TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Donėlienė1, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Nanoparticles KW - Titanium oxide KW - Laser ablation in liquid KW - Electron microscopy KW - XRD PY - 2018 AN - OPUS4-46502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria T1 - A decade of cube optimization in the Al- Co-Cr-Fe-Ni-Ti high entropy family N2 - The multi-phase approach has proven to widen the application properties of high entropy alloys. After a decade of testing different alloys in the Al-Co-Cr-Cu-Fe-Ni-Ti family the Al10Co25Cr8Fe15Ni36Ti6 was found to be a solid base for more fine-tuned microstructural optimization. Following the example of superalloys, the Al10Co25Cr8Fe15Ni36Ti6 alloy aims for a γ/γ' microstructures in order to guarantee a good microstructural stability at high temperatures. The shape and volume fraction of the γ' particles is known to influence the mechanical properties of superalloys, and they do so in the high entropy family as well [1]. Shape, misfit and creep properties of several modified versions of the Al10Co25Cr8Fe15Ni36Ti6 alloy are compared and discussed in this talk. T2 - Department seminar National Chung Hsing University CY - Taichung, Taiwan DA - 15.11.2023 KW - High entropy alloys KW - Transmission electron microscopy KW - X-ray diffraction KW - Creep KW - Phase analysis PY - 2023 AN - OPUS4-58979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Bettge, Dirk T1 - Defects as a root cause for fatigue failure of metallic components N2 - The Topic of the presentationis a discussion on defects which can cause failure in cyclically loaded metallic components. Although also touching Features such as material defects such as pores or micro-shrinkages, etc. and geometric defects such as surface roughness and secondary notches (which are not considered in the design process) which origin in manufacturing, and others the presentation concentrates on non-metallic inclusions. It is prefaced by an introduction to the life cycle of a fatigue crack from initiation up to fracture. Special emphasis is put on the fact that only cracks which are not arrested during one of their distinct Propagation stages can grow to a critical size. T2 - VIII. International Conference on Engineering Failure Analysis CY - Budapest, Ungarn DA - 08.06.2018 KW - Metallic components KW - Material defects KW - Micro-shrinkages PY - 2018 AN - OPUS4-46875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemiasheuski, Anton A1 - Bajer, Evgenia A1 - Oder, Gabriele A1 - Göbel, Artur A1 - Hesse, Rene A1 - Bettge, Dirk T1 - Development of an Automated 3D Metallography System (RASI) and its Application in Microstructure Analysis N2 - Many microstructural features exhibit non-trivial geometries, which can only be derived to a limited extent from two-dimensional images. E.g., graphite arrangements in lamellar gray cast iron have complex geometries, and the same is true for additively manufactured materials and three-dimensional conductive path structures. Some can be visualized using tomographic methods, but some cannot be due to weak contrast and/or lack of resolution when analyzing macroscopic objects. Classic metallography can help but must be expanded to the third dimension. The method of reconstructing three-dimensional structures from serial metallographic sections surely is not new. However, the effort required to manually assemble many individual sections into image stacks is very high and stands in the way of frequent application. For this reason, an automated, robot-supported 3D metallography system is being developed at BAM, which carries out the steps of repeated preparation and image acquisition on polished specimen. Preparation includes grinding, polishing and optionally etching of the polished surface. Image acquisition comprises autofocused light microscopic imaging at several magnification levels. The image stacks obtained are then pre-processed, segmented, and converted into 3D models, which in the result appear like microtomographic models, but with high resolution at large volume. Contrasting by classical chemical etching reveals structures that cannot be resolved using tomographic methods. The integration of further imaging and measuring methods into this system is underway. Some examples will be discussed in the presentation. T2 - Euromat 2023 CY - Frankfurt a. M., Germany DA - 04.07.2023 KW - Metallography KW - 3D Reconstruction KW - Roboter KW - Automation KW - Microstructure PY - 2023 AN - OPUS4-58202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Laplanche, G. A1 - Schneider, M. A1 - Hagen, S. A1 - Stephan-Scherb, C. T1 - High temperature oxidation of CrFeNi in synthetic air N2 - The surface corrosion behaviour is a key issue which determines whether the material is applicable at a given atmosphere. Medium-entropy alloy FeCrNi alloy was exposed to synthetic air at 1000°C, 1050°C, and 1100 °C for up to 1000 h using a thermobalance. The oxidation rate was parabolic at 1000 and 1050°C, but breakaway occurred at 1100°C after 5 h of aging time. The whole oxide scales formed under the isothermal oxidation tests spalled off and additional oxidation tests were carried out at 1000 °C and 1050°C for 24 h and up to 100 h at 1000°C in a tubular furnace. The corrosion behaviour of the MEA was analysed by scanning electron microscope, energy-dispersive X-ray spectroscopy, and X-ray diffraction and compared to the behaviour of 316 L. The experimental results showed that under all conditions chromium is the main diffusion element resulting in the formation of a Cr2O3 layer at the MEA surface. Spallation of the layer induces the formation of additional oxidation products under the surface of the (spalled off) chromia layer. T2 - Euromat 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Medium entopy alloy KW - Oxidation KW - Scanning electron microscopy KW - Thermogravimetric analysis PY - 2023 AN - OPUS4-58198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Kratzig, Andreas A1 - Peetz, Christoph A1 - Kranzmann, Axel T1 - Interaction of Oxidizing and Reductive Impurities in CO2 Streams with Transport Pipeline Steel N2 - A main goal of CLUSTER CCS project at BAM was to study the corrosion behaviour of pipeline steel with dense phase carbon dioxide containing impurities. Depending on the kind of impurities specific corrosion mechanisms and corrosion rates were determined. T2 - CO2 and H2 Technologies for the Energy Transition CY - BAM, Berlin, Germany DA - 28.11.2018 KW - Carbon capture KW - Carbon dioxide KW - Corrosion KW - CCS PY - 2018 AN - OPUS4-47016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schroepfer, Dirk T1 - Mechanical performance and integrity of tungsten inert gas (TIG) welded CoCrFeMnNi high entropy alloy with austenitic steel AISI 304 N2 - High entropy alloys (HEA) are a new class of materials that have been investigated since the early 2000s and offer great potential to replace conventional alloys. However, since they sometimes have significant contents of expensive alloying elements such as Co or Ni, their use is only conceivable in highly stressed areas of components. For this purpose, the weldability with conventional alloys such as high-alloy austenitic steels must be investigated. In addition to the resulting microstructure, the mechanical properties are also fundamental for the usability of HEAs in DMWs. For this purpose, TIG welds of CoCrFeMnNi HEA (cold rolled and recrystallized state) with AISI 304 austenitic steel are investigated. These mechanical properties are analyzed in this work by means of tensile tests and local hardness measurement. The local strain behavior of the welded joints is also characterized by means of Digital Image Correlation (DIC). The results of the local hardness measurement show a clear influence of the initial condition of the HEA on the HAZ. Thus, the HEA in the cold-rolled condition shows a clear softening because of recrystallization processes in the HAZ. On the other hand, there is no influence on the hardness of the weld metal, which is approx. 200 HV0.1 in both cases. The tensile tests show a consistent failure of the weld in the weld metal. However, regardless of the HEA condition, strengths in the range of the recrystallized HEA (RM ~ 550–600 MPa) are achieved, although with significantly reduced fracture elongations. T2 - International Conference on High-Entropy Materials (ICHEM 2023) CY - Knoxville, TN, USA DA - 18.06.2023 KW - Multi-principal element alloys KW - Welding KW - Mechanical properties KW - Dissimilar metal weld KW - Digital image correlation PY - 2023 AN - OPUS4-57713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Röhsler, Andreas A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Sputtering derived artefacts in austenitic steel during Time-of-Flight Secondary Ion Mass Spectrometry analyses N2 - Among the very few techniques to localize hydrogen (H) at the microscale in steels, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. The necessity to detect hydrogen stems from its deleterious effects in metals, that are often used as structural components and to obtain better understanding of the underlying metallurgical mechanisms of hydrogen embrittlement (HE) which are still unclear. Austenitic stainless steels are nowadays commonly used in a wide variety of application, from hydrogen transport and storage facilities to petrochemical and offshore applications where they are exposed to aggressive environments and therefore prone to HE. One of the greater risks in the austenitic class is the embrittlement of the material due to the instability of the γ austenite and its transformation into a brittle α martensitic phase. This transformation takes place due to the local stresses that are induced by the uptake of hydrogen during service. Nonetheless, it was shown that this transformation can occur as an artefact during SIMS analysis itself where Cs-sputtering is necessary not only to remove surface contaminations but mainly to enhance H/D secondary ion yield. In the following contribution we show the influence of different sputtering conditions on AISI 304L austenitic stainless steel in order to distinguish the artefact from the hydrogen induced transformation. The material was charged electrochemically in a deuterium based electrolyte. Deuterium (D) must be in these experiments as a replacement for hydrogen which cannot be used because adsorbed hydrogen superimposes hydrogen originating from charging the sample in the SIMS images. ToF-SIMS analyses were conducted by ToF SIMS IV (IONTOF GmbH, Münster, Germany). The experiments were carried out on deuterium charged and non-charged samples. The structural characterization was carried out by SEM and EBSD examinations before and after charging, both with a Leo Gemeni 1530VP field-emission scanning electron microscope and a Zeiss Supra 40 instrument (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). The results showed that the use of 1keV Cs+ beam induces stacking faults while higher sputter beam energies results in γ→α transformation. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Austenitic steel KW - Hydrogen KW - ToF-SIMS KW - Artefact PY - 2018 AN - OPUS4-46701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Peetz, Andreas A1 - Kranzmann, Axel T1 - Interaction of Reactive Components in CO2 Streams with Transport Pipeline Steel X70 N2 - In context of CLUSTER project, impacts of impurities (SO2, NO2, O2, CO, H2S, H2, N2, Ar and H2O) in CO2 streams captured from different sources in a regional cluster on transport, injection and storage were investigated. Corrosion studies of oxidizing, reductive or mixed atmospheres towards transport pipeline steel X70 were carried out applying high pressure (10 MPa) at low temperatures (278 K or 313 K). T2 - GHGT-14 Conference CY - Melbourne, Australia DA - 22.10.2018 KW - Carbon capture KW - CCS KW - Carbon dioxide KW - Corrosion PY - 2018 AN - OPUS4-47017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - Annie, Biwen A1 - Rene, Hesse A1 - Askar, Enis A1 - Ji Zheng, Yao A1 - Sobol, Oded A1 - Kunte, Hans-Jörg T1 - The impact and potential of halophilic microorganisms on alternative fuels N2 - As more industrial interests focusing on using salt caverns and repurposed gas or petroleum reservoirs for alternative fuel storage, i.e. CO2/H2, the question raises whether microorganisms may impact the infrastructure, gas purity and storage condition over time. Environments with high salinity (> 1.5 Meq of NaCl) are resided by halophiles (salt-loving microorganisms). To compensate for the intensive osmotic stress, they have resorted to two main adaptation strategies: 1) production of compatible solutes and 2) accumulation of intracellular KCl. Microbial community analysis of several high salinity environments revealed a number of recurring genera, including Halomonas and Halanaerobium. However, the impact of halophiles on the overall integrity and stability of the storage facilities remain largely unknown. To evaluate the suitability and stability of saline storage facilities, several model halophilic microorganisms, such as members of Halomonas, will be selected as testing subjects. First, the impact of halophiles on the infrastructure will be determined using an integrative approach by combining a number of techniques, including electrochemistry, TOF-SIMS, SEM/FIB/EDS and FIB-TEM. Second, the abilities of halophiles to alter the fuel composition (i.e. increase/decrease the fractions of H2) will be monitored using gas chromatography by growing them under high pressure. As a result of climate change and the accompanying mandatory shift to renewable energy resources, microorganisms will continue to play an important role in the energy sector, both to their benefit and detriment. Thus, it is important to achieve a certain level of understanding regarding the activities and mechanisms of halophiles prior to large-scaled excursions. T2 - ISMOS-8 CY - Online meeting DA - 07.06.2021 KW - Microbiologically influenced corrosion KW - Hydrogen KW - Gas storage KW - Contamination PY - 2021 AN - OPUS4-52891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -