studies were carried out for a series of In-based glasses doped with Ce3+ and Tb3+, yielding intense emissions in the blue and green, respectively, compatible to the spectral region of the highest sensitivity of radiation sensor detectors. The aim of the presentation is to show how powerful the NMR and EPR techniques can be to provide decisive structural information, and to present the research perspectives in my new role as the Head of Division 5.6 – Glass at BAM. T2 - Fachausschusses I „Physik und Chemie des Glases“, DGG CY - Jena, Germany DA - 02.11.2023 KW - Structure-property correlation KW - Fluoride phosphate glasses KW - Scintillators KW - High energy radiation PY - 2024 AN - OPUS4-60360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Structure-property correlations in RE-doped fluoride-phosphate glasses sought by NMR, EPR & PL N2 - As the development of optimized glass compositions by traditional trial-and-error methods is laborious, expensive, and time consuming, it is desirable to gather fundamental understanding of structure and to develop structure-property relation models, which allow best and faster choices. Particularly, when it comes to optical applications of glasses doped with emissive trivalent rare earth ions (RE), the chemical environmental around the ions will have a direct influence on the radiative/non-radiative emission probabilities. The vibrational environment and the chemical nature of the bonds in the first coordination sphere of the ions can be tailored, to some extent, based on structural information given by magnetic resonance (NMR and EPR) techniques associated to Raman and photophysical characterization. For the past 5 years, one of the interests of my research group at the University of São Paulo, in Brazil, has been the development of high-density fluoride-phosphate glasses as promising UV and X-ray scintillator materials. The targeted glasses offer a lower vibrational energy, less hygroscopic fluoride environment for the RE ions whereas the phosphate network provides improved mechanical and chemical stability than a purely fluoride glass matrix. Different sets of glasses, based on the compositional system (Ba/Sr)F2-M(PO3)3-MF3-(Sc/Y)F3 where M = Al, In, Ga, and the phosphate component is substituted by the fluoride analogue in 10-30 mol%, were investigated, using Sc3+, Y3+, and the Eu3+ and Yb3+ dopants, as structural probes. Overall, results show that the desired RE coordination by F, at a given F/P ratio, is proportional to the atomic mass of M (In> Ga> Al) and that the Ga- and In- based systems differ from the Al- one by near absence of P-O-P network linkages i.e, the network structures are dominated by Ga-O-P or In-O-P linkages as evidenced by 31P MAS-NMR and Raman. These results are nicely corroborated by observation of decreased intensity in the vibronic band of Eu3+ and significant increase in the excited state lifetime values. Radioluminescence studies were carried out for a series of In-based glasses doped with Ce3+ and Tb3+ yielding intense emissions in the blue and green, respectively, compatible to the spectral region of highest sensitivity of radiation sensor detectors. The aim of the presentation is to show how powerful the combination of NMR, EPR, Raman and PLE spectroscopies can be to provide structural information and to present the perspectives for their introduction in the research agenda of Division 5.6 – Glass, which I now lead, at the Federal Institute for Materials Research and Testing (BAM) in Berlin, Germany. T2 - GOMD 2024 - Glass and Optical Division Meeting, ACerS CY - Las Vegas, NV, USA DA - 19.05.2024 KW - Glass Digital KW - Glasses KW - Robotic melting PY - 2024 AN - OPUS4-60357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Ziegler, Mathias A1 - Ahmadi, Samim A1 - Portella, Pedro Dolabella T1 - Structured heating in active thermography by using laser arrays N2 - Lock-in- and flash thermography are standard methods in active thermography. They are widely used in industrial inspection tasks e.g. for the detection of delaminations, cracks or pores. The requirements for the light sources of these two methods are substantially different. While lock-in thermography requires sources that can be easily and above all fast modulated, the use of flash thermography requires sources that release a very high optical energy in the very short time. By introducing high-power vertical cavity surface emitting lasers (VCSELs) arrays to the field of thermography a source is now available that covers these two areas. VCSEL arrays combine the fast temporal behavior of a diode laser with the high optical irradiance and the wide illumination range of flash lamps or LEDs and can thus potentially replace all conventional light sources of thermography. However, the main advantage of this laser technology lies in the independent control of individual array areas. It is therefore possible to heat not only in terms of time, but also in terms of space. This new degree of freedom allows the development of new NDT methods. We demonstrate this approach using a test problem that can only be solved to a limited extent in active thermography, namely the detection of very thin, hidden defects in metallic materials that are aligned vertically to the surface. For this purpose, we generate destructively interfering thermal wave fields, which make it possible to detect defects within the range of the thermal wave field high sensitivity. This is done without pre-treatment of the surface and without using a reference area to depths beyond the usual thermographic rule of thumb. T2 - ConaEnd&Iev 2018 CY - Sao Paulo, Brazil DA - 27.08.2018 KW - VCSEL KW - Active thermography KW - Laser KW - Structured heating KW - Subsurface defects PY - 2018 AN - OPUS4-45851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Study of Polyaniline/Silicon Dioxide based Coating on Carbon Steel in Artificial Geothermal Brine N2 - Geothermal brines are corrosive in nature because of their salt contents and high temperatures. Therefore, they pose a major challenge to geothermal power-plants, which are mostly built of low alloyed steels, e.g., carbon steel. Carbon steel is susceptible to uniform and localized corrosion when exposed to geothermal brines having acidic-saline properties. To overcome this limitation, geothermal power plants should be built by either high alloyed materials or by integrating protection systems on carbon steel, such as coatings and inhibitors. We studied a coating system containing polyaniline/silicon dioxide basing on locally available resources that provides protection against corrosion of carbon steel and enhance the thermal resistance in geothermal environments. Here, exposure and electrochemical tests of coated carbon steels were performed in an artificial geothermal brine. The solution had a pH of 4, with the composition of 1,500 mg/L of chlorides, which is based on the chemical analysis of geothermal brine found in Sibayak, Indonesia. All exposure tests were conducted using autoclaves at 150 °C with a total pressure of 1 MPa, which was performed for up to six months to evaluate the durability of the coating system. Post-experimental analyses were performed by assessing the surface of specimens using optical and electron microscopes. On the other hand, electrochemical tests were performed for seven days at 25 °C and 150 °C to investigate the kinetics of electrochemical reactions by measuring open circuit potential and electrochemical impedance spectra. Experimental results showed the corrosion resistance of PANI/SiO2 composite coatings, where polyaniline and SiO2 play their roles as stabilizers. T2 - World Geothermal Congress CY - Online meeting DA - 30.03.2021 KW - Coatings KW - Corrosion KW - Polyaniline KW - Sibayak KW - SiO2 PY - 2021 SP - 1 EP - 7 AN - OPUS4-52830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Aristia, Gabriela A1 - Le, Quynh Hoa T1 - Study of Polyaniline/Silicon Dioxide based Coating on Carbon Steel in Artificial Geothermal Brine N2 - By using the available resources in Indonesia, such as silicon dioxide and marine coating base, the PANI/SiO2 modified alkyd coating was able to protect carbon steel in a deaerated artificial geothermal water. The screening of coatings shows that the modification by adding individual pigment was not sufficient to protect carbon steel even during a short-term exposure, indicated by the discoloration after only seven days of exposure. Electrochemical tests indicated that there was no significant change in the Ecorr between the coated and uncoated carbon steel at room temperature. At 150 °C, the coated carbon steel has a lower potential than that of carbon steel, indicating that the coating is protecting carbon steel cathodically or slowing down the corrosion reaction. Finally, a long-term exposure test confirmed that the PANI/SiO2 modified coating successfully protects the carbon steel in the Sibayak artificial geothermal water up to 150 °C for 6 months. T2 - World Geothermal Congress CY - Online meeting DA - 15.06.2021 KW - Coatings KW - Corrosion KW - Polyaniline KW - Sibayak KW - SiO2 KW - Geothermal PY - 2021 AN - OPUS4-52831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Sub-critical crack growth in hydrous silicate glasses N2 - Environmental conditions are known to influence sub-critical crack growth (SCCG) that starts from microscopic flaws at the glass surface, leading to stress corrosion phenomena at the crack tip. The processes at the crack tip are complex and water has been identified as a key component governing SCCG at low crack velocities (region I). In particular, the influence of humidity accelerating crack propagation is well studied for dry industrial soda-lime silicate glasses (< 1000 ppm water). To shed light on this influence, the effect of water is mimicked by studying SCCG in water-bearing glasses. For this purpose, water-bearing silicate glasses of up to 8 wt% total water were synthesized in an internally heated pressure vessel at 0.5 GPa and compared to dry glasses. SCCG was measured using the double cantilever beam technique. For dry glasses, three trends in the crack growth velocity versus stress intensity, KI, curve were found. The slope in region I, limited by environmental corrosion, increases in the order soda-lime silicate < sodium borosilicate < barium calcium silicate < sodium zinc silicate < sodium aluminosilicate glass. The velocity range of region II, reflecting the transition between corrosion affected and inert crack growth (region III), varies within one order of magnitude among these glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam1/2. For hydrous glasses, it is found that water strongly decreases Tg, form a new sub-Tg relaxation peak caused by molecular water, and makes the glasses more prone to SCCG. The observed trends will be discussed in terms of the effects of Youngs Modulus on strain energy release rate and energy dissipation related to glass relaxation phenomena. T2 - Glastechnische Tagung CY - Nürnberg, Germany DA - 13.05.2019 KW - Glass KW - Crack growth KW - DCB KW - Water speciation PY - 2019 AN - OPUS4-48339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Sub-critical crack growth in silicate glass N2 - Premature failure of glass under load is caused by sub-critical crack growth (SCCG) originate from microscopic flaws at the surface. While SCCG is related to the humidity of the ambient atmosphere, leading to stress corrosion phenomena at the crack tip, the detailed mechanism and the effect of different network formers are still not fully understood. For more clarity, various soda silicate glasses with a second network former were investigated by double cantilever beam technique: Na2O*Al2O3*SiO2 (NAS), Na2O*B2O3*SiO2 (NBS), Na2O*PbO*SiO2 (NPbS). Three effects on the crack growth velocity, v, versus stress intensity, KI, curves were found out. The slope in region I, which is limited by corrosion, increases in the order NAS < NBS ≲ NPbS. The velocity range of region II reflecting the transition between corrosion effected and inert crack growth (region III), varies within one order of magnitude between the glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam1/2. For comparison, crack growth at different humidity in commercial soda lime silicate glass (NCS) was measured. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28.05.2018 KW - Risswachstum KW - DCB KW - Glas PY - 2018 AN - OPUS4-45702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Sub-critical crack growth in silicate glasses N2 - Environmental conditions are known to influence sub-critical crack growth (SCCG) that are released from microscopic flaws at the glass surface, leading to stress corrosion phenomena at the crack tip. The processes at the crack-tip are complex and water has been identified as a key component governing SCCG at low crack velocities (region I). In particular, the influence of humidity accelerating crack propagation is well studied for industrial soda-lime silicate glasses, which are practically free (< 1000 ppm) of dissolved water. To shed light on the corrosion process, the situation at the crack-tip is reversed in the present study as dissolved water in larger fractions is present in the glass and crack propagation is triggered in dry environment. For this purpose, water-bearing silicate glasses of up to 8 wt% total water were synthesized in an internally heated pressure vessel at 0.5 GPa and compared to dry glasses of standard glass manufacturing. SCCG was measured using the double cantilever beam technique and by Vickers indentation. For dry glasses, three trends in the crack growth velocity versus stress intensity curve were found. The slope in region I limited by environmental corrosion increases in the order sodium aluminosilicate < sodium borosilicate ≲ sodium lead silicate. The velocity range of region II reflecting the transition between corrosion affected and inert crack growth (region III), varies within one order of magnitude among the glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam1/2. For hydrous glasses, it is found that those of low Tg are more prone to SCCG. As water strongly decreases Tg, it promotes SCCG. First results indicate that molecular water has a dominating influence on SCCG. T2 - ICG Annual Meeting 2018 CY - Yokohama, Japan DA - 23.09.2018 KW - DCB KW - Glass KW - Crack growth KW - Water speciation PY - 2018 AN - OPUS4-47164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Subcritical crack growth in hydrous silicate glass N2 - Ambient water influences sub-critical crack growth (SCCG) from microscopic surface flaws, leading to stress corrosion at the crack tip. The complex influence of humidity accelerating slow crack propagation (region I) is well studied only for dry commercial NCS glass (< 1000 ppm water). To shed light on this influence, the effect of water is mimicked by studying SCCG water-bearing glasses. For this purpose, water-bearing silicate glasses of 8 wt% total water were synthesized at 0.5 GPa and compared to dry glasses. SCCG was measured in double cantilever beam geometry. For dry glasses, 3 trends in crack velocity vs. stress intensity, KI, curve were found. The slope in region I increases in the order NCS < NBS < BaCS < NZnS < NAS glass. The velocity range of region II, reflecting the transition between corrosion affected and inert crack growth (region III), varies within one order of magnitude among these glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam0.5. For hydrous glasses, it is found that water strongly decreases Tg, form a new sub-Tg internal friction peak caused by molecular water, and makes the glasses more prone to SCCG. The observed trends will be discussed in terms of the effects of Youngs Modulus on the strain energy release rate and energy dissipation related to mechanical glass relaxation phenomena. T2 - 25th International Congress on Glass (ICG2019) CY - Boston, MA, USA DA - 09.06.2019 KW - Internal friction KW - Soda-lime silicate glass KW - Crack growth KW - Water content KW - DCB PY - 2019 AN - OPUS4-49536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Behrens, H. A1 - Deubener, J. T1 - Subcritical crack growth in hydrous soda-lime silicate glass N2 - Glass strength and fatigue is limited by surface cracks. As subcritical crack growth (SCCG) is governed by ambient humidity, stress corrosion at the crack tip is widely accepted to be the underlying mechanism. However, as water is known to have decisive effect on glass properties and can rapidly enter the crack tip near glass region, SCCG could be affected by such water related phenomena. We tried to mimic these effects studying water dissolution and speciation, mechanical properties, and SCCG in water-bearing glasses. For this purpose, glasses up to 8 wt% water have been prepared by means of high-pressure melting of glass powder - water mixtures. As part of this effort, SCCG in dry and hydrous commercial micros¬cope slide glass (CW = 6 wt%) was studied in double cantilever beam (DCB) geometry and sub-Tg relaxation was measured by Dynamic Mechanical Analysis (DMA). For SCCG in ambient air (24% r.h.), SCCG was promoted by the presence of 6wt% bulk water with respect to the dry glass. On the other hand, stress intensity values, KI, required to cause slow crack growth (v < 10-6 ms-1) resemble literature findings for float glass of similar composition in liquid water, which might represent the maximum possible promoting effect of ambient water on SCCG. For SCCG in vacuum (10-3 mbar), dissolved bulk water causes even more pronounced effects. Most strikingly, it strongly decreases the slope of the log v(KI)-curve, which is a measure of dissipated energy during fracture. A strong increase of sub-Tg relaxation with increasing water content was confirmed by DMA. As a consequence, slow crack growth occurs at KI values as measured in the dry glass whereas fast crack growth occurs at much larger KI than that of the dry glass. Kinks and shoulders shown by the inert log v(KI)-curve indicate that bulk water does not simply affect bulk mechanical properties. T2 - 9th Otto Schott Colloquium CY - Jena, Germany DA - 09.09.2019 KW - Internal friction KW - Soda-lime silicate glass KW - Crack growth KW - Water content KW - DCB PY - 2019 AN - OPUS4-49534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. T1 - Subcritical crack growth in water bearing soda-aluminosilicate glasses N2 - The subcritical crack growth in water bearing soda-aluminosilicate glasses is compared to the crack growth in a commercial soda-lime silicate glass. The water speciation is shown for comparison of water species in the material. Differences will be discussed in the poster session. T2 - Glastechnische Tagung 2019 CY - Nürnberg, Germany DA - 13.05.2019 KW - Glass KW - Crack growth KW - Vickers KW - Water speciation PY - 2019 AN - OPUS4-48343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. T1 - Subcritical crack growth in water bearing soda-lime silicate glasses N2 - The presence of water in the surrounding atmosphere of a propagating crack has a major influence on the subcritical crack growth. While these external phenomena are well understood, there is still a lack of knowledge on the influence of structurally bound water on crack propagation. Thus, our recent study aims on the analysis of crack propagation in water bearing soda-lime silicate glasses with up to 8 wt.% water. The samples were synthesized in an internally heated pressure vessel at 0.5 GPa. Since this preparation route limits the sample sizes, standard test geometries allowing for the determination of stress intensity factors, such as double cantilever beam, are not feasible. Thus, radial cracks in the hydrous glasses were initiated by Vickers indentation and crack growth was simultaneously captured with a camera system. An automated image analysis algorithm was used for the analysis of the crack length of each single video frame. To minimize influences by atmospheric water, all experiments were conducted in a glovebox purged with dry N2. About 150 cracks per glass composition were analyzed to provide statistical significance of the Vickers-induced SCCG. The results show that structurally bound water has a major influence on SCCG by means of crack lengths, growth rates and time of crack initiation. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28.05.2018 KW - Water speciation KW - Soda-lime silicate glass KW - Crack growth KW - Vickers PY - 2018 AN - OPUS4-45704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Suitability of Metallic Materials in CC(U)S Applications N2 - Carbon Capture Utilization and Storage (CCUS) is a promising technology to reach the target for reduction of CO2 emissions, e.g. from fossil-fuel operated power plants or cement mills. Crucial points for a sustainable and future-proof CCUS procedure are reliability and cost efficiency of the whole process chain, including separation of CO2 from the source, compression of CO2, its subsequent transportation to the injection site and injection into geological formations, e.g. aquifers. Most components that are in contact with CO2-stream consist of steel. Depending on the operating conditions (e.g. temperature, pressure, and CO2-stream composition) specific suitable steels should be used. The compressed CO2-stream is likely to contain process specific impurities; small amounts of SO2 and NO2 in combination with oxygen and water are most harmful. One approach, as currently preferred by pipeline operators, is to clean the CO2-stream to such levels, acceptable for carbon steel, commonly used as pipeline material. Another consideration would be, to use more corrosion resistant alloys for CO2-streams with higher amounts of impurities. Due to the absence of certified benchmarks for upper limits, systematic experiments with impurities in the CO2-stream were carried out reflecting mainly transport and injection conditions. Within the COORAL project (German acronym for “CO2 purity for capture and storage”) levels of impurities in the CO2-stream, being acceptable when using specific steels, were evaluated. Material exposure to dense or multiphase carbon dioxide (CO2) containing specific amounts of water vapor, oxygen (O2) sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) can be a challenge to steels. In some situations, condensation of impurities and reaction products from the CO2 stream can occur. CO2 saturated brine is supposed to rise in the well when the injection process is interrupted. The material selection shall ensure that neither CO2 nor brine or a combination of both will leak out of the inner tubing. This COORAL-work was extended by a follow-up project, called CLUSTER. Here the additional influence of impurities was investigated when merging CO2 streams from different sources, combined within a “so-called” cluster. Results are summarized within the following table regarding suitability for different parts of the process chain. T2 - EUROCORR 2021 CY - Online meeting DA - 20.09.2021 KW - Carbon capture storage KW - Corrosion KW - Steel KW - CCS KW - CCU KW - CO2 PY - 2021 SP - 1 EP - 2 AN - OPUS4-53460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Suitability of Metallic Materials in CC(U)S Applications N2 - Commercially available carbon steels are suitable for compression and pipelines as long as moisture content and impurities are limited. (water 50 to 100 ppmv, SO2 and NO2 ca. 100 ppmv). Corrosion rates increase with increasing water content. (0.2 – 20 mm/a). Condensation of acids and therefore droplet formation is always possible, even at low water contents. A low SO2 content within the CO2-stream might be more important than a low water content. Cr13-steels showed a general susceptibility to shallow pitting and pitting. So, they seem to be not suitable for CCUS applications. Low alloyed steels showed better corrosion behavior. � (predictable uniform corrosion) For direct contact with saline aquifer fluids only high alloyed steels shall be used. T2 - EUROCORR 2021 CY - Budapest, Hungary DA - 20.09.2021 KW - Carbon capture storage KW - Corrosion KW - Steel KW - CCS KW - CCU KW - CO2 PY - 2021 AN - OPUS4-53461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Rabe, Torsten T1 - Superior granule properties by spray drying controlled destabilized slurries with ultrasound N2 - Homogeneous introduction of organic additives is a key of ceramic powder processing. Addition of organics to ceramic slurries holds advantages compared to dry processing like organic content reduction and a more homogeneous additive distribution on the particle surface. Investigations of the alumina slurries were primarily based on zeta potential measurements and sedimentation analysis by optical centrifugation. Both methods were combined to determine a suitable additive type, amount and composition, whereas the spray drying suitability has been ensured by viscosity measurements. Granules, yielded by spray drying of such ideally dispersed alumina slurries, are mostly hollow and possess a hard shell. Those granules cannot easily be processed and can only hardly be destroyed in the following shaping step, leading to sinter bodies with many defects and poor strength and density. The precise slurry destabilization, carried out after ideally dispersing the ceramic powder, shows a strong influence on the drying behavior of the granules and hence on the granule properties. A promising degree of destabilization and partial flocculation was quantified by optical centrifugation and resulted in improved granule properties. Spray drying the destabilized alumina slurries yielded homogeneous “non-hollow” granules without the above mentioned hard shell. Sample bodies produced of these granules exhibited a reduction of defect size and number, leading to better results for sinter body density and strength. The positive effect of the slurry destabilization has been further improved, by exchanging the atomizing unit from a two-fluid one to an ultrasound atomizer with only minor slurry adjustments necessary. The controlled destabilization and ultrasound atomization of the ceramic slurry show excellent transferability for zirconia and even ZTA (zirconia toughened alumina) composite materials. T2 - Partec 2019 CY - Nuremberg, Germany DA - 09.04.2019 KW - Destabilization KW - Slurry KW - Ultrasound KW - Atomization PY - 2019 AN - OPUS4-48291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fleck, M. A1 - Tielemann, Christopher A1 - Scheffler, F. A1 - Brauer, D. S. A1 - Müller, Ralf T1 - Surface crystallization of BT0.75S (fresnoite) glass in different atmosphere N2 - Fresnoite glass with excess SiO2 exhibits oriented surface crystallization, in contrast to the stoichiometric glass composition. Recent EBSD studies documented that the crystals in BTS (2BaO-TiO2-xSiO2, x=0-3) can occur in a distinct [101]-orientation perpendicular to the surface and claimed that this orientation is not a result of growth selection. During these previous studies, however, the effect of surface preparation and surrounding atmosphere during the crystallization experiments were not considered. As these parameters may influence crystal orientation, we studied the surface crystallization of a BTS glass (2BaO-TiO2–2.75SiO2) under controlled conditions with the help of light, electron and polarisation microscopy as well as EBSD. Heat treatments for one hour at 840°C of fractured BTS glass surfaces in air resulted in a large number of not-separable surface crystals. This large number of crystals can be caused by dust particles, which act as nucleation agents. As crystal growth velocity could further be influenced by humidity, our experiments are performed in a filtered and dried air atmosphere. The crystal morphology and orientation will be analysed in dependence of the sample preparation and a differing surrounding atmosphere. T2 - 93rd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meeting of French Union for Science and Glass Technology (USTV) CY - Nuremberg, Germany DA - 13.05.2019 KW - BTS KW - Fresnoit KW - Glass ceramic KW - Glass-ceramic KW - Glass PY - 2019 AN - OPUS4-49294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Busch, R. T1 - Surface Initiated Microstructure Formation in Glass -Ceramics N2 - Übersicht zur Oberflächeninitiierten Mikrostrukturbildung in Glasoberflächen. Dabei wird auf die Kristallvorzugsorientierung senkrecht zur Oberfläche der sich unter Temperatureinfluss behandelten Glasproben eingegangen. Zudem werden die ersten Experimente zur Eingrenzung des Ursprungs dieser Orientierung vorgestellt. N2 - Overview about the surface initiated microstructure formation in glass surfaces. Samples which are exposed to a temperature treatment, can develop a crystalline microstructure above Tg at the surface. These separated crystals can be preferably oriented towards the surface of the sample. First experiments about the origin of these orientation phenomenon as well as the potentially causing mechanisms are presented and discussed within the presentation. T2 - AK Glasig-kristalline Multifunktionswerkstoffe 2019 CY - TU Clausthal, Germany DA - 21.02.2019 KW - Orientation KW - Glass KW - Crystallization KW - Diopside PY - 2019 AN - OPUS4-47537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Surface-induced Crystallization of Glass N2 - Up to now, the mechanisms of surface nucleation and surface-induced texture formation are far from being understood. Corresponding phenomena are discussed hypothetically or even controversial, and related studies are restricted to very few glasses. In this talk the state of the art on mechanisms of surface nucleation are summarized. On one hand, mechanical damaged surfaces show high nucleation activity, at which the nucleation occurs at convex tips and edges preferentially. On the other hand, solid foreign particles are dominant nucleation sites at low damaged surfaces. They enable nucleation at temperatures even far above Tg. The nucleation activity of the particles is substantially controlled by their thermal and chemical durability. But no systematic studies on initially oriented crystal growth or nucleation from defined active nucleation sites have been pursued, so far. Therefore, the main objective of a just started project is to advance the basic understanding of the mechanisms of surface-induced microstructure formation in glass ceramics. We shall answer the question whether preferred orientation of surface crystals is the result of oriented nucleation or caused by other orientation selection mechanisms acting during early crystal growth. In both cases, crystal orientation may be caused by the orientation of the glass surface itself or the anisotropy and orientation of active surface nucleation defects. As a first attempt we focused on possible reorientation of separately growing surface crystals during early crystal growth. First results show clear evidence that separately growing crystals can reorient themselves as they are going to impinge each other. T2 - Glasforum der Deutschen Glastechnischen Gesellschaft (DGG) CY - Würzburg, Germany DA - 11.06.2018 KW - Crystallization KW - Silicate Glasses KW - Surface Nucleation PY - 2018 AN - OPUS4-45593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Tielemann, Christopher A1 - Müller, Ralf A1 - Busch, R. A1 - Patzig, C. A1 - Höche, T. T1 - Surface-Initiated Microstructure Formation in Glass Ceramics N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. For silicate glasses we found a good correlation between the calculated surface energy of crystal faces and oriented surface nucleation. Surface energies were estimated assuming that crystal surfaces resemble minimum energy crack paths along the given crystal plane. This concept was successfully applied by Rouxel in calculating fracture surface energies of glasses. Several oriented nucleation phenomena can be herby explained assuming that high energy crystal surfaces tend to be wetted by the melt. This would minimize the total interfacial energy of the nucleus. Furthermore, we will discuss the evolution of the microstructure and its effect on the preferred crystal orientation. T2 - 26th International Congress on Glass CY - Berlin, Germany DA - 03.07.2022 KW - Glass KW - Oriented surface crystallization KW - Surface energy KW - Bond energy KW - Nucleation mode PY - 2022 AN - OPUS4-56070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zemke, F. A1 - Schölch, V. A1 - Bekheet, M.F. A1 - Schmidt, Franziska T1 - Surfactant-assisted sol–gel synthesis of mesoporous bioactive glass microspheres N2 - Spherical mesoporous bioactive glasses in the silicon dioxide (SiO2)-phosphorus pentoxide (P2O5)–calcium oxide (CaO) system with a high specific surface area of up to 300m2/g and a medium pore radius of 4 nm were synthesized by using a simple one-pot surfactant-assisted sol–gel synthesis method followed by calcination at 500–700°C. The authors were able to control the particle properties by varying synthesis parameters to achieve microscale powders with spherical morphology and a particle size of around 5–10 mm by employing one structure-directing agent. Due to a high Calcium oxide content of 33·6mol% and a phosphorus pentoxide content of 4·0mol%, the powder showed very good bioactivity up to 7 d of immersion in simulated Body fluid. The resulting microspheres are promising materials for a variety of life science applications, as further processing – for example, granulation – is unnecessary. Microspheres can be applied as materials for powder-based additive manufacturing or in stable suspensions for drug release, in bone cements or fillers. KW - bioactive KW - biomaterials KW - bone PY - 2019 DO - https://doi.org/10.1680/jnaen.18.00020 SN - 2045-9831 SN - 2045-984X VL - 8 IS - 2 SP - 126 EP - 134 PB - ICE Publishing CY - London AN - OPUS4-50148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eddah, Mustapha A1 - Markötter, Henning A1 - Mieller, Björn A1 - Beckmann, Jörg A1 - Bruno, Giovanni T1 - Synchrotron Multi-energy HDR tomography for LTCC systems N2 - LTCCs (Low-temperature co-fired ceramics) consist of three-dimensionally distributed, hermetically bonded ceramic and metallic components with structure sizes within [10; 100] µm. A non-destructive imaging technique is needed that provides 3D, sharp, high-contrast resolution of these structures, as well as porosity and defect analysis, which is made difficult by the very different X-ray absorption coefficients of the individual components of the microstructure. A HDR method is being developed that allows a combination of different tomograms, each with X-ray energies adapted to individual materials. T2 - Bessy II User Meeting CY - Berlin, Germany DA - 22.06.2023 KW - LTCC KW - Synchrotron tomography KW - Data fusion KW - In-situ tomography PY - 2023 AN - OPUS4-57795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna T1 - Tailoring powder properties for the light based volumetric additive manufacture of Ceramics N2 - In order to be able to manipulate ceramic powder compacts and ceramic suspensions (slurries) within their volume with light, a minimum transparency of the materials is required. Compared to polymers and metals, ceramic materials are characterized by the fact that they have a wide electronic band gap and therefore a wide optical window of transparency. The optical window generally ranges from less than 0.3 µm to 5 µm wavelength. In order to focus light into the volume of a ceramic powder compact, its light scattering properties must therefore be tailored. In this study, we present the physical background and material development strategies for the application of two-photon polymerization (2PP) and selective volumetric sintering for the additive manufacturing of structures in the volume of ceramic slips and green compacts. T2 - SmartMade 2024 CY - Osaka, Japan DA - 10.04.2024 KW - Additive Manufacturing KW - Two Photon Polymerization KW - Advanced ceramics PY - 2024 AN - OPUS4-59888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian T1 - Tailoring powder properties for the light based volumetric additive manufacture of Ceramics N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with light into the volume of a ceramic powder compound, its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP), and other volumetric methods for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ICACC 2024 CY - Daytona Beach, Florida, USA DA - 28.01.2024 KW - Additive Manufacturing KW - Two Photon Polymerization KW - Advanced ceramics PY - 2024 AN - OPUS4-59889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Schulz, Bärbel A1 - Rabe, Torsten T1 - Tailoring the spring constant of ceramic helical compression springs N2 - Ceramic springs combine attractive properties for applications in machinery, metrology, and sensor technology. They are electrically insulating, non-magnetic, provide a linear stress-strain behavior, and are stable at high temperatures and in corrosive environments. Generally, the precise dimensioning of a ceramic spring with respect to the spring constant is challenging. Different models are described, but many of these calculations do not match the actual spring properties. We demonstrate a reliable approach for the dimensioning and manufacturing of helical compression springs with a rectangular winding cross-section. Based on the German standard DIN 2090, which is referring to metallic springs, the spring constant can be calculated based on shear modulus, diameter, height, widths, and number of windings. Different ceramic springs were produced by milling of sintered hollow cylinders of zirconia, alumina and silicon nitride. The experimental spring constants are in very good agreement with the calculated values. Spring constants of zirconia springs were varied over three orders of magnitude between 0.02 N/mm and 5 N/mm by purposeful adaption of the spring geometry. The combination of dimensioning based on DIN 2090 and precise hard machining offers a reliable technology for the fabrication of tailored ceramic springs for special applications. T2 - 45th International Conference and Exhibition on Advanced Ceramics and Composites (ICACC 2021) CY - Online meeting DA - 08.02.2021 KW - Ceramics KW - Hard machining KW - Spring constant PY - 2021 AN - OPUS4-52136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schilling, Markus T1 - Tensile Test Ontology (TTO) N2 - This is the stable version 2.0.1 of the PMD ontology module of the tensile test (Tensile Test Ontology - TTO) as developed on the basis of the 2019 standard ISO 6892-1: Metallic materials - Tensile Testing - Part 1: Method of test at room temperature. The TTO was developed in the frame of the PMD project. The TTO provides conceptualizations valid for the description of tensile test and corresponding data in accordance with the respective standard. By using TTO for storing tensile test data, all data will be well structured and based on a common vocabulary agreed on by an expert group (generation of FAIR data) which will lead to enhanced data interoperability. This comprises several data categories such as primary data, secondary data and metadata. Data will be human and machine readable. The usage of TTO facilitates data retrieval and downstream usage. Due to a close connection to the mid-level PMD core ontology (PMDco), the interoperability of tensile test data is enhanced and data querying in combination with other aspects and data within the broad field of material science and engineering (MSE) is facilitated. The TTO class structure forms a comprehensible and semantic layer for unified storage of data generated in a tensile test including the possibility to record data from analysis, re-evaluation and re-use. Furthermore, extensive metadata allows to assess data quality and reproduce experiments. Following the open world assumption, object properties are deliberately low restrictive and sparse. KW - Ontology KW - Tensile Test KW - Digitalization KW - Plattform MaterialDigital KW - Structured Data PY - 2023 UR - https://github.com/MarkusSchilling/application-ontologies/blob/479311832819af695a2c64fa8eb772f2da398061/tensile_test_ontology_TTO/pmd_tto.ttl UR - https://github.com/materialdigital/core-ontology/blob/59f5727b0437ceea5e3d9fcb8fcd0ac211e92cc3/pmd_tto.ttl PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-57935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Tensile Test Ontology used in Platform Material Digital (PMD) N2 - Data analysis methods play an important role in both the experimental and simulation-based digital description of materials but have so far been poorly structured. The platform Material Digital (PMD) is supposed to contribute to a standardized description of data processing methods in materials research. The goal is the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. Therefore, application ontologies are created to explicitly describe processes and test methods. In this presentation, the first efforts within the joint project PMD in creating a tensile test application ontology in accordance with the ISO standard 6892-1:2019-11 are shown. Especially, the path of ontology development to be pursued based on standards was focused. Furthermore, the presentation includes a live demonstration of queries possibly performed to query data that was uploaded in the PMD triple store. T2 - Online Workshop: An introduction to the semantic web and ontologies CY - Online meeting DA - 23.04.2021 KW - Ontology KW - Tensile Test KW - Platform Material Digital KW - PMD KW - Knowledge Graphs KW - Semantic Web PY - 2021 AN - OPUS4-52949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Tensile Test: From Standard to PMD Application Ontology N2 - Data analysis methods play an important role in both the experimental and simulation-based digital description of materials but have so far been poorly structured. The platform Material Digital (PMD) should contribute to a standardized description of data processing methods in materials research. The goal is the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. Therefore, application ontologies are created to explicitly describe processes and test methods. In this presentation, the first efforts in creating a tensile test application ontology in accordance with the ISO standard 6892-1:2019-11 are shown. Especially, the path of ontology development to be pursued based on standards was focused. T2 - Onboarding Workshop der Plattform Material Digital (PMD) CY - Online meeting DA - 13.04.2021 KW - Ontology KW - Platform MaterialDigital KW - PMD KW - Tensile Test KW - Normung KW - Standardization PY - 2021 AN - OPUS4-52425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kalinka, Gerhard T1 - Testing the fibre matrix interface of short glass fibre reinforced PMCs with using the push out technique N2 - With this presentation, the push-out technique is explained. The focus of the experimental work is on the characterization of the fiber-matrix interface of short fiber reinforced composites. The reinforcing component was glass fibers and the matrix polymer was PA6.6 and PPA. It is demonstrated for the first time that the push-out technique ca be applied on injection molded short fiber PMC and is sensitive to the mechanical interface properties. Further studies are planned on the influence of multiple processing, the temperature and humidity. T2 - Composirtes United Workshop „Fiber Matrix Interphases“ CY - Online meeting DA - 09.11.2023 KW - Polymer Matrix Composite KW - Glass Fibres KW - PA6.6 KW - PPA KW - Push-out Test KW - Interface Strength PY - 2023 AN - OPUS4-59053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Capek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Bruno, Giovanni T1 - Texture Dependent Micromechanical Anisotropy of Laser Powder Bed Fused Inconel 718 N2 - Additive manufacturing methods such as laser powder bed fusion (LPBF) allow geometrically complex parts to be manufactured within a single step. However, as an aftereffect of the localized heat input, the rapid cooling rates are the origin of the large residual stress (RS) retained in as-manufactured parts. With a view on the microstructure, the rapid directional cooling leads to a cellular solidification mode which is accompanied by columnar grown grains possessing crystallographic texture. The solidification conditions can be controlled by the processing parameters and the scanning strategy. Thus, the process allows one to tailor the microstructure and the texture to the specific needs. Yet, such microstructures are not only the origin of the mechanical anisotropy but also pose metrological challenges for the diffraction-based RS determination. In that context the micromechanical elastic anisotropy plays an important role: it translates the measured microscopic strain to macroscopic stress. Therefore, it is of uttermost importance to understand the influence of the hierarchical microstructures and the texture on the elastic anisotropy of LPBF manufactured materials. This study reveals the influence of the build orientation and the texture on the micro-mechanical anisotropy of as-built Inconel 718. Through variations of the build orientation and the scanning strategy, we manufactured specimens possessing [001]/[011]-, [001]-, and [011]/[111]-type textures. The resulting microstructures lead to differences in the macroscopic mechanical properties. Even further, tensile in-situ loading experiments during neutron diffraction measurements along the different texture components revealed differences in the microstrain response of multiple crystal lattice planes. In particular, the load partitioning and the residual strain accumulation among the [011]/[111] textured specimen displayed distinct differences measured up to a macroscopic strain of 10 %. However, the behavior of the specimens possessing [001]/[011]-and [001]-type texture was only minorly affected. The consequences on the metrology of RS analysis by diffraction-based methods are discussed. T2 - International Conference on Additive Manufacturing ICAM 2022 CY - Orlando, FL, USA DA - 31.10.2022 KW - Laser powder bed fusion KW - Neutron diffraction KW - Electron backscatter diffraction KW - Mechanical behavior PY - 2022 AN - OPUS4-56376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Reimann, T. A1 - Moos, R. A1 - Rabe, Torsten T1 - Texturing of calcium cobaltite for thermoelectric applications by pressure assisted sintering N2 - Thermoelectric materials can convert waste heat directly into electrical power by using the Seebeck effect. Calcium cobaltite (CCO) is considered as a promising thermoelectric p-type oxide for energy harvesting applications at temperatures above 500 °C. The properties and morphology of single-crystal CCO are strongly anisotropic because of its crystal structure of alternating layers of CoO2 and Ca2CoO3. By aligning the plate-like grains, the anisotropic properties of the grains can be assigned to the poly-crystalline parts. In this study, the combination of tape casting and pressure-assisted sintering is used to texture and densify large scale components (50 cm²). Thereby, the influence of powder preparation and applied pressure during sintering on texturing and thermoelectric properties is investigated. The analysis of XRD pole figures revealed that tape casting already leads to highly textured CCO. By pressure variation during sintering, the microstructure of CCO can be tailored either toward maximum power factor as required for energy harvesting or toward maximum figure of merit as required for energy recovery. Low pressure lead to a porous microstructure and maximum figure of merit and higher pressure to full densification and maximum power factor. The electrical and thermal conductivity of CCO seem depending on both texture and sinter density. T2 - KERAMIK 2021 / CERAMICS 2021 CY - Online meeting DA - 19.04.2021 KW - Thermoelectrics KW - Hot pressing KW - Pole figures PY - 2021 AN - OPUS4-52490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Suárez Ocaño, Patricia T1 - The Al4-xZr5(Ox-y) Trojan horse in the AlMo0.5NbTiTa0.5Zr refractory high entropy superalloy N2 - Unlike conventional alloys, which typically consist of one main element, high-entropy alloys (HEAs) contain five or more principal elements, which broaden chemical complexity and with it a realm of synergistic mechanisms. The AlMo0.5NbTa0.5TiZr HEA initiated a subclass of Al-containing refractory (r)HEAs that has recently drawn attention [2]. The alloy has a superalloy-resembling B2/bcc nanostructure, which inspired its name refractory high entropy superalloy (RSA). With high-temperature (HT) compressive strengths beyond conventional Ni-based superalloys, this nanostructure could be used for improved HT structural applications. However, in the application-relevant HT regime the Al-Zr-rich B2 phase decomposes to form a hexagonal Al-Zr-based intermetallic (Al4-xZr5; x: 0..1) [3,4]. This work explores the fascinating yet fatal micromechanisms associated to this phase transformation, in the context of creep, annealing and oxidation experiments performed between 800 and 1200 °C. The material was produced by arc-melting and heat treatment in argon, which lead to grain boundaries decorated with up to 7%. Interrupted constant-load creep tests were performed under vacuum (at 10-4 Pa), at 900–1100 °C with external tensile stresses of 30–120 MPa. Oxidation experiments were separately conducted for 24 hours at 800 and 1000 °C in both dry (21% O2 + 79% N2) and humid (8% O2 + 74% N2 + 18% H2O) air. After the experiments, the samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy to reveal degradation mechanisms. Crystallographic texture, orientation relationships and stabilization of an oxygen-containing iso structure (Al4-xZr5(Ox-y); y: 0..x) of the Al-Zr-rich intermetallic are found and discussed. T2 - BCC Superalloy Network Opening Workshop CY - Reutte, Austria DA - 08.02.2024 KW - High entropy alloy KW - Superalloy KW - Degradation KW - Electron microscopy KW - Microstructure PY - 2024 AN - OPUS4-59833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Müller, Ralf T1 - The contribution of the Platform MaterialDigital (PMD) in building up a Materials Data Space - Application to glass design and manufacturing N2 - Suitable material solutions are of key importance in designing and producing components for engineering systems – either for functional or structural applications. Materials data are generated, transferred, and introduced at each step along the complete life cycle of a component. A reliable materials data space is therefore crucial in the digital transformation of an industrial branch. A great challenge in establishing a materials data space lies in the complexity and diversity of materials science and engineering. It must be able to handle data from different knowledge areas over several magnitudes of length scale. The Platform MaterialDigital (PMD) is expected to network a large number of repositories of materials data, allowing the direct contact of different stakeholders as materials producers, testing labs, designers and end users. Following the FAIR principles, it will promote the semantic interoperability across the frontiers of materials classes. In the frame of a large joint initiative, PMD works intensively together with currently near 20 research consortia in promoting this exchange (www.material-digital.de). In this presentation we will describe the status of our Platform MaterialDigital. We will also present in more detail the activities of GlasDigital, one of the joint projects mentioned above dealing with the digitalization of glass design and manufacturing. (https://www.bam.de/Content/EN/Projects/GlasDigital/glasdigital.html) T2 - Onto Commons Workshop CY - Berlin, Germany DA - 04.04.2023 KW - Ontology KW - Data space PY - 2023 AN - OPUS4-58732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, P. A1 - Müller, Ralf T1 - The contribution of the Platform MaterialDigital (PMD) in building up a Materials Data Space - Application to glass design and manufacturing N2 - Suitable material solutions are of key importance in designing and producing components for engineering systems – either for functional or structural applications. Materials data are generated, transferred, and introduced at each step along the complete life cycle of a component. A reliable materials data space is therefore crucial in the digital transformation of an industrial branch. A great challenge in establishing a materials data space lies in the complexity and diversity of materials science and engineering. It must be able to handle data from different knowledge areas over several magnitudes of length scale. The Platform MaterialDigital (PMD) is expected to network a large number of repositories of materials data, allowing the direct contact of different stakeholders as materials producers, testing labs, designers and end users. Following the FAIR principles, it will promote the semantic interoperability across the frontiers of materials classes. In the frame of a large joint initiative, PMD works intensively together with currently near 20 research consortia in promoting this exchange (www.material-digital.de). In this presentation we will describe the status of our Platform MaterialDigital. We will also present in more detail the activities of GlasDigital, one of the joint projects mentioned above dealing with the digitalization of glass design and manufacturing. (https://www.bam.de/Content/EN/Projects/GlasDigital/glasdigital.html) T2 - OntoCommons Workshop CY - Berlin, Germany DA - 04.04.2023 KW - Ontology KW - Materials Data Space KW - PMD KW - Glass PY - 2023 AN - OPUS4-60371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker T1 - The effect of fiber orientation mismatch on scarf joint damage mechanisms under fatigue load N2 - Wind turbine rotor blades commonly fail before their projected 20-year lifespan largely due to defects that originate during manufacturing and are propagated by operational fatigue and environmental conditions. The cost-intensive replacement outcomes lead to a high loss of earnings, and are one of the inhibitors of wind turbine production. A potential repair alternative to restoring the mechanical properties of such lightweight fiber reinforced polymer (FRP) structures is to locally patch these areas with scarf joints. This type of repair allows for a smoother load distribution across the joint, and is favored especially on structures where minor aerodynamic contour changes are key. The effects of such repairs on the structural integrity, however, is still largely unknown. Building upon an understanding of the static load failure mechanism of GFRP scarf joints, presented at the ICCS23 Joint Event in 2020, the influence of the fiber orientation mismatch between parent and repair materials of 1:50 scarf joints on the failure mechanism of monolithic glass FRP specimens under cyclic fatigue load were examined in this study. Specimens with various layups were produced with the vacuum-assisted resin infusion (VARI) process using biaxial E-glass non-crimp fabric (NCF). The patch layers were then joined directly to the parent structure with the VARI using biaxial E-glass NCF with half the areal weight of the parent side to allow for better drapability. This mimics the soft-to-hard patch style utilized in wind turbine blade shell field repairs. The specimens were tested under uniaxial fatigue load, during which they were periodically monitored for damage onset. A comparison of the +45/-45° and 0/90° layups allowed for an understanding of the role of a highly mismatching fiber orientation in the transition zone between parent and patch material on the failure mechanism of the scarf joint. In addition to the tensile strength and stiffness property recovery assessment, a grayscale analysis using in-situ camera images determined the damage state leading to failure in each region across the scarf joint, which varied in the parent material versus scarf joint region, providing insight to the critical regions in this composite structure under cyclic loading. T2 - ICCS24 - 24th International Conference on Composite Structures CY - Online meeting DA - 14.06.2021 KW - Glass fiber reinforced polymers KW - Scarf repairs KW - Damage mechanisms PY - 2021 AN - OPUS4-52817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maaß, Robert T1 - The Federal Institute of Materials Research and Testing (BAM) – 150 Years of Enabling Scientific and Technological Breakthrough N2 - BAM! This issue of Advanced Engineering Materials celebrates 150 years of scientific and technical research at the interface between academia, industry and politics. Rooted in 1871 at the birth of the German Empire and at that time located in simple basements and barracks, the institutional development began around mechanical metallurgy of iron and steel and represents today a diverse portfolio of fore-front research that orients itself along tomorrow's societal challenges and long-term research horizons. KW - 150 Years KW - Adolf Martens PY - 2022 DO - https://doi.org/10.1002/adem.202200648 VL - 24 IS - 6 SP - 1 EP - 3 PB - Wiley-VCH GmbH AN - OPUS4-55388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Klaus, M. A1 - Genzel, C. A1 - Schneider, J. A1 - Bruno, Giovanni T1 - The heat treatment of L-PBF Inconel 718: A manyfold problem N2 - The interest to additively manufacture Nickel-based superalloys has substantially grown within the past decade both academically and industrially. More specifically, additive manufacturing processes such as laser powder bed fusion (LPBF) offer the ability to produce dense parts within a single manufacturing step. In fact, the exceptional freedom in design associated with the layer-based nature of the processes is of particular interest for the complex shapes typically required in turbine applications. In certain cases, the overall part performance can be achieved by tailoring the microstructure and the crystallographic texture to the specific application. However, these advantages must be paid at a price: the large local temperature gradients associated with the rapid melting and solidification produce parts that inherently contain large residual stress in the as-manufactured state. In addition, the presence of pores in the final part may further affect the in-service part failure. As among Nickel-based alloys Inconel 718 exhibits excellent weldability, this alloy has been widely studied in open research in the domain of LPBF. However, significant microsegregation of the heavier alloying elements such as Niobium and Molybdenum accompanied by dislocation entanglements may preclude the application of conventional heat treatment schedules. Therefore, different post processing heat treatments are required for laser powder bed fused Inconel 718 as compared to conventional variants of the same alloy. In this study, we investigated two different heat treatment routes for LPBF Inconel 718. In a first routine, the samples were stress relieved and subsequently subjected to hot isostatic pressing (HIP) followed by a solution heat treatment and a two-step age (referred to as FHT). In a second routine, the samples were subjected to a single-step direct age post stress relieving heat treatment (referred to DA). We investigated the consequences of such heat treatment schedules on the microstructure, texture, and mechanical behavior. We show that by applying a DA heat treatment the typical columnar microstructure possessing a crystallographic texture is retained, while an equiaxed untextured microstructure prevails in case of an FHT heat treatment. We further evaluate how these heat treatments affect the mechanical behaviour on the macroscopic and microscopic scale. T2 - 4th European Symposium on Superalloys and their Applications EuroSuperalloys 2022 CY - Bamberg, Germany DA - 18.09.2022 KW - Electron Backscatter Diffraction KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Mechanical Behavior KW - Heat Treatment KW - X-Ray Diffraction PY - 2022 AN - OPUS4-55811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Balazs, D. M. A1 - Beyer, F. L. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Giudice, A. D. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, Max A1 - Hollamby, M. J. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Ricardo de Abreu Furtado Garcia, P. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, P. E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Annadurai, V. A1 - Spiering, G. A. A1 - Stawski, Tomasz A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor: results of a small-angle scattering data analysis Round Robin N2 - A Round Robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions, and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5 % and half of the population width entries within 40 %, respectively. Due to the added complexity of the structure factor, much fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 % and 86 % respectively. This Round Robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round Robin KW - Sall-angle scattering KW - Nanostructure quantification KW - Nanostructure KW - SAXS KW - MOUSE KW - X-ray scattering KW - Size distribution KW - Nanoparticles PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571342 DO - https://doi.org/10.48550/arXiv.2303.03772 SP - 1 EP - 23 PB - Cornell University CY - New York AN - OPUS4-57134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - Annie, Biwen A1 - Rene, Hesse A1 - Askar, Enis A1 - Ji Zheng, Yao A1 - Sobol, Oded A1 - Kunte, Hans-Jörg T1 - The impact and potential of halophilic microorganisms on alternative fuels N2 - As more industrial interests focusing on using salt caverns and repurposed gas or petroleum reservoirs for alternative fuel storage, i.e. CO2/H2, the question raises whether microorganisms may impact the infrastructure, gas purity and storage condition over time. Environments with high salinity (> 1.5 Meq of NaCl) are resided by halophiles (salt-loving microorganisms). To compensate for the intensive osmotic stress, they have resorted to two main adaptation strategies: 1) production of compatible solutes and 2) accumulation of intracellular KCl. Microbial community analysis of several high salinity environments revealed a number of recurring genera, including Halomonas and Halanaerobium. However, the impact of halophiles on the overall integrity and stability of the storage facilities remain largely unknown. To evaluate the suitability and stability of saline storage facilities, several model halophilic microorganisms, such as members of Halomonas, will be selected as testing subjects. First, the impact of halophiles on the infrastructure will be determined using an integrative approach by combining a number of techniques, including electrochemistry, TOF-SIMS, SEM/FIB/EDS and FIB-TEM. Second, the abilities of halophiles to alter the fuel composition (i.e. increase/decrease the fractions of H2) will be monitored using gas chromatography by growing them under high pressure. As a result of climate change and the accompanying mandatory shift to renewable energy resources, microorganisms will continue to play an important role in the energy sector, both to their benefit and detriment. Thus, it is important to achieve a certain level of understanding regarding the activities and mechanisms of halophiles prior to large-scaled excursions. T2 - ISMOS-8 CY - Online meeting DA - 07.06.2021 KW - Microbiologically influenced corrosion KW - Hydrogen KW - Gas storage KW - Contamination PY - 2021 AN - OPUS4-52891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falk, Florian A1 - Stephan-Scherb, Christiane A1 - Lehmusto, J. A1 - Pint, B. T1 - The impact of water vapour on high-temperature surface degradation by sulfurous gases of ferritic alloys N2 - Sulfur and water have a fundamental impact on the corrosion rate and potential failure of materials. It is therefore necessary to understand the mechanisms, rates, and potential means of transport, as well as the reactions of these elements with an alloy. This work investigates the effect of water vapor in the initial stages of SO2 corrosion of an ferritic model alloy containing 9 wt% Cr and 0.5 wt% Mn. The exposure experiments were studied at 650°C in situ under laboratory conditions using energy-dispersive x-ray diffraction analysis. Two separate experiments were run, one with a 99.5% Ar + 0.5% SO2 atmosphere and one with a 69.5% Ar + 0.5% SO2 + 30% H2O atmosphere. With a wet atmosphere, the alloy formed a scale with decreasing oxygen content towards the scale–alloy interface. Sulfides were identified above and below a (Fe, Cr)3O4 layer in the inner corrosion zone. In contrast to this, the overall scale growth was slower in a dry SO2 atmosphere. T2 - EUROCORR CY - Barceló Sevilla Renacimiento, Seville, Spain DA - 09.09.2019 KW - Diffraction KW - Sulfidation KW - Early oxidation KW - Corrosion KW - In situ PY - 2019 AN - OPUS4-49213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Han, Ying A1 - Kruse, Julius A1 - Madia, Mauro A1 - Radners, Jan A1 - von Hartrott, Philipp A1 - Skrotzki, Birgit T1 - The influence of aging and mean stress on fatigue of Al-alloy EN AW-2618A N2 - In this study, the influence of aging and mean stress on fatigue of the aluminium-alloy EN AW-2618A is investigated. Therefore axial fatigue tests are carried out on smooth specimens. The experiments show that the fatigue life decreases with increasing mean stress. Furthermore, the tests with the overaged specimens demonstrate that the number of cycles to failure is decreasing with increasing aging time. T2 - LCF9 CY - Berlin, Germany DA - 21.06.2022 KW - Fatigue KW - Aluminium alloy KW - EN AW-2618A KW - Damage Behavior PY - 2022 AN - OPUS4-55125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel T1 - The influence of the aggressive environments on the Inconel 686 coating in high-temperature corrosion experiments N2 - This work presents the microstructure and chemical composition of oxide scales created on Ni – base coating after corrosion experiments in aggressive gases and ashes. The Inconel 686 coating applied on the low carbon steel 13CrMo4-5 was performed by a CO2 laser cladding process. The experiments were carried out in oxidizing gas atmospheres containing O2, COx, SOx. The second Variation of corrosion experiments were performed in a reducing atmosphere with ashes containing elements such as: Na, Cl, Ca, Si, C, Fe, Al etc. After 240 h and 1.000 h corrosion experiments the oxide scales on the substrate and overlay were created in both cases. The sulfur compounds were found on the top of the coating surface (EPMA) and also higher contents of silica compounds were revealed on specimens covered by ashes during the experiments. The microstructure and chemical composition of the clad and scales were investigated by means of a light microscope and an electron microscope (SEM)equipped with an EDS detector. T2 - 50. Kraftwerkstechnisches Kolloquium CY - Dresden, Germany DA - 23.10.2018 KW - Nickel based coatings KW - Inconel 686 KW - High temperature corrosion PY - 2018 SP - 599 AN - OPUS4-46590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Behrens, H. A1 - Deubener, J. T1 - The influence of volatile constituents on mechanical properties of glasses N2 - Im Rahmen des Young Researcher Day des SPP1594 wurden die bisherigen Inhalte der Projekte zusammengefasst und vorgetragen. T2 - Annual Meeting and Young Researcher Day CY - Jena, Germany DA - 11.09.2018 KW - Glass KW - Crack growth KW - Vickers KW - DCB KW - Water speciation PY - 2018 AN - OPUS4-46728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. A1 - Balzer, R. A1 - Kiefer, P. T1 - The influence of water as volatile on crack propagation in soda-lime silicate glass N2 - The talk was given at the Spring School of the SPP1594 in Hannover and summarizes the actual findings about crack growth in water bearing soda-lime silicate glass and a comparison to other oxide glasses. T2 - Spring School des SPP1594 CY - Hannover, Germany DA - 06.03.2018 KW - DCB KW - Soda-lime silicate glass KW - Crack growth KW - Vickers KW - Water speciation PY - 2018 AN - OPUS4-45699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - The long-term ageing process of alloy 2618A N2 - The long-term ageing process of alloy 2618A was introduced and discussed The dark-field transmission electronmicroscopical resilts werde shown and evaluated regarding the precipitate radii. The influence of the precipitate radii regarding ageing was used for a preliminary ageing assessment. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - S-phase KW - Dark-field transmission electron microscopy (DFTEM) PY - 2018 AN - OPUS4-46120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - The long-term ageing process of alloy 2618A N2 - The long-term ageing process of alloy 2618A was introduced and discussed The dark-field transmission electronmicroscopical resilts werde shown and evaluated regarding the precipitate radii. The influence of the precipitate radii regarding ageing was used for a preliminary ageing assessment. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - S-phase KW - Dark-field transmission electron microscopy (DFTEM) PY - 2018 AN - OPUS4-46123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, Agnieszka A1 - Kranzmann, Axel A1 - Dymek, Stanislaw T1 - The microstructure characterization of the oxide scale created on Inconel 686 clad N2 - The Ni-Cr-Mo-W alloy is characterized by the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. To protect the surface of the substrate 13CrMo4-5 steel against aggressive environments the Inconel 686 as clad layer was used. The corrosion process was performed in oxidizing mixture of gases like O2, COx, SOx. The second part of corrosion Experiment concerned the corrosion test of the coating in reducing atmosphere of the specified gases with ashes, which contained e.g. Na, Cl, Ca, Si, C, Fe, Al. T2 - EUROCORR 2018 CY - Crocow, Poland DA - 09.09.2018 KW - Laser cladding KW - Inconel 686 coating KW - High-temperature corrosion KW - Aggressive gases PY - 2018 AN - OPUS4-47393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Kelleher, J. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - The relaxation of macroscopic residual stresses in laser powder bed fused stainless steel 316L N2 - The processing of stainless steel 316L using the additive manufacturing process Laser Powder Bed Fusion (LPBF) can widen its field of application due to a strong increase in Yield strength, without making major compromises on the ductility nor its outstanding corrosion and oxidation properties. Furthermore, improved designs that either reduce the weight or optimise the function of a part can be obtained using LPBF. These benefits are however counterbalanced by the proneness of LPBF to inducing high Residual Stresses (RS) during manufacturing. The characterisation and monitoring of these RS are of paramount importance for the wider acceptance of the LPBF process. This study focuses on the relaxation of the initial macroscopic RS present in an LPBF 316L as-built prism that undergoes various routes of manufacturing steps to achieve different specimen geometries and stress relieving treatments. The RS are determined using Angle-Dispersive (AD) and Time-of-Flight (TOF) neutron diffraction. The results reveal high tensile RS close to the surfaces and compressive RS near the centre of the as-built parts. The reduction in size and change of geometry heavily impact the stress ranges of the remaining RS, with lower stress ranges in cylindrical shaped compared to rectangular shaped specimens. Also, the application of different stress relieving heat treatments showed that heat-treating temperatures above 800 °C are necessary to obtain a strong relaxation in LPBF 316L. T2 - The second European Conference on the Structural Integrity of Additively Manufactured Materials CY - Online meeting DA - 08.09.2021 KW - Residual Stress KW - Additive Manufacturing KW - Neutron Diffraction PY - 2021 AN - OPUS4-53263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as Certified Reference Material for Size and Shape N2 - BAM is currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance to the material and life sciences. As a first candidate of this series, we present cubic iron oxide nanoparticles with a nominal edge length of 8 nm. These particles were synthesized by thermal decomposition of iron oleate in high boiling organic solvents adapting well-known literature procedures. After dilution to a concentration suitable for electron microscopy (TEM and SEM) as well as for small-angle X-ray scattering (SAXS) measurements, the candidate nanoRM was bottled and assessed for homogeneity and stability by both methods following the guidelines of ISO 17034 and ISO Guide 35. The particle sizes obtained by both STEM-in-SEM and TEM are in excellent agreement with a minimum Feret of 8.3 nm ± 0.7 nm. The aspect ratio (AR) of the iron oxide cubes were extracted from the images as the ratio of minimum Feret to Feret resulting in an AR of 1.18 for TEM to 1.25 for SEM. Alternatively, a rectangular bounding box was fitted originating from the minimum Feret and the longest distance through the particle in perpendicular direction. This led to AR values of 1.05 for TEM and 1.12 for SEM, respectively. The results confirm the almost ideal cubic shape. KW - Reference nanoparticles KW - Iron oxide KW - Cubical shape KW - Electron microscopy KW - SAXS KW - Nano CRM KW - Size PY - 2022 DO - https://doi.org/10.1017/S1431927622003610 SN - 1435-8115 VL - 28 IS - Suppl. 1 SP - 802 EP - 805 PB - Cambridge University Press AN - OPUS4-55599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as CRM for Size and Shape N2 - Due to their unique physico-chemical properties, nanoparticles are well established in research and industrial applications. A reliable characterization of their size, shape, and size distribution is not only mandatory to fully understand and exploit their potential and develop reproducible syntheses, but also to manage environmental and health risks related to their exposure and for regulatory requirements. To validate and standardize methods for the accurate and reliable particle size determination nanoscale reference materials (nanoRMs) are necessary. However, there is only a very small number of nanoRMs for particle size offered by key distributors such as the National Institute of Standards and Technology (NIST) and the Joint Research Centre (JRC) and, moreover, few provide certified values. In addition, these materials are currently restricted to polymers, silica, titanium dioxide, gold and silver, which have a spherical shape except for titania nanorods. To expand this list with other relevant nanomaterials of different shapes and elemental composition, that can be used for more than one sizing technique, we are currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance for the material and life sciences. T2 - Microscopy and Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Certified Referencematerial KW - Cubical Iron Oxide KW - Nanoparticles KW - Electron Microscopy KW - Small-Angle X-ray Scattering PY - 2022 AN - OPUS4-57035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Gröber, A. A1 - Kranzmann, Axel T1 - The Role of Surface Texture on the Corrosion Behavior of High Alloyed Steel Exposed to Saline Aquifer Water Environments N2 - Coupons of X5CrNiCuNb16-4 that may be used as injection pipe with 16% Chromium and 0.05% Carbon (1.4542, AISI 630) were exposed for 3000 h to CO2-saturated saline aquifer water similar to the conditions in the Northern German Basin at ambient pressure and 60 °C. Surface corrosion layers and pits reveal carbonate corrosion products on the surface such as FeCO3 and FeOOH as the main precipitation phases with no dependence on the original surface roughness. Corrosion rates for polished and technical surfaces were below 0.005 mm/year compared to corrosion rates of 0.035 mm/year after shot peening. T2 - 14th Greenhouse Gas Control Technologies Conference CY - Melbourne, Australia DA - 21.10.2018 KW - High alloyed steel KW - Pitting KW - Surface KW - Roughness KW - CO2 PY - 2019 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-50375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Wolf, M. A1 - Kranzmann, Axel T1 - The role of surface texture on the corrosion fatigue behavior of high alloyed stainless steel exposed to saline aquifer water environment N2 - Corrosion fatigue specimen with different surfaces (technical surfaces after machining and polished surfaces) of high alloyed martensitic stainless steel X46Cr13 (1.4043) and duplex stai nless steel X2CrNiMoN22 3 2 (1.4462) were compared at load amplitudes from 175 MPa to 325 MPa in the geothermal brine of the N orthern German Basin at 98 °C. Surface corrosion layers and pits reveal carbonate corrosion products on the surface such as FeCO 3 and FeOOH as the main precipitation phases with no dependence on the original surface roughness . At high stress amplitudes above 275 MPa technical surfaces (P50% at σa 300 MPa=5 × 10 5 ) resulted in more cycles to failure than polished (P50% at σa 300 MPa=1.5 × 10 5 ). The greater slope coefficient for technical surfaces k = 19.006 compared to polished surfaces k =8.78 demonstrate s earlier failure at given stress amplitude σa . KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Heat treatment PY - 2019 DO - https://doi.org/10.17706/ijmse SN - 2315-4527 VL - 7 IS - 2 SP - 26 EP - 33 PB - IAP - International Academy Publishing CY - San Bernardino, CA AN - OPUS4-50365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Gaber, M. A1 - Reinsch, Stefan T1 - Thermal Analysis and Relaxation Phenomena in Oxide Glasses N2 - Wasser beeinflusst empfindlich eine Vielzahl von thermisch aktivierten Relaxationsphänomenen in Gläsern wie die Spannungsrelaxation, das unterkritische Risswachstum, innere Reibung, Viskosität, Sinterverhalten und Kristallisation. Thermische Methoden können dabei wesentliche Beiträge zum Verständnis dieser Phänomene liefern. Der Vortrag gibt einen Überblick über die Möglichkeiten der VakuumHeißExtraktion (VHE) zur Untersuchung des Wassergehalts, des Wasserabgabeverhaltens und der Wassermobilität sowie über den Einfluss des Wassers auf die innere Reibung (DMA). N2 - Dissolved water decisively influences numerous thermally activated relaxation phenomena in glasses like stress relaxation, sub-critical crack growth, internal friction, viscosity, sintering, and crystallization. Thermoanalytical methods can essentially help for better understanding of these phenomena. The lecture introduces the Vacuum Hot Extraction method (VHE) and illustrates its possibilities for measuring water content, degassing and mobility. As another thermoanalytical method, the Dynamic Mechanical Themoanalysis (DMA), allowing to study the effect of dissolved water on the internal friction in glasses, is introduced. T2 - Spring school DFG SPP 1594 CY - Hannover, Germany DA - 06.03.2018 KW - Wasser KW - Silicatglas KW - Relaxationsphänomene KW - Relaxation KW - Thermoanalytical Methods KW - Glass KW - Dissolved water PY - 2018 AN - OPUS4-45668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Junge, P. A1 - Stargardt, Patrick A1 - Kober, D. A1 - Greinacher, M. A1 - Rupprecht, C. T1 - Thermally Sprayed Al2O3 Ceramic Coatings for Electrical Insulation Applications N2 - Thermal spraying enables a fast and propelling way to additively deposit various ceramics as electric insulators, which are used in conditions where polymers are not suitable. Alumina (Al2O3) is among the most employed materials in the coating industry since it exhibits good dielectric properties, high hardness, high melting point while still being cost-effective. Various parameters (e.g. feedstock type, plasma gas mixture, plasma power) significantly influence the resulting coating in terms of microstructure, porosity, crystallinity, and degree of un-or molten particles. As a consequence, these parameters need to be investigated to estimate the impact on the electrical insulating properties of thermally sprayed alumina. This study focuses on the development of a novel electric insulation coating from Al2O3 feedstock powders deposited via atmospheric plasma spray (APS). The microstructure, porosity, and corresponding crystallographic phases have been analyzed with optical microscopy, XRD, and SEM images. To achieve an understanding of the parameters influencing the electrical insulation performance of the manufactured coatings, an in-depth analysis of the fundamental dielectric parameters e.g., DC resistance, breakdown strength, dielectric loss tangent, permittivity is presented. T2 - International Thermal Spray Conference and Exposition 2022 CY - Vienna, Austria DA - 04.05.2022 KW - Thermal Spray KW - Alumina KW - Dielectric properties PY - 2022 SP - 1 EP - 8 AN - OPUS4-55821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kraus, David T1 - Thermo-mechanical fatigue of glass fiber reinforced polymer N2 - Glass fiber reinforced polymer (GFRP) materials in practical applications have to endure cyclic mechanical loading in a wide temperature range (e.g. aircraft applications, automotive, wind turbine blades). In this study the static strength and fatigue behavior of GFRP was investigated in a temperature range from 213 K to 343 K. Therefor the coefficients of thermal expansion of the composite as well as the matrix are measured in this temperature interval. The inverse laminate theory was extended and used to calculate the inter fiber-failure effort for a virtual UD-layer according to the layer wise strength approach. The experimentally determined results are compared with the micro-mechanical model according to Krimmer, which has been enhanced to include the effect of temperature and fiber-perpendicular failure modes. A correlation between matrix effort, the dilatational strain energy of the matrix and the damage state of the specimen is demonstrated. It is shown that a fatigue life assessment can be performed with the aid of a temperature-independent master fatigue curve, as it was similar done for the fatigue behavior of CFRP and GFRP to very high load cycles at room temperature. T2 - ICFC8 - The 8th International Conference on the Fatigue of Composites CY - Online meeting DA - 23.06.2021 KW - Glass fibre reinforced plastics KW - Fatigue KW - Thermo-mechanical-loading PY - 2021 AN - OPUS4-52910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Suarez Ocano, Patricia T1 - Thermodynamic and microstructural stabilities at high temperatures and their effects on mechanical properties in an AlMo0.5NbTa0.5TiZr refractory high entropy superalloy N2 - Today’s industrial demands challenge the research and development sector to make advances in the design and properties of materials that can withstand harsh environments. The AlMo0.5NbTa0.5TiZr refractory high-entropy superalloy (RSA), with a remarkable morphological similarity to the γ/γ' microstructure of Ni-based superalloys and promising high-temperature compressive properties, has been considered as a candidate for structural applications. However, additional properties need to be investigated in order to assess the suitability of this alloy for high temperature applications. Therefore, this work investigates the thermodynamic and microstructural stabilities of the RSA at room temperature and between 900 and 1100 °C, and their influence on the mechanical properties. Although it is possible to improve the mechanical properties at 20 °C by tuning the cooling rate, long-term high temperature exposures lead to phase instabilities that negatively influence the creep behavior. N2 - Die heutigen industriellen Anforderungen erfordern Fortschritte bei Werkstoffdesign und -entwicklung, insbesondere für raue Umgebungen. Die hochentropische Refraktärsuperlegierung (RSA) AlMo0.5NbTa0.5TiZr, die eine bemerkenswerte morphologische Ähnlichkeit mit der γ/γ'-Mikrostruktur von Ni-Basis-Superlegierungen und vielversprechende Hochtemperatur-Druckeigenschaften aufweist, wurde als Kandidat für strukturelle Anwendungen erwägt. Weitere Eigenschaften müssen untersucht werden, um die Eignung dieser Legierung für Hochtemperaturanwendungen zu beurteilen. In dieser Arbeit werden die thermodynamischen und mikrostrukturellen Stabilitäten von RSA bei Raumtemperatur und zwischen 900 und 1100°C sowie deren Einfluss auf die mechanischen Eigenschaften untersucht. Obwohl es möglich ist, die mechanischen Eigenschaften bei 20 °C durch Abstimmung der Abkühlrate zu verbessern, führen langfristige Hochtemperaturexpositionen zu Phaseninstabilitäten, die das Kriechverhalten negativ beeinflussen. KW - Hochentropielegierung KW - Gefüge (Werkstoffkunde) KW - Mikrostruktur KW - Kriechen KW - Thermodynamische Stabilität KW - High entropy alloys KW - Microstructure KW - Creep KW - Thermodynamic stability PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:hbz:294-108415 DO - https://doi.org/10.13154/294-10841 SP - 1 EP - 170 CY - Bochum AN - OPUS4-59929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Agudo Jácome, Leonardo T1 - Thermodynamic study of a refractory complex concentrated alloy (rCCA) using the CALPHAD method N2 - Multi-principal-element alloys (MPEAs), have recently come to the attention of the scientific community due to their potential for improving properties such as, e.g. mechanical strength and oxidation resistance in high temperature structural applications. The AlMo0.5NbTa0.5TiZr refractory (r)CCA is one such candidate, showing a two-phase microstructure after a two-stage heat treatment under argon atmosphere at a controlled cooling rate. Since the application conditions intended for this alloy require a long-term high temperature (> 700 °C) mechanical and oxidation resistance, it becomes necessary to assess the possible phase development in this regime. The diagrams reveal that two BCC-based phases could form during alloy solidification, where one phase would be enriched with Mo, Nb and Ta while the other phase, with Al, Ti and Zr. Activity oxides diagrams show that a stable form of aluminum oxide (α-Al2O3, Pearson symbol: hR10, corundum) can be formed. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Chemically Complex Alloy KW - CALPHAD KW - Electromicroscopy PY - 2019 AN - OPUS4-50730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -