TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Hollesch, Martin A1 - Börner, Andreas T1 - Keramikfedern – Herstellung, Eigenschaften und Applikation N2 - Entwickelt wurde eine mehrstufige Fertigungstechnologie (Schruppen, Schlichten, Trennschnitt) zur Herstellung keramischer Federn aus gesinterten Hohlzylindern. Durch Optimierung von Maschinenparametern, Schleifscheiben sowie Werkstück- und Werkzeugaufnahmen ist es gelungen, Federn aus Hochleistungskeramik (Aluminiumoxid und Zirkonoxid) mit hoher Kanten- und Oberflächenqualität reproduzierbar herzustellen. Eine hohe Variabilität bezüglich Außen- und Innendurchmesser, Steigung, Windungsquerschnitt und Abstand zwischen den Windungen ermöglicht es, die Federkonstante über drei Größenordnungen zu variieren. Untersucht wurden Federstabilität und Spannungs-Dehnungs-Verhalten unter konstanter und zyklischer Druckbelastung sowie die thermomechanische Stabilität der Keramikfedern. Aluminiumoxid-Federn können bis etwa 800°C, Zirkonoxid-Federn bis etwa 600°C ohne bleibende geometrische Verformung eingesetzt werden. Unter konstanter Spannung zeigen Federn aus Y-stabilisiertem TZP (Zirkonoxid)-Werkstoffen, von anderen Keramikwerkstoffen abweichend, bei Raumtemperatur eine zeitabhängige, elastische, Verformung (Superelastizität), die nach Entlastung über einen Zeitraum von mehreren Stunden reversibel verläuft. Als Ursache wird eine spannungsinduzierte reversible Phasenumwandlung zwischen austenitischer (tetragonales ZrO2) und martensitischer (monoklines ZrO2) Phase postuliert. Diskutiert wird das Anwendungspotenzial der entwickelten Federn für kapazitive keramische Federsensoren für Gravimeter und Wägetechnik. T2 - AK-Sitzung "Keramikbearbeitung" des Fraunhofer IPK CY - Berlin, Germany DA - 27.09.2018 KW - Keramikfeder KW - Spannungs-Dehnungs-Verhalten KW - Zyklische Belastung KW - Thermomechanische Eigenschaften KW - Fertigungstechnologie PY - 2018 AN - OPUS4-46231 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Kratzig, Andreas A1 - Peetz, Christoph A1 - Kranzmann, Axel T1 - Interaction of Oxidizing and Reductive Impurities in CO2 Streams with Transport Pipeline Steel N2 - A main goal of CLUSTER CCS project at BAM was to study the corrosion behaviour of pipeline steel with dense phase carbon dioxide containing impurities. Depending on the kind of impurities specific corrosion mechanisms and corrosion rates were determined. T2 - CO2 and H2 Technologies for the Energy Transition CY - BAM, Berlin, Germany DA - 28.11.2018 KW - Carbon capture KW - Carbon dioxide KW - Corrosion KW - CCS PY - 2018 AN - OPUS4-47016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.09.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion PY - 2019 AN - OPUS4-49302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Paulick, C. T1 - Development of ceramic helical springs for sensor applications N2 - At high temperatures and in harsh environments ceramic springs are often superior to metallic ones and allow for innovative solutions. A further application was proposed by using ceramic springs as capacitive force sensor. Lower and upper coil surfaces are coated by electrically conducting layers. Deformation of such spring results in a change of capacity. Sensor application calls for helical springs with rectangular cross-section, a linear stress-strain characteristic over entire deformation range and low manufacturing tolerances relating to inner and outer diameter, coil cross section and spring pitch. Furthermore, complex spring design with integrated connecting elements has to be realized. Alumina, zirconia (Y-TZP) and silicon nitride springs were produced by hard machining starting from sintered hollow cylinders. After external and internal cylindrical grinding the hollow cylinders were filled with hard wax, followed by multi-stage cutting of spring coils with custom-made cutting discs. Finally, hard wax was removed by melting and burnout. Best surface and edge qualities of springs were reached using Y-TZP material and hot isostatic pressed alumina. Y-TZP springs produced with material-specifically selected cutting discs and optimized process parameters show sharp coil edges without spallings and mean roughness values of inner surfaces < 0.2 μm. Manufacturing tolerances of spring diameters, spring pitch, height and width of coil cross section are in the range of ± 10 microns. Good reproducibility of spring geometry by optimized hard machining technology allows for production of Y-TZP springs with spring constants differing less than ± 1 % within a series. According to DIN 2090 spring constant for rectangular coil cross section is proportional to the square of height and width of coil cross section and indirectly proportional to number of active coils and to the cube of the mean spring diameter. Hence, spring constants can be tailored over a range of many orders of magnitude by changing the spring dimensions. Good agreement was reached between calculated target spring constants and measured values on produced springs. Alumina and zirconia springs were characterized relating to deformation behavior under dynamic compression load with various deformation speeds and under static tensile loads over long periods of time. Contrary to alumina springs, a non-linear stress-strain behavior of TZP springs was proved in both test series. It is supposed, that pseudoelasticity caused by stress-induced transformation of tetragonal to monoclinic phase is responsible for this special feature of TZP springs. Therefore, TZP material cannot be used for capacitive spring sensors. T2 - European Ceramic Society Conference (ECerS) CY - Torino, Italy DA - 16.06.2019 KW - Ceramic spring KW - Sensor KW - Spring constant KW - Failure test KW - Microstructure PY - 2019 AN - OPUS4-48610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößenverteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip des Zentrifugen-Sedimentationsverfahrens erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Es schließen sich umfangreiche Ausführungen zur praktischen Durchführung der Messung, insbesondere auch zu den vorbereitenden Arbeiten, sowie zur Auswertung der Rohdaten an. Nach einem Vergleich der Ergebnisse mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 03.06.2019 KW - Nanomaterial KW - Partikelgrößenverteilung KW - Analytische Zentrifuge PY - 2019 AN - OPUS4-48286 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Evaluation of a multi-purpose measurement cell for standardized volume resistivity measurements at high temperatures N2 - The ProboStat is a multi-purpose measurement cell suitable for various electrical and physical measurements under different atmospheres and at high temperatures. Disc and bar shaped samples are sandwiched between platinum electrodes at the top of the tubular cell. The gas tight assembly can be inserted into a furnace. Different gases can be flushed through the tube. For this study, a ProboStat was adapted to measure volume resistivity of ceramic insulators at high temperatures according to standards. The standardized measurement of volume resistivity of ceramic insulators requires the consideration of many specifications including sample diameter, thickness, electrode design, and the proportion of these characteristics. Measurements are ideally performed in a state of dielectric equilibrium. The time-related slope of resistivity of a specific sample follows a power function. Thus, care must be taken when choosing a charge time or defining the duration of a measurement. As fringing of the guarded electrode occurs under high voltage, the effective electrode area for evaluation of the results should be corrected with respect to sample thickness and electrode design. The demands of effective standards on sample geometry and electrode design are stricter for room temperature measurements than for high temperature measurements. To perform high temperature measurements on ceramic samples that also fulfill the demands on room temperature measurements, a ProboStat was equipped with a dedicated large sample setup for discs with diameters of up to 60 mm. The volume resistivity of different alumina samples was first measured at room temperature in a standard test fixture and then compared to results obtained with the ProboStat. All measurements were performed for at least 100 min using a 26 mm guarded electrode. High temperature measurements at 500 °C were performed using the same samples. Room temperature values obtained with the standard test fixture are in the order of 10^17 Ohm·cm. The quantitative effect of electrode area correction is presented. Practical issues related to the use of the multi-purpose cell are addressed. These include electrode material selection, application of electrodes, and compensation of leakage currents. High temperature results of volume resistivity of the different alumina samples are presented. The validity is discussed with respect to the suitability of the multi-purpose cell for such measurements. T2 - XVI Conference and Exhibition of the European Ceramic Society (ECerS 2019) CY - Torino, Italy DA - 16.06.2019 KW - ceramics KW - alumina KW - volume resistivity PY - 2019 AN - OPUS4-48270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Tielemann, Christopher A1 - Busch, R. A1 - Patzig, C. A1 - Müller, Ralf A1 - Höche, T. T1 - Oriented surface crystallization in 18BaO·22CaO·60SiO2 and MgO·CaO·2SiO2 glasses N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. The vast majority of previous work does not consider possible effects of surface preparation and surrounding atmosphere. Moreover, very few observations of surface crystal orientation were made on separately grown crystals. The aim of our project is to advance the basic understanding of oriented surface crystallization, e.g. whether preferred orientation of surface crystals results from oriented nucleation or reorientation mechanisms during early crystal growth. In both cases, crystal orientation may reflect the orientation of the glass surface or that of anisotropic active surface nucleation sites. Therefore, we focus on orientation of surface crystals separately growing under controlled conditions. First results on diopside (MgCaSi2O6) and walstromite (BaCa2Si3O9) crystals growing from 18BaO·22CaO·60SiO2 and MgO·CaO·2SiO2 glass surfaces, respectively, indicate that different orientation mechanisms may occur. Neighbored walstromite crystals were found to gradually reorient themselves when they are going to impinge each other during stepwise isothermal treatments (log η = 4,5 Pa*s) of polished glass samples. Nevertheless, no preferred crystal orientation was evident for separate crystals. For diopside crystals growing from polished glass surfaces (1 μm diamond lapping foil), strong preferred orientation was observed for 3.5 to 85 min annealing at 850 °C. Electron Backscatter Diffraction (EBSD) studies showed that the c-axis of surface crystals is oriented parallel to the glass surface and that separated diopside crystals as small as 600 nm are already oriented. Studies on glass surfaces, polished with diamond lapping foils starting from 16 μm down to 1 μm grain, revealed that crystal orientation may scatter arround this preferential orientation and that this scatter progressively decreases with decreasing polishing grain size. T2 - 93rd Annual Meeting of the German Society of Glass Technology (DGG) in conjunction with the French Union for Science and Glass Technology (USTV) Annual Meeting CY - Nuremberg, Germany DA - 13.05.2019 KW - Surface crystallization KW - Orientation KW - Glass KW - Diopside PY - 2019 AN - OPUS4-48198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Agea-Blanco, Boris A1 - Blaeß, Carsten A1 - Waurischk, Tina T1 - Sintering and foaming of silicate glass powders N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites, glass bonded ceramics or pastes. Powder processing, however, can substantially affect sinterability, e.g. by promoting surface crystallization. On the other hand, densification can be hindered by gas bubble formation for slow crystallizing glass powders. Against this background, we studied sintering and foaming of silicate glass powders with different crystallization tendency for wet milling and dry milling in air, Ar, N2, and CO2 by means of heating microscopy, DTA, Vacuum Hot Extraction (VHE), SEM, IR spectroscopy, XPS, and ToF-SIMS. In any case, foaming activity increased significantly with progressive milling. For moderately milled glass powders, subsequent storage in air could also promote foaming. Contrarily, foaming could be substantially reduced by milling in water and 10 wt% HCl. Although all powder compacts were uniaxially pressed and sintered in air, foaming was significantly affected by different milling atmosphere and was found most pronounced for milling in CO2 atmosphere. Conformingly, VHE studies revealed that foaming is mainly driven by carbonaceous species, even for powders milled in other gases. Current results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. T2 - IMAPS/ACerS 15th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT 2019) CY - Shanghai, China DA - 16.04.2019 KW - Glass powder KW - Sintering KW - Foaming PY - 2019 AN - OPUS4-48196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Knauer, S A1 - Bäßler, Ralph A1 - Peetz, Christoph A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Jaeger, P A1 - Schulz, S T1 - Impact of acid condensation on wetting and corrosion behavior of CO2 transport-pipeline steel N2 - Es ist allgemein akzeptiert, das Korrosion in CO2-Transport-Pipelines vernach¬lässigbar ist, solange der Wassergehalt des CO2-Stroms deutlich unter der maximal löslichen Menge liegt. Bisher gibt es keinen allgemeinen Konsens darüber, welcher maximale Wassergehalt in zu transportierendem CO2 zugelassen werden sollte. Bei einem Druck von 100 bar und im Temperaturbereich von 277 K bis 298 K beträgt die Löslichkeit von Wasser in CO2 ca. 1.900 bis 3.200 ppmv, aber die Korrosionsrate von Stählen steigt schon ab einem Wassergehalt von 500 ppmv deutlich an. Bei Anwesenheit von Begleitstoffen wie SO2, NO2 und O2, können sich HNO3, H2SO3 und H2SO4 bilden. Menge und Zusammensetzung von kondensierter Säure sind von der Gaszusammensetzung abhängig, und der Korrosionsmechanismus und die Korrosionsform sind vom Kondensationsverhalten abhängig. T2 - CLUSTER Symposium: CO2 and H2 Technologies for the Energy Transition CY - BAM, Berlin, Germany DA - 28.11.2018 KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Droplet corrosion PY - 2018 AN - OPUS4-46907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza A1 - Rockenhäuser, Christian A1 - Saxena, A. A1 - Skrotzki, Birgit A1 - Umer Bilal, M. A1 - Ramirez, Daniela Valencia A1 - Schwarze, C. A1 - Häusler, I. T1 - Chemo-mechanical Coupling Effect During Precipitation in AlLi and AlLiCu systems N2 - The chemo-mechanical coupling effect during precipitation in AlLi and AlLiCu systems is presented and effects of chemo-mechanical coupling on materials with different microstructures is discussed. The results of the simulations are then compared to electron-microscopical investigations. T2 - Plenary meeting DFG Priority program 1713 ("Chemomechanics") CY - Bochum, Germany DA - 17.12.2018 KW - Al-Li alloys KW - Phase field simulation KW - Precipitation KW - Inverse ostwald ripening KW - Transmission electron microscopy PY - 2018 AN - OPUS4-46961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer A1 - Charmi, Amir T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work presents a method for the yield function determination of additively manufactured parts of S316L steel. A crystal plasticity model is calibrated with test results and used afterwards to perform so-called virtual experiments, that account for the specific process-related microstructure including crystallographic and morphological textures. These simulations are undertaken on a representative volume element (RVE), that is generated from EBSD/CT-Scans on in-house additively manufactured specimen, considering grain structure and crystal orientations. The results of the virtual experiments are used to determine an anisotropic Barlat yield function, that can be used in a macroscopical continuum-sense afterwards. This scale-bridging approach enables the calculation of large-scale parts, that would be numerically too expensive to be simulated by a crystal plasticity model. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2018 AN - OPUS4-46895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Czediwoda, Fabian A1 - Fedelich, Bernard A1 - Stöhr, B. A1 - Göhler, T. A1 - Völkl, R. A1 - Nolze, Gert A1 - Glatzel, U. T1 - A numerical approach to model high-temperature creep behaviour of Ni-base superalloys from microstructural morphology to grain size scales N2 - A constitutive model for the mechanical behaviour of single crystal Ni-base superalloys under high temperature conditions has been developed in the framework of a Cooretec project in cooperation with Siemens AG, MTU Aero Engines AG and University Bayreuth. In addition to the conventional material properties e.g. elastic constants, the model requires the parameters of the initial microstructure as an input. Thus, the γ’-precipitate size and the channel width of the γ-matrix were obtained from SEM micrographs. The model uses the slip system theory and describes the movement, multiplication and annihilation of dislocations in the channels. Furthermore, the cutting of precipitates is another mechanism contributing to the plastic flow. The evolution of the morphology due to rafting and its effects on the deformation have been implemented according to. The kinematic hardening is introduced as a stress tensor to realistically represent the strain hardening of arbitrary oriented single crystals. The mechanical behaviour of single crystal specimens has been experimentally investigated in tension tests at different strain rates and in creep tests under various loads. The constitutive model has been calibrated based on the experimental data for temperatures of 950°C and 850°C and the [001] and [111] crystallographic orientations. Finally, a micromechanical model was created to simulate the creep response of additive manufactured polycrystalline structures. An EBSD image is taken to obtain the grain geometry and their respective orientation. The grain boundaries are discretised using cohesive elements, whereas the single crystal model was applied to each grain in the representative volume. The polycrystal model is generated using Dream3D, NetGen and other software previously developed at the BAM. T2 - 6th European Conference on Computational Mechanics (ECCM 6) CY - Glasgow, UK DA - 11.06.2018 KW - Nickel-base superalloy KW - Creep KW - Rafting KW - Viscoplasticity KW - EBSD KW - Grain boundaries PY - 2018 AN - OPUS4-46973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Schmitz, Sebastian T1 - Risserkennung an Bohrlochproben N2 - Es wird eine neu entwickelte Methode zur Thermographiebasierten Rissmessung vorgestellt. Darüber hinaus wird eine numerische Vorarbeit präsentiert, die zeigt, dass anhand der gemeisamen Auswertung der Versuchsdaten aus unterschiedlicher Sensorik die Möglichkeit besteht, die unter Ermüdungsbelastung in Bohrlochproben auftretenden Risse in Geometriekategorien zu unterteilen. T2 - Tagung Werkstoffprüfung 2018 CY - Bad Neuenahr, Germany DA - 06.12.2018 KW - LCF KW - Crack KW - Data Fusion KW - Thermographie PY - 2018 AN - OPUS4-46977 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Bettge, Dirk T1 - Defects as a root cause for fatigue failure of metallic components N2 - The Topic of the presentationis a discussion on defects which can cause failure in cyclically loaded metallic components. Although also touching Features such as material defects such as pores or micro-shrinkages, etc. and geometric defects such as surface roughness and secondary notches (which are not considered in the design process) which origin in manufacturing, and others the presentation concentrates on non-metallic inclusions. It is prefaced by an introduction to the life cycle of a fatigue crack from initiation up to fracture. Special emphasis is put on the fact that only cracks which are not arrested during one of their distinct Propagation stages can grow to a critical size. T2 - VIII. International Conference on Engineering Failure Analysis CY - Budapest, Ungarn DA - 08.06.2018 KW - Metallic components KW - Material defects KW - Micro-shrinkages PY - 2018 AN - OPUS4-46875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni T1 - Residual stress formation in selective laser melted parts of alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotron- and the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates a dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from both X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - Forschungsseminar OvGU Magdeburg CY - Magdeburg, Germany DA - 15.11.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-46876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Schadow, Florian A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Air-coupled ultrasonic ferroelectret transducers with additional bias voltage for testing of composite structures N2 - Common air-coupled transducers for non-destructive testing consist of a piezocomposite material and several matching layers. Better acoustical matching to air is achieved by transducers based on charged cellular polypropylene (PP). This material has about hundred times lower acoustic impedance than any piezocomposite, having about the same piezoelectric coefficient. The piezoelectric properties of cellular PP are caused by the polarization of air cells. Alternatively, a ferroelectret receiver can be understood as a capacitive microphone with internal polarization creating permanent internal voltage. The sensitivity of the receiver can be increased by applying additional bias voltage. We present an ultrasonic receiver based on cellular PP including a high-voltage module providing bias voltage up to 2 kV. The application of bias voltage increased the signal by 12 to 15 dB with only 1 dB increase of the noise. This receiver was combined with a cellular PP transmitter in through transmission to inspect several test specimens consisting of glass-fiber-reinforced polymer face sheets and a porous closed-cell PVC core. These test specimens were inspected before and after load. Fatigue cracks in the porous PVC core and some fatigue damage in the face sheets were detected. These test specimens were originally developed to emulate a rotor blade segment of a wind power plant. Similar composite materials are used in lightweight aircrafts for the general aviation. The other inspected test specimen was a composite consisted of glass-fiber-reinforced polymer face sheets and a wooden core. The structure of the wooden core could be detected only with cellular PP transducers, while commercial air-coupled transducers lacked the necessary sensitivity. Measured on a 4-mm thick carbon-fiber-reinforced polymer plate, cellular PP transducers with additional bias voltage achieved a 32 dB higher signal-to-noise ratio than commercial air-coupled transducers. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 26.10.2018 KW - Airborne ultrasonic testing KW - Air-coupled ultrasonic testing KW - Ferroelectret KW - Composites KW - Rotor blade PY - 2018 AN - OPUS4-46656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Behrens, H. A1 - Deubener, J. T1 - The influence of volatile constituents on mechanical properties of glasses N2 - Im Rahmen des Young Researcher Day des SPP1594 wurden die bisherigen Inhalte der Projekte zusammengefasst und vorgetragen. T2 - Annual Meeting and Young Researcher Day CY - Jena, Germany DA - 11.09.2018 KW - Glass KW - Crack growth KW - Vickers KW - DCB KW - Water speciation PY - 2018 AN - OPUS4-46728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Portella, Pedro Dolabella T1 - Fraktographische online-Datenbank: Beispiele Kunststoffe N2 - Im Rahmen der DGM/DVM AG Fraktographie wird an der BAM eine fraktographische online-Datenbank aufgebaut. Während von metallischen Werkstoffen viele Beispiele vorliegen, die auch gut verstanden sind, sind die Brüche von Kunststoffen bislang weniger prominent vertreten. Eine teils ungeklärte Frage ist, in welcher Form sich an Kunststoffen klassische Schwingbrüche nachweisen lassen, wie sie von metallischen Werkstoffen bekannt sind. Der Vortrag zeigt einige Beispiele im Detail und stellt diese zur Diskussion. T2 - VDI Expertenkreis Kunststoffe CY - Wuppertal, Germany DA - 08.11.2018 KW - Schwingbrüche KW - Kunststoffe KW - Fraktographie PY - 2018 AN - OPUS4-47388 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Portella, Pedro Dolabella A1 - Buggisch, Enrico A1 - Schneider, Hannes T1 - Fraktographische online-Datenbank: Erste Ergebnisse aus Schwingversuchen an Sinterstählen N2 - Im Rahmen der Erstellung einer fraktographischen online-Datenbank an der BAM wurden systematisch Schwingversuche an einem Sinterstahl vorgenommen, dessen Sinterdichte variiert wurde. Die erzeugten Bruchflächen wurden analysiert, mit der Literatur verglichen und Datensätze in die Datenbank eingefügt. T2 - VDI Expertenkreis Sinterstähle CY - Berlin, Germany DA - 12.04.2018 KW - Fraktographie PY - 2018 AN - OPUS4-47389 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, Agnieszka A1 - Kranzmann, Axel A1 - Dymek, Stanislaw T1 - The microstructure characterization of the oxide scale created on Inconel 686 clad N2 - The Ni-Cr-Mo-W alloy is characterized by the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. To protect the surface of the substrate 13CrMo4-5 steel against aggressive environments the Inconel 686 as clad layer was used. The corrosion process was performed in oxidizing mixture of gases like O2, COx, SOx. The second part of corrosion Experiment concerned the corrosion test of the coating in reducing atmosphere of the specified gases with ashes, which contained e.g. Na, Cl, Ca, Si, C, Fe, Al. T2 - EUROCORR 2018 CY - Crocow, Poland DA - 09.09.2018 KW - Laser cladding KW - Inconel 686 coating KW - High-temperature corrosion KW - Aggressive gases PY - 2018 AN - OPUS4-47393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Pöthkow, K. A1 - Paetsch, O. A1 - Hege, H.-C. T1 - 3D reconstruction and quantification of dislocation substructures from TEM stereo pairs N2 - Dislocations are the carriers of plastic deformation. As such, their characterization offers important information on the properties they affect. In this contribution, a new tool is presented, which is incorporated in Amira ZIB Edition and allows for three-dimensional (3D) imaging and quantification of dislocations substructures from thick regions an electron-transparent specimen. In the tool, the dislocation segments are traced on diffraction contrast images that are obtained in the transmission electron microscope (TEM). The uncertainties related to the experimental setup and to the proposed method are discussed on the base of a tilt series. T2 - AVIZO / AMIRA User Meeting CY - Berlin, Germany DA - 14.11.2018 KW - Dislocation KW - Diffraction contrast KW - Scanning transmission electron microscopy (STEM) PY - 2018 AN - OPUS4-47394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David T1 - Einfluss thermischer Lasten auf die Schädigung von Faser-Kunststoff-Verbunden N2 - Faser-Kunststoff-Verbunde (FKV) werden zunehmend in der Luft- und Raumfahrt, der Automobil- und Windenergieindustrie eingesetzt. Die hier entwickelten Bauteile sind oft nicht nur multiaxialen mechanischen Belastungen, sondern auch hohen klimatischen Beanspruchungen ausgesetzt. Einsatztemperaturen zwischen -60°C und 100°C bei 10-90% relativer Feuchte sind keine Seltenheit, in der Raumfahrt sind die thermischen Belastungen noch extremer. Die Auswirkungen einer Wechselwirkung extremer klimatischer Beanspruchungen mit multiaxialen mechanischen Belastungen wurden bisher kaum betrachtet. Das Ziel des Projektes ist die Untersuchung des Ermüdungsverhaltens der Faser-Kunststoff-Verbunde in Abhängigkeit von multiaxialer mechanischer Belastung, Temperatur und Feuchte. Dazu werden umfangreiche experimentelle Untersuchungen an Flach- und Rohrproben sowie numerische und analytische Berechnungen durchgeführt. Im Rahmen des Seminarvortrags wird eine mikromechanische Modellierung der thermischen Eigenspannungen innerhalb des FKV vorgestellt, welche anhand eines Finite-Elemente-Modells validiert wird. Zur Bestimmung einer Schädigungsgrenze werden verschiedene Energieansätze diskutiert, welche anschließend mit den experimentell erhaltenen Ergebnissen im Temperaturbereich zwischen -60 °C und 70 °C verglichen werden. Dabei wird gezeigt, dass mithilfe der mikromechanischen Formulierung eine temperaturunabhängige Masterschädigungslinie für quasistatisch belastete Probekörper abgeleitet werden kann. Des Weiteren können Elastizitäten und Festigkeiten in Abhängigkeit der Temperatur mit den mikromechanischen Mischungsregeln bestimmt werden. So kann der experimentelle Aufwand beim Nachweis thermomechanisch belasteter Strukturen reduziert werden. Ein ähnlicher Ansatz wird für schwingende Ermüdungsbelastung bei verschiedenen Umgebungstemperaturen diskutiert und experimentell überprüft. T2 - Kolloquium Luftfahrzeugbau und Leichtbau, TU Berlin CY - Berlin, Germany DA - 18.02.2019 KW - Composite KW - Ermüdung KW - Faser-Kunststoff-Verbunde KW - Thermomechanik KW - Schädigung PY - 2019 AN - OPUS4-47405 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Nützmann, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Menneken, Martina A1 - Falk, Florian T1 - High temperature oxidation/sulfidation meets X-ray absorption near edge structure spectroscopy (XANES) N2 - Ferritic-martensitic alloys with 12-16 % Cr in weight are subject to devices for various energy systems, such as coal power plants and waste incineration plants. These materials are exposed to a highly corrosive environment which lead to a degradation of the material. Especially the simultaneous oxidation and sulfidation is thereby of special interest. Proper spatially resolved measurements that determine not only chemical compositions but phases are rare. However, precise phase identification and quantification of corrosion products within the multi-phase corrosion scales is a key aspect to understand diffusion paths of metal ions and gas ions/molecules. This study investigated Fe-Cr model alloys with Cr contents from 0 to 13 % in weight in 0.5 % SO2 and 99.5 % Ar atmosphere to aim in a fundamental and systematic analysis. Samples were aged at 650 °C for time scales from 12 h to 250 h. The results presented here correspond to depth dependent phase identification of oxide and sulphide phases in the corrosion scales by using X-ray absorption near edge spectroscopy (XANES). Per sample a series of ca. 20 spots (1-5 µm spot size) from scale-gas to scale-metal interface were measured. XANES spectroscopy was performed at the Fe-K edge (7.11 keV) on polished cross sections. The collected spectra were fitted to a combination of reference materials to quantify the present phases at different positions within the scale.The phase distribution differs with Cr content and the Cr diffusion through pure Fe-oxide and mixed Fe-Cr-oxide phases is discussed. T2 - EFC Workshop "High Temperature Corrosion" CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - High temperature corrosion KW - XANES PY - 2018 AN - OPUS4-47277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Nützmann, Kathrin A1 - Falk, Florian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Witte, Steffen A1 - Radtke, Martin T1 - Early stages of high temperature oxidation/sulfidation studied by synchrotron x-ray diffraction and spectroscopy N2 - Ferritic high temperature alloys are widely used as boiler tube and heat exchanger materials in coal, biomass and co-fired power plants. All technologies have in common that the applied materials are exposed to different temperatures, process pressures and reactive atmospheres that lead to a change of the material properties and a further degradation of the material. Material changes caused by aging in highly corrosive and toxic gases such as SO2 are mainly studied ex situ after the reaction is finished. The solid material is deposited in the atmosphere for a certain period of time, and material changes are then examined by various microscopic techniques such as optical microscopy (OM), electron microprobe analysis (EMPA), scanning electron microscopy (SEM and TEM) and X-ray diffraction (XRD). Nevertheless, extensive efforts were made to study material changes of high temperature alloys under oxidizing and reducing atmospheres by environmental scanning electron microscopy or in situ TEM techniques However, the possibilities of microscopic in situ techniques are very limited for the use of highly corrosive and toxic gases such as SO2. Since Sulfur induced corrosion at temperatures relevant for coal and biomass fired power plants, which is causing breakaway oxidation and sulfide precipitation at grain boundaries, is still of scientific interest, the current work focuses on the effect of SO2 in an initial stage of corrosion of ferritic alloys. For the analysis of early stages of combined oxidation and sulphidation processes of Fe-Cr model alloys the usage of a light furnace to conduct a rapid reactive annealing experiment is feasible. Previous studies presented distinct results of the influence of chromium on early high temperature corrosion by SO2 by this technique and subsequent classical metallographic analyses. However, it is still not possible to trace the corrosion mechanism in real time by conducting single aging experiments. The current work introduces two different approaches to study the initial stages of high temperature oxidation processes by applying above state of the art X-ray diffraction and spectroscopy methods. One part focuses on the real time observation of the formation of corrosion products such as oxides and sulfides by energy dispersive X-ray diffraction (EDXRD). The potential of this technique to study crystallization and growth processes of thin films in a reactive environment in real time was previously shown for different compound semiconductors. This approach was now applied to follow oxidation and sulphidation processes of ferritic model alloys in SO2 and SO2/H2O environments. The diffraction signals of the X-rays were detected during the corrosion process and the peak area and positions were analyzed as a function of time. This procedure enables monitoring external oxide growth and material loss in real time in an early stage of corrosion. The other part of the current work presents the possibilities of X-ray absorption near edge structure spectroscopy (XANES) to characterize oxide scales and their growth mechanisms. Precise phase identification and quantification of corrosion products in a multi-phase oxide/sulfide scale is a pre-requisite to understand diffusion paths of metal ions and gas components. It is a challenging task to distinguish structurally similar reaction products such as Fe3O4 and FeCr2O4 especially in thin films with texture effects by diffraction. To illustrate for example Cr-out diffusion of an alloy throughout an inner and external oxide scale the differentiation of Fe3O4 and FeCr2O4 is indispensable. XANES uses the photoionization effect at the metal absorption edge in an aging product and accesses by this structural and chemical information. The current work uses XANES at the Fe-K and Cr-K absorption edge to identify various aging products grown as thin layers on alloys after short time aging experiments. A reaction chamber for combining high temperature oxidation experiments with surface sensitive X-ray absorption near edge structure spectroscopy will be introduced and first results of XANES on scales at high temperatures will be presented. T2 - ISHOC 2018 CY - Matsue, Japan DA - 22.10.2018 KW - Corrosion KW - Sulfidation KW - In situ KW - Diffraction KW - XANES PY - 2018 AN - OPUS4-47278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin A1 - Menneken, Martina A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, Christiane T1 - Orientation dependent corrosion N2 - Ferritic-martensitic Fe-Cr alloys are widely utilised as materials for high temperature applications such as super heater tubes in coal, biomass or co-fired power plants. Various corrosive gases are produced in combustion processes, but especially SO2 is known to cause catastrophic application failure. In order to understand the effect of orientation and grain size of the alloy on the initial corrosion processes we analysed metal coupons of Fe-Cr- alloys (2-13 wt. % Cr) by electron backscattered diffraction (EBSD) before and after exposure to SO2 containing atmospheres in 650°C for short time spans (2 min – 12 h). An infra red heated furnace with integrated water-cooling was used for the ageing procedures to conduct short time experiments and to keep the reaction products in a ‘frozen’ state. EBSD characterization of oxides formed on the surface of the alloys showed a topotactic relationship between grain orientation of the alloys and the oxides. With increasing scale thickness this relation diminishes possibly due to lattice strain. There appears to be no correlation between oxide growth and absolute, initial orientation, grain size, or the quality of polishing. An initially topotactic relationship between scale and steel had been already described for the formation of magnetite in hot steam environments, indicating that the initial corrosion mechanisms are mainly depending on the presence of Oxygen, and not changed by the presence of Sulphur. However, Sulphur is incorporated into the oxide scale in the low Cr alloy, and mainly observable in the inner corrosion zone for the higher alloyed material. Furthermore, oxides formed directly on grain boundaries in higher Cr alloyed materials are enriched in Cr compared to oxides on grain faces. T2 - EFC Workshop Dechema CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - Crystal Orientation KW - High Temperature Corrosion PY - 2018 AN - OPUS4-47279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hlavacek, Petr A1 - Mühler, T. A1 - Lüchtenborg, Jörg A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Kühne, Hans-Carsten A1 - Günster, Jens T1 - Additive manufacturing of geopolymers by local laser curing N2 - For the additive manufacturing of large components typically powder-based methods are used. A powder is deposited layer by layer by means of a recoater, then, the component structure is printed into each individual layer. We introduce here the new method of local laser drying, which is a suspension-based method specially developed for the manufacturing of large voluminous ceramic parts. The structure information is directly written into the freshly deposited layer of suspension by laser drying. Initially, the technology was developed for ceramic suspensions, however, first experiments with geopolymers reveal a high potential for this class of materials. Metakaolin, fly ash and lithium aluminate-based one-part geopolymers were used in first experiments. The local annealing of the geopolymer slurry results in a drying and crosslinking reaction and, thus, in a local consolidation of the material. First parts made are introduced and their properties are discussed. T2 - CIMTEC 2018 CY - Perugia, Italy DA - 04.06.2018 KW - Additive manufacturing KW - Laser curing KW - Geopolymers PY - 2018 AN - OPUS4-47447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Li, Wei T1 - Fatigue on carbon fiber reinforced composite under thermal cycling: Progress in the microscopic experiment N2 - Fiber-reinforced-polymers (FRPs) are in current research focus in the lightweight construction industry, because of their extraordinary characteristics (stiffness and strength-to-density relation). The structure of polymer matrix and the interaction with reinforcement are crucial for optimization of the mechanical and thermal properties of FRPs. Due to the macromolecular chain structure, the mechanical properties of a polymer strongly vary with temperature: Below the glass transition, the chain segments of a polymer are “frozen”. Regarding fracture, the total changed energy during fracture if only dissipates for the generation of the new surfaces. However, in the region of the glass transition, the polymer chain segments start to get “unfrozen”, and the energy is not only required for generating new surfaces, but also for irreversibly deformation. This irreversible deformation is affected by the global temperature and the local temperature near the crack tip, which is affected by the local strain rate and crack propagation velocity. Hence, in this research project, the irreversible deformation of neat and reinforced polymers will be controlled by changing the global temperature as well as the local temperature. With using different fracture experiments, the amount of energy required for creating new surfaces and for the irreversible deformation will be separated. In this presentation, I summarized of the first 15 months the whole project. In this period, the basic crack propagation theory for neat polymers is established and the special fracture experiment sample is prepared and tested at room temperature. In addition, the model of the specimen is first established. T2 - Doktorandenseminar von Abteilung 5 CY - Berlin, Germany DA - 25.01.2019 KW - Crack Propagation KW - Polymer PY - 2019 AN - OPUS4-48473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütter, H. A1 - Le, Quynh Hoa A1 - Knauer, S. A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Combining CO2 streams from different emitters ‐ a challenge for pipeline transportation N2 - Depending on the CO2 generating and the capture process as well as on consecutive purification steps applied, CO2 streams from different emitters may differ in their composition. When CO2 streams with different compositions are fed into a larger pipeline network, there are several aspects that must be considered: i) chemical reactions, such as acid formation, may occur within the joint CO2 stream; ii) there may be a variation of mass flow rate and CO2 stream composition within the pipeline network if the feed-in behavior of different CO2 sources changes with time. Potential impacts of changing CO2 stream compositions and mass flow rates in CCS cluster systems were investigated in the collaborative project "CLUSTER" (see also www.bgr.bund.de/CLUSTER). In this presentation, we focus on the experimental investigations of formation and condensation of strong acids and their impacts on the corrosion of pipeline steels. When SO2, NO2, O2 and H2O are present simultaneously in CO2 streams chemical cross-reactions may occur leading to the formation of strong acids such as sulfuric and nitric acid. To prevent this acid formation the concentration of at least one of these four impurities must be kept very low (e.g., Rütters et al., 2016). At temperatures below the acid dew point temperature, acids will condense, e.g., on pipeline steel surfaces. In turn, these acid condensates may trigger steel corrosion. To better understand the process of acid formation and condensation and its implications for steel corrosion, exposure tests were performed on pipeline steel X70 in dense CO2 with varying SO2, NO2 and O2 concentration under high pressure and at 278 K in an observable autoclave, in which water was added as droplets or as vapor. Further, electrochemical tests were carried out with X70 specimens immersed in 500 mL CO2-saturated synthetic condensate solution or in droplets of the same solution on the specimen’s surface. Depending on impurity concentrations in the CO2 streams, condensates consisting of different relative amounts of nitric and sulfuric acid were formed. In condensates containing both nitric and sulfuric acid, corrosion rates were higher than the sum of those of the individual acids. In addition, corrosion products and forms depended on the condensate composition. Investigations of water droplets on steel surfaces in impurity-containing dense-phase CO2 revealed the diffusion of SO2 and NO2, followed by cross-reactions forming corresponding acids. An increase in droplet size (from 1 to 5 µl) lead to higher corrosion rates. However, in comparison to measurements in bulk solution, corrosion reactions in droplets resulted in thick, high-resistance corrosion products and observed droplet corrosion rates were significantly lower. In addition, the possibility of acid droplet formation and growth in impure liquid CO2 is influenced by the wetting behavior of the acid droplet on the steel surface. Thus, the contact angle between a water droplet and the surface steel specimens in a CO2 atmosphere was investigated in a high pressure view cell following the sessile drop method. The contact angle wasand found to be larger at higher CO2 pressures (studied from 5 to 20 MPa) and at higher temperatures (e.g. 278 K to 333 K). Further, measured contact angles were larger on rough than on smooth metal surfaces. In addition, acid formation reduced the contact angle, i.e. lead to better wetting, thereby stimulating condensation that was followed by a corrosion process. These detailed insights on the complex interplay of acid formation, condensation, wetting behavior and corrosion allow a better assessment of material suitability for pipeline transportation of impure CO2 streams T2 - TCCS-10 The 10th Trondheim Conference on Carbon Capture, Transport and Storage CY - Trondheim, Norway DA - 17.06.2019 KW - arbon capture KW - utilization, and storage (CCUS) technology KW - corrosion KW - condensate KW - electrochemical characterization KW - pitting corrosion KW - impurities KW - carbon steel PY - 2019 UR - https://www.sintef.no/globalassets/project/tccs-10/dokumenter/tccs10---book-of-abstracts.pdf AN - OPUS4-48369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Small batch preparation of ready-to-press powder for systematic studies N2 - Efficient studies of scarce or expensive materials require material saving processes. Therefore, a high yield concept for small batch preparation of ready-to-press powder is exemplarily presented for yttria stabilized nano-zirconia (d50 < 50 nm). The concept involves small batch preparation in an ultrasound resonator, dispersant selection based on zeta potential measurements, evaluation of slurry stability using an analytical centrifuge, and preparation of ready-to-press powder by freeze drying. Freeze drying offers key advantages. Process efficiency and high yield above 95 % are independent of sample size. The dried product does not require further mechanical treatment like milling or grinding. Side effects like migration of additives are avoided. An optimized freeze drying process tolerates slurries with moderate stability. Thus, efforts for slurry development can be reduced. Generally, identifying a suitable dispersing agent requires only 3-5 zeta potential measurements. Slurry stability is rechecked using an analytical centrifuge, which also accounts for steric stabilization. An ultrasound resonator is used to disperse the powder without contamination, which becomes critical for small batches. The described route is exemplarily presented for the development of an additive recipe for nano-sized zirconia powder, targeting for good pressing behavior and high green density. Therefore, a variety of binding and lubricating agents were tested. Following the presented route, 80 g zirconia powder were sufficient to conduct a study including slurry development and five sample sets with varying composition, each set comprising five discs (d = 20 mm and h = 2 mm). T2 - 94. DKG Jahrestagung CY - Leoben, Austria DA - 05.05.2019 KW - Fine Powder KW - Slurry KW - Freeze Drying PY - 2019 AN - OPUS4-48293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Erdmann, Maren A1 - Müller, Bernd R. A1 - Hentschel, M.P. A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Bruno, Giovanni T1 - Warum wird zugbelastetes HD-Polyethylen in Dieselumgebung transparent? – Antworten der Röntgenstreuung N2 - Behälter aus hochdichtem Polyethylen (PE-HD) werden zur Lagerung und für den Transport von Kraftstoffen eingesetzt. Beim Kontakt beider Medien diffundiert der Kraftstoff in das Polymer, erhöht dessen Volumen und Duktilität und ändert damit das Fließverhalten des Polymers unter Zugbelastung. Zudem weist PE-HD in Luft im verstreckten Bereich das sogenannte strain-whitening (Lichtstreuung) auf, während in Diesel gelagertes PE-HD optisch transparent wird. Zur Untersuchung dieses Phänomens wurden ortsaufgelöste Röntgenrefraktion und –diffraktion (Topographie) eingesetzt. Aus Sicht der molekularen Struktur (Diffraktion) weisen die beiden Probentypen keine Unterschiede auf: im verstreckten Bereich liegt eine „Fasertextur“ der Polymerketten in Belastungsrichtung vor, im unverstreckten Bereich nahezu ideale Isotropie. Die für mikroskopische Strukturen empfindliche Röntgenrefraktion zeigt außerdem für die Probe in Luft im verstreckten Bereich eine ausgeprägte Orientierung von Grenzflächen in Zugrichtung, während die in Diesel gelagerte Probe keine Grenzflächen zeigt. In Analogie zum optischen Verhalten bewirken die ähnlichen Brechungsindizes beider Medien im Röntgenbereich, dass eindiffundierter Diesel als Immersionsflüssigkeit die Brechungseigenschaften herabsetzt. T2 - DACH-Jahrestagung 2019 CY - Friedrichshafen, Germany DA - 27.05.2019 KW - Diesel KW - HDPE Soprption KW - Kavitation KW - Mikrostruktur KW - Röntgenbeugung KW - Röntgenrefraktion PY - 2019 AN - OPUS4-48334 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Sub-critical crack growth in hydrous silicate glasses N2 - Environmental conditions are known to influence sub-critical crack growth (SCCG) that starts from microscopic flaws at the glass surface, leading to stress corrosion phenomena at the crack tip. The processes at the crack tip are complex and water has been identified as a key component governing SCCG at low crack velocities (region I). In particular, the influence of humidity accelerating crack propagation is well studied for dry industrial soda-lime silicate glasses (< 1000 ppm water). To shed light on this influence, the effect of water is mimicked by studying SCCG in water-bearing glasses. For this purpose, water-bearing silicate glasses of up to 8 wt% total water were synthesized in an internally heated pressure vessel at 0.5 GPa and compared to dry glasses. SCCG was measured using the double cantilever beam technique. For dry glasses, three trends in the crack growth velocity versus stress intensity, KI, curve were found. The slope in region I, limited by environmental corrosion, increases in the order soda-lime silicate < sodium borosilicate < barium calcium silicate < sodium zinc silicate < sodium aluminosilicate glass. The velocity range of region II, reflecting the transition between corrosion affected and inert crack growth (region III), varies within one order of magnitude among these glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam1/2. For hydrous glasses, it is found that water strongly decreases Tg, form a new sub-Tg relaxation peak caused by molecular water, and makes the glasses more prone to SCCG. The observed trends will be discussed in terms of the effects of Youngs Modulus on strain energy release rate and energy dissipation related to glass relaxation phenomena. T2 - Glastechnische Tagung CY - Nürnberg, Germany DA - 13.05.2019 KW - Glass KW - Crack growth KW - DCB KW - Water speciation PY - 2019 AN - OPUS4-48339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Design and fabrication of ceramic springs N2 - Ceramic springs offer versatile possibilities for load bearing or sensor applications in challenging environments. Although it may appear unexpected, a wide range of spring constants can be implemented by material selection and especially by the design of the spring. Based on a rectangular cross-section of the windings, it is possible to design a spring geometry that generates the desired spring constant simply by choosing appropriate diameter, height, widths, and number of windings. In a recent research project the calculation of helical compression springs made of rectangular steel (German standard DIN 2090) was applied for the design of ceramic springs. A manufacturing technology has been worked out to fabricate such springs from hollow cylinders of several highly dense technical ceramics by milling. Ceramic springs with precise rectangular section, without edge damage, and mean surface roughness smaller than 0.2 µm were produced after parameter optimization. Tolerances of less than 10 µm were achieved regarding spring diameter, height, and width of cross section. It is shown that the calculations outlined in the standard are valid for a variety of ceramic materials as well. Demonstrator springs with a wide range of spring constants have been fabricated, including zirconia springs with 0.02 N/mm, alumina springs with 1 N/mm and Si3N4 springs with 5 N/mm. A reproducibility study of six zirconia springs with a constant of 0.3 N/mm showed a relative difference in spring constants of less than +/- 1 %. This combination of a valid calculation approach for spring geometry and a reliable manufacturing technology allows for purposeful development and fabrication of ceramic springs with precise mechanical properties and superior chemical stability. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Ceramic spring KW - Hard machining KW - Spring constant PY - 2019 AN - OPUS4-48870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Popiela, Bartosz A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Restoration of structural integrity – Repairs for wind turbine blade shells N2 - Wind turbine rotor blade shells are manufactured as sandwich structures with fiber-reinforced polymer (FRP) due to the material’s high specific stiffness and strength. With a growing renewable energy industry and thereby a spread of wind energy farms, especially in offshore applications, the need to fully utilize turbines through their designed lifespan is becoming increasingly essential. However, due to imperfections during manufacturing, which are then propagated by harsh environmental conditions and a variety of loads, blades often fail before their projected lifespan. Thus, the need for localized repair patch methods for the outer shell portions of the blades has become of greater interest in recent years, as it is crucial to the optimal compromise between continuation of wind energy production, cost efficiency, and restoration of structural performance. To increase the understanding of the effect on the fatigue life of the rotor blades, this study tests localized repair patch methods and compares them to each other as well as to reference, non-repaired specimens. Manufactured with the vacuum-assisted resin infusion process, the shell test specimens are produced as a curved structure with glass FRP sandwiching a polyvinyl chloride foam core to best represent a portion of a rotor blade shell. Patch repairs are then introduced with varying layup techniques, and material properties are examined with cyclic fatigue tests. The intermediate scale test specimens allow for the observation of material as well as structural variables, namely of interest being the stiffness and strength restoration due to the repair patches. Damage onset, crack development, and eventual failure are monitored with in-situ non-destructive testing methods to develop a robust understanding of the effects of repair concepts. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Wind turbine blade shells KW - Fiber reinforced polymers KW - Sandwich structures KW - Fatigue PY - 2019 AN - OPUS4-48859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Unravelling high temperature oxidation phenomena by in situ x-ray techniques N2 - Unravelling high temperature oxidation phenomena by in situ x-ray techniques. A multi techqnique approach to study high temperature gas corrosion is presented. T2 - Gordon Research Conference on High Temperature Corrosion CY - New London, NH, USA DA - 20.07.2019 KW - Corrosion KW - High temperature KW - Diffraction KW - Spectroscopy PY - 2019 AN - OPUS4-48772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Schiller, B.N A1 - Beck, M. A1 - Bettge, Dirk T1 - On the corrosion behaviour of CO2 injection pipe steels: Role of cement N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost-effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells, the corrosion resistance of the materials used needs to be determined. In this study, representative low-cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were investigated in simulated pore water at 333 K and under CO2 saturation condition to represent the worst-case scenario: CO2 diffusion and aquifer fluid penetration. These simulated pore waters were made from relevant cement powder to mimic the realistic casing-cement interface. Electrochemical studies were carried out using the pore water made of cement powder dissolved in water in comparison with those dissolved in synthetic aquifer fluid, to reveal the effect of cement as well as formation water on the steel performance. Two commercially available types of cement were investigated: Dyckerhoff Variodur® and Wollastonite. Variodur® is a cement containing high performance binder with ultra-fine blast furnace slag which can be used to produce high acid resistance concrete. On the other hand, Wollastonite is an emerging natural material mainly made of CaSiO3 which can be hardened by converting to CaCO3 during CO2 injection. The results showed the pH-reducing effect of CO2 on the simulated pore water/aquifer (from more than 10 to less than 5) leading to the active corrosion process that happened on both 1.8977 and 1.7225. Electrochemical characterization showed negative free corrosion potential and polarisation curves without passive behaviors. The tested coupons suffered from pitting corrosion, which was confirmed by surface analysis. Interestingly, basing on the pit depth measurements from the tested coupons and the hardness of cement powder, it is suggested that Variodur® performed better than Wollastonite in both aspects. The electrochemical data was compared to that resulted from exposure tests to give a recommendation on material selection for bore-hole construction. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Carbon capture KW - Utilization, and storage (CCUS) technology KW - Corrosion KW - Carbon steel KW - Mortel KW - Crevice corrosion PY - 2019 AN - OPUS4-49105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falk, Florian A1 - Stephan-Scherb, Christiane A1 - Lehmusto, J. A1 - Pint, B. T1 - The impact of water vapour on high-temperature surface degradation by sulfurous gases of ferritic alloys N2 - Sulfur and water have a fundamental impact on the corrosion rate and potential failure of materials. It is therefore necessary to understand the mechanisms, rates, and potential means of transport, as well as the reactions of these elements with an alloy. This work investigates the effect of water vapor in the initial stages of SO2 corrosion of an ferritic model alloy containing 9 wt% Cr and 0.5 wt% Mn. The exposure experiments were studied at 650°C in situ under laboratory conditions using energy-dispersive x-ray diffraction analysis. Two separate experiments were run, one with a 99.5% Ar + 0.5% SO2 atmosphere and one with a 69.5% Ar + 0.5% SO2 + 30% H2O atmosphere. With a wet atmosphere, the alloy formed a scale with decreasing oxygen content towards the scale–alloy interface. Sulfides were identified above and below a (Fe, Cr)3O4 layer in the inner corrosion zone. In contrast to this, the overall scale growth was slower in a dry SO2 atmosphere. T2 - EUROCORR CY - Barceló Sevilla Renacimiento, Seville, Spain DA - 09.09.2019 KW - Diffraction KW - Sulfidation KW - Early oxidation KW - Corrosion KW - In situ PY - 2019 AN - OPUS4-49213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Lima, P. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - Additive Manufacturing of Silicon Carbide by LSD-print N2 - The layerwise slurry deposition (LSD) has been established in the recent years as a method for the deposition of ceramic powder layers. The LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade; each layer is sequentially deposited and dried to achieve a highly packed powder layer. The combination of binder jetting and LSD was introduced as a novel technology named LSD-print. The LSD-print takes advantage of the speed of binder jetting to print large areas, parallel to the flexibility of the LSD, which allows the deposition of highly packed powder layers with a variety of ceramic materials. The working principle and history of the LSD technology will be shortly discussed. A theoretical background will be also discussed, highlighting advantages and drawbacks of the LSD compared to the deposition of a dry powder. The last part of the talk will be dedicated to highlight recent results on the LSD-print of SiSiC of geometrically complex components, in collaboration between BAM and HC Starck Ceramics GmbH. Density, microstructure and mechanical properties of LSD-printed and isostatic pressed samples will be discussed and compared. T2 - XVI ECerS CONFERENCE CY - Torino, Italy DA - 16.06.2019 KW - Additive Manufacturing KW - Silicon Carbide KW - 3D printing KW - Layerwise Slurry Deposition PY - 2019 AN - OPUS4-49220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Elucidation of Surface Degradation Phenomena By In Situ X-ray techniques N2 - Presentation of in situ and real time approaches to study high temperature oxidation phenomena by adavnced X-ray techniques. Application to the analysis of degradation mechanisms of chemical complex alloys and high entropy alloys was presented. T2 - SPP 2006 Hot Topic Meeting "Large Scale Facility Based Techniques CY - Helmholtz-Zentrum Berlin für Materialien und Energie, Germany DA - 26.09.2019 KW - High entropy alloys KW - Diffraction KW - In situ KW - Oxidation PY - 2019 AN - OPUS4-49134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Lima, P. A1 - Günster, Jens A1 - Lüchtenborg, Jörg T1 - Advanced ceramics by powder bed 3D printing N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. However, the flowability of the powder used in these processes is essential to achieve defect-free and densely packed powder layers. For standard powder bed AM technologies, this limits the use of many raw materials which are too fine or too cohesive. This presentation will discuss the possibilities to either optimize the powder raw material to adapt it to the specific AM process, or to develop novel AM technologies which are able to process powders in a wider range of conditions. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of very fine ceramic particles. T2 - Smart Made CY - Osaka, Japan DA - 01.09.2019 KW - Additive Manufacturing KW - Ceramic KW - Powder KW - Layerwise slurry deposition KW - 3D printing PY - 2019 AN - OPUS4-49221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Nolze, Gert A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic Operation Performance of 9-12% Cr Ferritic-Martensitic Steels. Part 2: Microstructural Evolution during Cyclic Loading and its Representation in a Physically-based Micromechanical Model N2 - The current trend towards cyclic, “flexible” operation of fossil-fueled power plants constitutes a major issue regarding lifetime and operational safety of the respective installations and their components, as was outlined in our complementary contribution (Part 1). The present contribution reports on the investigation of the microstructure evolution in cyclically loaded ferritic-martensitic steels and its representation in a physically-based micromechanical model. For this purpose, specimens of P92 steel grade from the mechanical test programme outlined in our companion contribution (Part 1) were analyzed by scanning electron microscopy (SEM), including backscattered diffraction (EBSD) mapping, and transmission electron microscopy (TEM). A novel method was implemented to improve angular resolution of EBSD scans. Additionally, a correlative microscopy approach was developed and used to correlate EBSD and TEM measurements on the same locations of thick regions of electron transparent specimens. By applying these techniques, a detailed quantitative microstructure description of the as-received material condition, namely in terms of subgrain morphology and dislocation density/distributions, was established. Comparisons of as-received and cyclically loaded conditions from tests interrupted at different stages of lifetime indicate a rapid redistribution of in-grain dislocations with a strong interaction between mobile dislocations and low angle grain boundaries (LABs). The proposed micromechanical model is formulated in a viscoplastic self-consistent (VPSC) scheme, which is a mean-field approach that allows us to include the crystal details at the level of slip systems while avoiding the considerable computational costs of full-field approaches (such as the classical crystal plasticity finite element analysis). Being physically-based, the model uses dislocation densities and includes the interaction between dislocations, e.g. annihilation of mobile dislocations, and evolution of microstructure, e.g. the grain coarsening. Particularly, the constitutive laws for dislocation evolution and interaction between dislocations and low angle boundaries are calibrated based on two-dimensional discrete dislocation dynamic (2D DDD) simulations, which are performed at a micro-/meso-scale. The results of the beforementioned EBSD experiments are considered as a direct input, involving e.g. the amount of geometrically necessary dislocations, average misorientations and grain characteristics. T2 - 45th MPA-Seminar 2019 CY - Leinfelden-Echterdingen, Germany DA - 01.10.2019 KW - Tempered martensite ferritic steel KW - Dislocation KW - Electron backscattered diffraction (EBSD) KW - Transmission electron microscopy (TEM) KW - Microstructure KW - Physically based material model PY - 2019 AN - OPUS4-49346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Nolze, Gert A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Ageing in additively manufactured metallic components: from powder to mechanical failure” an overview of the project agil N2 - An overview of the BAM funed Focus Area Materials Project "AGIL" will be presented. AGIL focussed on the stdiy of the ageing characteristics of additively manufactured austenitic stainless steel with a "powder to mechanical failure" Approach. Recent Highlights are presented and a perspective for future studies. T2 - Workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Residual stress KW - Additive Manufacturing KW - Non-destructive testing KW - Microstructure characterisation KW - Tensile testing KW - Fatigue KW - Crystal Plasticity Modelling KW - Crack propagation PY - 2019 AN - OPUS4-49823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior and failure mechanisms of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in AM process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and microstructural evolution of AMparts, especially in loading conditions typical for safety-relevant applications e.g. in the aerospace or power engineering. Within the scope of the presented investigations, a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime was carried out in the range of 0.3 to 1.0 % strain amplitude at room temperature, 250°C and 400°C. The Ti-6Al-4V specimens are machined out of lean cylindrical rods, which were fabricated using powder laser metal deposition (LMD) with an improved build-up strategy. The improved strategy incorporates variable track overlap ratios to achieve a constant growth in the shell and core area. The low-cycle-fatigue behavior is described based on cyclic deformation curves and strain-based fatigue life curves. The lifetimes are fitted based on the Manson-Coffin-Basquin relationship. A characterization of the microstructure and the Lack-of-Fusion (LoF)-defect-structure in the as-built state is performed using optical light microscopy and high-resolution computed tomography (CT) respectively. The failure mechanism under loading is described in terms of LoF-defects-evolution and crack growth mechanism based on an interrupted LCF test with selected test parameters. After failure, scanning electron microscopy, digital and optical light microscopy and CT are used to describe the failure mechanisms both in the longitudinal direction and in the cross section of the specimens. The fatigue lives obtained are comparable with results from previous related studies and are shorter than those of traditionally manufactured (wrought) Ti-6Al-4V. In this study new experimental data and understanding of the mechanical behavior under application-relevant loading conditions (high temperature, cyclic plasticity) is gained. Furthermore, a better understanding of the role of LoFdefects and AM-typical microstructural features on the failure mechanism of LMD Ti-6Al-4V is achieved. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-49492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit A1 - Ávila, Luis A1 - Sommer, Konstantin T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for an yield function description of additively manufactured (AM) parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. EBSD/CT-Scans from in-house additively manufactured specimen extract the unique microstructural topology which is converted to a representative volume element (RVE) with grain structure and crystal orientations. Crystal plasticity model parameters on this RVE are calibrated and validated by means of mechanical testing under different texture angles. From virtual experiments on this RVE, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - The First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-49376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simkin, Roman A1 - Kranzmann, Axel A1 - Pfennig, Anja T1 - Selective oxidation of FeCr and FeCrCo model alloys in dry synthetic air N2 - The life time of mechanical components in high temperature applications is basically determined by their workings. Corrosion determines the loss of material corresponding to the loss of the effective load-bearing section and consequently increasing stress levels. To improve the material selection for such applications a numerical life prediction corrosion model for different alloys and environments is needed. Based on the ferritic alloys FeCr and FeCrCo a first quantitative model is to be developed. For this purpose, the alloys are aged at 600 °C, 650 °C and 700 °C in synthetic air under normal pressure for between 10 and 240 hours. The first objective is to establish a quantitative relationship between the oxidation rate as a function of composition and microstructure of the alloys. The influence of the inner interface as an essential parameter for transport by diffusion on the oxidation kinetics is discussed in this paper. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.11.2019 KW - High temperature corrosion KW - Ooxidation KW - Synthetic air KW - Modeling KW - FeCr- alloys PY - 2019 AN - OPUS4-49465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy A1 - Unger, Jörg F. T1 - A novel computational method for efficient evaluation of structural fatigue N2 - The methods of computational damage mechanics are well-established for the description of degradation of materials under monotone loading. An extension to structural damage induced by cyclic loading is however significantly limited. This is due to enormous computational costs required to resolve each load cycle by conventional temporal incremental integration schemes while a typical fatigue loading history comprises between thousands and millions of cycles. Despite the permanent increase of computational resources and algorithmic performance, a successful approach is rather based on the development of novel multiscale in time integration schemes. A Fourier transformation-based temporal integration (FTTI) is represented, which takes advantage of temporal scale separation incorporated into the cycle jump method. The response fields are approximated by a Fourier series whose coefficients undergo the evolution on a long-time scale. This is correlated with the evolution of the history variables, including damage, by means of the adaptive cycle jump method of various orders. The necessary extrapolation rates are obtained from the underlying solution of a short-time scale problem, which results from the oscillatory boundary condition and fulfills the global equilibrium of the Fourier coefficients. In this way, a remarkable speedup is achieved because the number of cycles to be fully integrated dramatically decreases. The key idea behind the FTTI method is that the global in space equilibrium problem is linear since it is decoupled from the evolution equations. The latter are solved in the quadrature points under response fields prescribed throughout the whole load cycle. Consequently, integration of a single load cycle is much more efficient than the conventional single scale integration where the global equilibrium iteration and the local iteration of the evolution equations are coupled. This results in an additional speedup of the FTTI method. The performance of the FTTI technique is demonstrated for two different constitutive behaviors: a viscoplastic model with a damage variable governed by the local equivalent viscoplastic strain; a quasi-brittle response where the damage variable is driven by a non-local equivalent strain. The latter is implicitly introduced as proposed by Peerlings. Both, the explicit and implicit extrapolation schemes are validated. The FTTI solutions agree very well with the reference cycle-by -cycle solutions, while significantly reducing the computational costs. The adaptive determination of the jump length can properly recognize the particular responses throughout the fatigue loading history (stationary fatigue, acceleration of fatigue damage when approaching failure) as well as stress redistribution phenomena. T2 - International Fatigue International Fatigue International Fatigue International Fatigue International Fatigue International Fatigue Congress Congress Congress 2018 CY - Poitiers, France DA - 27.05.2018 KW - Fatigue KW - Accelerated integration scheme PY - 2018 AN - OPUS4-46975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Subcritical crack growth in hydrous silicate glass N2 - Ambient water influences sub-critical crack growth (SCCG) from microscopic surface flaws, leading to stress corrosion at the crack tip. The complex influence of humidity accelerating slow crack propagation (region I) is well studied only for dry commercial NCS glass (< 1000 ppm water). To shed light on this influence, the effect of water is mimicked by studying SCCG water-bearing glasses. For this purpose, water-bearing silicate glasses of 8 wt% total water were synthesized at 0.5 GPa and compared to dry glasses. SCCG was measured in double cantilever beam geometry. For dry glasses, 3 trends in crack velocity vs. stress intensity, KI, curve were found. The slope in region I increases in the order NCS < NBS < BaCS < NZnS < NAS glass. The velocity range of region II, reflecting the transition between corrosion affected and inert crack growth (region III), varies within one order of magnitude among these glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam0.5. For hydrous glasses, it is found that water strongly decreases Tg, form a new sub-Tg internal friction peak caused by molecular water, and makes the glasses more prone to SCCG. The observed trends will be discussed in terms of the effects of Youngs Modulus on the strain energy release rate and energy dissipation related to mechanical glass relaxation phenomena. T2 - 25th International Congress on Glass (ICG2019) CY - Boston, MA, USA DA - 09.06.2019 KW - Internal friction KW - Soda-lime silicate glass KW - Crack growth KW - Water content KW - DCB PY - 2019 AN - OPUS4-49536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Balzer, R. T1 - Density, microhardness and elastic moduli of hydrous soda-lime silicate glasses N2 - The effect of structural water on density, elastic constants and microhardness of water-bearing soda-lime-silica glasses of up to 21.5 mol% total water is studied. T2 - 25th International Congress on Glass (ICG2019) CY - Boston, MA, USA DA - 09.06.2019 KW - Elastic constants KW - Soda-lime-silica glass KW - Water content KW - Microhardness PY - 2019 AN - OPUS4-49537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Baesso, Ilaria A1 - Straße, Anne A1 - Pittner, Andreas A1 - Pignatelli, Giuseppe A1 - Seeger, Stefan A1 - Nazarzadehmoafi, Maryam A1 - Ehlers, Henrik A1 - Gohlke, Dirk A1 - Homann, Tobias A1 - Scheuschner, Nils A1 - Ulbricht, Alexander A1 - Heinrich, P. A1 - Maierhofer, Christiane T1 - Process monitoring of additive manufacturing of metals - an overview of the project ProMoAM N2 - The project ProMoAM is presented. The goal of the project is to evaluate which NDT techniques or combination of techniques is suited for in-situ quality assurance in additive manufacturing of metals. To this end, also 3d-data fusion and visualization techniques are applied. Additional ex-situ NDT-techniques are used as references for defect detection and quantification. Feasability studies for NDT-techniques that are presently not applicable for in-situ use are performed as well. The presentation gives a brief overview of the whole project and the different involved NDT-techniques. T2 - Workshop od Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - Process monitoring KW - NDT PY - 2019 AN - OPUS4-48087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas A1 - Hirthammer, Volker T1 - A continuum damage model for the simulation of concrete under cyclic loading N2 - Lifetime aspects including fatigue failure of concrete structures were traditionally only of minor importance. Because of the growing interest in maxing out the capacities of concrete, its fatigue failure under compression has become an issue. A variety of interacting phenomena such as e.g. loss of prestress, degradation due to chemical reactions or creep and shrinkage influence the fatigue resistance. Failure due to cyclic loads is generally not instantaneous, but characterized by a steady damage accumulation. Therefore, a reliable numerical model to predict the performance of concrete over its lifetime is required, which accurately captures order effects and full three-dimensional stress states. Many constitutive models for concrete are currently available, which are applicable for specific loading regimes, different time scales and different resolution scales. However, a key limitation of those models is that they generally do not address issues related to fatigue on a structural level. Very few models can be found in the literature that reproduce deterioration of concrete under repeated loading-unloading cycles. This is due to the computational effort necessary to explicitly resolve every cycle which exceeds the currently available computational resources. The limitation can only be overcome by the application of multiscale methods in time. The objective of the paper is the development of numerical methods for the simulation of concrete under fatigue loading using temporal multiscale methods. First, a continuum damage model for concrete is developed with a focus on fatigue under compressive stresses. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. The model is designed to represent failure under static loading as a particular case of fatigue failure after a single loading cycle. As a consequence, most of the material parameters can be deduced from static tests. Only a limit set of additional constitutive parameters is required to accurately describe the evolution under fatigue loading. Another advantage of the proposed model is the possibility to directly incorporate other multi-physics effects such as creep and shrinkage or thermal loading on the constitutive level. Second, a multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach. This evolution equation is then solved on the long time scale using different implicit and explicit time integration schemes. Their performance and some limitations for specific loading regimes is discussed. Finally, the developed methods will be validated and compared to experimental data. T2 - Conference on Computational Modelling of concrete and concrete structures (EURO_C 2018') CY - Bad Hofgastein, Austria DA - 26.02.2018 KW - Fatigue KW - Concrete KW - Damage PY - 2018 AN - OPUS4-48001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas T1 - Concrete under cyclic loading a continuum damage model and a temporal multiscale approach N2 - The durability of concrete structures and its performance over the lifetime is strongly influenced by many interacting phenomena such as e.g. mechanical degradation due to fatigue loading, loss of prestress, degradation due to chemical reactions or creep and shrinkage. Failure due to cyclic loading is generally not instantaneous, but characterized by a steady damage accumulation. Many constitutive models for concrete are currently available, which are applicable for specific loading regimes, different time scales and different resolution scales. A key limitation is that the models often do not address issues related to fatigue on a structural level. Very few models can be found in the literature that reproduce deterioration of concrete under repeated loading-unloading cycles. The objective of this paper is the presentation of numerical methods for the simulation of concrete under fatigue loading using a temporal multiscale method. First, a continuum damage model for concrete is developed with a focus on fatigue under compressive stresses. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. Second, a multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach. This evolution equation is then solved on the long time scale using different time integration schemes. T2 - 6th European Conference on Computational Mechanics (ECCM 6) CY - Glasgow, UK DA - 11.06.2018 KW - Cycle jump KW - Fatigue damage KW - Concrete PY - 2018 AN - OPUS4-45696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas A1 - Hirthammer, Volker A1 - Unger, Jörg F. T1 - A continuum damage model for the simulation of concrete under cyclic loading N2 - A continuum damage model for concrete is developed with a focus on fatigue under compressive stresses. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. The model is designed to represent failure under static loading as a particular case of fatigue failure after a single loading cycle. As a consequence, most of the material parameters can be deduced from statictests. Only a limit set of additional constitutive parameters is required to accurately describe the evolution under fatigue loading. Another advantage of the proposed model is the possibility to directly incorporate other multi-physics effects such as creep and shrinkage or thermal loading on the constitutive level. A multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach. This evolution equation is then solved on the long time scale using different implicit and explicit time integration schemes. Their performance and some limitations for specific loading regimes is discussed. T2 - Computational Modelling of concrete and concrete Structures Euro-C, March 1st 2018 CY - Bad Hofgastein, Austria DA - 26.02.2018 KW - Continnum damage model KW - Simulation of concrete KW - Under cyclic loading PY - 2018 UR - https://euro-c.tuwien.ac.at/home/ AN - OPUS4-48399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza T1 - On the origin of embrittlement in Mn containing and Zn-coated steels N2 - Grain boundary embrittlement in medium-Mn steels and liquid metal embrittlement (LME) in Zn-coated high strength steels are among key challenges on the way of safe application of sustainable steels for automotive industry. Using a novel density-based model for grain boundaries, we reveal that the affinity of a grain boundary to attract Mn and Zn atoms result in a segregation transition accompanied by interfacial structural changes. In case of the Zn, the simulations show that the amount of segregation abruptly increases with decreasing temperature, while the Zn content in the alloy, required for triggering the segregation transition, decreases. The results are discussed in the context of CALPHAD-integrated density-based grain boundary phase diagrams. T2 - DPG 2024 CY - Berlin, Germany DA - 17.03.2024 KW - Phase-Field Simulation KW - CALPHAD KW - Steels KW - Density-based Thermodynamics PY - 2024 AN - OPUS4-60743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard T1 - On the cubic slip effect and creep anisotropy modeling of single crystal superalloys at intermediate temperatures (IT) N2 - Low-Temperature High Stress (LTHS) creep plays a crucial role in Ni-base Superalloys, particularly affecting components like blades near the root. Below 850°C, the precipitate microstructure remains stable, characterized by periodically arranged ’ cubic precipitates surrounded by the -matrix. In these conditions, macroscopic traces of cubic slip have been observed in <111> oriented tensile specimens, whereas their microscopic origin has been a topic of debate. Furthermore, in LTHS conditions, Superlattice Intrinsic, Extrinsic Stacking Faults (SISF/SESF), or micro-twins are also frequently reported in crept specimens. Usually, these mechanisms are investigated separately, so that a unified picture and a detailed understanding of these mechanisms and their activation conditions have only recently emerged in the literature, despite the intensive investigations of the last decades. The objective of this work is to develop a dislocation-based constitutive law that includes these recent developments. In particular, the pseudo-cubic slip mechanism is considered as resulting from the lack of hardening in <111> oriented tensile specimens and is represented by a novel estimate of the back-stresses based on the spectral decomposition of a tensorial representation of the back-stress. An additional novelty is that SISF- and SESF-related slip systems are accounted for as distinct slip systems with corresponding dislocation densities. The model has been implemented as a user-defined constitutive law for commercial Finite Element codes and identified as well as validated with data from the literature obtained with <001>, <011> and <111> oriented crystals tested in tension and compression creep. T2 - International Conference on Material Modelling (8) CY - London, GB DA - 15.07.2024 KW - Creep KW - Superalloy KW - Crystal plasticity KW - Single crystal PY - 2024 AN - OPUS4-60744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -