TY - CONF A1 - Kuchenbecker, Petra T1 - Weiterentwicklung der VSSA-Screening-Methode zur Identifizierung von NanoPulvern N2 - Der Vortrag zeigt zwei Möglichkeiten zur Verbesserung der VSSA-Screening-Methode zur Identifizierung von Nanopulvern auf. Bisher ist das Verfahren nur für monodisperse Partikel mit idealer Kugelform valide. Die Verteilungsbreite der Partikelgröße soll durch die Nutzung des Modells einer logarithmischen Normalverteilung implementiert werden. Die Abweichung der gemessenen Partikel von einer idealen Kugel in Sphärizität, Rundheit und Rauigkeit sind über einen Morphologiefaktor MF zu berücksichtigen. An einem konkreten Beispiel werden Auswirkungen der Implementierungen rechnerisch dargestellt und mit dem bisherigen Verfahren verglichen. T2 - NanoDefine Follow-up Meeting CY - Frankfurt/ Main, Germany DA - 25.09.2018 KW - VSSA KW - Nano particle KW - Particle size KW - Nano screening PY - 2018 AN - OPUS4-46070 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh T1 - Betriebsfestigkeit von Reparaturstellen an Rotorblättern von Windkraftanlagen N2 - Hochleistungsverbundwerkstoffe, bzw. Glasfaser-Kunststoff-Verbunde (GFK), haben sich als Leichtbauwerkstoffe für Leichtflugzeuge und Rotorblätter von Windkraftanlagen etabliert. Die hohe spezifische Festigkeit und Steifigkeit qualifizieren sie besonders für diese Anwendung. Während der Fertigung werden Imperfektionen häufig in die Blattschalen eingebracht. Durch Witterungseinflüsse kommt es zum Schadensfortschritt. Infolgedessen treten Schäden in der Blattschale, die den sicheren Betrieb gefährden können, weit vor der projektierten Lebensdauer von 20 Jahren auf. Da der Austausch von ganzen Blättern sehr kostintensiv ist, ist eine lokale Reparatur des geschädigten Bereichs zur Wiederherstellung der strukturellen Integrität, viel preisgünstiger. Die Reparatur von Rotorblättern ist in den letzten Jahren zu einem wichtigen Thema geworden. Derzeit werden verschiedenste Reparaturkonzepte angewendet. Eine einheitliche Reparaturvorgabe gibt es bisher nicht. Die Auswirkungen der angewendeten Reparaturkonzepte auf die Betriebsfestigkeit der Reparaturstelle sind weitestgehend unbekannt und sollen deshalb in diesem Projekt untersucht werden. Gekrümmte Voll-Laminat sowie Sandwich Prüfkörper werden mit dem Vacuum-Assisted-Resin-Infusion-Prozess (VARI) produziert. Um einen Teil einer Rotorblattschale darzustellen, sind sie als GFK aufgebaut, beziehungsweise die Sandwich Strukturen mit einem Polyvinylchlorid-Schaumkern (PVC) Kern, wie im Original. Schalenreparaturen in verschiedenen Layup-Techniken und Geometrie werden eingebracht und die Materialeigenschaften mit zyklischen Ermüdungstests untersucht. Im Projekt werden ideal im Labor erzeugte Reparaturstellen mit in der Praxis angewendeten Ausführungstechniken eines Industriepartners experimentell verglichen. Für die in-situ Detektion der Schadensentwicklung während des Ermüdungsversuches kommt ein kombiniertes Felddehnungs- und Thermografie-Kamerasystem zum Einsatz. Das mechanische Verhalten und die Schadensentwicklung in den verschiedenen reparierten Prüfkörper wird miteinander sowie mit den Referenzproben ohne Reparaturstellen verglichen. Zudem wird in numerischen Modellen für die verschiedenen Reparaturtechniken eine Spannungsanalyse durchgeführt um hinsichtlich der Betriebsbeanspruchung eine Bewertung angeben zu können. T2 - Kolloquium Luftfahrzeugbau und Leichtbau, TU Berlin CY - Berlin, Germany DA - 18.06.2018 KW - Sandwich KW - Faserverstärkte Kunstoffe KW - Betriebsfestigkeit PY - 2018 AN - OPUS4-46026 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Analysis of the fatigue strength of various repair concepts for wind turbine rotor blades N2 - High-performance composites, including glass-fiber reinforced plastic (GFRP) materials, are favored as a construction material for wind turbine rotor blades due to their high specific strength and stiffness properties. During the manufacturing process, however, imperfections are often introduced, then further propagated due to harsh environmental conditions and a variety of loads. This leads to failure significantly before their projected 20-year lifespan. As replacement of entire blades can be a costly potential outcome, localized repair of the damaged region to restore structural integrity and thus lengthen its lifespan has become an important issue in recent years. Rotor blades are often repaired using a common technique for composite laminates: adhesively bonded structural repair patches. These methods involve replacing the lost load path with a new material that is joined to the parent structure, and include scarf or plug repairs. However, there currently do not exist any standardized repair procedures for wind turbine rotor blades, as comparisons of blade properties repaired with the existing methods have not been studied in depth. Namely, there is a lack of understanding about the effects of various repair methods on the fatigue life of the shells of rotor blades. This study therefore aims to begin to fill this knowledge gap by testing the influence of different repair patches on the blades’ mechanical properties. Manufactured with the vacuum-assisted resin infusion process, the test specimens are produced as a curved structure with GFRP sandwiching a polyvinyl chloride foam core to best represent a portion of a rotor blade shell. Scarf repairs are then introduced with varying layup techniques, and material properties are examined with cyclical fatigue tests. Crack growth and development is monitored during fatigue testing by various non-destructive testing methods, including passive thermography with an infrared camera system, and a 3D deformation analysis system with ARAMIS. Large deformation fields and detection of in- and out-of-plane deformations is thus possible in-situ. The mechanical behavior and development of defects in the various repaired specimens is compared to each other as well as to reference test specimens with no repair patches. In-situ test data is combined with further non-destructive testing methods, including laminography, and active thermography, to develop a robust understanding of the effects of repair concepts. T2 - MSE Congress 2018 CY - Darmstadt, Germany DA - 26.09.2018 KW - Glass fiber reinforced polymers KW - Lightweight materials KW - Fatigue of sandwich structures KW - Wind turbine blades KW - Sandwich PY - 2018 AN - OPUS4-46102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Mühler, T. T1 - Layerwise Slurry Deposition for the Additive Manufacturing of Ceramics N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of SLS/SLM and 3DP technologies for advanced ceramic materials. LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade. Each layer is deposited and dried to achieve a highly packed powder layer, which can be used for SLM or for 3DP. This technique offers high flexibility in the ceramic feedstock used, especially concerning material and particle size, and is capable of producing parts with physical and mechanical properties comparable to traditionally shaped parts. In this presentation, the LSD technique will be introduced and several examples of application to porcelain, SiC and alumina products will be reported. T2 - CIMTEC - International Ceramics Congress CY - Perugia, Italy DA - 04.06.2018 KW - Ceramic KW - Additive Manufacturing PY - 2018 AN - OPUS4-46337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Mühler, T. T1 - Powder-based Additive Manufacturing: beyond the comfort zone of powder deposition N2 - In powder-based Additive Manufacturing (AM) processes, an object is produced by successively depositing thin layers of a powder material and by inscribing the cross section of the object in each layer. The main methods to inscribe a layer are by binder jetting (also known as powder 3D printing) or by selective laser sintering/melting (SLS/SLM). Powder-based AM processes have found wide application for several metallic, polymeric and also ceramic materials, due to their advantages in combining flexibility, easy upscaling and (often) good material properties of their products. The deposition of homogeneous layers is key to the reproducibility of these processes and has a direct influence on the quality of the final parts. Accordingly, powder properties such as particle size distribution, shape, roughness and process related properties such as powder flowability and packing density need to be carefully evaluated. Due to these requirements, these processes have been so far precluded to find commercial use for certain applications. In the following, two outstanding cases will be presented. A first example is that powder-based AM processes are widely used for many metallic and polymeric materials, but they find no commercial application for most technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. The processing of technical ceramics in fact typically requires very fine and poorly flowable powder, which makes them not suitable for the standard processes. There have been several approaches to adapt the raw materials to the process (e.g. by granulation), but in order to maintain the superior properties of technical ceramics it seems necessary to follow the opposite approach and adapt the process to the raw materials instead. This was the motivation for developing the Layerwise Slurry Deposition (LSD), an innovative process for the deposition of powder layers with a high packing density. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder. This allows achieving high packing density (55-60%) in the layers after drying. It is also important, that standard ceramic raw materials can be used. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. Moreover, due to the compact powder bed, no support structures are required for fixation of the part in the printing process. Figure 1 shows the schematics of the working principle of the LSD-3D print and illustrates some examples of the resolution and features achievable. The second outstanding case here described is the application of powder-based AM in environments with reduced or zero gravity. The vision is to be able to produce repair parts, tools and other objects during a space mission, such as on the International Space Station (ISS), without the need of delivering such parts from Earth or carrying them during the mission. AM technologies are also envisioned to play an important role even for future missions to bring mankind to colonize other planets, be it on Mars or on the Moon. In this situation, reduced gravity is also experienced (the gravitational acceleration is 0.16 g on the Moon and 0.38 g on Mars). These environments cause the use of AM powder technologies to be very problematic: the powder layers need to be stabilized in order to avoid dispersion of the particles in the chamber. This is impossible for standard AM powder deposition systems, which rely on gravitation to spread the powder. Also in this case, an innovative approach has been implemented to face this technological challenge. The application of a gas flow through a powder has a very strong effect on its flowability, by generating a force on each particle, which is following the gas flow field. This principle can be applied in a simple setup such as the one shown in Figure 2. In this setup, the gas flow causes an average pressure on the powder bed in direction of the arrows, generating a stabilizing effect which acts in the same direction of the gravitational force. This effect can be used in addition to normal gravity on Earth to achieve a better stabilization of 3D printed parts in the powder bed. In this case, even a significant increase of packing density of the powder was measured, compared to the same experimental setup without gas flow. This is due to the fact that the force on each single particle follows the gas flow field, which is guiding the particles to settle between the pores of the powder bed, thus achieving an efficient packing. The same principle can be applied in absence of gravitation, where the gas flow acts to stabilize the powder layers. It has been shown that ceramic powder could be deposited in layers and laser sintered in µ-gravity conditions during a DLR (Deutsches Zentrum für Luft- und Raumfahrt) campaign of parabolic flights, as shown in Figure 2. A follow-up campaign is dedicated to the deposition of metallic (stainless steel) powder in inert atmosphere and to study the effects of laser melting in µ-gravity. In conclusion, the description of these two example cases shows how the development of novel technological processes can address some of the limitations of standard powder-based AM, in order to enable the use of new materials, such as technical ceramics, or to tackle the challenges of AM in space. T2 - WMRIF 2018 Early Career Scientist Summit CY - London, NPL, UK DA - 18.06.2018 KW - 3D-printing KW - Additive Manufacturing KW - Powder KW - SLM PY - 2018 AN - OPUS4-46338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni T1 - Residual stress formation in selective laser melted parts of alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotron- and the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates a dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from both X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - Forschungsseminar OvGU Magdeburg CY - Magdeburg, Germany DA - 15.11.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-46876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer A1 - Charmi, Amir T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work presents a method for the yield function determination of additively manufactured parts of S316L steel. A crystal plasticity model is calibrated with test results and used afterwards to perform so-called virtual experiments, that account for the specific process-related microstructure including crystallographic and morphological textures. These simulations are undertaken on a representative volume element (RVE), that is generated from EBSD/CT-Scans on in-house additively manufactured specimen, considering grain structure and crystal orientations. The results of the virtual experiments are used to determine an anisotropic Barlat yield function, that can be used in a macroscopical continuum-sense afterwards. This scale-bridging approach enables the calculation of large-scale parts, that would be numerically too expensive to be simulated by a crystal plasticity model. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2018 AN - OPUS4-46895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive Manufacturing of Dense Ceramics with Laser Induced Slip Casting (LIS) N2 - Most additive manufacturing processes which produce dense ceramics are nowadays limited in size because of inevitable post-processing steps like for example binder removal in stereolithography. The additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - CIMTEC 2018 14th Ceramics Congress CY - Perugia, Italy DA - 04.06.2018 KW - Additive Manufacturing PY - 2018 AN - OPUS4-45781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive manufacturing of dense ceramics with laser induced slip casting (LIS) N2 - Most additive manufacturing processes which produce dense ceramics are nowadays limited in size because of inevitable post-processing steps like for example binder removal in stereolithography. The additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - yCAM (Young Ceramists Additive Manufacturing Forum) CY - Padua, Italy DA - 03.05.2018 KW - Additive manufacturing PY - 2018 AN - OPUS4-45782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - The long-term ageing process of alloy 2618A N2 - The long-term ageing process of alloy 2618A was introduced and discussed The dark-field transmission electronmicroscopical resilts werde shown and evaluated regarding the precipitate radii. The influence of the precipitate radii regarding ageing was used for a preliminary ageing assessment. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - S-phase KW - Dark-field transmission electron microscopy (DFTEM) PY - 2018 AN - OPUS4-46120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Hollesch, Martin A1 - Börner, Andreas T1 - Keramikfedern – Herstellung, Eigenschaften und Applikation N2 - Entwickelt wurde eine mehrstufige Fertigungstechnologie (Schruppen, Schlichten, Trennschnitt) zur Herstellung keramischer Federn aus gesinterten Hohlzylindern. Durch Optimierung von Maschinenparametern, Schleifscheiben sowie Werkstück- und Werkzeugaufnahmen ist es gelungen, Federn aus Hochleistungskeramik (Aluminiumoxid und Zirkonoxid) mit hoher Kanten- und Oberflächenqualität reproduzierbar herzustellen. Eine hohe Variabilität bezüglich Außen- und Innendurchmesser, Steigung, Windungsquerschnitt und Abstand zwischen den Windungen ermöglicht es, die Federkonstante über drei Größenordnungen zu variieren. Untersucht wurden Federstabilität und Spannungs-Dehnungs-Verhalten unter konstanter und zyklischer Druckbelastung sowie die thermomechanische Stabilität der Keramikfedern. Aluminiumoxid-Federn können bis etwa 800°C, Zirkonoxid-Federn bis etwa 600°C ohne bleibende geometrische Verformung eingesetzt werden. Unter konstanter Spannung zeigen Federn aus Y-stabilisiertem TZP (Zirkonoxid)-Werkstoffen, von anderen Keramikwerkstoffen abweichend, bei Raumtemperatur eine zeitabhängige, elastische, Verformung (Superelastizität), die nach Entlastung über einen Zeitraum von mehreren Stunden reversibel verläuft. Als Ursache wird eine spannungsinduzierte reversible Phasenumwandlung zwischen austenitischer (tetragonales ZrO2) und martensitischer (monoklines ZrO2) Phase postuliert. Diskutiert wird das Anwendungspotenzial der entwickelten Federn für kapazitive keramische Federsensoren für Gravimeter und Wägetechnik. T2 - AK-Sitzung "Keramikbearbeitung" des Fraunhofer IPK CY - Berlin, Germany DA - 27.09.2018 KW - Keramikfeder KW - Spannungs-Dehnungs-Verhalten KW - Zyklische Belastung KW - Thermomechanische Eigenschaften KW - Fertigungstechnologie PY - 2018 AN - OPUS4-46231 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Behrens, H. A1 - Deubener, J. T1 - The influence of volatile constituents on mechanical properties of glasses N2 - Im Rahmen des Young Researcher Day des SPP1594 wurden die bisherigen Inhalte der Projekte zusammengefasst und vorgetragen. T2 - Annual Meeting and Young Researcher Day CY - Jena, Germany DA - 11.09.2018 KW - Glass KW - Crack growth KW - Vickers KW - DCB KW - Water speciation PY - 2018 AN - OPUS4-46728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hlavacek, Petr A1 - Mühler, T. A1 - Lüchtenborg, Jörg A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Kühne, Hans-Carsten A1 - Günster, Jens T1 - Additive manufacturing of geopolymers by local laser curing N2 - For the additive manufacturing of large components typically powder-based methods are used. A powder is deposited layer by layer by means of a recoater, then, the component structure is printed into each individual layer. We introduce here the new method of local laser drying, which is a suspension-based method specially developed for the manufacturing of large voluminous ceramic parts. The structure information is directly written into the freshly deposited layer of suspension by laser drying. Initially, the technology was developed for ceramic suspensions, however, first experiments with geopolymers reveal a high potential for this class of materials. Metakaolin, fly ash and lithium aluminate-based one-part geopolymers were used in first experiments. The local annealing of the geopolymer slurry results in a drying and crosslinking reaction and, thus, in a local consolidation of the material. First parts made are introduced and their properties are discussed. T2 - CIMTEC 2018 CY - Perugia, Italy DA - 04.06.2018 KW - Additive manufacturing KW - Laser curing KW - Geopolymers PY - 2018 AN - OPUS4-47447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Effect of a circular notch on [001] tensile creep behavior of the Ni-base superalloy single crystal LEK 94 at 1020 °C N2 - Ni-base superalloy single crystals have been used in turbine blades for hot sections of gas turbines for over four decades. In order to increase the efficiency of the turbines, a continuous increase in the inlet temperature of combustion gases into the turbine has driven the design of turbine blades to complicated shapes and the presence of a complex pattern of cooling channels. These three-dimensional shapes, together with the inhomogeneous distribution of stresses along the blade, induce an also complicated triaxial stress state, which does not compare to uniaxial tests that are performed to characterize high temperature properties such as creep. A round notch on a test piece represents a simple configuration that generates a quasi-isostatic stress state across the notch. In the present contribution, the effect of a sharp round notch on the microstructural micromechanisms within the notched region cylindrical bars, loaded along [001] at 1020 °C and 160 MPa net stress, is studied. To this end, a series of interrupted creep tests is conducted on plain and notched bars and the microstructure is compared. Results are discussed in terms of degree microstructural coarsening, and dislocation activity. The effect of notch generation via grinding is also discussed in these terms. The presence of carbides evolving in from residual carbon is also shown and discussed. .Funding by the German Research Association (DFG) [grant number AG 191/1] is acknowledge T2 - DGM-Arbeitskreis mechanisches Werkstoffverhalten bei hoher Temperatur CY - Hochschule Augsburg, Germany DA - 20.09.2018 KW - Superalloy single crystals KW - Microstructure KW - Electron microscopy KW - Creep KW - Multiaxial stress state PY - 2018 AN - OPUS4-46050 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Nützmann, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Menneken, Martina A1 - Falk, Florian T1 - High temperature oxidation/sulfidation meets X-ray absorption near edge structure spectroscopy (XANES) N2 - Ferritic-martensitic alloys with 12-16 % Cr in weight are subject to devices for various energy systems, such as coal power plants and waste incineration plants. These materials are exposed to a highly corrosive environment which lead to a degradation of the material. Especially the simultaneous oxidation and sulfidation is thereby of special interest. Proper spatially resolved measurements that determine not only chemical compositions but phases are rare. However, precise phase identification and quantification of corrosion products within the multi-phase corrosion scales is a key aspect to understand diffusion paths of metal ions and gas ions/molecules. This study investigated Fe-Cr model alloys with Cr contents from 0 to 13 % in weight in 0.5 % SO2 and 99.5 % Ar atmosphere to aim in a fundamental and systematic analysis. Samples were aged at 650 °C for time scales from 12 h to 250 h. The results presented here correspond to depth dependent phase identification of oxide and sulphide phases in the corrosion scales by using X-ray absorption near edge spectroscopy (XANES). Per sample a series of ca. 20 spots (1-5 µm spot size) from scale-gas to scale-metal interface were measured. XANES spectroscopy was performed at the Fe-K edge (7.11 keV) on polished cross sections. The collected spectra were fitted to a combination of reference materials to quantify the present phases at different positions within the scale.The phase distribution differs with Cr content and the Cr diffusion through pure Fe-oxide and mixed Fe-Cr-oxide phases is discussed. T2 - EFC Workshop "High Temperature Corrosion" CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - High temperature corrosion KW - XANES PY - 2018 AN - OPUS4-47277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin A1 - Menneken, Martina A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, Christiane T1 - Orientation dependent corrosion N2 - Ferritic-martensitic Fe-Cr alloys are widely utilised as materials for high temperature applications such as super heater tubes in coal, biomass or co-fired power plants. Various corrosive gases are produced in combustion processes, but especially SO2 is known to cause catastrophic application failure. In order to understand the effect of orientation and grain size of the alloy on the initial corrosion processes we analysed metal coupons of Fe-Cr- alloys (2-13 wt. % Cr) by electron backscattered diffraction (EBSD) before and after exposure to SO2 containing atmospheres in 650°C for short time spans (2 min – 12 h). An infra red heated furnace with integrated water-cooling was used for the ageing procedures to conduct short time experiments and to keep the reaction products in a ‘frozen’ state. EBSD characterization of oxides formed on the surface of the alloys showed a topotactic relationship between grain orientation of the alloys and the oxides. With increasing scale thickness this relation diminishes possibly due to lattice strain. There appears to be no correlation between oxide growth and absolute, initial orientation, grain size, or the quality of polishing. An initially topotactic relationship between scale and steel had been already described for the formation of magnetite in hot steam environments, indicating that the initial corrosion mechanisms are mainly depending on the presence of Oxygen, and not changed by the presence of Sulphur. However, Sulphur is incorporated into the oxide scale in the low Cr alloy, and mainly observable in the inner corrosion zone for the higher alloyed material. Furthermore, oxides formed directly on grain boundaries in higher Cr alloyed materials are enriched in Cr compared to oxides on grain faces. T2 - EFC Workshop Dechema CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - Crystal Orientation KW - High Temperature Corrosion PY - 2018 AN - OPUS4-47279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S. A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels N2 - In this work, the focus was set on the corrosion process of condensate as drops on the surface of carbon steels (X52, X70), martensitic steel UNS S41500, and superaustenite UNS 08031 in CO2 atmosphere with impurities at 278 K (to simulate the transportation condition in a buried pipeline). Exposure tests were performed at both normal pressure and high pressure where CO2 is supercritical or in dense phase. The drop, 1 ‑ 10 µL in volume, was prepared by dropping CO2 saturated ultra-pure water onto the surface of steel coupons in a one-liter-autoclave. The CO2 gas stream, simulating the oxyfuel flue gas with varying concentration of impurities (SO2 and O2), was then pumped into the autoclave to observe the condensation and corrosion impacts of impurities. Comparable exposure tests were carried out with the same gas mixture and the same volume of water as vapor to observe the drop formation and the corrosion process that follows. The wettability and stability of drops on the surface of steel coupons in CO2 supercritical/dense phase environment was evaluated additionally by contact angle measurement. T2 - NACE 2018 CY - Phoenix, Arizona, USA DA - 15.04.2018 KW - Droplet corrosion KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel PY - 2018 AN - OPUS4-44767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Jürgens, Maria A1 - Mosquera Feijoo, Maria A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Saliwan Neumann, Romeo A1 - Nolze, Gert A1 - Fedelich, Bernard A1 - Kranzmann, Axel A1 - Skrotzki, Birgit T1 - Performance of 9-12%Cr steels under cyclic loading and cyclic oxidation conditions N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in power plants due to their excellent creep and oxidation resistance. The growing share of renewable energy sources in power generation forces many of these plants into more flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue. The present contribution reports on current findings obtained in a multidisciplinary project which combines cyclic mechanical and cyclic oxidation testing with detailed microstructural analyses. Mechanical analyses are carried out on P92 and P91 steel grades to give an overview of softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of creep and fatigue periods (creep-fatigue interaction). Oxidation testing focuses on the grades P92 and VM12 with the intention of clarifying the impact of frequent passes through intermediate temperature levels on the kinetics of steam-side oxidation and the characteristics of the evolving oxide scales. An attempt is made to evaluate their composition, strength, integrity and adhesion after up to 250 temperature cycles. Flat coupons as well as curved tube sections are tested to assess the mutual influence of geometry on oxide scale integrity. Complementary microstructural investigations by scanning and transmission electron microscopy plus EBSD are used for phase identification and substrate/oxide interface characterisation. The evolutions of grain size and dislocation density under different test conditions are quantified. T2 - International Conference on Power Plant Operation & Flexibility CY - London, UK DA - 04.07.2018 KW - Ferritic-martensitic steels KW - Low cycle fatigue KW - Thermo-mechanical fatigue KW - Cyclic oxidation PY - 2018 AN - OPUS4-47115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Jürgens, Maria A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Cyclic loading and creep-fatigue performance of P92 N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in power plants due to their excellent creep and oxidation resistance. The growing share of renewable energy sources in power generation forces many of these plants into more flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue. The present contribution reports on current findings obtained in a multidisciplinary project which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses. Mechanical analyses are carried out on P92 and P91 steel grades to give an overview of softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of creep and fatigue periods. Complementary microstructural investigations by scanning and transmission electron microscopy plus EBSD are used for phase identification, substrate/oxide interface characterization and quantification of the microstructure evolution under cyclic conditions. T2 - 44th MPA-Seminar CY - Leinfelden/Stuttgart, Germany DA - 17.10.2018 KW - Ferritic-martensitic steels KW - Fatigue KW - Creep-fatigue PY - 2018 AN - OPUS4-47116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Ell, Matthias T1 - Failure analysis on medical implants N2 - The application of implants e.g. for osteosynthesis or substitution of worn out joints is common practice since decades. Successes in surgery and orthopedics are highly dependent on the use of artificial parts for implanting into the human body. Over the years the number of surgical procedures and the number of different implants were growing rapidly. Implants, however, are exposed to complex mechanical, corrosive and tribological loads along with restriction in geometric dimension. While being essentially successful, the sheer number of cases leads to a rising number of implant failures. Such failures are painful for the affected patients and are very costly. The failure cases presented in this paper occurred from 1981 to 2016. The predominant failure mechanism of all kinds of implants is fatigue fracture. Fatigue cracks are initiated due to a whole bunch of reasons: Material defects and fabrication defects are rare events. The main factors are cyclic overload due to improper fitting with delayed bone healing, corrosion and unauthorized modification of the implant during surgery T2 - Int. Conf. on Engineering Failure Analysis 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Implant failures KW - Complex loading KW - Fatigue fracture PY - 2018 AN - OPUS4-50198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -