TY - JOUR A1 - Reinsch, Stefan A1 - Welter, T. A1 - Müller, Ralf A1 - Deubener, J. T1 - Hydrogen Permeability of Tectosilicate Glasses for Tank Barrier Liners N2 - The permeation of hydrogen gas was studied in meta-aluminous (tectosilicate) glass powders of Li2O×Al2O3×SiO2 (LAS), Na2O×Al2O3×SiO2 (NAS) and MgO×Al2O3×SiO2 (MAS) systems by pressure loading and vacuum extraction in the temperatures range 210–310 °C. With this method, both the solubility S and the diffusivity D were determined, while the permeability was given by the product SD. For all glasses, S was found to decrease with temperature, while D increased. Since the activation energy of diffusion of H2 molecules exceeded that of dissolution, permeation increased slightly with temperature. When extrapolated to standard conditions (25 °C), the permeability of tectosilicate glasses was found to be only 10-22–10-24 mol H2 (m s Pa)-1, which is 8–10 magnitudes lower than most polymers. Thin glass liners of these compositions are expected to be the most effective barrier for tanks of pressurised hydrogen. KW - Hydrogen permeation KW - Aluminosilicate glasses KW - Hydrogen storage tank KW - Glass liner PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587284 DO - https://doi.org/10.52825/glass-europe.v1i.425 VL - 1 SP - 1 EP - 11 AN - OPUS4-58728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kilo, M. A1 - Contreras Jaimes, A. A1 - Diegeler, A. A1 - Niebergall, R. A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Reinsch, Stefan T1 - New Approaches for the Preparation and Characterisation of New Glasses N2 - The new robot-assisted glass melting device at BAM is presented by the manufacturing team within the joint project GlasDigital together with an automatic thermo-optical measurement technique. T2 - UST-DGG joint meeting CY - Orléans, France DA - 23.05.2023 KW - Glass melting KW - Thermo-optical measurement PY - 2023 AN - OPUS4-58733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Hammerschmidt, T. A1 - Gedsun, A. A1 - Forti, M. A1 - Olbricht, Jürgen A1 - Stotzka, R. A1 - Skrotzki, Birgit A1 - Shakeel, Y. A1 - Hunke, S. A1 - Tsybenko, H. A1 - Aversa, R. A1 - Chmielowski, M. A1 - Hickel, T. T1 - IUC02 Framework for Curation and Distribution of Reference Datasets using Creep Data of Ni-Base Superalloys as an Example N2 - In our current view, reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) aims to develop a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for the creation and distribution of reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - NFDI-MatWerk Conference CY - Siegburg, Germany DA - 27.06.2023 KW - Referenzdaten KW - Reference data KW - Syngle Crystal alloy KW - Creep KW - Metadata schema PY - 2023 AN - OPUS4-57923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Hammerschmidt, T. A1 - Stotzka, R. A1 - Forti, M. A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit A1 - Lenze, A. A1 - Gedsun, A. A1 - Hickel, Tilmann A1 - Tsybenko, H. A1 - Chmielowski, M. A1 - Hunke, S. A1 - Shakeel, Y. T1 - Demonstration of the Infrastructure Use Case 02: Framework for curation and distribution of reference datasets N2 - In our current view, reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) aims to develop a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for the creation and distribution of reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - NFDI-MatWerk Conference CY - Siegburg, Germany DA - 27.06.2023 KW - Referenzdaten KW - Reference data KW - Creep KW - Metadata schema KW - Syngle Crystal alloy PY - 2023 AN - OPUS4-57924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Ghafafian, Carineh T1 - Scarf-joint repairs under fatigue loading investigated for sandwich shell applications N2 - Wind turbine rotor blades are produced as aerodynamic, three-dimensionally formed sandwich shell structures using mainly glass fiber reinforced plastics (GFRP). The GFRP used today have the potential to withstand the harsh operating conditions of rotor blades over the projected service life of 20 years. Premature damages that occur can be traced primarily back to design and/or manufacturing imperfections, as well as unusually high load scenarios (for instance lightning strikes, or strong winds combined with system control errors). Therefore, rotor blades have to be repaired several times (on average 2-3 times) during their projected service life. Approximately 70% of these are repairs of small- to medium-sized sandwich shells, carried out by technicians directly accessing the blade by suspended roping at the wind turbine location. The goal is to execute repairs that will last over the remaining service life, i.e. be sustainable. Within the framework of a research project carried out at BAM, Division 5.3 Polymer Matrix Composites, Department 5 for Materials Engineering, not only was the geometric shape (round vs. square in relation to the top view) varied, but also the layup of the scarf repair structure, variables that have not been studied systematically to-date. Sub-component scale sandwich shell specimens with representative repairs were used in this work in addition to coupon-scale specimens that are more commonly seen in literature. These sub-component shell specimens were tested using a unique shell test bench under loading conditions representative of wind turbine blade shell operating conditions with respect to fatigue strength. Using non-destructive testing methods (field strain measurement and thermography), damage development and distribution was monitored and analyzed in-situ. As a result, a concept was developed in which the repaired areas showed at least equivalent if not higher fatigue strength than the reference shells that were not repaired. T2 - ICFC9 - The 9th International Conference on the Fatigue of Composites CY - Vicenza, Italy DA - 21.06.2023 KW - Repair of sandwich shell structures KW - Non-destructive testing KW - Wind turbine blades PY - 2023 AN - OPUS4-57929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Sack, H. T1 - PMDco - Platform MaterialDigital Core Ontology: Achieving High-Quality & Reliable FAIR Data N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this poster presentation, an approach how to maintain a comprehensive and intuitive MSE-centric terminology composing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures is shown. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - DVM Arbeitskreis Betriebsfestigkeit - Potenziale der Betriebsfestigkeit in Zeiten des technologischen und gesellschaftlichen Wandels CY - Munich, Germany DA - 11.10.2023 KW - Digitalization KW - Semantic Web Technologies KW - FAIR KW - Data Interoperability KW - PMD Core Ontology PY - 2023 AN - OPUS4-58602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radners, Jan A1 - Han, Ying A1 - von Hartrott, Philipp A1 - Skrotzki, Birgit T1 - Aluminum High Temperature Fatigue N2 - The high operating temperatures of radial compressor wheels in exhaust gas turbochargers lead to abchange in the original microstructure of the heat-resistant aluminum alloy EN AW-2618A (overaging). This is caused by thermal loads that are close to the age hardening temperature and can even exceed it for a short time. The aging mechanisms have been investigated together with low cycle fatigue (LCF), thermomechanical fatigue (TMF) and creep up to max. 190 °C in previous research projects. The behavior of the alloy under high cycle fatigue (HCF) and the influence of load spectra have hardly been investigated. Since the operating temperatures of centrifugal compressors are expected to increase in the future, this research project investigated the HCF behavior at 230 °C, a test temperature significantly higher than the age hardening temperature. The objectives of the project were to establish a suitable experimental database, to understand the relevant microstructural processes, and to further develop and adapt suitable models and evaluation methods. In addition to a basic characterization of the HCF behavior in the initial condition T61, the experimental investigation program included targeted mechanical tests to isolate the influencing factors of mean stress (𝑅 = −1, 𝑅 = 0.1), material overaging (T61, 10 h/230 °C, 1000 h/230 °C), test temperature (20 °C, 230 °C), test frequency (0.2 Hz, 20 Hz) as well as variable amplitudes. On this basis, the models and evaluation methods developed in the previous projects were adapted and further developed to reflect thermal and mechanical loads in the lifetime assessment. T2 - The FVV Transfer + Networking Event (Herbst 2023) CY - Würzburg, Germany DA - 04.10.2023 KW - Aluminum alloys KW - Fatigue KW - EN AW-2618A PY - 2023 AN - OPUS4-58537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radners, Jan A1 - Han, Ying A1 - von Hartrott, Philipp A1 - Skrotzki, Birgit T1 - Aluminum High Temperature Fatigue N2 - The high operating temperatures of radial compressor wheels in exhaust gas turbochargers lead to a change in the original microstructure of the heat-resistant aluminum alloy EN AW-2618A (overaging). This is caused by thermal loads that are close to the age hardening temperature and can even exceed it for a short time. The aging mechanisms have been investigated together with low cycle fatigue (LCF), thermomechanical fatigue (TMF) and creep up to max. 190 °C in previous research projects. The be-havior of the alloy under high cycle fatigue (HCF) and the influence of load spectra have hardly been investigated. Since the operating temperatures of centrifugal compressors are expected to increase in the future, this research project investigated the HCF behavior at 230 °C, a test temperature significantly higher than the age hardening temperature. The objectives of the project were to establish a suitable experimental database, to understand the relevant microstructural processes, and to further develop and adapt suitable models and evaluation methods. In addition to a basic characterization of the HCF behavior in the initial condition T61, the experimental investigation program included targeted mechanical tests to isolate the influencing factors of mean stress (𝑅=−1, 𝑅=0.1), material overaging (T61, 10 h/230 °C, 1000 h/230 °C), test temperature (20 °C, 230 °C), test frequency (0.2 Hz, 20 Hz) as well as variable amplitudes. On this basis, the models and evaluation methods developed in the previous projects were adapted and further developed to reflect thermal and mechanical loads in the lifetime assessment. T2 - The FVV Transfer + Networking Event (Herbst 2023) CY - Würzburg, Germany DA - 04.10.2023 KW - Aluminum alloys KW - Fatigue KW - EN AW-2618A PY - 2023 SP - 1 EP - 30 AN - OPUS4-58562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolsch, Nico A1 - Meyer, Lena A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Günster, Jens T1 - Enabling online quality control of powder deposition for 3d printing in microgravity N2 - 3D printing or additive manufacturing in space is of great value for long-term human spaceflight missions and space stations, conveniently offering access to a ‘virtual warehouse’ of tools and spare parts on the push of a button. The process only needs one type of feedstock such as powder or filament and only as much material as the final part requires, giving it a huge weight benefit over traditional subtractive methods. While 3D printers are already operational on the ISS since 2014, the utilized processes are only capable of manufacturing relatively low strength parts from polymers not suitable for many tools or critical components. To gain access to high quality metal prints, a modified Laser Powder Bed Fusion (LPBF) process was developed to stabilize the critical powder bed in microgravity through a gas flow [2]. This setup was able to generate a (miniature) steel wrench during parabolic flights, but a reliable layer deposition has raised challenges due to the combination of gas flow parameters with microgravity conditions. Furthermore, the quality and density of the powder bed, which is critical for the process, cannot be examined afterward on the ground. This is due to hyper gravity phases during the flight that are influencing the properties of the powder bed. In this paper, the challenges of the layer deposition are revised, and the subsequent evolution of the recoating system explained. Later, the challenges of an in-situ quality control, evaluation, and quantification of the properties of the powder bed are examined. As a solution, a high-resolution line-scanner is proposed and its implementation int the compact LPBF system demonstrated. Its ability to measure common defects such as ridges in the deposited layer is shown in experiments at normal gravity. As an illustration, Figure 1 shows an extreme case of the formation of ridges. T2 - European Conference on Spacecraft Structures Materials and Environmental Testing CY - Toulouse, France DA - 28.03.2023 KW - Additive manufacturing KW - In-space manufacturing KW - Online quality control KW - Microgravity KW - Powder deposition PY - 2023 AN - OPUS4-57249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Günster, Jens T1 - A comparison of layerwise slurry deposition and (LSD-print) laser induced slip casting (LIS) for the additive manufacturing of advanced ceramics N2 - The presentation gives an overview of two slurry-based additive manufacturing (AM) technologies specifically developed for advanced ceramic materials. The “Layerwise Slurry Deposition” (LSD-print) is a modification of Binder Jetting making use of a ceramic slurry instead of a dry powder as a feedstock. In this process, a slurry is deposited layer-by-layer by means of a doctor blade and dried to achieve a highly packed powder layer, which is then printed by jetting a binder. The LSD-print technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. The Laser Induced Slip casting (LIS) technology follows a novel working principle by locally drying and selectively consolidating layer-by-layer a ceramic green body in a vat of slurry, using a laser as energy source. LIS combines elements of Vat Photopolymerization with the use of water-based feedstocks containing a minimal amount of organic additives. The resulting technology can be directly integrated into a traditional ceramic process chain by manufacturing green bodies that are sintered without the need of a dedicated debinding. Both technologies offer high flexibility in the ceramic feedstock used, especially concerning material and particle size. Advantages and disadvantages are briefly described to outline the specific features of LSD-print and LIS depending on the targeted application. T2 - AM Ceramics CY - Vienna, Austria DA - 27.09.2023 KW - Additive Manufacturing KW - Dental KW - Ceramics KW - Feldspar PY - 2023 AN - OPUS4-58468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Schubert, Hendrik A1 - Günster, Jens A1 - Hoffman, Moritz A1 - Bogna Stawarczyk, Bogna T1 - Additive Manufacturing for dental restorations by layerwise slurry deposition (LSD-print) technology N2 - The growing market of custom-made dental restorations offers a major potential for an application of ceramic additive manufacturing (AM). The possibility to individualize patient specific design and to establish new efficient workflows, from model generation to manufacturing, can be fully exploited by AM technologies. However, for mass customization to be truly envisioned, ceramic AM needs to achieve a level of maturity, aesthetic quality, and productivity comparable to established manufacturing processes. In this presentation, the potential of the “layerwise slurry deposition” LSD-print technology for dental applications will be explored. It has been shown in the past years that the LSD-print can be applied to advanced ceramic materials such as alumina and silicon-infiltrated silicon carbide. For these materials, the LSD-print technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics. The current development deals with the challenges of applying this technology to a feldspar dental material, comparing the quality of AM restorations with the equivalent material for an established CAD/CAM workflow. Preliminary results not only indicate that the AM material produced by LSD-print can be competitive in terms of mechanical properties, but also that aesthetically satisfactory restorations can be manufactured for veneers, inlays and onlays as well as single unit fixed dental prostheses (FDPs). The presentation focuses on the material and technological challenges alongside the process chain, from the printing process, to debinding, firing and finishing the restorations. T2 - XVIIIth Conference of the European Ceramic Society CY - Lyon, France DA - 02.07.2023 KW - Additive Manufacturing KW - Layerwise slurry deposition KW - dental KW - ceramic PY - 2023 AN - OPUS4-58469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Platform MaterialDigital Core Ontology (PMDco): A Community Driven Mid-Level Ontology in the MSE Domain N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - Patents4Science CY - Berlin, Germany DA - 05.10.2023 KW - Knowledge Representation KW - Semantic Interoperability KW - FAIR data management KW - Knowledge graph and ontologies KW - PMD Core Ontology PY - 2023 AN - OPUS4-58507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzer, Marco A1 - Waurischk, Tina A1 - George, Janine A1 - Müller, Ralf A1 - Maaß, Robert T1 - A new model for predicting fracture surface energies in oxide glasses - How cleavage planes help us understand the intrinsic fracture toughness of oxide glasses N2 - The search for strong and tough oxide glasses is important for making safer, more environmentally friendly, thinner glass products. However, this task remains generally difficult due to the material’s inherent brittleness. In search for tougher glasses, fracture toughness (KIC) prediction models are helpful tools to screen for promising candidates. In this work, a novel model to predict KIC via the fracture surface energy, γ, is presented. Our approach uses readily available crystallographic structure data of the glass’s isochemical crystal and tabled diatomic chemical bond energies, D0. The method assumes that γ of a glass equals the fracture surface energy of the most likely cleavage plane of the crystal. Calculated values were not only in excellent agreement with those calculated with a former well-working model, but also demonstrates a remarkable equivalence between crystal cleavage planes and glass fracture surfaces. Finally, the effectiveness of fracture toughness enhancement by chemical substitution is discussed based on our results and alternative toughening strategies will be suggested. T2 - Deparment Seminar Materials Engineering CY - Berlin, Germany DA - 15.06.2023 KW - Fracture Toughness KW - Oxide Glasses KW - Fracture Mechanics KW - Silicate Glasses KW - Phase Separation PY - 2023 AN - OPUS4-58419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - News from the working area - Semantic Interoperability N2 - This presentation provides a comprehensive overview of recent developments and the current status within the Semantic Interoperability work area, with a particular emphasis on the advancements related to the Platform MaterialDigital Core Ontology (PMDco). The presentation will delve into the collaborative and community-supported curation process that has been instrumental in shaping PMDco. Additionally, we will introduce the innovative Ontology Playground, showcasing its role in fostering experimentation and exploration within the realm of ontology development. T2 - MaterialDigital Vollversammlung CY - Karlsruhe, Germany DA - 21.09.2023 KW - Semantic Representation KW - FAIR data management KW - Semantic Interoperability KW - Knowledge graph and ontologies KW - PMD Core Ontology KW - MaterialDigital PY - 2023 AN - OPUS4-58422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - George, Janine A1 - Mieller, Björn A1 - Stawski, Tomasz T1 - ZrV2O7 negative thermal expansion (NTE) material N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material that exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). Therefore, it can be used to create composites with controllable expansion coefficients and prevent thermal stress, fatigue, cracking, and deformation at interfaces. We implement interdisciplinary research to analyze such material. We study the influence of the synthesis methods and their parameters on the sample's purity, crystallinity, and homogeneity. Moreover, we implement ab initio-based vibrational computations with partially treated anharmonicity in combination with experimental methods to follow temperature-induced structural changes and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder. T2 - SALSA Make and Measure Conference CY - Berlin, Germany DA - 13.09.2023 KW - NTE KW - Composites KW - TEM PY - 2023 AN - OPUS4-58367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzer, Marco A1 - Waurischk, Tina A1 - George, Janine A1 - Maaß, Robert A1 - Müller, Ralf T1 - Glass fracture surface energy calculated from crystal structure and bond-energy data N2 - Enhancing the fracture toughness is still one of the major challenges in the field of oxide glasses. To screen different glass systems for promising candidates, a theoretical expression for the fracture surface energy, G, linked to the fracture toughness, KIc, is thus of interest. Extending our earlier work on nucleation and surface energies [1], we present a simple approach for predicting the fracture surface energy of oxide glasses, G using readily available crystallographic structure data and diatomic bond energies. The proposed method assumes that G of glass equals the surface fracture energy of the weakest fracture (cleavage) plane of the isochemical crystal. For non-isochemically crystallizing glasses, an average G is calculated from the weighed fracture energy data of the constitutional crystal phases according to Conradt [2]. Our predictions yield good agreement with the glass density- and chemical bond energy-based prediction model of Rouxel [3] and with experimentally obtained G values known at present. [1] C. Tielemann, S. Reinsch, R. Maass, J. Deubener, R. Müller, J. Non-Cryst. Solids 2022, 14, 100093 [2] R. Conradt, J. Non-Cryst. Solids 2004, 345-346, 16 [3] R., Tanguy, Scripta Materialia 2017, 109-13, 137 T2 - DPG Spring Meeting of the Condensed Matter Section CY - Dresden, Germany DA - 26.03.2023 KW - Fracture Toughness KW - Oxide Glasses KW - Surface Energy PY - 2023 AN - OPUS4-58414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzer, Marco A1 - Waurischk, Tina A1 - George, Janine A1 - Maaß, Robert A1 - Müller, Ralf T1 - Fracture surface energy of glasses obtained from crystalline structure and bond energy data N2 - The search for strong and tough oxide glasses is important for making safer, environment-friendlier, thinner glasses. As fracture toughness experiments in brittle materials are complicated and time-consuming , modelling glass fracture surface energy, G, and fracture toughness, KIc, is of interest for screening promising candidates. Inspired by Rouxel´s idea of preferred crack growth along cutting weakest bonds within a glass structure and a study by Tielemann et al. , which indicates a correlation between crystal fracture surface and glass-crys¬tal interfacial energies, we present a new approach for predicting G. Combining both ideas, we used diatomic bond energies and readily available crystallographic structure data for estimating G. The proposed method assumes that G of the glass equals the surface fracture energy of the cleavage plane in its respective isochemical crystal. We calculated G- values for more than 25 iso-chemical silicate systems and compared them to calculated values from Rouxel’s widely used procedure, which is well working and based on glass densities and chemical bond energies. Not only does our model yields good agreement with [3], but it also enables an estimation for glasses with unknown density and can therefore contribute to broaden the data basis for glass property modelling tools. Most interestingly, however, this agreement indicates an interesting similarity between cleavage planes in a crystal and its corresponding glass state in terms of fracture processes. T2 - DGG-USTV Joint annual meeting 2023 CY - Orleans, France DA - 22.05.2023 KW - Fracture Toughness KW - Oxide Glasses KW - Surface Energy KW - Silicate Glasses PY - 2023 AN - OPUS4-58416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Charmi, Amir T1 - A multiscale numerical framework for the simulation of anistropic material response of additively manufactured stainless steel 316L undergoing large plastic deformation N2 - Additive manufacturing (AM) offers significantly greater freedom of design compared to conventional manufacturing processes since the final parts are built layer by layer. This enables metal AM, also known as metal 3D printing, to be utilized for improving efficiency and functionality, for the production of parts with very complex geometries, and rapid prototyping. However, despite many technological advancements made in recent years, several challenges hinder the mass adoption of metal AM. One of these challenges is mechanical anisotropy which describes the dependency of material properties on the material orientation. Therefore, in this work, stainless steel 316L parts produced by laser-based powder bed fusion are used to isolate and understand the root cause of anisotropy in AM parts. Furthermore, an efficient and accurate multiscale numerical framework is presented for predicting the deformation behavior of actual AM parts on the macroscale undergoing large plastic deformations. Finally, a novel constitutive model for the plastic spin is formulated to capture the influence of the microstructure evolution on the material behavior on the macroscale. KW - Additive Fertigung KW - Austenitischer Stahl KW - Finite-Elemente-Methode KW - Mehrskalenmodell KW - Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20240207-173356-002 DO - https://doi.org/10.25643/dbt.59550 SP - 1 EP - 163 PB - Bauhaus-Universität Weimar CY - Weimar AN - OPUS4-59511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Tracing structural dynamics in metallic glasses during cryogenic cycling N2 - Highly unrelaxed structural states of metallic glasses have often advantageous mechanical properties. Since metallic glasses continuously relax with time (age) or inherently are well relaxed after processing, methods to uniformly rejuvenate the material are needed. One approach that has received attention is the so-called cryogenic-cycling method, during which a metallic glass is repeatedly immersed into liquid nitrogen. In some cases, cryogenic cycling is truly efficient in increasing the stored excess enthalpy of metallic glasses, but it does not seem to be universally applicable to all alloys and structural states. The origins for these differences remain unclear due to our limited understanding of the underlying structural evolution. In order to shed more light onto the fundamental structural processes of cryogenic cycling, we pursue in-situ x-ray photon correlation spectroscopy (XPCS) to trace the atomic-scale structural dynamics of a Zr-based metallic glass in two different structural states (ribbon and bulk metallic glass). This method allows calculating the relaxation times as a function of time throughout the thermal cycling. It is found that the investigated glasses exhibit heterogeneous structural dynamics at 300 K, which changes to monotonic aging at 78 K. Cryogenic cycling homogenizes the relaxation time distribution for both structural states. This effect is much more pronounced in the ribbon, which is the only structural state that rejuvenates upon cycling. We furthermore reveal how fast atomic-scale dynamics is correlated with long-time average structural relaxation times irrespective of the state, and that the ribbon exhibits unexpected additional fast atomic-scale relaxation in comparison to the plate material. Overall, a picture emerges that points towards heterogeneities in fictive temperature as a requirement for cryogenic energy storage. T2 - MRS Fall 2020 - Invited Talk CY - Boston, MA, USA DA - 27.11.2020 KW - Relaxation metallic glasses PY - 2020 AN - OPUS4-59542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kalinka, Gerhard T1 - Testing the fibre matrix interface of short glass fibre reinforced PMCs with using the push out technique N2 - With this presentation, the push-out technique is explained. The focus of the experimental work is on the characterization of the fiber-matrix interface of short fiber reinforced composites. The reinforcing component was glass fibers and the matrix polymer was PA6.6 and PPA. It is demonstrated for the first time that the push-out technique ca be applied on injection molded short fiber PMC and is sensitive to the mechanical interface properties. Further studies are planned on the influence of multiple processing, the temperature and humidity. T2 - Composirtes United Workshop „Fiber Matrix Interphases“ CY - Online meeting DA - 09.11.2023 KW - Polymer Matrix Composite KW - Glass Fibres KW - PA6.6 KW - PPA KW - Push-out Test KW - Interface Strength PY - 2023 AN - OPUS4-59053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - Hanke, T. A1 - Waitelonis, J. A1 - Sack, H. T1 - PMDco: Achieving High-Quality & Reliable FAIR Data N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this presentation, an approach how to maintain a comprehensive and intuitive MSE-centric terminology composing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures is shown. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - Kupfer-Symposium CY - Jena, Germany DA - 29.11.2023 KW - Ontology KW - Semantic Web Technologies KW - Plattform MaterialDigital KW - PMDco PY - 2023 AN - OPUS4-59031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning A1 - Dayani, Shahabeddin A1 - Mishurova, Tatiana A1 - Eddah, Mustapha A1 - Mieller, Björn A1 - Böttcher, Nils A1 - Bruno, Giovanni T1 - Tomographic Imaging Capabilities with hard X-Rays at BAMline (Bessy II) N2 - The BAMline at the synchrotron X-ray source BESSY II (Berlin, Germany) is supporting researchers especially in materials science. As a non-destructive characterization method, synchrotron X-ray imaging, especially tomography with hard X-Rays, plays an important role in structural 3D characterization. The imaging capabilities allow for in-situ and operando experiments. In this presentation the equipment, data handling pipeline as well as various examples from material science are presented. T2 - Correlative Materials Characterization Workshop 2023 CY - Brno, Czech Republic DA - 09.11.2023 KW - Tomography KW - X-ray imaging KW - Li-ion battery PY - 2023 AN - OPUS4-58958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gomes Fernandes, Roger A1 - Al-Mukadam, Raschid A1 - Bornhöft, Hansjörg A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Selle, Susanne A1 - Deubener, Joachim T1 - Viscous Sintering of Acid Leached Glass Powders N2 - The process of viscous flow sintering is a phenomenon that is closely linked to the surface properties of the glass particles. In this work, we studied the extreme case of acid-leaching of soda-lime-silicate glass beads of two different particle size distributions and its effects on non-isothermal viscous sintering of powder compacts. Depth profiling of the chemical composition after leaching revealed a near-surface layer depleted in alkali and alkaline earth ions, associated with concurrent hydration as mass loss was detected by thermogravimetry. Heating microscopy showed that acid treatment of glasses shifted the sinter curves to higher temperatures with increasing leaching time. Modelling of the shrinkage with the cluster model predicted a higher viscosity of the altered surface layer, while analysis of the time scales of mass transport of mobile species (Na+, Ca2+ and H2O) during isochronous sintering revealed that diffusion of Na+ can compensate for concentration gradients before sintering begins. Also, exchanged water species can diffuse out of the altered layer, but the depletion of Ca2+ in the altered surface layer persists during the sinter interval, resulting in a glass with higher viscosity, which causes sintering to slow down. KW - Glass powder KW - Viscous sintering KW - Acid-leaching KW - Sinter retardation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589008 DO - https://doi.org/10.52825/glass-europe.v1i.681 VL - 1 SP - 37 EP - 53 AN - OPUS4-58900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - von Hartrott, Philipp A1 - Skrotzki, Birgit T1 - Room temperature and elevated temperature tensile test and elastic properties data of Al-alloy EN AW-2618A after different aging times and temperatures N2 - The dataset contains two types of data: elastic properties (Young's and shear modulus, Poisson's ratio) between room temperature and 250 °C and a set of tensile tests at different aging times, aging temperatures, and test temperatures. KW - Aluminium alloy KW - Young's modulus KW - Shear modulus KW - Aging KW - Tensile test KW - Strength PY - 2023 UR - https://doi.org/10.5281/zenodo.10377164 DO - https://doi.org/10.5281/zenodo.10377163 PB - Zenodo CY - Geneva AN - OPUS4-59161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - Fliegener, S. A1 - Grundmann, J. A1 - Hanke, T. A1 - von Hartrott, P. A1 - Waitelonis, J. T1 - PMD Core Ontology (PMDco) N2 - The PMD Core Ontology (PMDco) is a comprehensive framework for representing knowledge that encompasses fundamental concepts from the domains of materials science and engineering (MSE). The PMDco has been designed as a mid-level ontology to establish a connection between specific MSE application ontologies and the domain neutral concepts found in established top-level ontologies. The primary goal of the PMDco is to promote interoperability between diverse domains. PMDco's class structure is both understandable and extensible, making it an efficient tool for organizing MSE knowledge. It serves as a semantic intermediate layer that unifies MSE knowledge representations, enabling data and metadata to be systematically integrated on key terms within the MSE domain. With PMDco, it is possible to seamlessly trace data generation. The design of PMDco is based on the W3C Provenance Ontology (PROV-O), which provides a standard framework for capturing the generation, derivation, and attribution of resources. By building on this foundation, PMDco facilitates the integration of data from various sources and the creation of complex workflows. In summary, PMDco is a valuable tool for researchers and practitioners in the MSE domains. It provides a common language for representing and sharing knowledge, allowing for efficient collaboration and promoting interoperability between diverse domains. Its design allows for the systematic integration of data and metadata, enabling seamless traceability of data generation. Overall, PMDco is a crucial step towards a unified and comprehensive understanding of the MSE domain. PMDco at GitHub: https://github.com/materialdigital/core-ontology KW - Ontology KW - Semantic Web technologies KW - Digitalization KW - Data Interoperability KW - PMD Core Ontology PY - 2023 UR - https://github.com/materialdigital/core-ontology/blob/f2bd420348b276583fad6fa0fb4225f17b893c78/pmd_core.ttl PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-59352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Nikonov, A. Y. A1 - Österle, Werner T1 - Molecular dynamics modeling of the sliding performance of an amorphous silica nano-layer - The impact of chosen interatomic potentials N2 - The sliding behavior of an amorphous silica sample between two rigid surfaces is in the focus of the present paper. Molecular Dynamics using a classical Tersoff’s potential and a recently developed ReaxFF potential was applied for simulating sliding within a thin film corresponding to a tribofilm formed from silica nanoparticles. The simulations were performed at different temperatures corresponding to moderate and severe tribological stressing conditions. Simulations with both potentials revealed the need of considering different temperatures in order to obtain a sound interpretation of experimental findings. The results show the striking differences between the two potentials not only in terms of magnitude of the resistance stress (about one order of magnitude) but also in terms of friction mechanisms. The expected smooth sliding regime under high temperature conditions was predicted by both simulations, although with Tersoff’s potential smooth sliding was obtained only at the highest temperature. On the other hand, at room temperature Tersoff-style calculations demonstrate stick-slip behavior, which corresponds qualitatively with our experimental findings. Nevertheless, comparison with a macroscopic coefficient of friction is not possible because simulated resistance stresses do not depend on the applied normal pressure. KW - Molecular dynamics KW - Thin tribofilm KW - Resistance stress KW - Sliding simulation KW - Amorphous silica PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449366 DO - https://doi.org/10.3390/lubricants6020043 SN - 2075-4442 VL - 6 IS - 2 SP - 43, 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-44936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Corrosion and Fatigue of Heat Treated Martensitic Stainless Steel 1.4542 used for Geothermal Applications N2 - During capture and storage technology (CCS) as well as in geothermal energy production Steels need to withstand the corrosive environment such as: heat, pressure, salinity of the aquifer and CO2-partial pressure. 1.4542 shows unusual corrosion phenomena, but is still sufficiently resistant in corrosive environments. To better understand its behaviour differently heat treated coupons of 1.4542 and for comparison X20Cr13 and X46Cr13 were kept in the artificial brine of the Northern German Basin at T=60 °C. Ambient pressure as well as p=100 bar for 700 h - 8000 h in water saturated supercritical CO2 and CO2-saturated synthetic aquifer Environment was applied. Fatigue tests were performed via push-pull tests with a series of 30 specimens from 150 MPa to 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). FeCO3 and FeOOH are corrosion products also after dynamic corrosion tests. Martensitic microstructure offers good corrosion resistance in geothermal environment. The S-N-curve showing no typical fatigue strength and very steep slopes of possible fatigue strength for finite life. Possible influencing artefacts, such as Al-inclusions could not be correlated to early rupture despite specimens containing inclusions at the fracture surface and cross section reached lower number of cycles. Applied potential proofed to enhance fatigue life tremendously. KW - High Alloyed Steel KW - Pitting KW - Corrosion Fatigue KW - Corrosion KW - Endurance Limit PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503765 DO - https://doi.org/10.20319/mijst.2019.51.138158 SN - 2454-5880 VL - 5 IS - 1 SP - 138 EP - 158 PB - Global Research and Development Services Publishing CY - Rajasthan, India AN - OPUS4-50376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Wolf, M. A1 - Kranzmann, Axel T1 - The role of surface texture on the corrosion fatigue behavior of high alloyed stainless steel exposed to saline aquifer water environment N2 - Corrosion fatigue specimen with different surfaces (technical surfaces after machining and polished surfaces) of high alloyed martensitic stainless steel X46Cr13 (1.4043) and duplex stai nless steel X2CrNiMoN22 3 2 (1.4462) were compared at load amplitudes from 175 MPa to 325 MPa in the geothermal brine of the N orthern German Basin at 98 °C. Surface corrosion layers and pits reveal carbonate corrosion products on the surface such as FeCO 3 and FeOOH as the main precipitation phases with no dependence on the original surface roughness . At high stress amplitudes above 275 MPa technical surfaces (P50% at σa 300 MPa=5 × 10 5 ) resulted in more cycles to failure than polished (P50% at σa 300 MPa=1.5 × 10 5 ). The greater slope coefficient for technical surfaces k = 19.006 compared to polished surfaces k =8.78 demonstrate s earlier failure at given stress amplitude σa . KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Heat treatment PY - 2019 DO - https://doi.org/10.17706/ijmse SN - 2315-4527 VL - 7 IS - 2 SP - 26 EP - 33 PB - IAP - International Academy Publishing CY - San Bernardino, CA AN - OPUS4-50365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Knauer, S. T1 - Droplet corrosion of CO2 transport pipeline steels N2 - In this work, the focus was set on the corrosion process of condensate as drops on the surface of carbon steels (X52, X70), martensitic steel UNS S41500, and superaustenite UNS N08031 in CO2 atmosphere with impurities at 278 K (to simulate the transportation condition in a buried pipeline). Exposure tests were performed at both normal pressure and high pressure where CO2 is supercritical or in dense phase. The drop, 1 ‑ 10 μL in volume, was prepared by dropping CO2 saturated ultra-pure water onto the surface of steel coupons in a one-liter-autoclave. The CO2 gas stream, simulating the oxyfuel flue gas with varying concentration of impurities (SO2 and O2 ), was then pumped into the autoclave to observe the condensation and corrosion impacts of impurities. Comparable exposure tests were carried out with the same gas mixture and the same volume of water as vapor to observe the drop formation and the corrosion process that follows. The wettability and stability of drops on the surface of steel coupons in CO2 supercritical/dense phase environment was evaluated additionally by contact angle measurement. T2 - NACE International Annual Corrosion Conference CY - Phoenix, AZ, USA DA - 15.04.2018 KW - Geothermal KW - Coating KW - SiO2 KW - Polyaniline KW - Corrosion PY - 2018 SP - 10845, 1 EP - 11 PB - Omnipress CY - Houston AN - OPUS4-44917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Effect of CO2 gas on carbon steel corrosion in an acidic-saline based geothermal fluid N2 - Geothermal energy is one of the most promising energy resources to replace fossil fuel. To extract this energy, hot fluids of various salts and gases are pumped up from a geothermal well having a certain depth and location. Geothermal wells in volcanic regions often contain highly corrosive CO2 and H2S gases that can be corrosive to the geothermal power-plants, which are commonly constructed of different steels, such as carbon steel. This research focuses on the corrosion behaviour of carbon steel exposed to an artificial geothermal fluid containing CO2 gas, using an artificial acidic-saline geothermal brine as found in Sibayak, Indonesia. This medium has a pH of 4 and a chloride content of 1,500 mg/L. Exposure tests were conducted for seven days at 70 °C and 150 °C to simulate the operating temperatures for low and medium enthalpy geothermal sources. Surface morphology and cross-section of the specimens from the above experiments were analysed using scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Electrochemical tests via open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were performed to understand the corrosion processes of carbon steel in CO2-containing solution both at 70 °C and 150 °C. Localized corrosion was observed to a greater extent at 70 °C due to the less protectiveness of corrosion product layer compared to that at 150 °C, where FeCO3 has a high corrosion resistance. However, a longer exposure test for 28 days revealed the occurrence of localized corrosion with deeper pits compared to the seven-day exposed carbon steel. In addition, corrosion product transformation was observed after 28 days, indicating that more Ca2+ cations incorporate into the FeCO3 structure. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Carbon steel KW - CO2 KW - EIS KW - Geothermal KW - Corrosion PY - 2019 SP - Paper 200245, 1 EP - 5 CY - Madrid, Spain AN - OPUS4-49099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Schiller, B.N. A1 - Beck, M. A1 - Bettge, Dirk T1 - On the corrosion behaviour of co 2 injection pipe steels: role of cement N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost-effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells, the corrosion resistance of the materials used needs to be determined. In this study, representative low-cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were investigated in simulated pore water at 333 K and under CO2 saturation condition to represent the worst-case scenario: CO2 diffusion and aquifer fluid penetration. These simulated pore waters were made from relevant cement powder to mimic the realistic casing-cement interface. Electrochemical studies were carried out using the pore water made of cement powder dissolved in water in comparison with those dissolved in synthetic aquifer fluid, to reveal the effect of cement as well as formation water on the steel performance. Two commercially available types of cement were investigated: Dyckerhoff Variodur® and Wollastonite. Variodur® is a cement containing high performance binder with ultra-fine blast furnace slag which can be used to produce high acid resistance concrete. On the other hand, Wollastonite is an emerging natural material mainly made of CaSiO3 which can be hardened by converting to CaCO3 during CO2 injection. The results showed the pH-reducing effect of CO2 on the simulated pore water/aquifer (from more than 10 to less than 5) leading to the active corrosion process that happened on both 1.8977 and 1.7225. Electrochemical characterization showed negative free corrosion potential and polarisation curves without passive behaviors. The tested coupons suffered from pitting corrosion, which was confirmed by surface analysis. Interestingly, basing on the pit depth measurements from the tested coupons and the hardness of cement powder, it is suggested that Variodur® performed better than Wollastonite in both aspects. The electrochemical data was compared to that resulted from exposure tests to give a recommendation on material selection for bore-hole construction. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Cement KW - Carbon capture KW - Corrosion and storage (CCUS) technology KW - Utilization KW - Carbon steel KW - Crevice corrosion PY - 2019 SP - Paper 200597, 1 EP - 4 PB - SOCIEMAT CY - Madrid, Spain AN - OPUS4-49109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Rosalie, Julian T1 - Small-angle Scattering Data Analysis Round Robin: anonymized results, figures and Jupyter notebook N2 - The intent of this round robin was to find out how comparable results from different researchers are, who analyse exactly the same processed, corrected dataset. This zip file contains the anonymized results and the jupyter notebook used to do the data processing, analysis and visualisation. Additionally, TEM images of the samples are included KW - Round Robin KW - Small-angle Scattering KW - Data analysis PY - 2023 DO - https://doi.org/10.5281/zenodo.7509710 PB - Zenodo CY - Geneva AN - OPUS4-56803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Wolf, M. A1 - Kranzmann, Axel T1 - In-situ testing of corrosion and corrosion fatigue behavior of stainless steels in geothermal environment N2 - In CCS environment (carbon capture and storage) pipes are loaded statically and/or cyclically and at the same time exposed constantly to the highly corrosive hot thermal water. Experimental procedures such as ambient pressure immersions tests, in-situ corrosion fatigue experiments using a flexibly designed corrosion chamber at ambient pressure and a specially designed corrosion chamber at high pressure. Experimental set-ups for push/pull and rotation bending load are introduced. The corrosion behavior and lifetime reduction of high alloyed steels (X46Cr13, 1.4043), (X5CrNiCuNb16-4, 1.4542) and (X2CrNiMoN22-5-3, 1.4462) is demonstrated (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO2 ). T2 - 10th International Conference on Chemical, Biological and Environmental Engineering ICBEE 2018 CY - Berlin, Germany DA - 27.09.2018 KW - Adiabatic calorimeter KW - Thermal energy storage KW - Phase change material KW - Salt eutectics PY - 2018 DO - https://doi.org/10.7763/IPCBEE.2018.V103.5 VL - 103 SP - 13 EP - 20 AN - OPUS4-50364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Effect of CO2, atmosphere and pressure on the stability of C35CrMo17 stainless steel in laboratory CCS-environment N2 - During carbon sequestration the CO2-induced corrosion of injection pipe steels is a relevant safety issue when emission gasses are compressed into deep geological layers. The reliability of the high alloyed steel X35CrMo17 suitable as injection pipe for the geological onshore CCS-site (Carbon Capture and Storage) in the Northern German Basin, is demonstrated in laboratory experiments in equivalent corrosive environment (T = 60 °CC, p = 1–100 bar, aquifer water, CO2-flow rate of 9 L/h, 700–8000 h exposure time). Corrosion kinetics and microstructure were characterized and compared to other potential injection pipe steels (42CrMo4, X46Cr13, X20Cr13 and X5CrNiCuNb16-4). T2 - 14th Greenhouse Gas Control Technologies Conference CY - Melbourne, Australia DA - 21.10.2018 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CO2-storage PY - 2019 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-50382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Gröber, A. A1 - Kranzmann, Axel T1 - The Role of Surface Texture on the Corrosion Behavior of High Alloyed Steel Exposed to Saline Aquifer Water Environments N2 - Coupons of X5CrNiCuNb16-4 that may be used as injection pipe with 16% Chromium and 0.05% Carbon (1.4542, AISI 630) were exposed for 3000 h to CO2-saturated saline aquifer water similar to the conditions in the Northern German Basin at ambient pressure and 60 °C. Surface corrosion layers and pits reveal carbonate corrosion products on the surface such as FeCO3 and FeOOH as the main precipitation phases with no dependence on the original surface roughness. Corrosion rates for polished and technical surfaces were below 0.005 mm/year compared to corrosion rates of 0.035 mm/year after shot peening. T2 - 14th Greenhouse Gas Control Technologies Conference CY - Melbourne, Australia DA - 21.10.2018 KW - High alloyed steel KW - Pitting KW - Surface KW - Roughness KW - CO2 PY - 2019 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-50375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Electrochemical deposition of polyaniline on carbon steel for corrosion study in geothermal solution N2 - Polyaniline has been widely developed for many applications, e.g. sensor, supercapacitor components, electrochromic devices, and anticorrosion pigments. Although the addition of polyaniline pigment in organic coatings has been an alternative for corrosion protection in industrial applications, the protection mechanism is still not fully understood. Herein in this study, as a part of the development of polyaniline/silicon dioxide coating for geothermal application, polyaniline has been deposited electrochemically on carbon steel surface in oxalic acid medium and tested in geothermal solution to understand the contribution of polyaniline to the corrosion protection of a polyaniline-based composite in the geothermal system. To observe the surface/interface reaction between the electrolyte and electrode surface during the electrochemical polymerization, electrochemical impedance spectroscopy (EIS) was applied after each cycle. For corrosion study in the geothermal application, an artificial geothermal solution was used with the composition of 1,500 mg/l Cl⁻, 20 mg/l SO₄²⁻, 15 mg/l HCO₃⁻, 200 mg/l Ca²⁺, 250 mg/l K⁺, and 600 mg/l Na⁺, and pH 4 to simulate a geothermal brine found in Sibayak, Indonesia. An electrochemical measurement was performed by monitoring the open circuit potential over seven days, with the interruption by EIS every 22 hours. The experiments were performed at room temperature and 150 °C (1 MPa) in an oxygen-free environment. Impedance spectra showed a reduction of the total impedance value of approximately 10 times for specimens measured at 150 °C compared to the specimens measured at room temperature, suggesting a less stable layer at high temperature. KW - Corrosion KW - Electrochemical deposition KW - Polyaniline PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/MSF.966.107 SN - 1662-9752 VL - 966 SP - 107 EP - 115 PB - Trans Tech Publications Ltd CY - Zürich AN - OPUS4-48776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Simkin, Roman A1 - Kranzmann, Axel T1 - Construction of an adiabatic calorimeter for investigation of high tempertarue salt - based phase change material N2 - The commercial usage of latent thermal energy storages primarily depends on the development of a suitable phase change material (PCM). For industrial high temperature applications above 400 °C multicomponent chloride eutectics are promising and therefore discussed seriously. The profound thermodynamic investigation of such eutectics requires a much greater amount of specimen material than conventional calorimeter can handle. Therefore, a special adiabatic calorimeter was developed and designed. With a specimen mass of > 100 g the typical thermodynamic measurements with a commercial calorimeter can be extended by cycle stability measurements, which are often decisive for practical application of PCM. Furthermore, by implementing corrosion specimens inside the calorimeter high temperature corrosion experiments according to ISO 21608 can be performed inside the calorimeter. Adiabatic measuring conditions can be provided by using two separate heating systems. Therefore, the outer “protective system” follows the temperature curve of the inner “measuring system” minimizing the temperature difference between the heating systems and simultaneously preventing heat losses from the measuring systems. T2 - 10th International Conference on Chemical, Biological and Environmental Engineering ICBEE 2018 CY - Berlin, Germany DA - 27.09.2018 KW - Adiabatic calorimeter KW - Thermal energy storage KW - Phase change material KW - Salt eutectics PY - 2018 DO - https://doi.org/10.7763/IPCBEE.2018.V103.6 VL - 103 SP - 21 EP - 28 AN - OPUS4-50363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Marynowski, P. A1 - Wozny, K. T1 - Morphology and chemical composition of inconel 686 after high-temperature corrosion N2 - The work presents the microstructure, chemical composition and mechanical properties of Inconel 686 coatings after high - temperature corrosion in environment of aggressive gases and ashes. To produce the Ni - based coatings the QS Nd:YAG laser cladding process was carried out. As the substrate used 13CrMo4-5 boilers plate steel. Ni - base alloys characterize the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. Formed clad were characterized by high quality of metallurgical bonding with the substrate material and sufficiently low amount of the iron close to the clad layer surface. After corrosion experiment the oxide scale on the substrate and clad created. The scale on 13CrMo4-5 steel had 70 μm thickness while the scale of the clad had less than 10 μm. The microstructure, chemical composition of the obtained clad and scales were investigated by scanning electron microscope (SEM) and electron probe microanalyzer (EPMA) equipped with the EDS detectors. T2 - 27th International conference on metallurgy and materials CY - Brno, Czech Republic DA - 23.05.2018 KW - laser cladding KW - Inconel 686 KW - High - temperature corrosion KW - Aggressive environment KW - Oxide scale PY - 2018 SP - 1010 EP - 1016 AN - OPUS4-49660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.10.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion KW - Steel PY - 2019 SP - Paper 31 PB - Chinese Society for Corrosion and Protection CY - Chongqing/China AN - OPUS4-49301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic operation performance of 9-12% Cr ferritic-martensitic steels part 2: Microstructural evolution during cyclic loading and its representation in a physically-based micromechanical model N2 - The current competitive situation on electricity markets forces conventional power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach. T2 - 45. MPA-Seminar CY - Leinfelden-Echterdingen, Germany DA - 01.10.2019 KW - Tempered Martensite Ferritic Steels KW - P92 KW - TEM KW - EBSD KW - Micromechanical model PY - 2019 SP - 80 EP - 85 PB - MPA (Materialprüfungsanstalt Universität Stuttgart) CY - Stuttgart AN - OPUS4-50052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Focused ion beam techniques beyond the ordinary - Methodological developments within ADVENT N2 - This poster presents the focused ion beam preparation methodologies developed within the framework of the EU funded EURAMET project ADVENT (Advanced Energy-Saving Technology). It summarises the key breakthroughs achieved for various in situ investigation techniques, e.g. in situ experiments at the Synchrotron facility BESSY II (IR-SNOM and XRS), TEM and SMM instrumentation. The created experimental devices from diverse thin-film semiconductor materials paved the way to dynamic structural studies bearing the potential to determine nanoscale correlations between strain and electric fields and, moreover, for the fundamental development of new in situ capabilities. N2 - Dieses Poster zeigt die FIB Präparationstechniquen, die im Rahmen des EU-finanzierten EURAMET-Projekts ADVENT (Advanced Energy Saving Technology) entwickelt wurden. Es fasst die wichtigsten Errungenschaften zusammen, die für verschiedene in situ Untersuchungstechniken erzielt wurden, z.B. situ-Experimente in dem Synchrotronring BESSY II (IR-SNOM und XRS), in situ TEM Experimente und für die SMM Technik. Die experimentellen Probenstrukturen, die aus verschiedenen Dünnschicht-Halbleitermaterialien erzeugt wurden, ebneten den Weg für dynamische Strukturstudien, die das Potenzial haben, nanoskalige Korrelationen zwischen Dehnung und elektrischen Feldern zu bestimmen und darüber hinaus neue in situ Messmethoden zu entwickeln. T2 - Final Meeting CY - Online Meeting DA - 30.06.2020 KW - FIB KW - Sample preparation KW - In situ KW - TEM KW - AFM PY - 2020 AN - OPUS4-51606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Winkelmann, A. A1 - Britton, T. B. A1 - Nolze, Gert T1 - EBSD Kikuchi Pattern Analysis, Silicon 15kV N2 - Supplementary data and images for Si EBSD pattern analysis as presented in: A. Winkelmann, T.B. Britton, G. Nolze "Constraints on the effective electron energy spectrum in backscatter Kikuchi diffraction", Physical Review B (2019). KW - EBSD KW - Electron energy KW - Energy distribution KW - Kikuchi pattern KW - Simulation PY - 2019 DO - https://doi.org/10.5281/zenodo.2565061 PB - Zenodo CY - Geneva AN - OPUS4-51907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütters, H. A1 - Fischer, S. A1 - Le, Quynh A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J. A1 - Ostertag-Henning, C. A1 - Wolf, J. Lennard A1 - Pumpa, M. A1 - Lubenau, U. A1 - Knauer, S. A1 - Jaeger, P. A1 - Neumann, A. A1 - Svensson, K. A1 - Lempp, C. A1 - Menezes, F. A1 - Hagemann, B. T1 - Towards defining reasonable minimum composition thresholds – impacts of variable CO2 stream compositions on transport, injection and storage N2 - The collaborative project “Impacts of impurities in CO2 streams captured from different emitters in a regional cluster on transport, injection and storage (CLUSTER)” aimed to set up recommendations on how to define “reasonable minimum composition thresholds” that CO2 streams should meet when accessing CO2 transport pipeline networks. Within CLUSTER, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the whole CCS chain. Investigations included, amongst others, impacts on: Corrosion of pipeline steel, pipeline network design and related transport costs, alteration of well bore cements, pressure development and rock integrity, geochemical reactions, and petrophysical and geomechanical rock properties. All investigations are based on a generic CCS chain scenario. In this scenario, CO2 streams are captured from a spatial cluster of eleven emitters and collected in a regional pipeline network. Emitters comprise seven fossil fuel-fired power plants equipped with different capture technologies, two cement plants, one refinery and one integrated iron and steel plant. In total, 19.78 Mio t CO2 (including impurities) are captured in the emitter cluster annually. The combined CO2 stream is transported in a trunk line with a length of 400 km (100 km of these offshore) and is injected into five generic storage structures. The storage reservoirs are saline aquifers of the Buntsandstein. The investigations revealed beneficial and deteriorating impacts of different impurities and combinations thereof. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the modelled variable compositions and mass flow rates were observed. Based on the results, the CLUSTER project team recommends not to define “minimum composition thresholds” for CO2 streams as strict threshold values for each individual impurity in the stream. Instead, CO2 stream compositions and variabilities for specific CCS projects should be constrained with regard to a set of parameters including i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of CO2 stream composition, and iv) impurity combinations to be avoided. T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Online meeting DA - 15.03.2021 KW - Corrosion KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2021 DO - https://doi.org/10.2139/ssrn.3816427 SP - 1 EP - 18 AN - OPUS4-52418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Kranzmann, Axel T1 - Interaction of Oxidizing and Reductive Components in CO2 Streams with Transport Pipeline Steel X70 at High Pressure and Low Temperature N2 - Specific amounts of oxidizing and reductive impurities as well as some moisture were added to dense phase CO2 to replicate CO2 streams from sources in a CCS pipeline network. Due to the moisture content being only 50 ppmV no visible acid condensation took place. To simulate stress conditions at the inside pipeline surface due to fluid pressure (10 MPa) specimens were preloaded using a load frame. Experiments conducted at 278 K and at 313 K revealed the highest corrosion rate at lower temperature. Corrosive effect of impurities was strongest applying mixed atmosphere, containing oxidizing and reductive components, closely followed by CO2 streams with pure oxidizing character. By far, the lowest corrosion rate (10x lower) resulted from reductive atmosphere. In general, at constant temperature and pressure the CO2 stream composition strongly influences the morphology, thickness and composition of the corrosion products. Applying oxidizing or mixed impurities, iron hydroxides or oxides (e.g. goethite, hematite) occur as dominating corrosion products, capable to incorporate different amounts of sulfur. In contrast, using reductive atmosphere very thin corrosion layers with low crystallinity were developed, and phase identification by XRD was unfeasible. SEM/EDX analysis revealed the formation of Fe-O compounds, most likely attributed to the oxygen partial pressure in the system induced by CO2 (≥0.985 volume fraction) and volatile H2O. In addition to the surface covering corrosion layer, secondary phases had grown locally distributed on top of the layer. These compounds are characteristic for the applied atmosphere and vary in number, shape and chemical composition. T2 - 14th Greenhouse Gas Control Technologies Conference (GHGT-14) CY - Melbourne, Australia DA - 21.10.2018 KW - CCS KW - CO2 Corrosion KW - Pipelines PY - 2019 UR - https://ssrn.com/abstract=3365756 VL - 2019 SP - 1 EP - 15 AN - OPUS4-49711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Nofz, Marianne A1 - Bäßler, Ralph A1 - Sojref, Regine A1 - Le, Quynh Hoa T1 - Preliminary Study on Al2O3 Sol-Gel Coating for Corrosion Protection of Martensitic Stainless Steel in Artificial Geothermal Water N2 - Al2O3 coatings are often used as protective layers on steels against electrochemical and high-temperature corrosion because they are chemically inert and stable at elevated temperatures. This study presents preliminary work on the possibilities of using Al2O3 sol-gel coatings for corrosion protection of martensitic stainless steels in geothermal environments. Al2O3 sol-gel coatings were applied on UNS S42000, which is known to be susceptible to uniform and localized corrosion. The coated steel specimens were then tested in two types of artificial geothermal water, which simulate the geothermal fluids found in Sibayak (SBY), Indonesia, and North German Basin (NGB), Germany, respectively. SBY has pH 4 and 1.5 g/L of chloride ions, whereas NGB has a pH of 6 and 166 g/L of chloride ions. All experiments were carried out in autoclaves at 150 °C and 1 MPa under the deaerated condition. Evaluations were performed by investigating the surface profiles of both uncoated and coated steels before and after the corrosion test using a Laser Scanning Microscope (LSM) and Scanning Electron Microscope (SEM). Finally, Electrochemical Impedance Spectroscopy (EIS) was performed to compare the corrosion resistance of Al2O3 coated steels in SBY and NGB solutions. It was observed from the corrosion test that Al2O3 coatings are more suitable for use in the geothermal water with a higher pH. T2 - AMPP Annual International Corrosion Conference 2021 CY - Online Meeting DA - 19.04.2021 KW - Protective coating KW - Sol-gel coating KW - Geothermal KW - Martensitic steel KW - Corrosion PY - 2021 SP - 16777-01 EP - 16777-12 CY - Houston AN - OPUS4-52501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cornelsen Sampaio Kling, I. A1 - Pauw, Brian Richard A1 - Jacome, Leonardo A. A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Silver nanoparticle KW - Starch KW - Starch nanoparticle PY - 2020 SP - 1 EP - 2 AN - OPUS4-51940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Birkholz, H. A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Grundmann, J. A1 - Hanke, T. A1 - Waitelonis, J. A1 - Sack, H. A1 - Mädler, L. T1 - PMD Core Ontology: A Community Driven Mid-Level Ontology in the MSE Domain N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this presentation, an approach how to maintain a comprehensive and intuitive MSE-centric terminology composing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures is shown. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Knowledge Representation KW - Semantic Interioerability KW - Mid-Level Ontology for MSE KW - FAIR Data Management PY - 2023 AN - OPUS4-58201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Hanke, T. A1 - Eisenbart, M. A1 - Skrotzki, Birgit T1 - Materials Mechanical Testing Ontology (MTO) N2 - The materials mechanical testing ontology (MTO) was developed by collecting the mechanical testing vocabulary from ISO 23718 standard, as well as the standardized testing processes described for various mechanical testing of materials like tensile testing, Brinell hardness test, Vickers hardness test, stress relaxation test, and fatigue testing. Confirming the ISO/IEC 21838-2 standard, MTO utilizes the Basic Formal Ontology (BFO), Common Core Ontology (CCO), Industrial Ontologies Foundry (IOF), Quantities, Units, Dimensions, and data Types ontologies (QUDT), and Material Science and Engineering Ontology (MSEO) as the upper-level ontologies. Reusing these upper-level ontologies and materials testing standards not only makes MTO highly interoperable with other ontologies but also ensures its acceptance and applicability in the industry. MTO represents the mechanical testing entities in the 230 classes and four main parts: i) Mechanical testing experiments entities like tensile, hardness, creep, and fatigue tests as the subclasses of mseo:Experiment, ii) Mechanical testing quantity concepts such as toughness, elongation, and fatigue strength in the appropriate hierarchies of bfo:Disposition and bfo:Quality classes, iii) Mechanical testing artifacts like indenter as the subclasses of cco:Artifact, and iv) mechanical testing data like the stress-strain, S-N, or creep curves as the subclasses of cco:InformationContentEntity. MTO is publicly available via the KupferDigital GitLab repository. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Mechanical testing KW - Ontology KW - Standard PY - 2023 AN - OPUS4-58270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Birkholz, H. A1 - Grundmann, J. A1 - Hanke, T. A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Mädler, L. A1 - Sack, H. T1 - PMDco - Platform MaterialDigital Core Ontology N2 - The PMD Core Ontology (PMDco) is a comprehensive set of building blocks produced via consensus building. The ontological building blocks provide a framework representing knowledge about fundamental concepts used in Materials Science and Engineering (MSE) today. The PMDco is a mid-level ontology that establishes connections between narrower MSE application ontologies and domain neutral concepts used in already established broader (top-level) ontologies. The primary goal of the PMDco design is to enable interoperability between various other MSE-related ontologies and other common ontologies. PMDco’s class structure is both comprehensive and extensible, rendering it an efficient tool to structure MSE knowledge. The PMDco serves as a semantic middle-layer unifying common MSE concepts via semantic mapping to other semantic representations using well-known key terms used in the MSE domain. The PMDco enables straight-forward documentation and tracking of science data generation and in consequence enables high-quality FAIR data that allows for precise reproducibility of scientific experiments. The design of PMDco is based on the W3C Provenance Ontology (PROV-O), which provides a standard framework for capturing the production, derivation, and attribution of resources. Via this foundation, the PMDco enables the integration of data from various data origins and the representation of complex workflows. In summary, the PMDco is a valuable advancement for researchers and practitioners in MSE domains. It provides a common MSE vocabulary to represent and share knowledge, allowing for efficient collaboration and promoting interoperability between diverse domains. Its design allows for the systematic integration of data and metadata, enabling seamless tracing of science data. Overall, the PMDco is a crucial step towards a unified and comprehensive understanding of the MSE domain in general. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Knowledge Representation KW - Ontology KW - Semantic Interoperability KW - FAIR KW - Automation PY - 2023 AN - OPUS4-58197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Z.-Jan, G.-A. A1 - Hanke, T. A1 - v. Hartrott, P. A1 - Fliegener, S. A1 - Kryeziu, J. A1 - Waitelonis, J. A1 - Sack, H. A1 - Skrotzki, Birgit T1 - Adopting FAIR data practices in materials science: Semantic representation of a quantitative precipitation analysis N2 - Many metallic materials gain better mechanical properties through controlled heat treatments. For example, in age-hardenable aluminium alloys, the strengthening mechanism is based on the controlled formation of nanometre-sized precipitates, which represent obstacles to dislocation movement and consequently increase the strength. Precise tuning of the material microstructure is thus crucial for optimal mechanical behaviour under service condition of a component. Therefore, analysis of the microstructure, especially the precipitates, is essential to determine the optimum parameters for the interplay of material and heat treatment. Transmission electron microscopy (TEM) is utilized to identify precipitate types and orientations in the first step. Dark-field imaging (DF-TEM) is often used to image the precipitates and thereafter quantify their relevant dimensions. Often, these evaluations are still performed by manual image analysis, which is very time-consuming and to some extent also poses reproducibility problems. Our work aims at a semantic representation of an automatable digital approach for this material specific characterization method under adaption of FAIR data practices. Based on DF-TEM images of different precipitation states of a wrought aluminium alloy, the modularizable, digital workflow of quantitative analysis of precipitate dimensions is described. The integration of this workflow into a data pipeline concept will also be discussed. Using ontologies, the raw image data, their respective contextual information, and the resulting output data of the quantitative image analysis can be linked in a triplestore. Publishing the digital workflow and the ontologies will ensure data reproducibility. In addition, the semantic structure enables data sharing and reuse for other applications and purposes, demonstrating interoperability. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Semantic Representation KW - FAIR data management KW - Quantitative Precipitation Analysis KW - Knowledge graph and ontologies PY - 2023 AN - OPUS4-58199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Peetz, Christoph A1 - Buggisch, Enrico A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Electrochemical study on wellbore constellations for CO2 injection N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells the corrosion resistance of the materials used needs to be determined. In this study, representative low cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were embedded in cement to mimic the realistic casing-cement interface. Electrochemical studies were carried out using these metal-cement specimens in comparison with those made of metal only in CO2 saturated synthetic aquifer fluid, at 333 K, to reveal the effect of cement on the steel performance. The results showed the protective effect of cement on the performance of pipeline metals during polarisation process. However, the corrosion current density was high in all cases, with and without cement, indicating that the corrosion resistance of these materials is low. This conclusion was supported by the surface analysis of the polarized specimens, which revealed both homogenous and pitting corrosions. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Injection KW - Impurities PY - 2018 SP - 1 EP - 4 PB - EFC CY - Krakau, Poland AN - OPUS4-46291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Agudo Jácome, Leonardo A1 - Jürgens, Maria A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Cyclic loading performance and related microstructure evolution of ferritic-martensitic 9-12% Cr steels N2 - The current competitive situation on electricity markets forces power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach. T2 - 44th MPA-Seminar CY - Leinfelden/Stuttgart, Germany DA - 17.10.2018 KW - Ferritic-martensitic steels KW - Cyclic loading KW - Microstructure evolution PY - 2018 SP - 259 EP - 265 AN - OPUS4-47118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel T1 - The influence of the aggressive environments on the Inconel 686 coating in high-temperature corrosion experiments N2 - This work presents the microstructure and chemical composition of oxide scales created on Ni – base coating after corrosion experiments in aggressive gases and ashes. The Inconel 686 coating applied on the low carbon steel 13CrMo4-5 was performed by a CO2 laser cladding process. The experiments were carried out in oxidizing gas atmospheres containing O2, COx, SOx. The second Variation of corrosion experiments were performed in a reducing atmosphere with ashes containing elements such as: Na, Cl, Ca, Si, C, Fe, Al etc. After 240 h and 1.000 h corrosion experiments the oxide scales on the substrate and overlay were created in both cases. The sulfur compounds were found on the top of the coating surface (EPMA) and also higher contents of silica compounds were revealed on specimens covered by ashes during the experiments. The microstructure and chemical composition of the clad and scales were investigated by means of a light microscope and an electron microscope (SEM)equipped with an EDS detector. T2 - 50. Kraftwerkstechnisches Kolloquium CY - Dresden, Germany DA - 23.10.2018 KW - Nickel based coatings KW - Inconel 686 KW - High temperature corrosion PY - 2018 SP - 599 AN - OPUS4-46590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koclega, Damian A1 - Petrzak, P. A1 - Kowalski, K. A1 - Rozmus-Gornikowska, M. A1 - Debowska, A. A1 - Jedrusik, M. T1 - Annealing effect on microstructure and chemical composition of Inconel 625 alloy N2 - Our research focused on Inconel 625 weld overlays on 16Mo3 steel boiler pipes. The Investigation focused on the characterization of changes in the microstructure and chemical composition after annealing. The annealing was performed for ten hours at temperatures from 600 to 1000°C. Changes in the microstructure were observed with a scanning and transmission electron microscope (SEM and TEM). The investigation was supplemented by hardness measurements. KW - Inconel 625 KW - Microsegregation KW - Annealing PY - 2018 DO - https://doi.org/10.7494/mafe.2018.44.2.73 SN - 1230-2325 SN - 0860-6307 SN - 2300-8377 VL - 44 IS - 2 SP - 73 EP - 80 PB - AGH University of Science and Technology Press CY - Cracow AN - OPUS4-49659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Local Corrosion of Martensitic Stainless Steels during Exposure to Saline Aquifer Water and CO2 Environment N2 - Carbon Capture and Storage (CCS) is well acknowledged to mitigate climate change. Therefore, pipe Steels suitable for CCS technology require resistance against the corrosive environment of a potential CCS-site, e.g. heat, pressure, salinity of the aquifer, CO2-partial pressure. Samples of different mild and high alloyed stainless injection-pipe Steels partially heat treated: 42CrMo4, X20Cr13, X46Cr13, X35CrMo4 as well as X5CrNiCuNb16-4 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CO2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Main corrosion products analysed on pits are FeCO3 and FeOOH. The carbon content does not show significant influence on the pitting behaviour. Generally, higher chromium Content results in better corrosion resistance. Although X35CrMo17-1 and X5CrNiCuNb16-4 show low surface corrosion rates, their resistance against local corrosion in CCS environment is not significantly better compared to the much less costly Steels X20Cr13 and X46Cr13. KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Heat treatment PY - 2018 DO - https://doi.org/10.18178/ijcea.2018.9.1.694 SN - 2010-0221 VL - 9 SP - 26 EP - 31 PB - International Association of Computer Science and Information Technology Press CY - Singapore AN - OPUS4-46627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütters, H A1 - Fischer, S A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J A1 - Ostertag-Henning, C A1 - Lennard Wolf, J A1 - Pumpa, M A1 - Lubenau, U A1 - Knauer, S A1 - Jaeger, P A1 - Neumann, A A1 - Svensson, K A1 - Pöllmann, H A1 - Lempp, C A1 - Menezes, F A1 - Hagemann, B T1 - Towards Defining Reasonable Minimum Composition Thresholds – Impacts of Variable CO2 Stream Compositions on Transport, Injection and Storage N2 - The collaborative project “Impacts of impurities in CO2 streams captured from different emitters in a regional cluster on transport, injection and storage (CLUSTER)” aimed to set up recommendations on how to define “reasonable minimum composition thresholds” that CO2 streams should meet when accessing CO2 transport pipeline networks. Within CLUSTER, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the whole CCS chain. Investigations included, amongst others, impacts on: • corrosion of pipeline steel, • pipeline network design and related transport costs, • alteration of well bore cements, • pressure development and rock integrity, • geochemical reactions, and • petrophysical and geomechanical rock properties. All investigations are based on a generic CCS chain scenario. In this scenario, CO2 streams are captured from a spatial cluster of eleven emitters and collected in a regional pipeline network. Emitters comprise seven fossil fuel-fired power plants equipped with different capture technologies, two cement plants, one refinery and one integrated iron and steel plant. In total, 19.78 Mio t CO2 (including impurities) are captured in the emitter cluster annually. The combined CO2 stream is transported in a trunk line with a length of 400 km (100 km of these offshore) and is injected into five generic storage structures. The storage reservoirs are saline aquifers of the Buntsandstein. The investigations revealed beneficial and deteriorating impacts of different impurities and combinations thereof. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the modelled variable compositions and mass flow rates were observed. Based on the results, the CLUSTER project team recommends not to define “minimum composition thresholds” for CO2 streams as strict threshold values for each individual impurity in the stream. Instead, CO2 stream compositions and variabilities for specific CCS projects should be constrained with regard to a set of parameters including i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of CO2 stream composition, and iv) impurity combinations to be avoided. T2 - The 15th Greenhouse Gas Control Technologies Conference CY - Online meeting DA - 15.03.2021 KW - Corrosion KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2021 DO - https://doi.org/10.2139/ssrn.3816427 SP - 1 EP - 18 PB - Elservier AN - OPUS4-52940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Effects of saline aquifer water on the corrosion behaviour of martensitic stainless steels during exposure to CO2 environment N2 - Immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4 and X5CrNiCuNb16-4 at T=60 °C and ambient pressure and p=100 bar were performed for 700 h - 8000 h in a CO₂-saturated synthetic aquifer environment similar to CCS-sites in the Northern-German-Basin. Main corrosion products are FeCO₃ and FeOOH. Highest surface corrosion rates at ambient pressure are 0.8 mm/year for 42CrMo4 and lowest 0.01 mm/year for X5CrNiCuNb16-4. Corrosion rates at 100 bar (max. 0.01 mm/year for 42CrMo4, X20Cr13, X46Cr13) are generally lower than at ambient pressure (<0.01 mm/year for X35CrMo4, X5CrNiCuNb16-4). Heat treatment to martensitic microstructure offers good corrosion resistance. T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Abu Dhabi, United Arab Emirates DA - 15.03.2021 KW - CCS KW - Corrosion KW - High alloyed steels PY - 2021 DO - https://doi.org/10.2139/ssrn.3812248 SP - 1 EP - 12 PB - SSRN CY - Rochester, NY AN - OPUS4-53140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Evaluating corrosion and corrosion fatigue behavior via laboratory testing techniques in highly corrosive CCS-environment N2 - In CCS environment (carbon capture and storage) pipes are loaded statically and/or cyclically and at the same time exposed constantly to the highly corrosive hot thermal water. Experimental procedures such as ambient pressure immersions tests, in-situ corrosion fatigue experiments using a flexibly designed corrosion chamber at ambient pressure and a specially designed corrosion chamber at high pressure. Experimental set-ups for push/pull and rotation bending load are introduced. The corrosion behavior and lifetime reduction of high alloyed steels (X46Cr13, 1.4043), (X5CrNiCuNb16-4, 1.4542) and (X2CrNiMoN22-5-3, 1.4462) is demonstrated (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO₂). T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Abu Dhabi, United Arab Emirates DA - 15.03.2021 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CO2-storage PY - 2021 DO - https://doi.org/10.2139/ssrn.3812193 SP - 1 EP - 11 PB - SSRN CY - Rochester, NY AN - OPUS4-53142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Study of Polyaniline/Silicon Dioxide based Coating on Carbon Steel in Artificial Geothermal Brine N2 - Geothermal brines are corrosive in nature because of their salt contents and high temperatures. Therefore, they pose a major challenge to geothermal power-plants, which are mostly built of low alloyed steels, e.g., carbon steel. Carbon steel is susceptible to uniform and localized corrosion when exposed to geothermal brines having acidic-saline properties. To overcome this limitation, geothermal power plants should be built by either high alloyed materials or by integrating protection systems on carbon steel, such as coatings and inhibitors. We studied a coating system containing polyaniline/silicon dioxide basing on locally available resources that provides protection against corrosion of carbon steel and enhance the thermal resistance in geothermal environments. Here, exposure and electrochemical tests of coated carbon steels were performed in an artificial geothermal brine. The solution had a pH of 4, with the composition of 1,500 mg/L of chlorides, which is based on the chemical analysis of geothermal brine found in Sibayak, Indonesia. All exposure tests were conducted using autoclaves at 150 °C with a total pressure of 1 MPa, which was performed for up to six months to evaluate the durability of the coating system. Post-experimental analyses were performed by assessing the surface of specimens using optical and electron microscopes. On the other hand, electrochemical tests were performed for seven days at 25 °C and 150 °C to investigate the kinetics of electrochemical reactions by measuring open circuit potential and electrochemical impedance spectra. Experimental results showed the corrosion resistance of PANI/SiO2 composite coatings, where polyaniline and SiO2 play their roles as stabilizers. T2 - World Geothermal Congress CY - Online meeting DA - 30.03.2021 KW - Coatings KW - Corrosion KW - Polyaniline KW - Sibayak KW - SiO2 PY - 2021 SP - 1 EP - 7 AN - OPUS4-52830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk T1 - Electrochemical behaviors of casing steel/mortar interface in CO2 saturated aquifer fluid N2 - To reveal the corrosion resistance of casing steel/mortar interface in CO2 injection condition, sandwich samples were prepared and exposed up to 20 weeks in aquifer fluid under 10 MPa and 60 °C. Cross section analysis revealed the crevice corrosion as main mechanism instead of pitting corrosion, which would be expected to happen in the extremely high Chloride concentration. Detailed analysis using EDS line scan shown the slow diffusion of Chloride, suggesting why pitting did not happen after 20 weeks. To mimic the passivated steel surface, the steel coupon was passivated in simulated pore solution having pH 13.5 for 42 days. The passivated coupon was further exposed to NGB solution for 28 days. Electrochemical characterization was performed along the exposure processes to reveal the change in impedance, indicating the corrosion resistance of steel casing/mortar interface. T2 - EUROCORR 2022 CY - Berlin, Germany DA - 28.08.2022 KW - Corrosion KW - CO2 quality KW - Pipeline network KW - CCS PY - 2022 SP - 859 EP - 865 PB - European Federation of Corrosion AN - OPUS4-55622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Laser ablation in liquid KW - Nanoparticles KW - Titanium oxide KW - Particle morphology PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electron-microscopy-and-xray-diffraction-analysis-of-titanium-oxide-nanoparticles-synthesized-by-pulsed-laser-ablation-in-liquid/AE368446FAC70E08C514F9AEABFD131B DO - https://doi.org/10.1017/S1431927618009030 VL - 24 IS - S1 (August) SP - 1710 EP - 1711 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Croteau, Jean-Francois A1 - Pai Kulyadi, E. A1 - Agudo Jácome, Leonardo A1 - Kale, C. A1 - García-Tabarés Valdivieso, E. A1 - Perez Fontenla, A. T. A1 - Siu, D. A1 - Kang, D. A1 - Eisenlohr, P. A1 - Bieler, T. R. A1 - Solanki, K. N. A1 - Manzoni, Anna Maria A1 - Atieh, S. A1 - Balint, D. A1 - Hooper, P. A1 - Jacques, N. A1 - Cantergiani, E. T1 - Electro-hydraulic forming of SRF cavities: Effect of strain rate on niobium single crystals N2 - An investigation of the dislocation substructure and mechanical properties of high-purity niobium single crystals with different initial crystal orientations deformed in tension at strain rates of 10^{-4} to 10^3 s^{-1} is presented. Specimens were cut from a large grain niobium disk used for the manufacturing of SRF cavities. Different crystallographic tensile directions exhibited significantly different softening and hardening behaviors and elongation at fracture. Such anisotropy is reduced at high strain rates. Also, different dislocation substructures were observed with TEM at low and high strain rates. At low strain rates, dislocation cells with a high density of long dislocations were observed. At high strain rates, homogeneously distributed dislocations with a higher dislocation dipole density were observed. The relationship between the differences in dislocation substructures and mechanical properties at low and high strain rates and the potential effects on the superconducting properties are discussed. T2 - 2021 International Conference on RF Superconductivity (SRF'21) CY - Online meeting DA - 28.06.2021 KW - Dislocation substructure KW - Strain rate dependence KW - Transmission electron microscopy (TEM) PY - 2021 UR - https://indico.frib.msu.edu/event/38/attachments/158/1089/TUPCAV012_poster.pdf AN - OPUS4-54540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Wencke A1 - Manzoni, Anna Maria A1 - Stephan-Scherb, Christiane T1 - Corrosion induced alloy sulfidation in a high-entropy alloy (HEA) N2 - To apply high-entropy alloys (HEA) of the CrMnFeCoNi family in challenging atmospheres, their degradation behavior under harsh environments needs to be investigated. Oxidation studies to HEAs have not been extensively investigated and most of them are concentrated on environments like synthetic air, laboratory air, CO/CO2, O2 and H2O atmospheres. Main corrosion products which were identified after aging times of up to 100 h are Mn2O3 (≤800°C) and Mn3O4 (≥800°C). Another corrosive medium in high temperature applications is SO2, which preferentially forms sulfides on commercial steels for example. These can be occurred both in the oxide layer and at the oxide/metal interface. For instance, on Fe-Cr based alloys sulfides (Cr5S6) were detected along grain boundaries and their number increases with exposure time and Cr-content in the alloy. These sulfides show an increased hardness, compared to the bulk alloy, and cause an embrittlement of the grain boundaries. This is a serious material degradation phenomenon, now addressed for the case of HEAs. In the present study metal sulfides were identified after corrosion of the HEA CrMnFeCoNi alloy in an Ar-0.5vol.%SO2 atmosphere at 800°C for 24 h, 48 h, 96 h and 192 h exposure time. After all three duration times, a thin non-protective Cr2O3 layer has formed at the oxide/alloy interface. At the gas side a thick Mn3O4 layer with local voids containing sulfur could be detected by SEM-EDS analysis. Furthermore, S precipitates could be detected in the bulk material near the surface. These sulfides were characterized in detail by scanning and transmission electron microscopy. Based on these results, a model for grain boundary sulfidation of high-entropy alloy CrMnFeCoNi is discussed. T2 - EUROMAT 2021 EUROPEAN CONGRESS AND EXHIBITION ON ADVANCED MATERIALS AND PROCESSES CY - Online meeting DA - 13.09.2021 KW - High-entropy alloys KW - High-temperature corrosion KW - Sulfidation KW - Chromium oxide KW - Manganese oxide PY - 2021 AN - OPUS4-53455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Wencke A1 - Laplanche, G. A1 - Schneider, M. A1 - Stephan-Scherb, Christiane T1 - Effect of corrosive atmosphere on the oxidation behavior of CrMnFeCoNi and CrCoNi alloys N2 - High- and medium-entropy alloys (HEAs and MEAs) constitute a new class of materials. Those with a face-centered cubic (fcc) structure from the Cr-Mn-Fe-Co-Ni system have excellent mechanical properties and are considered for high-temperature applications since diffusion in these alloys was reported to be sluggish. However, their corrosion resistance at high temperatures must still be evaluated to further qualify them for such kinds of applications. Various groups studied the oxidation behavior of HEAs and MEAs under (dry) laboratory and artificial air as well as CO2/CO mixtures in different temperature ranges. Adomako et al. carried out oxidation tests in dry air between 800 °C and 1000 °C for 24 h in equiatomic CrCoNi, CrMnCoNi, and CrMnFeCoNi alloys. The authors showed that CrCoNi exhibits the best corrosion resistance at 800 °C due to the formation of a protective Cr2O3 layer. The matrix below the oxide scale was reported to be correspondingly depleted in Cr. It was further shown that the addition of Mn and Fe to CrCoNi changes the phase composition of the oxide scale at 800 °C. A Mn2O3 layer was grown during oxidation on CrMnCoNi and CrMnFeCoNi and a Cr2O3 scale was formed at the matrix/oxide scale interface. Beneath these oxide layers, Mn- and Cr-depleted zones were detected. These phase morphologies demonstrate the inward diffusion of oxygen and outward diffusion of Cr and Mn resulting in the formation of Cr2O3 and Mn2O3. In the present study, the corrosion resistance of CrMnFeCoNi and CrCoNi were confirmed and additionally characterized under further oxidizing atmospheres at 800 °C including Ar-2 Vol.% O2, Ar-2 Vol.% H20, and Ar-2 Vol.% SO2 mixtures. T2 - 10th International Symposium on High-Temperature Corrosion and Protection of Materials CY - Online meeting DA - 28.03.2021 KW - High-entropy alloys KW - High-temperature corrosion KW - Chromium oxide KW - Manganese oxide PY - 2021 AN - OPUS4-53143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Botsch, B A1 - Sonntag, U A1 - Bettge, Dirk A1 - Le, Quynh Hoa A1 - Schmies, Lennart A1 - Yarysh, Anna T1 - Classification of fracture surface types based on SEM images N2 - The following work deals with the quantitative fracture surface evaluation in damage analysis. So far, fracture surfaces have almost exclusively been evaluated qualitatively, i.e. the presence of fracture features is documented and their surface proportions are estimated, if necessary. Many years of experience are required, as well as an intensive comparison with defined comparative images from the literature. The aim of this work is the development of classifiers which can recognize fracture mechanisms or fracture features in scanning electron microscope images (SEM). The basis is 46 SEM images, which have been evaluated by fractography experts with regard to fracture features. The existing data set of images is expanded using augmentation methods in order to increase the variability of the data and counteract overfitting. Only convolutional neural networks (CNN) are used to create the classifiers. Various network configurations are tested, with the SegNet achieving the best results. T2 - Materialsweek 2021 CY - Online meeting DA - 07.09.2021 KW - Fractography KW - Fracture surface KW - Deep learning KW - SEM PY - 2021 AN - OPUS4-53418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja T1 - How flipped classroom teaching methods in first year studying succeed N2 - Flipping the classroom is a method to let students study on their own and then take time to discuss their questions and do extended hands-on lectures or exercises in class – or in the case of the covid-19 pandemic during plenary online sessions. First year mechanical engineering students use different teaching materials (mainly lecture videos, lightboard videos and micromodule lectures) to study from a distance and comprehend the principle underlying science in theory. Then the online plenary lectures offer the opportunity to apply their knowledge and transfer different scientific aspects of the course to get the bigger picture. Exercises, worked solutions, selfassessed tests and peer-instruction during present time help students to check on their learning progress. However, the self-study periods and (online) plenary sessions need to be guided carefully. To meet the course learning outcome and overcome the diversity of a first year class various practical leads have to be fulfilled to turn flipped classroom teaching into success. T2 - 7th International Conference on Higher Education Advances (HEAd’21) CY - Valencia, Spain DA - 20.06.2021 KW - Inverted classroom KW - Flipped classroom KW - Online teaching KW - Lecture videos KW - First year students PY - 2021 DO - https://doi.org/10.4995/HEAd21.2021.12792 SP - 1211 EP - 1219 AN - OPUS4-54156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Suitability of Metallic Materials in CC(U)S Applications N2 - Carbon Capture Utilization and Storage (CCUS) is a promising technology to reach the target for reduction of CO2 emissions, e.g. from fossil-fuel operated power plants or cement mills. Crucial points for a sustainable and future-proof CCUS procedure are reliability and cost efficiency of the whole process chain, including separation of CO2 from the source, compression of CO2, its subsequent transportation to the injection site and injection into geological formations, e.g. aquifers. Most components that are in contact with CO2-stream consist of steel. Depending on the operating conditions (e.g. temperature, pressure, and CO2-stream composition) specific suitable steels should be used. The compressed CO2-stream is likely to contain process specific impurities; small amounts of SO2 and NO2 in combination with oxygen and water are most harmful. One approach, as currently preferred by pipeline operators, is to clean the CO2-stream to such levels, acceptable for carbon steel, commonly used as pipeline material. Another consideration would be, to use more corrosion resistant alloys for CO2-streams with higher amounts of impurities. Due to the absence of certified benchmarks for upper limits, systematic experiments with impurities in the CO2-stream were carried out reflecting mainly transport and injection conditions. Within the COORAL project (German acronym for “CO2 purity for capture and storage”) levels of impurities in the CO2-stream, being acceptable when using specific steels, were evaluated. Material exposure to dense or multiphase carbon dioxide (CO2) containing specific amounts of water vapor, oxygen (O2) sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) can be a challenge to steels. In some situations, condensation of impurities and reaction products from the CO2 stream can occur. CO2 saturated brine is supposed to rise in the well when the injection process is interrupted. The material selection shall ensure that neither CO2 nor brine or a combination of both will leak out of the inner tubing. This COORAL-work was extended by a follow-up project, called CLUSTER. Here the additional influence of impurities was investigated when merging CO2 streams from different sources, combined within a “so-called” cluster. Results are summarized within the following table regarding suitability for different parts of the process chain. T2 - EUROCORR 2021 CY - Online meeting DA - 20.09.2021 KW - Carbon capture storage KW - Corrosion KW - Steel KW - CCS KW - CCU KW - CO2 PY - 2021 SP - 1 EP - 2 AN - OPUS4-53460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Gröber, A. A1 - Simkin, Roman A1 - Kranzmann, Axel T1 - Influence of Surface Quality on the Corrosion and Corrosion Fatigue Behavior of High Alloyed Steels Exposed to Different Saline Aquifer Water Environment N2 - Coupons of X5CrNiCuNb16-4 with different surface roughness that may be utilized as injection pipe with 16% Chromium and 0.05% Carbon (1.4542, AISI 630) were exposed for 3000 h to CO2-saturated saline aquifer water simulating the conditions in the Northern German Basin at ambient pressure and 60 °C. Additionally, corrosion fatigue experiments (ambient pressure, technically clean CO2, saline aquifer water of Stuttgart Aquifer) were performed using specimen of X46Cr13 (1.4043, AISI 420C) with regard to the influence of the roughness of technical surfaces on the number of cycles to failure at different stress amplitudes. Specimen of Duplex stainless steel X2CrNiMoN22-3-2 (1.4462) for corrosion fatigue experiments were provided with technical surfaces after machining as well as polished surfaces. Results were obtained at load amplitudes ranging from 175 MPa to 325 MPa in the geothermal brine of the Northern German Basin at 98 °C. The main precipitation phases on the surface as well as within pits reveal carbonates or hydroxides such as siderite (FeCO3) and ferrous hydroxide goethite (FeOOH) independent of the original surface roughness. Corrosion rates for polished and technical surfaces were below 0.005 mm/year compared to corrosion rates of 0.035 mm/year after shot peening. Specimen with technical surfaces tested at high stress amplitudes (>275 MPa) lasted longer (cycles to failure: P50% at Sa 300 MPa=5x105) than specimen with polished surfaces (cycles to failure: P50% at Sa 300 MPa=1.5x105). This behavior is emphasized by the slope coefficient (technical surfaces k = 19.006, polished surfaces k=8.78) meaning earlier failure for polished at high stress amplitude Sa. Although rather low scatter ranges (technical surface: TN=1:1.35, polished surface: TN=1.1.95) indicate no change in failure mechanism it may be assumed that at low stress pitting is the initiating crack growth process whereas at high stress amplitudes the formation of micro cracks is reason for crack propagation and failure. KW - High Alloyed Steel KW - Pitting KW - Surface KW - Roughness KW - Corrosion Fatigue PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503772 DO - https://doi.org/10.20319/mijst.2019.51.115137 SN - 2454-5880 VL - 5 IS - 1 SP - 115 EP - 137 PB - Global Research and Development Services Publishing CY - Rajasthan, India AN - OPUS4-50377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Degradation of AISI 630 exposed to CO2-saturated saline aquifer at ambient pressure and 100 bar N2 - In general high alloyed steels are suitable as pipe steels for carbon capture and storage technology (CCS), because they provide sufficient resistance against the corrosive environment of CO2-saturated saline aquifer which serves as potential CCS-site in Germany. High alloyed martensitic steel AISI 630 has been proven to be sufficient resistant in corrosive environments, e.g. regarding heat, pressure, salinity of the aquifer, CO2-partial pressure), but reveals a distinct corrosion pattern in CCS environment. Therefore coupons of AISI 630 heat treated using usual protocols were kept at T=60 °C and ambient pressure as well as p=100 bar up to 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. AISI 630 precipitates a discontinuous ellipsoidal corrosion layer after being exposed for more than 4000 hours. Best corrosion resistance in the CO2-saturated synthetic aquifer environment phase is achieved via normalizing prior to exposure. In water saturated supercritical CO2 tempering at medium temperatures after hardening gives lowest corrosion rates. Corrosion fatigue via push-pull tests with a series of 30 specimens was evaluated at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). The endurance limit of AISI 630 is reduced by more than 50% when exposed to CCS environment (maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa). KW - Corrosion Fatigue KW - High Cycle Fatigue KW - Steel KW - Ccs KW - Co2-Storage PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503783 DO - https://doi.org/10.22587/jasr.2018.14.6.3 SN - 1819-544X SN - 1816-157X SP - 11 EP - 17 PB - INSInet Publications CY - Faisalabad AN - OPUS4-50378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohring, W. A1 - Karafiludis, Stephanos A1 - Manzoni, Anna M. A1 - Laplanche, G. A1 - Schneider, M. A1 - Stephan-Scherb, C. T1 - High-Temperature Corrosion of High- and Medium-Entropy Alloys CrMnFeCoNi and CrCoNi Exposed to a Multi-Oxidant Atmosphere H2O–O2–SO2 N2 - AbstractThe high-temperature corrosion behaviors of the equimolar CrCoNi medium-entropy alloy and CrMnFeCoNi high-entropy alloy were studied in a gas atmosphere consisting of a volumetric mixture of 10% H2O, 2% O2, 0.5% SO2, and 87.5% Ar at 800 °C for up to 96 h. Both alloys were initially single-phase fcc with a mean grain size of ~ 50 μm and a homogeneous chemical composition. The oxide layer thickness of CrMnFeCoNi increased linearly with exposure time while it remained constant at ~ 1 μm for CrCoNi. A Cr2O3 layer and minor amounts of (Co,Ni)Cr2O4 developed on the latter while three oxide layers were detected on the former, i.e., a thin and continuous chromium rich oxide layer at the oxide/alloy interface, a dense (Mn,Cr)3O4 layer in the center and a thick and porous layer of Mn3O4 and MnSO4 at the gas/oxide interface. Additionally, a few metal sulfides were observed in the CrMnFeCoNi matrix. These results were found to be in reasonable agreement with thermodynamic calculations. KW - high entropy alloys KW - corrosion KW - oxidation KW - scanning electron microscopy KW - sulfidation KW - CrMnFeCoNi PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594189 DO - https://doi.org/10.1007/s44210-023-00026-8 SP - 1 EP - 17 PB - Springer Science and Business Media LLC AN - OPUS4-59418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böhning, Martin A1 - Schilling, Markus A1 - Thuy, Maximilian A1 - Niebergall, Ute T1 - Environmental Stress Cracking in PE-HD – Assessment of Crack Propagation and Mechanisms by Optical Methods N2 - Slow crack growth (SCG) under the influence of external fluid media, usually termed environmental stress cracking (ESC), is still one of the most frequent origins of severe damage and failure of polymeric materials. For polyethylene (PE) this is relevant for mass products, like bottles for consumer products, but also for high-performance materials for pipes or industrial packaging, including containers for chemicals and other dangerous goods. Especially for high-density polyethylene (PE-HD) the susceptibility to SGC and ESC is depending on the complex interplay between molecular weight and architecture and the resulting semicrystalline morphology, especially the formation of tie-molecules. A reliable assessment of the resistance against this damage phenomenon is essential for demanding as well as safety-critical applications and has to take into account suitable testing methodologies and conditions in combination with environmental media reflecting the properties representative for typical fillings and relevant components causing ESC. In this context a better understanding of different influencing factors, such as sorption, swelling or surface activity is necessary together with a detailed characterization of different stages of crack propagation and underlying mechanisms. Therefor well-established testing methods, such as the Full Notch Creep Test (FNCT), were complemented by detailed fracture surface analysis using e.g. LSM and SEM in combination with a time-dependent optical monitoring of the progressing crack growth. For the crack growth also the ratio of fibrillated craze zone to crack opening is important for the deeper understanding of crack propagation and related material parameters which can be additionally addressed by X-ray computed tomography. T2 - 34th Polymer Degradation Disscussion Group (PDDG) Conference CY - Dubrovnik, Croatia DA - 12.06.2023 KW - Polyethylen KW - Full Notch Creep Test KW - Environmental Stress Cracking KW - Fracture Surface Analysis PY - 2023 AN - OPUS4-57711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Höhne, Patrick A1 - Lindemann, Franziska A1 - Koppert, Ralf A1 - Mieller, Björn T1 - Chemical resistance of commercial LTCC against thin film etching media N2 - Low-temperature co-fired ceramics (LTCC) are used to fabricate robust multilayer circuits. Typically, thick-film technology is applied for metallization. For specific sensor applications, thin films are deposited directly on the as-fired LTCC-surface. These deposited thin films are structured either by lift-off or by etching. The latter is less error-prone and thus preferred in industry provided the selected materials allow it. 200 nm Ni-thin films were deposited on three different commercial constrained-sintered LTCC (CT708, CT800 and DP951) by electron beam physical vapour deposition. The thin-films were structured by covering corresponding sections with a UV-curable photo resisn and subsequent etching of the uncovered surface, leaving behind the desired structure. The etched Ni-thin film showed high difference in failure rate and sheet resistance regarding the used LTCC-material. DP951 had the lowest sheet resistance and no failure, whereas the CT800 had a failure rate of 40 %. The LTCC with high failure rate showed a strong chemical attack by the used etching medium. To address this phenomenon, the chemical resistance of the three different commercial LTCC (CT708, CT800 and DP951) against four different commonly used etching media (sulphuric acid, phosphoric acid, aqua regia, and hydrofluoric acid) is investigated. The dissolved ions are analyzed by ICP-OES to correlate the LTCC-composition and its chemical resistance. T2 - KERAMIK 2023 / 98. DKG-Jahrestagung CY - Jena, Germany DA - 27.03.2023 KW - Glass-ceramics KW - Hydrogen sensors KW - Acids PY - 2023 AN - OPUS4-57273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Eddah, Mustapha A1 - Bajer, Evgenia A1 - Markötter, Henning A1 - Kranzmann, Axel T1 - Destructive and non-destructive 3D-characterization of inner metal structures in ceramic packages N2 - Ceramic multilayer packages provide successful solutions for manifold applications in telecommunication, microsystem, and sensor technology. In such packages, three-dimensional circuitry is generated by combination of structured and metallized ceramic layers by means of tape casting and multilayer technology. During development and for quality assurance in manufacturing, characterization of integrity, deformation, and positioning of the inner metal features is necessary. Visualization with high resolution and material contrast is needed. Robot-assisted 3D-materialography is a useful technique to characterize such multimaterial structures. In that, many sections of the specimen are polished and imaged automatically. A three-dimensional representation of the structure is created by digital combination of the image stack. A quasi non-destructive approach is to perform X-ray computer tomography (CT) with different beam energies. The energies are chosen to achieve a good imaging of either the metal features, or the ceramic matrix of the structure. The combination of the respective tomograms results in a high contrast representation of the entire structure. Both methods were tested to characterize Ag and Ag/Pd conductors in a ceramic multilayer package. The results were compared in terms of information content, effort, and applicability of the methods. T2 - 98th DKG Annual Meeting - CERAMICS 2023 CY - Jena, Germany DA - 27.03.2023 KW - Ceramics KW - Synchrotron CT KW - 3D materialography PY - 2023 AN - OPUS4-57268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cysne Barbosa, Ana Paula A1 - Azevedo do Nascimento, Allana A1 - Pavasarytė, Lina A1 - Trappe, Volker A1 - Melo, D. T1 - Effect of addition of thermoplastic self-healing agent on fracture toughness of epoxy N2 - Self-healing agents have the potential to restore mechanical properties and extend service life of composite materials. Thermoplastic healing agents have been extensively investigated for this purpose in epoxy matrix composites due to their strong adhesion to epoxy and their ability to fill in microcracks. One of the most investigated thermoplastic additives for this purpose is poly(ethylene-co-methacrylic acid) (EMAA). Despite the ability of thermoplastic healing agents to restore mechanical properties, it is important to assess how the addition of thermoplastic healing agents affect properties of the original epoxy material. In this work, EMAA was added to epoxy resin and the effect of the additive on fracture toughness of epoxy was evaluated. Results indicate that although added in low concentrations, EMAA can affect fracture toughness. T2 - 6th Brazilian Conference on Composite Materials CY - Tiradentes, Minas Gerais, Brazil DA - 14.08.2022 KW - Epoxy KW - Self-healing KW - Thermoplastic KW - Fracture PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572707 SN - 978-65-00-49386-3 DO - https://doi.org/10.29327/566492 SN - 2316-1337 SP - 219 EP - 222 AN - OPUS4-57270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönauer-Kamin, D. A1 - Bresch, Sophie A1 - Paulus, D. A1 - Moos, R. T1 - Powder Aerosol deposited (PAD) calcium cobaltite as textured p type thermoelectric material N2 - Oxide thermoelectric semiconducting materials like p-type calcium cobaltite Ca3Co4O9 are investigated as oxidation- and temperature-resistant thermoelectric materials for thermoelectric generators (TEGs). To realize TEGs in planar film technology, the powder aerosol deposition (PAD) method is emerging recently. PAD is a method to obtain dense ceramic films directly from the synthesized starting powders without a subsequent high temperature step. In the present work, Ca3Co4O9 (CCO) powders are processed by PAD to ceramic films at room temperature. The thermoelectric properties of the films (film thickness 10 – 20 µm) are characterized from room temperature to 900°C. Additionally, the layer morphology and texture of the films will be investigated. As result, the Seebeck coefficient of the CCO-PAD film is comparable to pressed and sintered CCO-bulk materials during the 1st heating cycle to 900°C. The morphology of the films after the thermal treatment shows strong aligned crystallites resulting in a strong texture of the films. The electrical conductivity increases strongly during the 1st heating cycle to 900°C and stays almost constant afterwards. Compared to CCO-bulks, the films provide higher electrical conductivity which could be explained by the oriented crystal growth in-plane direction of the film. The relationship between thermoelectric properties and layer morphology as a function of thermal annealing parameters will be further investigated. T2 - KERAMIK 2023 / 98. DKG-Jahrestagung CY - Jena, Germany DA - 27.03.2023 KW - Layer depostion KW - Texture KW - Heat treatment PY - 2023 AN - OPUS4-57285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Thuy, Maximilian A1 - Brauch, N. A1 - Niebergall, Ute A1 - Alig, I. A1 - Oehler, H. A1 - Böhning, Martin T1 - Environmental Stress Cracking of PE-HD Induced by Liquid Test Media Representing Crop Protection Formulations N2 - Packaging containers for dangerous goods that include aggressive liquids require that any packaging material that is based on high-density polyethylene has a high degree of stability and durability. This work is focused on testing the environmental stress cracking of the high-density polyethylenes used for such containers in contact with crop protection formulations, in particular, two model liquids established in Germany as standardized test media representatives for crop protection formulations containing the various admixtures typical for such products. One of the liquids is water-based and contains mostly surface-active ingredients, while the other is solvent-based and includes some emulsifiers. Originally established for pin impression tests, these model liquids and their individual components were here used for the first time as environmental media in the Full Notch Creep Test, which addresses the resistance against environmental stress cracking. The Full Notch Creep Test was carried out on five high-density polyethylene types with both model liquids, and also on one selected material with its components. The evaluation was focused on the fracture surface structures, which were visualized by a scanning electron microscope and by optical in situ imaging of the notch opening. While the water-based model liquid and its surface-active individual components induced environmental stress cracking with the characteristic pattern for a craze-crack mechanism and so-called brittle fracture on the surface, the solvent-based model liquid and its soluble ingredients exhibited rather ductile failure behavior, caused by the plasticizing effect on the polymer that reduced the yield stress of the high-density polyethylene. For both cases, fracture surface analysis, together with side views of the crack opening, showed a clear relation between surface pattern, notch deformation (e.g., by blunting), or crack opening due to crack growth with time to failure and the solubility of the liquids in high-density polyethylene. KW - Environmental stress cracking KW - Fracture surface KW - Full Notch Creep Test KW - Crop protection formulations KW - High-density polyethylene PY - 2023 DO - https://doi.org/10.1520/STP164320210095 SP - 317 EP - 341 PB - ASTM International CY - West Conshohocken, PA (USA) AN - OPUS4-57459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Materials applications of iron aluminide (FeAl), (WAFEAL) T1 - Werkstoffanwendungen für Eisenaluminide (FeAl), (WAFEAL) N2 - The increasing importance of resource availability and closed-loop material cycles are driving materials research to reduce alloying content in conventional materials or even substitute them with more sustainable alternatives. Intermetallic iron aluminide alloys (FeAl) present a potential alternative. Many alloy concepts for improved high-temperature properties or ductility have already been successfully implemented in casting technologies on a laboratory scale. However, successful testing of FeAl alloys on an industrial scale was still pending at the beginning of the project. Therefore, the aim of the project was to develop simulation based casting concepts for industrial casting processes using the base alloy Fe-26Al-4Mo-0.5Ti-1B and to narrow down process limits by means of hot cracking tests. Findings were transferred into practice-oriented guidelines for casting of iron aluminides, which is accessible to future applicants in SMEs. The focus was placed on centrifugal casting combined with investment casting or die casting. In addition to numerous design and casting process parameters, heat treatments and alloying additions (Al, Mo, B) were varied to determine the influence of alloying elements on castability, microstructure and mechanical properties. Data from microstructure analyses (microscopic imaging, determination of grain sizes as well as phase compositions and volume fractions, fractography), mechanical tests (hardness measurements, compression tests, ambient and high-temperature tensile tests, creep tests) as well as measurements of thermophysical properties could be generated on the base alloy. Correlations of materials data with process variables allowed conclusions to be drawn on strengthening mechanisms and ductility of the alloy and how they can be controlled in terms of processing and component design. Successful casting of highly complex components with thin wall thicknesses and optimised alloy compositions points out prospects for new fields of application. N2 - Die zunehmende geopolitische Bedeutung der Ressourcenverfügbarkeit sowie die Anforderungen an einen geschlossenen Materialkreislauf treiben die Materialforschung voran, um konventionelle Werkstoffe mit weniger kritischen Zusätzen zu legieren oder sogar vollständig mit nachhaltigeren Alternativen zu substituieren. Eine potenzielle Alternative stellen die intermetallischen Eisenaluminid-Legierungen (FeAl) dar. Im Labormaßstab wurden bereits viele Legierungskonzepte für verbesserte Hochtemperatureigenschaften oder Duktilität erfolgreich gießtechnisch umgesetzt. Eine erfolgreiche Erprobung von FeAl-Legierungen im industriellen Maßstab stand zu Beginn des Projekts aber weiterhin aus. Ziel des Vorhabens war daher die Entwicklung von simulationsgestützten Gießkonzepten in industrienahe Gießprozesse anhand der Modelllegierung Fe-26Al-4Mo-0,5Ti-1B und die Eingrenzung der prozesstechnischen Verfahrensgrenzen durch Warmrissversuche. Erkenntnisse hieraus wurden in einen praxisorientierten, für zukünftige Anwender in KMUs zugänglichen Handlungskatalog für die gießgerechte Auslegung von Bauteilen aus Eisenaluminiden überführt. Fokus wurde insbesondere auf das Feinguss- und Kokillengussverfahren im Schleuderguss gesetzt. Neben zahlreicher Konstruktions- und Gießprozessparameter wurden auch Wärmebehandlungen und Legierungszusätze (Al, Mo, B) variiert, um den Einfluss von Legierungselementen auf Gießbarkeit, Mikrostruktur und mechanische Kennwerte zu bestimmen. Eine umfangreiche Basis an Daten aus Mikrostrukturanalysen (Mikroskopische Bildgebung, Bestimmung von Korngrößen sowie Phasenzusammensetzungen und -anteilen, Fraktographie), mechanischen Tests (Härtemessungen, Druckversuch, Zugversuch, Warmzugversuch, Kriechversuch) sowie Messungen thermophysikalischer Eigenschaften konnte für die Modelllegierung erzeugt werden. Korrelationen dieser Informationen mit Prozessvariablen erlaubten Schlussfolgerungen zu Härtungsmechanismen und Duktilität in der Legierung und wie sie prozesstechnisch in Gieß- und Bauteilauslegung gesteuert werden können. Der erfolgreiche Abguss von hochkomplexen Bauteilgeometrien mit dünnen Wandstärken sowie optimierte Legierungszusammensetzungen zeigen Perspektiven auf neue Anwendungsfelder auf. T2 - FVV Transfer + Netzwerktreffen | Informationstagung – Frühjahr 2023 CY - Würzburg, Germany DA - 29.03.2023 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Microstructure-property-correlation KW - High temperature mechanical properties KW - Creep data KW - Tensile data KW - Fractography KW - Casting PY - 2023 VL - R604 SP - 1 EP - 32 PB - FVV e. V. CY - Frankfurt a.M. AN - OPUS4-57247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Skrotzki, Birgit T1 - Materials Applications FeAl (WAFEAL) N2 - The increasing importance of resource availability and closed-loop material cycles are driving materials research to reduce alloying content in conventional materials or even substitute them with more sustainable alternatives. Intermetallic iron aluminide alloys (FeAl) present a potential alternative. Many alloy concepts for improved high-temperature properties or ductility have already been successfully implemented in casting technologies on a laboratory scale. However, successful testing of FeAl alloys on an industrial scale was still pending at the beginning of the project. Therefore, the aim of the project was to develop simulation-based casting concepts for industrial casting processes using the base alloy Fe-26Al-4Mo-0.5Ti-1B and to narrow down process limits by means of hot cracking tests. Findings were transferred into practice-oriented guidelines for casting of iron aluminides, which is accessible to future applicants in SMEs. The focus was placed on centrifugal casting combined with investment casting or die casting. In addition to numerous design and casting process parameters, heat treatments and alloying additions (Al, Mo, B) were varied to determine the influence of alloying elements on castability, microstructure and mechanical properties. Data from microstructure analyses (microscopic imaging, determination of grain sizes as well as phase compositions and volume fractions, fractography), mechanical tests (hardness measurements, compression tests, ambient and high-temperature tensile tests, creep tests) as well as measurements of thermophysical properties could be generated on the base alloy. Correlations of materials data with process variables allowed conclusions to be drawn on strengthening mechanisms and ductility of the alloy and how they can be controlled in terms of processing and component design. Successful casting of highly complex components with thin wall thicknesses and optimised alloy compositions points out prospects for new fields of application. T2 - FVV Transfer + Netzwerktreffen | Informationstagung – Frühjahr 2023 CY - Würzburg, Germany DA - 29.03.2023 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Microstructure-property-correlation KW - High temperature mechanical properties KW - Creep data KW - Tensile data KW - Fractography KW - Casting PY - 2023 AN - OPUS4-57248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Riechers, Birte A1 - Maaß, Robert T1 - nanoindentation data associated with the publication "On the elastic microstructure of bulk metallic glasses" in Materials&Design 2023 N2 - This dataset consists of indentation data measured with a conospherical tip in a Hysitron-Bruker TI980 Nanoindenter on the surface of a <100> Silicon wafer and a polished cross-sectional cut of a Zr65Cu25Al10 bulk metallic glass. It is associated with the following publication: Birte Riechers, Catherine Ott, Saurabh Mohan Das, Christian H. Liebscher, Konrad Samwer, Peter M. Derlet and Robert Maass "On the elastic microstructure of bulk metallic glasses" Materials and Design xxx, (2023) 111929. https://doi.org/10.1016/j.matdes.2023.111929 All experimental information can be found in this paper and in the accompanying supplementary information. This electronic version of the data was published on the "Zenodo Data repository" found at http://zenodo.org/deposit in the community "Bundesanstalt fuer Materialforschung und -pruefung (BAM)". The authors have copyright to these data. You are welcome to use the data for further analysis, but are requested to cite the original publication whenever use is made of the data in publications, presentations, etc. Any questions regarding the data can be addressed to birte.riechers@bam.de who would also appreciate a note if you find the data useful. KW - Metallic glasses KW - Nanoindentation KW - Elastic microstructure PY - 2023 DO - https://doi.org/10.5281/zenodo.7818224 PB - Zenodo CY - Geneva AN - OPUS4-57352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Shakeel, Yusra A1 - Olbricht, Jürgen A1 - Aversa, Rossella A1 - Skrotzki, Birgit T1 - NFDI-MatWerk PP18 / IUC02 Reference Data: Creep Data of a single crystalline Ni-Base Alloy N2 - Reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) of the consortium Materials Science and Engineering (MatWerk) of National Research Data Infrastructure (NFDI) aims to develop, together with BAM and other Participant Projects (PP), a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for identifying reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - All-Hands-on-Deck congress from the NFDI-MatWerk CY - Siegburg, Germany DA - 08.03.2023 KW - Referenzdaten KW - Reference data KW - Creep KW - Syngle Crystal alloy KW - Metadata schema PY - 2023 AN - OPUS4-57146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eddah, Mustapha A1 - Markötter, Henning A1 - Mieller, Björn A1 - Beckmann, Jörg A1 - Bruno, Giovanni T1 - Synchrotron Multi-energy HDR tomography for LTCC systems N2 - LTCCs (Low-temperature co-fired ceramics) consist of three-dimensionally distributed, hermetically bonded ceramic and metallic components with structure sizes within [10; 100] µm. A non-destructive imaging technique is needed that provides 3D, sharp, high-contrast resolution of these structures, as well as porosity and defect analysis, which is made difficult by the very different X-ray absorption coefficients of the individual components of the microstructure. A HDR method is being developed that allows a combination of different tomograms, each with X-ray energies adapted to individual materials. T2 - Bessy II User Meeting CY - Berlin, Germany DA - 22.06.2023 KW - LTCC KW - Synchrotron tomography KW - Data fusion KW - In-situ tomography PY - 2023 AN - OPUS4-57795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Höhne, Patrick A1 - Koppert, R. A1 - Mieller, Björn T1 - Thin-film capability of commercial LTCC N2 - Low-temperature co-fired ceramics (LTCC) are used to fabricate multilayer circuits which are robust in harsh environments. Thick-film technology is well established for the metallization of circuit boards and microsystems. For specific sensor applications, the combination of LTCC and thin-film technology is advantageous to reach higher structure resolutions. Due to the high roughness of as-fired LTCC surfaces compared with silicon-wafers, the deposition of low-defect- films with narrowly specified properties is challenging. The deposited thin-films are structured either by lift-off or by etching. The latter is less error-prone and thus preferred in industry provided the selected materials allow it. There is spare literature about thin films on commercial LTCC comparing different material systems or sintering techniques. For developing thin-film sensors on multilayer circuits it is crucial to identify thin-film-compatible commercial LTCC material as well as the crucial surface properties. In this work we evaluate the thin-film capability of different LTCC compositions and surface qualities. To evaluate the influence of the material composition on the thin film capability, 200 nm Ni-thin films were deposited on three different constrained-sintered LTCC (CT708, CT800 and DP951) by electron beam physical vapour deposition. The effect of surface quality was assessed by thin-film deposition on free-sintered, pressure-assisted sintered, and polished DP951. The thin-films were structured by covering corresponding sections with a UV-curable photo resin and subsequent etching of the uncovered surface, leaving behind the desired structure. The etched Ni-thin films showed high difference in failure rate and sheet resistance regarding the used LTCC-material. DP951 had the lowest sheet resistance and no failure, whereas CT800 had a high sheet resistance and a failure rate of 40 %. These results are correlated with surface roughness of the LTCC, scanning electron micrographs of the deposited thin-films, and the chemical resistance of the LTCC against commonly used etching media. Contrary to the expectations, no correlation between roughness and thin-film capability was found. The LTCC with high failure rate showed a strong chemical attack by the used etching medium. Additionally, the adhesion of thin-films on DP951 is better than on CT708 and CT800. T2 - XVIII EcerS Conference & Exhibition CY - Lyon, France DA - 02.07.2023 KW - Glass-ceramics KW - Etching KW - Resistance PY - 2023 AN - OPUS4-58019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Agudo Jácome, Leonardo T1 - Incipient Oxidation and Deformation Mechanisms of the Chemically Complex Alloy AlMo 0.5 NbTa 0.5 TiZr in the high temperature regime N2 - The development of refractory chemically complex alloys (rCCAs) has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy. It was named as “high entropy superalloy” as it resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. However, the continuous phase in Ni Base alloys is an fcc solution and the cuboidal γ’ precipitates present the L12 intermetallic structure. On the opposite, this CCA has a reversed microstructure where the continuous matrix is formed by an ordered B2 phase which contains cuboidal precipitates of a disordered BCC phase. Some of the most importat results of microstructural analysis, creep test and oxidation are presented in the following work. The as-cast sample shows a bcc/B2 structure with hexagonal phase precipitates in amorphous state whereas the annealed sample also shows a combination of these phases but with larger bcc precipitates and a fully crystallized hexagonal intermetallic. It was found that porosity was higher in the annealed samples (Kinkerdall effect) and the hardness was higher in samples with faster cooling rate due smaller nanostructure. Norton plots show both diffusion and dislocation controlled deformation, and it was found different kinetics between dry and humid air oxidation with the presence of spallation. T2 - CONVEMI 2021 (Venezuelan congress of microscopy and microanalysis) CY - Online meeting DA - 29.10.2021 KW - High entropy superalloys KW - Mechanical properties KW - Oxidation behavior KW - Microstructural analysis PY - 2021 AN - OPUS4-54382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Gadelmeier, C. A1 - Gratzel, U. A1 - Agudo Jácome, Leonardo T1 - High temperature and low stress creep behavior of the refractory chemically complex alloy AlMo 0.5 NbTa 0.5 TiZr N2 - The refractory chemically complex alloy (rCCA) AlMo0.5NbTa0.5TiZr, with a density of 7.4 g/cm3, shows a compressive ultimate strength of 772 MPa at 1000 °C, comparatively surpassing Ni-base and other rCCAs. Its dual-phase microstructure, with a high volume fraction (≈ 62%) of cuboidal and plate-like particles coherently embedded in a continuous matrix, resembles the well-known pattern of the γ/γ" in Ni-base superalloys. Its developers have thus implied that it could stand as structural alloy for high temperature (HT) applications. Here, we report the HT creep properties and the underlying microstructural changes of the rCCA AlMo0.5NbTa0.5TiZr to propose deformation and degradation micromecanisms for this regime. The material was produced by arc-melting and subsequently heat treated in argon: at 1400 °C for 24 h plus a hot isostatic pressure treatment at 1370 °C and 170 MPa for 4 h, with a cooling rate of 10 K/min. Miniaturized tensile specimens (≈ 28 x 7 x 2 mm) were cut and polished to a quality of 1 μm. Creep tests were conducted in vacuum in the respective temperature and stress range 800-1200 °C and 30-120 MPa. For observation, thin slices were extracted from the gauge length, away from the fracture surface, grinded to a thickness of 100 μm, and electropolished to electron transparency. The microstructure was observed on the electropolished specimens using scanning (S) as well as transmission (T) electron microscopy (EM). The Norton plot gives Norton exponents of about 3.1 and 3.2 for temperatures of 1000 and 1100 °C, respectively. Curiously, creep rate minima are very close for a stress level of 30. The starting microstructure reflects a macroscopically lean coarse grain structure and a microscopically fine-meshed basketweave structure with coherency dislocations only around coarsened particles usually close to subgrain boundaries. Results are discussed on the base of variations of this starting microstructure after interrupted and ruptured creep tests. T2 - 15th International Conference on Creep and Fracture of Engineering Materials and Structures CY - Online meeting DA - 14.06.2021 KW - Creep behavior KW - Chemically complex alloy KW - Cow stress PY - 2021 AN - OPUS4-53388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia T1 - I n situ monitoring of growing oxidation of the chemically complex alloy AlMo 0.5 NbTa 0.5 TiZr in the high temperature regime using synchrotron radiation Preliminary results N2 - The chemically complex alloys (CCAs) that contain mostly refractory elements (rCCAs), may be highly resistant to heat and load, which makes them attractive candidates for use at extremely high temperatures associated with many technological applications, e.g. aeroengine turbines. However, the field of CCAs, especially their resistance in harsh (oxidative) and hot environment is still young and not much experimental evidence for the understanding mechanisms in this regime is available, which the proposed study addresses. For safe use in structural applications, in addition to their mechanical performance, the environmental resistance of this alloy is also critical. Surface degradation can significantly decrease the mechanical resistance during high temperature exposure, leading to premature failure. The AlMo0.5NbTa0.5TiZr rCCA only contains Al as a protection candidate and it is composed of a coherent B2/bcc nanoscopic cube-on-cube interweave and an hexagonal phase. The evaluation of the oxidation process in the AlMo0.5NbTa0.5TiZr rCCA in the heat-treated state has not been assessed yet. The proposed study focusses on a deeper understanding of the formation mechanism and growth kinetics of oxides at high temperature in the AlMo0.5NbTa0.5TiZr rCCA using synchrotron radiation. Due to the envisaged high temperature structural applications, the alloy is evaluated in an oxidation environment specifically between 800°C and 1000°C. T2 - Large scale facility-based techniques SPP meeting CY - Online meeting DA - 02.11.2021 KW - Refractory chemically complex alloys KW - Oxidation behavior KW - Microstructural analysis KW - Synchrotron radiation PY - 2021 AN - OPUS4-54383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Gadelmeier, C. A1 - Gratzel, U. A1 - Agudo Jácome, Leonardo T1 - Creep Properties of the Refractory Chemically Complex AlMo 0.5 NbTa 0.5 TiZr Alloy N2 - The development of refractory CCAs has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy, which resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. The aim of this work is to evaluate the alloy’s mechanical behavior under tension in the temperature range 800-1000°C, by applying creep tests under vacuum (excluding oxidation effects). Some little temperature influence on minimum creep rate @ 1000 and 1100 °C was found and at a first glance, and Norton plots shows that deformation is probably both diffusion and dislocation controlled. However, further work is needed to stablish deformation and degradation micro mechanisms in the studied creep regime. T2 - SPP Kick-Off Meeting 2nd Phase CY - Online meeting DA - 14.04.2021 KW - Creep behavior KW - Chemically complex alloy KW - Microstructure PY - 2021 AN - OPUS4-53389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Sonnenburg, Elke T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additively Manufactured (AM) parts are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-propertiesperformance relationship. This work aims at providing a characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. A set of specimens has been produced by laser powder bed fusion (L-PBF) and a second set of specimens has been machined out of hot-rolled plates. The L-PBF material shows a higher fatigue limit and better finite life performance compared to the wrought material, accompanied by an extensive amount of cyclic softening. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - AM KW - 316L KW - Fatigue KW - High Cycle Fatigue KW - Low Cycle Fatigue PY - 2021 AN - OPUS4-53780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Navigating the Nanoworld: Understanding Materials Properties with the Transmission Electron Microscope N2 - The field of materials science is defined as “the study of the properties of solid materials and how those properties are determined by a material’s composition and structure.”. Many –if not most– of the materials that are produced nowadays owe their properties to structures engineered down to the nanoscopic level. This need has been partly realized thanks to the understanding of materials’ building blocks via characterization techniques that reach this level of resolution. Transmission electron microscopy, since its first implementation in the early 1930s (in Berlin), has been implemented to achieve imaging –and spectral– analysis at lateral resolutions down to the atomic level. In this contribution, a series of practical examples will be presented, where applied materials are characterized by a range of transmission electron microscopy techniques to understand structural and functional properties of a wide range of materials. Among these materials examples will be presented on structural conventionally and additively manufactured metallic alloys, high entropy alloys, dissimilar aluminum-to-steel welds, magnetic nanoparticles, ceramic coatings, high temperature oxidation products. Addressed will be either the effect of processing route or that of the exposure to experimental conditions similar to those found in the respective intended applications. T2 - UA/UAB/UAH MSE Graduate Seminar CY - Online meeting DA - 19.01.2022 KW - Transmission electron microscopy (TEM) KW - Characterization KW - Microstructure KW - 3D PY - 2022 AN - OPUS4-54238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmies, Lennart A1 - Bettge, Dirk A1 - Yarysh, Anna A1 - Sonntag, U. A1 - Botsch, B. A1 - Hemmleb, M. T1 - Using Machine Learning and Topographic SEM Imaging for Software Assisted Fractography N2 - The aim of a fractographic investigation is the evaluation of macroscopic and microscopic fracture surface characteristics and, as a result, the determination of the fracture mechanism of a component from a failure case. The basis for such evaluations of fracture characteristics comes from actual comparative mechanical testing and from the literature. A fractographic analysis can be very complex and, in any case, requires considerable experience. In the IGF project "iFrakto", software is being developed that quantitatively determines fracture characteristics and fracture mechanisms utilizing digitized expert knowledge, machine learning, and standard 2D and topographical data from SEM imaging. Topographical data are obtained from 4QBSE detector using shape-from-shading technology. In the medium term, a software tool should provide knowledge-based suggestions for the evaluation of fracture surfaces in real time during SEM work or at subsequent evaluation. As a basis for this, round robins were carried out among fractographers in order to create a knowledge base, to query the practice-relevant requirements for such tools and to carry out first practical tests. Actual results are presented and the relevance of the evaluation strategy is evaluated. T2 - Material Science and Engineering 2022 CY - Darmstadt, Germany DA - 27.9.2022 KW - Fractography KW - Machine Learning KW - Topography PY - 2022 AN - OPUS4-55938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hemmleb, M. A1 - Bettge, Dirk A1 - Schmies, Lennart A1 - Sonntag, U. A1 - Botsch, B. T1 - Integrated topographic SEM imaging for software assisted fractography N2 - The aim of a fractographic investigation is the evaluation of macroscopic and microscopic fracture surface characteristics and, as a result, the determination of the fracture mechanism of a component from a failure case. The basis for such evaluations of fracture characteristics comes from actual comparative mechanical testing and from the literature. A fractographic analysis can be very complex and, in any case, requires considerable experience. Machine learning methods enables the quantitative determination of fracture characteristics and fracture mechanisms utilizing digitized expert knowledge [1]. Although the application of SE images provides promising results, additional information is required to obtain reliable solutions. As expected, BSE and 3D information helps to improve the classification (Fig. 1). But only a fast, widely integrated, and automated topography measurement can provide the required amount of referenced surface data for the application of machine learning methods. To fulfil these requirements, topographical data are obtained from a BSE detector with four symmetric segments (4Q-BSE) using shape-from-shading technology [2]. Surface height calculation is performed live during image acquisition and provides immediate feedback in three dimensions. All available signals (SE, BSE and more if applicable) are recorded simultaneously together with the surface topography and stored in a multichannel data file. This guaranties the same geometrical reference for all data, which is required for further analysis (Fig. 2). When applying machine learning methods to topographic data together with SEM images, topographic information must be provided as depth image. Consequently, a unique height scale is required for all applied data with different magnifications. This requires a calibrated height measurement, which is ensured with the integrated 3D calibration of the topographic acquisition and a dedicated calibration sample. Thus, a large number of data sets from different fracture samples was generated and used as training data for machine learning. T2 - 16th Multinational Congress on Microscopy CY - Brno, Czech Republic DA - 04.09.2022 KW - Fractography KW - Machine Learning KW - Topography PY - 2022 AN - OPUS4-55937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclęga, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Dymek, S. T1 - Microstructure characterization of the Inconel 686 clad layer after high-temperature corrosion tests in aggressive gases and ashes N2 - The Ni-Cr-Mo-W alloy is characterized by the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. To protect the surface of the substrate 13CrMo4-5 steel against aggressive environments the Inconel 686 as clad layer was used. The corrosion process was performed in oxidizing mixture of gases like O2, COx, SOx. The second part of corrosion Experiment concerned the corrosion test of the coating in reducing atmosphere of the specified gases with ashes, which contained e.g. Na, Cl, Ca, Si, C, Fe, Al. T2 - Junior EUROMAT 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Laser Cladding KW - Inconel 686 KW - High temperature corrosion KW - Aggressive environement KW - Material oxidation PY - 2018 AN - OPUS4-45627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Agudo Jácome, Leonardo T1 - Thermodynamic study of a refractory complex concentrated alloy (rCCA) using the CALPHAD method N2 - Multi-principal-element alloys (MPEAs), have recently come to the attention of the scientific community due to their potential for improving properties such as, e.g. mechanical strength and oxidation resistance in high temperature structural applications. The AlMo0.5NbTa0.5TiZr refractory (r)CCA is one such candidate, showing a two-phase microstructure after a two-stage heat treatment under argon atmosphere at a controlled cooling rate. Since the application conditions intended for this alloy require a long-term high temperature (> 700 °C) mechanical and oxidation resistance, it becomes necessary to assess the possible phase development in this regime. The diagrams reveal that two BCC-based phases could form during alloy solidification, where one phase would be enriched with Mo, Nb and Ta while the other phase, with Al, Ti and Zr. Activity oxides diagrams show that a stable form of aluminum oxide (α-Al2O3, Pearson symbol: hR10, corundum) can be formed. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Chemically Complex Alloy KW - CALPHAD KW - Electromicroscopy PY - 2019 AN - OPUS4-50730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Dymek, S. A1 - Kranzmann, Axel T1 - Corrosion behaviour of Ni-Cr-Mo-W coatings in environments containing sulfur N2 - The ferritic steel 13CrMo4-5 due to good properties with relation to attractive price is frequently use in power plants industry. According EN10028-2 this steel can be used up to 570 °C because of its creep behavior but its corrosion resistance limits the use frequently to lower temperatures, depending on gas temperature and slag formation. The corrosion test were performed in environment containing mixture of gases like: O2, COx, SOx and ashes, with elements e.g. Na, Cl, Ca, Si, C, Fe, Al. Exposure time was respectively 240 h, 1000 h and 4500 h in temperature 600 °C. The oxide scale on the 13CrMo4-5 steel was significant thicker than for In686 coating and the difference increase according for longer exposure time. The microstructure, chemical and phase composition of the oxide scales were investigated by means of a light microscope, the electron scanning and transmission microscopes (SEM,TEM) equipped with the EDS detectors. T2 - Gordon Research Conference CY - New London, New Hampshire, USA DA - 21.07.2019 KW - High temperature KW - Corrosion resistance KW - Laser cladding KW - Inconel 686 KW - Aggressive environment PY - 2019 AN - OPUS4-49358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Yesilcicek, Yasemin A1 - Demir, E. A1 - Haas, S. A1 - Glatzel, U. T1 - Combining trace elements for microstructural optimization in the Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy N2 - Trace elements W and Hf have different influence on the microstructure and the mechanical properties when added to the Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy. The addition of both can thus merge both element’s beneficial influences when combined with the appropriate heat treatment: Hf enhances the cubicity of the γ’ particles in the γ matrix while the W reduces the negative influence of the Heusler phase: this phase can be completely dissolved when W is present in the alloy. T2 - ICHEM 2020 CY - Berlin, Germany DA - 27.09.2020 KW - High entropy alloys KW - Transmission electron microscopy KW - Lattice misfit KW - X-ray diffraction KW - Scanning electron microscopy PY - 2020 AN - OPUS4-51370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Klaus, M. A1 - Genzel, C. A1 - Schneider, J. A1 - Bruno, Giovanni T1 - The heat treatment of L-PBF Inconel 718: A manyfold problem N2 - The interest to additively manufacture Nickel-based superalloys has substantially grown within the past decade both academically and industrially. More specifically, additive manufacturing processes such as laser powder bed fusion (LPBF) offer the ability to produce dense parts within a single manufacturing step. In fact, the exceptional freedom in design associated with the layer-based nature of the processes is of particular interest for the complex shapes typically required in turbine applications. In certain cases, the overall part performance can be achieved by tailoring the microstructure and the crystallographic texture to the specific application. However, these advantages must be paid at a price: the large local temperature gradients associated with the rapid melting and solidification produce parts that inherently contain large residual stress in the as-manufactured state. In addition, the presence of pores in the final part may further affect the in-service part failure. As among Nickel-based alloys Inconel 718 exhibits excellent weldability, this alloy has been widely studied in open research in the domain of LPBF. However, significant microsegregation of the heavier alloying elements such as Niobium and Molybdenum accompanied by dislocation entanglements may preclude the application of conventional heat treatment schedules. Therefore, different post processing heat treatments are required for laser powder bed fused Inconel 718 as compared to conventional variants of the same alloy. In this study, we investigated two different heat treatment routes for LPBF Inconel 718. In a first routine, the samples were stress relieved and subsequently subjected to hot isostatic pressing (HIP) followed by a solution heat treatment and a two-step age (referred to as FHT). In a second routine, the samples were subjected to a single-step direct age post stress relieving heat treatment (referred to DA). We investigated the consequences of such heat treatment schedules on the microstructure, texture, and mechanical behavior. We show that by applying a DA heat treatment the typical columnar microstructure possessing a crystallographic texture is retained, while an equiaxed untextured microstructure prevails in case of an FHT heat treatment. We further evaluate how these heat treatments affect the mechanical behaviour on the macroscopic and microscopic scale. T2 - 4th European Symposium on Superalloys and their Applications EuroSuperalloys 2022 CY - Bamberg, Germany DA - 18.09.2022 KW - Electron Backscatter Diffraction KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Mechanical Behavior KW - Heat Treatment KW - X-Ray Diffraction PY - 2022 AN - OPUS4-55811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Tokarski, T. T1 - Lattice parameter determination with EBSD. Is that possible? N2 - CALM is software for determining the Bravais lattice type and the resulting lattice parameters from a single Kikuchi pattern. It requires the definition of 4 bands and a single bandwidth from which all other band positions as well as bandwidths are derived. For band detection, it uses the Funk transform, which allows detection of twice as many bands as usual. CALM works for any symmetry and requires low-noise patterns of at least 320x240 pixels. The resulting errors are <2% even for such small patterns, assuming good quality. The relative errors are <0.5%. However, this requires a projection centre position best derived from a sample of a cubic phase in CALM. However, this must have been recorded under identical conditions. Hundreds of Kikuchi patterns of phases with different symmetries were examined. T2 - Institutskolloquium Kassel CY - Online meeting DA - 30.10.2020 KW - Phasenidentifikation KW - EBSD KW - Gitterkonstanten PY - 2020 AN - OPUS4-51813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, Agnieszka A1 - Kranzmann, Axel A1 - Dymek, Stanislaw T1 - The microstructure characterization of the oxide scale created on Inconel 686 clad N2 - The Ni-Cr-Mo-W alloy is characterized by the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. To protect the surface of the substrate 13CrMo4-5 steel against aggressive environments the Inconel 686 as clad layer was used. The corrosion process was performed in oxidizing mixture of gases like O2, COx, SOx. The second part of corrosion Experiment concerned the corrosion test of the coating in reducing atmosphere of the specified gases with ashes, which contained e.g. Na, Cl, Ca, Si, C, Fe, Al. T2 - EUROCORR 2018 CY - Crocow, Poland DA - 09.09.2018 KW - Laser cladding KW - Inconel 686 coating KW - High-temperature corrosion KW - Aggressive gases PY - 2018 AN - OPUS4-47393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Werner, Tiago A1 - Zerbst, Uwe A1 - Sommer, Konstantin A1 - Sprengel, Maximilian A1 - Bergant, M. A1 - Evans, Alex A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Yawny, A. T1 - Damage Tolerant Approach in Additively Manufactured Metallic Materials N2 - Damage tolerance counts as one of the most widespread approach to fatigue assessment and surely as one of the most promising in understanding the process-structure-property-performance relationships in additively manufactured metallic materials. Manufacturing defects, surface roughness, microstructural features, short and long crack fatigue propagation, residual stresses and applied loads can be taken into consideration in a fracture mechanics-based fatigue assessment. Many aspects are crucial to the reliable component life prediction. Among those a prominent role is played by an accurate measurement and modelling of the short crack fatigue behavior, and reliable statistical characterization of defects and residual stresses. This work aims at addressing the issues related to both experimental testing, fatigue and fatigue crack propagation, and fracture mechanics-based modelling of fatigue lives. Examples will be provided on an additively manufactured AISI 316 L. T2 - TMS2021 VIRTUAL CY - Online meeting DA - 15.03.2021 KW - AISI 316L KW - Additive Manufacturing KW - Damage Tolerance KW - Microstructure KW - Defects KW - Residual Stress PY - 2021 AN - OPUS4-52293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Haas, S. A1 - Glatzel, U. T1 - Tuning high entropy alloys towards superalloy applications N2 - The discovery of the high entropy concept at the beginning of the 3rd millennium lead to a worldwide increase in metallurgical research, as the possible element combinations seemed nearly endless and the range of applications wide. In the early years of research, one of the main goals was the discovery of a single-phase high entropy alloy. As research evolved, it was found that properties could be enhanced by opening the HE-concept towards multiphase alloys, and from the wide area of possibilities our group chose a tuning of the properties towards high temperature application. Compositionally complex Al10Co25Cr8Fe15Ni36Ti6 alloy, which is single-phase at high temperature, around 1200°C, shows a three phase morphology at intermediate temperatures, around 800°C. A high temperature homogenization procedure has to be applied in order to decrease the segregation induced by the dendritic growth. Subsequent annealing promotes the formation of the strengthening γ' precipitates. The alloy shows a positive lattice misfit between the γ and the γ' phase, which can be an indicator for good creep properties. The microstructure can be optimized by adding trace elements such as Mo and Hf, known as γ and γ' strengtheners in Ni-based superalloys, respectively. Atom probe measurements show that Mo segregates into the γ matrix, and Hf prefers the γ' precipitates, where it increases the lattice parameter and thus also the lattice misfit, by about 50%. The alloy family shows interesting mechanical properties, especially the Al9.5Co25Cr8Fe15Ni36Ti6Hf0,5 alloy – its tensile properties are better than those of commercial Alloy 800H and IN617 at temperatures up to 700°C. T2 - BAM Abteilungsseminar CY - Online meeting DA - 21.01.2021 KW - High entropy alloys KW - Compositionally complex alloys KW - Superalloys KW - Hochentropie-Legierung KW - Legierung mit komplexer Zusammensetzung KW - Superlegierung PY - 2021 AN - OPUS4-52442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Nolze, Gert T1 - Microstructure analysis in AM 316L N2 - Additive manufacturing (AM) offers diverse advantages compared to conventional manufacturing. In this work the microstructure of austenitic steel 316L, manufactured with Selective Laser Melting (SLM), was analyzed and compared to microstructure of 316L hot rolled material. Methods used for analysis are microprobe, optical microscopy and electron backscatter diffraction. T2 - BAM workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - 316L KW - selective laser melting KW - microstructure analysis PY - 2019 AN - OPUS4-49880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -