TY - CONF A1 - Avila Calderon, Luis Alexander A1 - Rehmer, Birgit A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Low-cycle-fatigue behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This contribution presents the results of an experimental study on the LCF behavior of an austenitic 316L stainless steel produced by laser powder bed fusion featuring a low defect population, which allows for an improved understanding of the role of other typical aspects of a PBF‑LB microstructure. The LCF tests were performed between room temperature and 600 °C. A hot‑rolled 316L variant was tested as a reference. The mechanical response is characterized by strain-life curves, a Coffin‑Manson‑Basquin fitting, and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, optical and electron microscopy. The PBF‑LB/M/316L exhibits lower fatigue lives at lower strain amplitudes. The crack propagation is mainly transgranular. The solidification cellular structure seems to be the most relevant underlying microstructural feature determining the cyclic deformation behavior. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, US DA - 03.03.2024 KW - AGIL KW - Additive Fertigung KW - Mikrostruktur KW - LCF KW - 316L PY - 2024 AN - OPUS4-59782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, R. A1 - Rabe, Torsten T1 - Lowering the sintering temperature of calcium manganate CaMnO3 for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (p-type) and calcium manganate (n-type) are two of the most promising oxide thermoelectric materials. The development of cost-effective multilayer thermoelectric generators requires the co-firing of these materials and therefore the adjustment of sintering temperatures. Calcium manganate is conventionally sintered between 1200 °C and 1350 °C. Calcium cobaltite exhibits an undesired phase transition at 926 °C but can be sintered to high relative density of 95 % at 900 °C under axial pressure of 7.5 MPa. Hence, co-firing at 900 °C would be favourable. Therefore, strategies for lowering the sintering temperature of calcium manganate have been investigated. Basically, two approaches are common: i) addition of low melting additives like Bi2O3-ZnO-B2O3-SiO2 (BBSZ) glass or Bi2O3, and ii) addition of additives that form low-melting eutectics with the base material, for example CuO. In this study, several low melting additives including BBSZ glass and Bi2O3, as well as CuO were tested regarding their effect on calcium manganate densification. Bi2O3 did not improve the densification, whereas BBSZ glass led to 10 % higher relative density at 1200 °C. An addition of 4 wt% CuO decreases the temperature of maximum sinter rate from above 1200 °C to 1040 °C. By reducing the particle size of the raw materials from 2 μm to 0.7 μm the maximum sinter rate could be further shifted 20 K towards lower temperatures and the sinter begin decreased from 920 °C to 740 °C. It is shown that eutectic phase formation is more effective in lowering sintering temperature and accelerating densification than low-melting additives. T2 - 93. DKG-Jahrestagung und Symposium Hochleistungskeramik 2018 CY - Munich, Germany DA - 10.04.2018 KW - Thermoelectrics KW - Sinter additive PY - 2018 AN - OPUS4-44818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - LSD- 3D printing: Powder based Additive Manufacturing, from porcelain to technical ceramics N2 - Powder based Additive Manufacturing (AM) processes are widely used for metallic and polymeric materials, but rarely commercially used for ceramic materials, especially for technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. Technical ceramics powders are in fact typically very fine and poorly flowable, which makes them not suitable for AM. The layerwise slurry deposition (LSD) is an innovative process for the deposition of powder layers with a high packing density for powder based AM. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder This allows the use of fine powders and achieves high packing density (55-60%) in the layers after drying. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to *Denotes Presenter 42nd International Conference & Exposition on Advanced Ceramics & Composites 127 Abstracts the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. This presentation will give an overview of the milestones in the development of this technology, with focus on the latest results applied both to silicate and to technical ceramics. T2 - 42nd International Conference & Exposition on Advanced Ceramics and Composites CY - Daytona, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - 3D printing KW - Ceramic KW - Alumina KW - Porcelain KW - Silicon Carbide PY - 2018 AN - OPUS4-44017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Günster, Jens T1 - LSD-print: a 10-years journey of an additive manufacturing technology from porcelain to technical ceramics N2 - Motivated by the aim of developing an additive manufacturing (AM) technology easily integrated in the process chains of the ceramic industry, the LSD-print technology was conceived as a slurry-based variation of binder jetting (BJ). BJ and other powder bed technologies (such as powder bed fusion) are amongst the most successful AM techniques, especially for metals and polymers, thanks to their high productivity and scalability. The possibility to use commercially available feedstocks (in the form of powders or granules) makes BJ also attractive for ceramic materials. The application of these techniques to most advanced ceramics has however been difficult so far, because of the limitations in depositing homogeneous layers with fine, typically poorly flowable powders. In this context, the "layerwise slurry deposition" (LSD) was proposed at TU Clausthal (Germany) as a slurry-based deposition of ceramic layers by means of a doctor blade. Combined with layer-by-layer laser sintering of the material, the LSD process was originally demonstrated for the rapid prototyping of silicate ceramics. Due to the difficulties in controlling the microstructure and the defect formation in laser-sintered technical ceramics, the LSD process was later combined with inkjet printing in the LSD-print technology, which has been further developed at BAM (Germany) in the past decade. The LSD-print technology combines the high speed of inkjet printing, typical of BJ, with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. Due to the mechanical stability of the powder bed, the process can also be carried out with continuous layer deposition on a rotating platform, which further increases its productivity. This presentation will delve into 10 years of research on the LSD-print of a wide variety of technical ceramics including alumina, silicon carbides and dental ceramics. The discussion highlights how a seemingly small process and feedstock modification (from powders to slurries) has great influence on the challenges and potential of this process, which are being addressed on its path to industrialization. T2 - young Ceramists Additive Manufacturing Forum (yCAM) 2024 CY - Tampere, Finland DA - 06.05.2024 KW - Additive Manufacturing KW - Ceramic KW - Layerwise slurry deposition KW - Slurry KW - LSD-print PY - 2024 AN - OPUS4-60056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Luminescent multifunctional nanostructures for sensing and theranostics applications N2 - The research carried out at the Laboratory of Spectroscopy of Functional Materials at IFSC/USP, in Brazil, is focused on the synthesis and structural-property correlation of luminescent materials including rare-earth (RE) doped glasses, ceramics and hybrid host-guest materials. For the past five years, we have been particularly interested in the development of single- and multifunctional nanosystems based on core-shell upconversion nanoparticles (UCNP) associated with dyes, organometallic complexes and other organic molecules, for biophotonic and sensing applications. In these systems, we take advantage of energy transfer between the UCNPs and the molecules to either supress or enhance luminescent response. Examples include the possibility of bioimaging and photodynamic therapy of bacteria and cancer cells, simultaneous magnetothermia and thermometry, localized O2 sensing, fast detection and quantification of biological markers (e.g. kidney disease) and microorganisms. On what concerns the development of luminescent sensors - a recently started project, our aim is to develop paper-based platforms for point-of-care devices. In this presentation, an overview of our contributions for the past years and our future aims will be presented with several examples. T2 - ICL2023 - 20th International Conference on Luminescence CY - Paris, France DA - 27.08.2023 KW - Upconversion KW - Sensing KW - Theranostics KW - Nanoparticles KW - Photodynamic therapy PY - 2023 AN - OPUS4-60362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Luminescent multifunctional nanostructures for sensing and theranostics applications N2 - An overview of the work carried out at LEMAF - Laboratory of Spectroscopy of Functional Materials at IFSC/USP was given. The work presented focus on the design, production and functional characterization of multifunctional nanoparticles. T2 - NANOANDES - Latin American School on Nanomaterials and Appllications CY - Araraquara, SP, Brazil DA - 10.10.2023 KW - Multifunctional nanoparticles KW - Upconversion nanoparticles KW - Quantum dots KW - Noble metal nanoparticles PY - 2023 AN - OPUS4-60363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Mieller, Björn A1 - Rabe, Torsten A1 - Markötter, Henning T1 - Machine learning assisted characterization of a Low Temperature Co-fired Ceramic (LTCC) module measured by synchrotron computed tomography. N2 - The 5G technology promises real time data transmission for industrial processes, autonomous driving, virtual and augmented reality, E-health applications and many more. The Low Temperature Co-fired Ceramics (LTCC) technology is well suited for the manufacturing of microelectronic components for such applications. Still, improvement of the technology such as further miniaturization is required. This study focuses on the characterization of inner metallization of LTCC multilayer modules, especially on the vertical interconnect access (VIA). Critical considerations for this characterization are delamination, pore clustering in and at the edge of the VIA, deformation, and stacking offset. A LTCC multilayer consisting of a glassy crystalline matrix with silver based VIAs was investigated by synchrotron x-ray tomography (CT). The aim of this study is to propose a multitude of structural characteristic values to maximize the information gained from the available dataset. Data analysis has been done with the open source software ImageJ as well as several additional plugins. The high-resolution CT data was evaluated through 2D slices for accessibility reasons. The segmentation of all 2000 slices to assess the different regions e.g. pores, silver and glass ceramic was done by a supervised machine learning algorithm. A quantitative evaluation of shape, deformation, and porosity of the VIA with respect to its dimensions is presented and the suitability of the characterization approach is assessed. T2 - 54. Metallographie Tagung CY - Online meeting DA - 16.09.2020 KW - Machine Learning KW - LTCC KW - Synchrotron Tomography PY - 2020 AN - OPUS4-51299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Mieller, Björn A1 - Rabe, Torsten A1 - Markötter, Henning ED - Petzow, G. ED - Mücklich, F. T1 - Machine learning assisted characterization of a Low Temperature Cofired Ceramic (LTCC) module measured by synchrotron computed tomography N2 - The 5G technology promises real time data transmission for industrial processes, autonomous driving, virtual and augmented reality, E-health applications and many more. The Low Temperature Co-fired Ceramics (LTCC) technology is well suited for the manufacturing of microelectronic components for such applications. Still, improvement of the technology such as further miniaturization is required. This study focuses on the characterization of inner metallization of LTCC multilayer modules, especially on the vertical interconnect access (VIA). Critical considerations for this characterization are delamination, pore clustering in and at the edge of the VIA, deformation, and stacking offset. A LTCC multilayer consisting of a glassy crystalline matrix with silver based VIAs was investigated by synchrotron x-ray tomography (CT). The aim of this study is to propose a multitude of structural characteristic values to maximize the information gained from the available dataset. Data analysis has been done with the open source software ImageJ as well as several additional plugins. The high-resolution CT data was evaluated through 2D slices for accessibility reasons. The segmentation of all 2000 slices to assess the different regions e.g. pores, silver and glass ceramic was done by a supervised machine learning algorithm. A quantitative evaluation of shape, deformation, and porosity of the VIA with respect to its dimensions is presented and the suitability of the characterization approach is assessed. T2 - 54. Metallographie Taagung CY - Online meeting DA - 16.09.2020 KW - Machine Learning KW - LTCC KW - Synchrotron Tomography PY - 2020 SN - 978-3-88355-422-8 VL - 54 SP - 136 EP - 141 PB - Deutsche Gesellschaft für Materialkunde e.V CY - Sankt Augustin AN - OPUS4-51298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geyler, Paul A1 - Rabe, Torsten A1 - Mieller, Björn A1 - Léonard, Fabien T1 - Machine learning assisted evaluation of the shape of VIAs in a LTCC multilayer N2 - The introduction of the 5G technology and automotive radar applications moving into higher frequency ranges trigger further miniaturization of LTCC technology (low temperature co-fired ceramics). To assess dimensional tolerances of inner metal structures of an industrially produced LTCC multilayer, computer tomography (CT) scans were evaluated by machine learning segmentation. The tested multilayer consists of several layers of a glass ceramic substrate with low resistance silver-based vertical interconnect access (VIA). The VIAs are punched into the LTCC green tape and then filled with silver-based pastes before stacking and sintering. These geometries must abide by strict tolerance requirements to ensure the high frequency properties. This poster presents a method to extract shape and size specific data from these VIAs. For this purpose, 4 measurements, each containing 3 to 4 samples, were segmented using the trainable WEKA segmentation, a non-commercial machine learning tool. The dimensional stability of the VIA can be evaluated regarding the edge-displacement as well as the cross-sectional area. Deviation from the ideal tubular shape is best measured by aspect ratio of each individual layer. The herein described method allows for a fast and semi-automatic analysis of considerable amount of structural data. This data can then be quantified by shape descriptors to illustrate 3-dimensional information in a concise manner. Inter alia, a 45 % periodical change of cross-sectional area is demonstrated. T2 - DKG Jahrestagung 2019 CY - Leoben, Austria DA - 06.05.2019 KW - Machine Learning KW - LTCC multilayer KW - 5G PY - 2019 AN - OPUS4-48289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agea Blanco, Boris A1 - Walzel, S. A1 - Chi, J. A1 - Lüchtenborg, J. T1 - Making Binder Jetting Really Work for Technical Ceramics - Additive Manufacturing of Technical Ceramics N2 - As an alternative shaping method to the traditionally used processes, additive manufacturing (AM) can produce economical ceramic components in small lot sizes and/or with complex geometries. Powder-based additive manufacturing processes like binder jetting are popular in the field of metal AM. One reason is the increased productivity compared to other AM technologies. For ceramic materials, powder-based AM technologies result in porous ceramic parts, provided they are not infiltrated. CerAMing GmbH unites the advantages of powder-based processes with the production of dense ceramic by means of the Layerwise Slurry Deposition. By using a suspension, a high packing density of the powder bed is achieved which leads to high green body densities. Due to this advantage the approach overcomes the problems of other powder-based AM technologies. Furthermore, a very economical debinding time allows the production of parts with high wall thicknesses. KW - Additive Manufacturing KW - Binder Jetting KW - Layerwise Slurry Deposition KW - Lithography-based technologies KW - Technical Ceramics PY - 2021 SP - 49 EP - 52 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-52948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Kelleher, Joe A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Manufacturing a safer world: Diffraction based residual stress analysis for metal additive manufacturing N2 - Metal Additive Manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) are characterized by layer wise construction, which enable advancements of component design, with associated potential gains in performance and efficiency. However, high magnitude residual stresses (RS) are often a product of the rapid thermal cycles typical of the layerwise process. Therefore, a deep understanding of the formation of RS, the influence of process parameters on their magnitude and the impact on mechanical performance is crucial for widespread application. The experimental characterisation of these RS is essential for safety related engineering application and supports the development of reliable numerical models. Diffraction-based methods for RS analysis using neutrons and high energy X-rays enable non-destructive spatially resolved characterisation of both surface and bulk residual stresses in complex components. This presentation will provide an overview of recent research by the BAM at large scale facilities for the characterization of residual stresses in LPBF metallic alloys as a function of process parameters. In addition, the challenges posed by the textured and hierarchical microstructures of LPBF materials on diffraction-based RS analysis in AM materials will be discussed. This will include the question of the d0 reference lattice spacing and the appropriate choice of the diffraction elastic constants (DECs) to calculate the level of RS in LPBF manufactured alloys. T2 - 11th INternational Conference on Residual Stress (ICRS11) CY - Online meeting DA - 28.03.2021 KW - Residual stress analysis KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2022 AN - OPUS4-54676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Melo Bernardino, Raphael A1 - Valentino, S. A1 - Franchin, G. A1 - Günster, Jens A1 - Zocca, Andrea T1 - Manufacturing of ceramic components with internal channels by a novel additive/subtractive hybridizazion process N2 - A new approach for fabrication of ceramic components with inner channels is proposed, as a result of the combination of two additive and one subtractive manufacturing processes. In this project, porcelain parts are manufactured by the Layerwise Slurry Deposition (LSD) process, meanwhile end milling and Direct Ink Writing (DIW) are applied to create channels on the surface of the deposited ceramic. Unique to the LSD process is the Formation of a freestanding powder bed with a mechanical strength comparable to conventional slip casted ceramic green bodies. Combining these three processes allows the manufacturing of ceramic objects containing an internal path of ink, which in this case was a graphite-based ink that can be further eliminated by heat treatment to obtain a porcelain object embedded with channels. The results show the capabilities of this method and its potential to fabricate not only parts with inner channels, but also multi-material and multi-functional components (such as integrated electronic circuits). KW - Additive Manufacturing KW - Layerwise Slurry Deposition KW - Hybrid Manufacturing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510012 UR - https://www.sciencedirect.com/science/article/pii/S2666539520300109?via%3Dihub DO - https://doi.org/10.1016/j.oceram.2020.100010 VL - 2 SP - 100010 PB - Elsevier Ltd. AN - OPUS4-51001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Stargardt, Patrick A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Material development for oxide multilayer generators N2 - Thermoelectric generators can be used for energy harvesting by directly transforming a temperature gradient into a voltage. Multilayer generators based on low-temperature co-fired ceramics technology (LTCC) are an interesting alternative to conventional π-type generators. They exhibit several advantages like high filling factor, possibility of texturing, co-firing of all materials in one single-step, and reduction of production costs due to the high possible degree of automation. Pressure-assisted sintering enables the theoretical possibility of co-firing two promising oxide thermoelectric materials: Ca3Co4O9 (p-type) and CaMnO3 (n-type). Due to the large difference in sintering temperature (300 K) the process is very challenging. In this work we show the material development of Ca3Co4O9, CaMnO3, insulation and metallization for multilayer generators co-fired under pressure at 900 °C. The materials are tailored regarding their sintering behavior, electrical performance and coefficients of thermal expansion. Different generator designs (unileg and pn-type) were fabricated and analyzed regarding crack formation, interaction layers and thermoelectric performance. Simulated stresses during cooling in the multilayers are compared with actual crack formation for different sintering conditions. This study shows that a lower pressure level and a lower level of complexity are beneficial for co-firing and performance. T2 - 45th International Conference and Expo on Advanced Ceramics and Composites (ICACC 2021 Virtual) CY - Online meeting DA - 08.02.2021 KW - Thermoelectrics KW - Multilayer PY - 2021 AN - OPUS4-52462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Skrotzki, Birgit T1 - Materials Applications FeAl (WAFEAL) N2 - The increasing importance of resource availability and closed-loop material cycles are driving materials research to reduce alloying content in conventional materials or even substitute them with more sustainable alternatives. Intermetallic iron aluminide alloys (FeAl) present a potential alternative. Many alloy concepts for improved high-temperature properties or ductility have already been successfully implemented in casting technologies on a laboratory scale. However, successful testing of FeAl alloys on an industrial scale was still pending at the beginning of the project. Therefore, the aim of the project was to develop simulation-based casting concepts for industrial casting processes using the base alloy Fe-26Al-4Mo-0.5Ti-1B and to narrow down process limits by means of hot cracking tests. Findings were transferred into practice-oriented guidelines for casting of iron aluminides, which is accessible to future applicants in SMEs. The focus was placed on centrifugal casting combined with investment casting or die casting. In addition to numerous design and casting process parameters, heat treatments and alloying additions (Al, Mo, B) were varied to determine the influence of alloying elements on castability, microstructure and mechanical properties. Data from microstructure analyses (microscopic imaging, determination of grain sizes as well as phase compositions and volume fractions, fractography), mechanical tests (hardness measurements, compression tests, ambient and high-temperature tensile tests, creep tests) as well as measurements of thermophysical properties could be generated on the base alloy. Correlations of materials data with process variables allowed conclusions to be drawn on strengthening mechanisms and ductility of the alloy and how they can be controlled in terms of processing and component design. Successful casting of highly complex components with thin wall thicknesses and optimised alloy compositions points out prospects for new fields of application. T2 - FVV Transfer + Netzwerktreffen | Informationstagung – Frühjahr 2023 CY - Würzburg, Germany DA - 29.03.2023 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Microstructure-property-correlation KW - High temperature mechanical properties KW - Creep data KW - Tensile data KW - Fractography KW - Casting PY - 2023 AN - OPUS4-57248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Materials applications of iron aluminide (FeAl), (WAFEAL) T1 - Werkstoffanwendungen für Eisenaluminide (FeAl), (WAFEAL) N2 - The increasing importance of resource availability and closed-loop material cycles are driving materials research to reduce alloying content in conventional materials or even substitute them with more sustainable alternatives. Intermetallic iron aluminide alloys (FeAl) present a potential alternative. Many alloy concepts for improved high-temperature properties or ductility have already been successfully implemented in casting technologies on a laboratory scale. However, successful testing of FeAl alloys on an industrial scale was still pending at the beginning of the project. Therefore, the aim of the project was to develop simulation based casting concepts for industrial casting processes using the base alloy Fe-26Al-4Mo-0.5Ti-1B and to narrow down process limits by means of hot cracking tests. Findings were transferred into practice-oriented guidelines for casting of iron aluminides, which is accessible to future applicants in SMEs. The focus was placed on centrifugal casting combined with investment casting or die casting. In addition to numerous design and casting process parameters, heat treatments and alloying additions (Al, Mo, B) were varied to determine the influence of alloying elements on castability, microstructure and mechanical properties. Data from microstructure analyses (microscopic imaging, determination of grain sizes as well as phase compositions and volume fractions, fractography), mechanical tests (hardness measurements, compression tests, ambient and high-temperature tensile tests, creep tests) as well as measurements of thermophysical properties could be generated on the base alloy. Correlations of materials data with process variables allowed conclusions to be drawn on strengthening mechanisms and ductility of the alloy and how they can be controlled in terms of processing and component design. Successful casting of highly complex components with thin wall thicknesses and optimised alloy compositions points out prospects for new fields of application. N2 - Die zunehmende geopolitische Bedeutung der Ressourcenverfügbarkeit sowie die Anforderungen an einen geschlossenen Materialkreislauf treiben die Materialforschung voran, um konventionelle Werkstoffe mit weniger kritischen Zusätzen zu legieren oder sogar vollständig mit nachhaltigeren Alternativen zu substituieren. Eine potenzielle Alternative stellen die intermetallischen Eisenaluminid-Legierungen (FeAl) dar. Im Labormaßstab wurden bereits viele Legierungskonzepte für verbesserte Hochtemperatureigenschaften oder Duktilität erfolgreich gießtechnisch umgesetzt. Eine erfolgreiche Erprobung von FeAl-Legierungen im industriellen Maßstab stand zu Beginn des Projekts aber weiterhin aus. Ziel des Vorhabens war daher die Entwicklung von simulationsgestützten Gießkonzepten in industrienahe Gießprozesse anhand der Modelllegierung Fe-26Al-4Mo-0,5Ti-1B und die Eingrenzung der prozesstechnischen Verfahrensgrenzen durch Warmrissversuche. Erkenntnisse hieraus wurden in einen praxisorientierten, für zukünftige Anwender in KMUs zugänglichen Handlungskatalog für die gießgerechte Auslegung von Bauteilen aus Eisenaluminiden überführt. Fokus wurde insbesondere auf das Feinguss- und Kokillengussverfahren im Schleuderguss gesetzt. Neben zahlreicher Konstruktions- und Gießprozessparameter wurden auch Wärmebehandlungen und Legierungszusätze (Al, Mo, B) variiert, um den Einfluss von Legierungselementen auf Gießbarkeit, Mikrostruktur und mechanische Kennwerte zu bestimmen. Eine umfangreiche Basis an Daten aus Mikrostrukturanalysen (Mikroskopische Bildgebung, Bestimmung von Korngrößen sowie Phasenzusammensetzungen und -anteilen, Fraktographie), mechanischen Tests (Härtemessungen, Druckversuch, Zugversuch, Warmzugversuch, Kriechversuch) sowie Messungen thermophysikalischer Eigenschaften konnte für die Modelllegierung erzeugt werden. Korrelationen dieser Informationen mit Prozessvariablen erlaubten Schlussfolgerungen zu Härtungsmechanismen und Duktilität in der Legierung und wie sie prozesstechnisch in Gieß- und Bauteilauslegung gesteuert werden können. Der erfolgreiche Abguss von hochkomplexen Bauteilgeometrien mit dünnen Wandstärken sowie optimierte Legierungszusammensetzungen zeigen Perspektiven auf neue Anwendungsfelder auf. T2 - FVV Transfer + Netzwerktreffen | Informationstagung – Frühjahr 2023 CY - Würzburg, Germany DA - 29.03.2023 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Microstructure-property-correlation KW - High temperature mechanical properties KW - Creep data KW - Tensile data KW - Fractography KW - Casting PY - 2023 VL - R604 SP - 1 EP - 32 PB - FVV e. V. CY - Frankfurt a.M. AN - OPUS4-57247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Hanke, T. A1 - Eisenbart, M. A1 - Skrotzki, Birgit T1 - Materials Mechanical Testing Ontology (MTO) N2 - The materials mechanical testing ontology (MTO) was developed by collecting the mechanical testing vocabulary from ISO 23718 standard, as well as the standardized testing processes described for various mechanical testing of materials like tensile testing, Brinell hardness test, Vickers hardness test, stress relaxation test, and fatigue testing. Confirming the ISO/IEC 21838-2 standard, MTO utilizes the Basic Formal Ontology (BFO), Common Core Ontology (CCO), Industrial Ontologies Foundry (IOF), Quantities, Units, Dimensions, and data Types ontologies (QUDT), and Material Science and Engineering Ontology (MSEO) as the upper-level ontologies. Reusing these upper-level ontologies and materials testing standards not only makes MTO highly interoperable with other ontologies but also ensures its acceptance and applicability in the industry. MTO represents the mechanical testing entities in the 230 classes and four main parts: i) Mechanical testing experiments entities like tensile, hardness, creep, and fatigue tests as the subclasses of mseo:Experiment, ii) Mechanical testing quantity concepts such as toughness, elongation, and fatigue strength in the appropriate hierarchies of bfo:Disposition and bfo:Quality classes, iii) Mechanical testing artifacts like indenter as the subclasses of cco:Artifact, and iv) mechanical testing data like the stress-strain, S-N, or creep curves as the subclasses of cco:InformationContentEntity. MTO is publicly available via the KupferDigital GitLab repository. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Mechanical testing KW - Ontology KW - Standard PY - 2023 AN - OPUS4-58270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Mechanical anisotropy of additively manufactured stainless steel 316l: an experimental and numerical study N2 - This work aims for a yield function description of additively manufactured (AM) parts of stainless steel 316L at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity model at meso-scale. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - BAM, Berlin DA - 10.12.2020 KW - Anisotropy KW - Crystal plasticity KW - Additive manufacturing PY - 2020 AN - OPUS4-51941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Mechanical anisotropy of LPBF 316L: a modeling approach N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations relative to the build plate. Dynamic Young's modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography, and texture analysis with electron backscatter diffraction (EBSD). A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. T2 - 2. Online-Workshop "In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys " CY - Online meeting DA - 20.04.2021 KW - Anisotropy KW - Crystal plasticity KW - Additive manufacturing PY - 2021 AN - OPUS4-52603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander T1 - Mechanical behaviour of AM metals: Creep of LPBF 316L and low-cycle-fatigue of LMD Ti-6Al-4V N2 - Additively manufactured metallic materials have already started to find application in safety-relevant components. However, this has only happened for certain materials and specific applications and loading conditions, since there is still an extensive lack of knowledge as well as of historical data regarding their mechanical behaviour. This contribution aims to address this lack of understanding and historical data concerning the creep behaviour of the austenitic stainless steel 316L manufactured by Laser-Powder-Bed-Fusion (L-PBF) and the low-cycle-fatigue behaviour of the titanium alloy Ti-6Al-4V manufactured by Laser-Metal-Deposition (LMD). Furthermore, it aims to assess their mechanical behaviour against their conventional counterparts. With that in mind, specimens from conventional and additive materials are tested and their mechanical behaviour analysed based on characteristic curves. To understand the damage behaviours the materials are characterized by destructive and non-destructive techniques before and after failure. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online Meeting DA - 10.12.2020 KW - Ti-6Al-4V KW - 316L KW - Additive manufacturing KW - Creep behaviour KW - Low-cycle-fatigue behaviour PY - 2020 AN - OPUS4-51879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schroepfer, Dirk T1 - Mechanical performance and integrity of tungsten inert gas (TIG) welded CoCrFeMnNi high entropy alloy with austenitic steel AISI 304 N2 - High entropy alloys (HEA) are a new class of materials that have been investigated since the early 2000s and offer great potential to replace conventional alloys. However, since they sometimes have significant contents of expensive alloying elements such as Co or Ni, their use is only conceivable in highly stressed areas of components. For this purpose, the weldability with conventional alloys such as high-alloy austenitic steels must be investigated. In addition to the resulting microstructure, the mechanical properties are also fundamental for the usability of HEAs in DMWs. For this purpose, TIG welds of CoCrFeMnNi HEA (cold rolled and recrystallized state) with AISI 304 austenitic steel are investigated. These mechanical properties are analyzed in this work by means of tensile tests and local hardness measurement. The local strain behavior of the welded joints is also characterized by means of Digital Image Correlation (DIC). The results of the local hardness measurement show a clear influence of the initial condition of the HEA on the HAZ. Thus, the HEA in the cold-rolled condition shows a clear softening because of recrystallization processes in the HAZ. On the other hand, there is no influence on the hardness of the weld metal, which is approx. 200 HV0.1 in both cases. The tensile tests show a consistent failure of the weld in the weld metal. However, regardless of the HEA condition, strengths in the range of the recrystallized HEA (RM ~ 550–600 MPa) are achieved, although with significantly reduced fracture elongations. T2 - International Conference on High-Entropy Materials (ICHEM 2023) CY - Knoxville, TN, USA DA - 18.06.2023 KW - Multi-principal element alloys KW - Welding KW - Mechanical properties KW - Dissimilar metal weld KW - Digital image correlation PY - 2023 AN - OPUS4-57713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Avila, Luis A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Rehmer, Birgit T1 - Mechanical Testing and Simulations on AM Ti6Al4V and 316L N2 - First experimental results are shown on mechanical properties of additively manufactured alloy Ti6Al4V. A modelling and simulation approach is presented to describe the anisotropic behavior of 316L at the macro-scale. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - AM KW - Mechanical behavior KW - Microstructure KW - Anisotropy KW - Modeling KW - Simulation PY - 2019 AN - OPUS4-48072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Bauer, Felix A1 - Uhlemann, Patrick A1 - Thärig, Steffen A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Mechanical testing dataset of cast copper alloys for the purpose of digitalization N2 - This data article presents a set of primary, analyzed, and digitalized mechanical testing datasets for nine copper alloys. The mechanical testing methods including the Brinell and Vickers hardness, tensile, stress relaxation, and low-cycle fatigue (LCF) testing were performed according to the DIN/ISO standards. The obtained primary testing data (84 files) mainly contain the raw measured data along with the testing metadata of the processes, materials, and testing machines. Five secondary datasets were also provided for each testing method by collecting the main meta- and measurement data from the primary data and the outputs of data analyses. These datasets give materials scientists beneficial data for comparative material selection analyses by clarifying the wide range of mechanical properties of copper alloys, including Brinell and Vickers hardness, yield and tensile strengths, elongation, reduction of area, relaxed and residual stresses, and LCF fatigue life. Furthermore, both the primary and secondary datasets were digitalized by the approach introduced in the research article entitled “Toward a digital materials mechanical testing lab” [1]. The resulting open-linked data are the machine-processable semantic descriptions of data and their generation processes and can be easily queried by semantic searches to enable advanced data-driven materials research. KW - FAIR principles KW - Hardness KW - Low-Cycle Fatigue (LCF) KW - Tensile testing KW - Stress relaxation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605005 DO - https://doi.org/10.1016/j.dib.2024.110687 SN - 2352-3409 SP - 1 EP - 15 PB - Elsevier BV AN - OPUS4-60500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit A1 - Hanke, Thomas A1 - Eisenbart, Miriam T1 - Mechanical testing ontology (MTO) N2 - The materials mechanical testing ontology (MTO) was developed by collecting the mechanical testing vocabulary from ISO 23718 standard, as well as the standardized testing processes described for various mechanical testing of materials like tensile testing, Brinell hardness test, Vickers hardness test, stress relaxation test, and fatigue testing. Versions info: V2 developed using BFO+CCO top-level ontologies. V3 developed using PROVO+PMDco top-level ontologies. V4 developed using BFO+IOF top-level ontologies. Repositories: GitLab: https://gitlab.com/kupferdigital/ontologies/mechanical-testing-ontology GitHub: https://github.com/HosseinBeygiNasrabadi/Mechanical-Testing-Ontology MatPortal: https://matportal.org/ontologies/MTO IndustryPortal: https://industryportal.enit.fr/ontologies/MTO KW - Ontology KW - Mechanical testing KW - FAIR data PY - 2023 UR - https://gitlab.com/kupferdigital/ontologies/mechanical-testing-ontology/ PB - GitLab CY - San Francisco, CA, USA AN - OPUS4-58271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza T1 - Melting upon Coalescence of Solid Nanoparticles N2 - The large surface-to-volume ratio of nanoparticles is understood to be the source of many interesting phenomena. The melting temperature of nanoparticles is shown to dramatically reduce compared to bulk material. Yet, at temperatures below this reduced melting point, a liquid-like atomic arrangement on the surface of nanoparticles is still anticipated to influence its properties. To understand such surface effects, here, we study the coalescence of Au nanoparticles of various sizes using molecular dynamics simulations. Analysis of the potential energy and Lindemann index distribution across the nanoparticles reveals that high-energy, high-mobility surface atoms can enable the coalescence of nanoparticles at temperatures much lower than their corresponding melting point. The smaller the nanoparticles, the larger the difference between their melting and coalescence temperatures. For small enough particles and/or elevated enough temperatures, we found that the coalescence leads to a melting transition of the two nominally solid nanoparticles, here discussed in relation to the heat released due to the surface reduction upon the coalescence and the size dependence of latent heat. Such discontinuous melting transitions can lead to abrupt changes in the properties of nanoparticles, important for their applications at intermediate temperatures. KW - Nanoparticles KW - Molecular Dynamics KW - Surface-induced Melting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552183 DO - https://doi.org/10.3390/solids3020025 VL - 3 IS - 2 SP - 361 EP - 373 PB - MDPI AN - OPUS4-55218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Le, Quynh-Hoa A1 - Yarysh, Anna T1 - MGA Round Robin Test on Al-AM Fatigue Testing - Fractographic Results N2 - Presentation of results of an investigation of fracture mechanisms and crack start sites of an additive manufactured aluminium alloy after fatigue testing. Collaboration within the MGA initiative (Mobility Goes Additive). T2 - MGA Mid Term Meeting 2022 CY - Berlin, Germany DA - 05.07.2022 KW - Aluminium Alloy KW - Fractography KW - Additive Manufacturing PY - 2022 AN - OPUS4-55192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Deubener, J. A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Behrens, H. A1 - Balzer, R. A1 - Bauer, U. A1 - Kiefer, P. T1 - Micromechanical properties of hydrous oxide glasses N2 - Presentation of the results on structure and mechanical properties of water-bearing oxide glasses, which were found during the project at the locations Clausthal, Hanover and Berlin within the priority program SPP1594. T2 - 9th Otto Schott Colloquium CY - Jena, Germany DA - 09.09.2019 KW - Crack growth KW - Glass KW - Water content KW - Mechanical properties KW - IR PY - 2019 AN - OPUS4-50444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna C. A1 - Riechers, Birte A1 - Pauw, Brian R. A1 - Maaß, Robert A1 - Günster, Jens T1 - Microplastic response of 2PP‐printed ceramics N2 - AbstractTwo‐photon polymerization (2PP) additive manufacturing (AM) utilizes feedstocks of ceramic nanoparticles of a few nanometers in diameter, enabling the fabrication of highly accurate technical ceramic design with structural details as small as 500 nm. The performance of these materials is expected to differ from conventional AM ceramics, as nanoparticles and three‐dimensional printing at high resolution introduce new microstructural aspects. This study applies 2PP‐AM of yttria‐stabilized zirconia to investigate the mechanical response behavior under compressive load, probing the influence of smallest structural units induced by the line packing during the printing process, design of sintered microblocks, and sintering temperature and thereby microstructure. We find a dissipative mechanical response enhanced by sintering at lower temperatures than conventional. The pursued 2PP‐AM approach yields a microstructured material with an increased number of grain boundaries that proposedly play a major role in facilitating energy dissipation within the here printed ceramic material. This microplastic response is further triggered by the filigree structures induced by hollow line packing at the order of the critical defect size of ceramics. Together, these unique aspects made accessible by the 2PP‐AM approach contribute to a heterogeneous nano‐ and microstructure, and hint toward opportunities for tailoring the mechanical response in future ceramic applications. KW - Manufacturing KW - Mechanical properties KW - Microstructure KW - Plasticity KW - Zirconia: yttria stabilized PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605176 DO - https://doi.org/10.1111/jace.19849 SN - 1551-2916 SP - 1 EP - 10 PB - Wiley CY - Oxford [u.a.] AN - OPUS4-60517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - López-Galilea, I. A1 - Ruttert, B. A1 - Theisen, W. A1 - Agudo Jácome, Leonardo T1 - Microstructural characterization of the AlMo 0.5 NbTa 0.5 ZrTi refractory complex concentrated alloy N2 - A set of some unexpected and interesting microstructures has put the so-called complex concentrated alloys (CCAs) in the eye of the scientific community and the AlMo0.5NbTa0.5TiZr refractory (r)CCA, aimed at substituting Ni-base superalloys in gas turbine applications, belongs to this alloy family. The AlMo0.5NbTa0.5TiZr rCCA was studied by SEM, EDX, EBSD and TEM, showing the presence of a nanoscopic basket-wave structure inside the grains, with two BCC phases. Additionally, thermodynamic calculations on the AlMo0.5NbTa0.5TiZr alloy were done with two different proprietary databases that anticipate two BCC-disordered phases with distinct constitutions as well as an HCP phase. T2 - Symposium on Advanced Mechanical and Microstructural Characterization of High-Entropy Alloys CY - Bochum, Germany DA - 03.02.2020 KW - High Entropy Alloy KW - EBSD KW - Microstructure Characterization PY - 2020 AN - OPUS4-50729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Microstructural evolution of Fe-26Al-4Mo-0.5Ti-1B with varying wall thicknesses N2 - With an increasing demand in more efficient fuel consumption to reduce CO2 emissions, weight reductions in high-temperature materials at affordable costs gain increasing attention. One potential candidate is the intermetallic material class of iron aluminides, combining the advantages in mass savings, high temperature performance and recyclability of resources. The alloy Fe-26Al-4Mo-0.5Ti-1B was selected to study the microstructural features evolving from two casting processes, five wall thicknesses and three final conditions. Conclusions are drawn upon the correlations of processing variables, grain sizes and hardness. T2 - DGM Fachausschuss "Intermetallische Phasen" CY - Online meeting DA - 09.02.2021 KW - Intermetallics KW - Iron aluminides KW - Fe-Al alloys KW - Wall thickness KW - Microstructure PY - 2021 AN - OPUS4-52288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ferrari, Bruno A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Schicchi Said, D. A1 - Darvishi Kamachali, Reza A1 - Evans, Alexander A1 - Agudo Jacome, Leonardo A1 - Serrano-Munoz, Itziar T1 - Microstructural evolution of PBF-LB/M Inconel 718 during solution-aging heat treatments - an in-situ x-ray diffraction study N2 - Inconel 718 (IN718) is a traditional age-hardenable nickel-based alloy that has been increasingly processed by additive manufacturing (AM) in recent years. In the as-solidified condition, IN718 exhibits chemical segregation and the undesired Laves phase, requiring a solution annealing (SA) prior to aging. The material produced by AM does not respond to the established thermal routines in the same way as conventionally produced IN718, and there is still no consensus on which routine yields optimal results. This work aims to provide a fundamental understanding of the heat treatment (HT) response by continuously monitoring the microstructural evolution during SA via time-resolved synchrotron x-ray diffraction, complemented by ex-situ scanning electron microscopy (SEM). The samples were produced by laser powder bed fusion to a geometry of 10x20x90 mm³, from which Ø1x5 mm³ cylindric specimens were extracted. Two different scanning strategies – incremental 67° rotations, Rot, and alternating 0°/67° tracks, Alt – were used, leading to two different as-built conditions. 1-hour SAs were carried out in the beamline ID22 of the ESRF at 50 KeV. Two SA temperatures, SA1 = 1020 °C, and SA2 = 1080 °C were tested for each scanning strategy. Data were processed using the software PDIndexer. In the as-built state, all samples showed typical subgrain columnar cell structures with predominant Nb/Mo segregation and Laves phase at the cell walls, as seen by SEM. The Alt scan induced higher intensity on the Laves peaks than the Rot scan, suggesting a greater content of Laves. Chemical homogenization in the SA was largely achieved during the heating ramp (Fig. 1). SA2 eliminated the Laves peaks just before reaching 1080 °C, and mitigated differences between Rot and Alt samples. On the other hand, SA1 induced the precipitation of the generally detrimental δ phase, also observed by SEM. Furthermore, the Rot scan showed higher δ peak intensities than the Alt scan, indicating a higher content of δ in the latter. No signs of recrystallization were observed in any of the investigated SAs. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Additive Manufacturing KW - X-Ray Diffraction KW - Inconel 718 KW - Heat Treatments KW - Microstructure PY - 2023 AN - OPUS4-58392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falk, Florian A1 - Stephan-Scherb, Christiane T1 - Microstructural impact on high temperature oxidation behavior of Fe-Cr-C model alloys N2 - Chromia forming high alloyed ferritic-austenitic steels are being used as boiler tube materials in biomass and coal-biomass co-fired power plants. Despite thermodynamic and kinetic boundary conditions, microstructural features such as grain orientation, grain sizes or surface deformation contribute to the oxidation resistance and formation of protective chromium-rich oxide layers. This study elucidates the impact of microstructure such as the grain size and number of carbide precipitates on high temperature oxidation at 650°C in 0.5% SO2 atmosphere. Cold-rolled Fe-16Cr-0.2C material was heat-treated to obtain two additional microstructures. After exposure to hot and reactive gases for 10 h < t < 1000 h layer thicknesses and microstructure of oxide scales are observed by scanning electron microscopy and Energy-dispersive X-ray spectroscopy. The two heat treated alloys showed reasonable oxidation resistance after 1000 h of exposure. The oxidation rate was substantially higher for the alloy with a duplex matrix after heat treatment compared to the fine-grained material. T2 - Gordon Research Conference CY - New London, New Hampshire, USA DA - 21.07.2019 KW - Corrosion KW - Microstructure KW - Oxidation KW - Sulfidation PY - 2019 AN - OPUS4-49212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Ávila, Luis T1 - Microstructure ageing of stainless steel AISI 316L manufactured by selective laser melting (SLM) N2 - Additive manufacturing (AM) processes, such as SLM, offer a variety of advantages compared to conventional manufacturing. Today AM parts are still comparatively less cost-effective if they are manufactured in large quantities. To make the AM parts more cost-efficient, the AM process has to be improved. It requires a good understanding of microstructure formation, microstructure-property-relations and ageing processes affected by different loads. In this work the ageing behavior of SLM manufactured AISI 316L stainless steel is evaluated. The microstructure effected by mechanical, thermal and corrosive loads are investigated and compared to as-built microstructure. Tensile tests are used for mechanical ageing. For thermal and corrosive loads the typical application conditions of 316L apply. The methods of microstructure investigation include SEM, TEM, CT and EBSD. The main object of this work is the description of microstructure and ageing processes of AM parts. T2 - European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM) 2019 CY - Trondheim, Norway DA - 09.09.2019 KW - 316L KW - Selective laser melting KW - Microstructure evolution PY - 2019 AN - OPUS4-49886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Nolze, Gert T1 - Microstructure analysis in AM 316L N2 - Additive manufacturing (AM) offers diverse advantages compared to conventional manufacturing. In this work the microstructure of austenitic steel 316L, manufactured with Selective Laser Melting (SLM), was analyzed and compared to microstructure of 316L hot rolled material. Methods used for analysis are microprobe, optical microscopy and electron backscatter diffraction. T2 - BAM workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - 316L KW - selective laser melting KW - microstructure analysis PY - 2019 AN - OPUS4-49880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Werner, Tiago A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Microstructure Based Study on the Low Cycle Fatigue Behavior of Stainless Steel 316L manufactured by Laser Powder Bed Fusion N2 - Due to the advantages of Laser Powder Bed Fusion (PBF-LB), i.e., design freedom and the possibility to manufacture parts with filigree structures, and the considerable amount of knowledge available for 316L in its conventional variant, the mechanical behavior, and related microstructure-property relationships of PBF-LB/316L are increasingly subject of research. However, many aspects regarding the - application-relevant - mechanical behavior at high temperatures are not yet fully understood. Here, we present the results of an experimental study on the LCF behavior of PBF-LB/316L featuring a low defect population, which makes this study more microstructure-focused than most of the studies in the literature. The LCF tests were performed between room temperature (RT) and 600 °C. The mechanical response is characterized by strain-life curves, and hysteresis and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, and optical and electron microscopy. The PBF-LB/M/316L was heat treated at 450 °C for 4 h, and a hot‑rolled (HR) 316L variant with a fully recrystallized equiaxed microstructure was tested as a reference. Besides, selected investigations were performed after a subsequent heat treatment at 900 °C for 1 h. The PBF-LB/316L exhibits higher cyclic stresses than HR/316L for most of the fatigue life, especially at room temperature. At the smallest strain amplitudes, the fatigue lives of PBF-LB/M/316L are markedly shorter than in HR/316L. The main damage mechanisms are multiple cracking at slip bands (RT) and intergranular cracking (600 °C). Neither the melt pool boundaries nor the gas porosity have a significant influence on the LCF damage mechanism. The cyclic stress-strain deformation behavior of PBF-LB/M/316L features an initial hardening followed by a continuous softening. The additional heat treatment at 900 °C for 1 h led to decreased cyclic stresses, and a longer fatigue life. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - AGIL KW - 316L KW - Microstructure KW - Low Cycle Fatigue KW - Heat Treatment KW - Laser Poeder Bed Fusion PY - 2024 AN - OPUS4-60432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Kranzmann, Axel A1 - Reimers, W. T1 - Microstructure characterization of additive produced parts N2 - Due to the advantages of additive manufacturing (AM), it has been increasingly integrated into many industrial sectors. The application of AM materials for safety-critical parts requires the detailed knowledge about their microstructure stability under thermo-mechanical or mechanical load and knowledge on ageing process mechanisms. Ageing processes are characterized by change of the material microstructure that is to be initially investigated. This work deals with the Investigation of 316L stainless steel manufactured by selective laser melting (SLM). Describing Parameters must be defined and applied on the microstructure of these materials in their initial state and after loads were applied. The findings of this work form the basis for the investigation of AM material ageing. T2 - FEMS Junior EUROMAT 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Additive manufacturing KW - Selective laser melting KW - 316L KW - Material characterization KW - Microstructure PY - 2018 AN - OPUS4-47176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Nolze, Gert T1 - Microstructure Characterization of Additively Manufactured Austenitic Steel 316L N2 - Additive manufacturing processes (AM) offer different advantages compared to conventional manufacturing processes. In this work the microstructure of austenitic steel 316L, manufactured with Selective Laser Melting (SLM), and the powder, used for the process, were investigated. T2 - BAM workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - 316L KW - Selective laser melting KW - Microstructure analysis KW - Metal powder characterization PY - 2019 AN - OPUS4-49884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclęga, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Dymek, S. T1 - Microstructure characterization of the Inconel 686 clad layer after high-temperature corrosion tests in aggressive gases and ashes N2 - The Ni-Cr-Mo-W alloy is characterized by the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. To protect the surface of the substrate 13CrMo4-5 steel against aggressive environments the Inconel 686 as clad layer was used. The corrosion process was performed in oxidizing mixture of gases like O2, COx, SOx. The second part of corrosion Experiment concerned the corrosion test of the coating in reducing atmosphere of the specified gases with ashes, which contained e.g. Na, Cl, Ca, Si, C, Fe, Al. T2 - Junior EUROMAT 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Laser Cladding KW - Inconel 686 KW - High temperature corrosion KW - Aggressive environement KW - Material oxidation PY - 2018 AN - OPUS4-45627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Microstructure-Property-Correlation of a Mo-Ti-B alloyed iron aluminide N2 - Iron aluminides depict a sustainable and light-weight material class which could be employed in many applications requiring high strength at intermediate to high temperatures. According to first results, the alloy Fe-26Al-4Mo-0.5Ti-1B surpasses conventional materials in wet corrosion resistance and creep resistance up to 650 °C. For these reasons, the AiF research project “WAFEAL – Materials applications for iron aluminides” was initiated to transfer these findings into a standardised materials dataset and to derive best practices for processing. In the first place, a set of different microstructures adjusted by varying casting methods, wall thicknesses and heat treatments was investigated and correlated with hardness on macro and micro scale. Correlations were drawn between solidification rates and resulting grain sizes and hardness. The effect of vacancy hardening was only verified for wall thickness as low as 2.5 mm. Moreover, a common decrease of macrohardness after a heat treatment at 1000 °C for 100 h was observed irrespective of casting process or wall thickness. This effect was linked with an unexpected decrease of the complex boride phase fraction which acts as a hardening phase. T2 - Intermetallics 2021 CY - Bad Staffelstein, Germany DA - 04.10.2021 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Heat treatment KW - Wall thickness KW - Centrifugal casting KW - Die casting KW - Investment casting KW - Microstructure KW - Hardness KW - Complex borides PY - 2021 AN - OPUS4-53617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick T1 - Modeling of the cooling behavior of thermoelectric multilayers N2 - Multilayered designs are an attractive approach towards cost-effective manufacturing of thermoelectric generators. Therefore, efforts are being made to co-fire two promising thermoelectric oxides, namely calcium cobaltite and calcium manganate. In this study, ceramic tapes, multilayer technology, and pressure-assisted sintering (PAS) were used. A major challenge for the PAS of low-sintered calcium manganate was cracking during cooling. A relationship between the properties of the release tape used during PAS and the cracking behavior was experimentally observed. To understand the origin of failure, reaction layers in the multilayer were analyzed and thermal stresses during cooling were estimated by finite element (FE) simulations. Thermal expansion, elastic properties, and biaxial strength of the thermoelectric oxides and selected reaction layers were determined on separately prepared bulk samples. The analysis showed that the reaction layers were not the cause for cracking of calcium manganate. Using the FE model, thermal stresses in different manganate multilayer designs with varying properties of the release tape were studied. The FEM study indicated, and a validation experiment proved that the thickness of the release tape has the main effect on thermal stresses during cooling in separately sintered calcium manganate. T2 - Keramik 2021 / Ceramics 2021 CY - Online Meeting DA - 19.04.2021 KW - Fem KW - Thermoelectric KW - Pressure assisted sintering PY - 2021 AN - OPUS4-52489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Nikonov, A. Y. A1 - Österle, Werner T1 - Molecular dynamics modeling of the sliding performance of an amorphous silica nano-layer - The impact of chosen interatomic potentials N2 - The sliding behavior of an amorphous silica sample between two rigid surfaces is in the focus of the present paper. Molecular Dynamics using a classical Tersoff’s potential and a recently developed ReaxFF potential was applied for simulating sliding within a thin film corresponding to a tribofilm formed from silica nanoparticles. The simulations were performed at different temperatures corresponding to moderate and severe tribological stressing conditions. Simulations with both potentials revealed the need of considering different temperatures in order to obtain a sound interpretation of experimental findings. The results show the striking differences between the two potentials not only in terms of magnitude of the resistance stress (about one order of magnitude) but also in terms of friction mechanisms. The expected smooth sliding regime under high temperature conditions was predicted by both simulations, although with Tersoff’s potential smooth sliding was obtained only at the highest temperature. On the other hand, at room temperature Tersoff-style calculations demonstrate stick-slip behavior, which corresponds qualitatively with our experimental findings. Nevertheless, comparison with a macroscopic coefficient of friction is not possible because simulated resistance stresses do not depend on the applied normal pressure. KW - Molecular dynamics KW - Thin tribofilm KW - Resistance stress KW - Sliding simulation KW - Amorphous silica PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449366 DO - https://doi.org/10.3390/lubricants6020043 SN - 2075-4442 VL - 6 IS - 2 SP - 43, 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-44936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Altenburg, Simon A1 - Ehlers, Henrik A1 - Hilgenberg, Kai A1 - Mohr, Gunther A1 - Nadammal, Naresh T1 - Monitoring additive manufacturing N2 - Additive manufacturing (AM) processes allow a high level of freedom in designing and producing components for complex structures. They offer the possibility of a significant reduction of the process chain. However, the large number of process parameters influence the structure and the behavior of AM parts. A thorough understanding of the interdependent mechanisms is necessary for the reliable design and production of safe AM parts. In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - Conaendi&IEV 2021 CY - Online meeting DA - 10.03.2021 KW - Additive Fertigung PY - 2021 AN - OPUS4-52241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Altenburg, Simon A1 - Ehlers, Henrik A1 - Hilgenberg, Kai A1 - Mohr, Gunther T1 - Monitoring additive manufacturing processes by using NDT methods N2 - In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - ABENDI - Workshop CY - Online meeting DA - 19.11.2020 KW - Additive Fertigung PY - 2020 AN - OPUS4-52042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Monodisperse iron oxide nanoparticles as reference material candidate for particle size measurements N2 - In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important, especially with respect to the assessment of their environmental or biological impact. Furthermore, the European Commission’s REACH Regulations require the registration of nanomaterials traded in quantities of at least 1 ton. Powders or dispersions where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as nanomaterials. This creates a need for industrial manufacturers and research or analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution and will also target other key parameters like shape, structure, porosity or functional properties. In this respect, materials like iron oxide or titanium dioxide are considered as candidates to complement the already available silica, Au, Ag, and polystyrene reference nanoparticles. The thermal decomposition of iron oleate precursors in high boiling organic solvents can provide large quantities of iron oxide nanoparticles that can be varied in size and shape.[1, 2] The presence of oleic acid or other hydrophobic ligands as capping agents ensures stable dispersion in nonpolar solvents. Such monodisperse, spherical particles were synthesized at BAM and pre-characterized by electron microscopy (TEM, SEM including the transmission mode STEM-in-SEM) and dynamic light scattering comparing cumulants analysis and frequency power spectrum. 1. REACH regulations and nanosafety concerns create a strong need for nano reference materials with diverse properties. 2. Iron oxide nanoparticles are under development as new candidate reference material at BAM. 3. Narrow particle size distribution confirmed by light scattering and electron microscopy. T2 - Nanosafety 2020 CY - Online meeting DA - 05.10.2020 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Electron microscopy KW - Nanoplattform PY - 2020 AN - OPUS4-52774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Bock, Robert A1 - Günzel, Stephan A1 - Gesell, Stephan T1 - Monte-Carlo-Analysis of Minimum Burst Requirements for Composite Cylinders for Hydrogen Service N2 - For achieving Net Zero-aims hydrogen is an indispensable component, probably the main component. For the usage of hydrogen, a wide acceptance is necessary, which requires trust in hydrogen based on absence of major incidents resulting from a high safety level. Burst tests stand for a type of testing that is used in every test standard and regulation as one of the key issues for ensuring safety in use. The central role of burst and proof test is grown to historical reasons for steam engines and steel vessels but - with respect for composite pressure vessels (CPVs) - not due an extraordinary depth of outcomes. Its importance results from the relatively simple test process with relatively low costs and gets its importance by running of the different test variations in parallel. In relevant test und production standards (as e. g. ECE R134) the burst test is used in at least 4 different meanings. There is the burst test on a) new CPVs and some others b) for determining the residual strength subsequent to various simulations of ageing effects. Both are performed during the approval process on a pre-series. Then there is c) the batch testing during the CPVs production and finally d) the 100% proof testing, which means to stop the burst test at a certain pressure level. These different aspects of burst tests are analysed and compared with respect to its importance for the resulting safety of the populations of CPVs in service based on experienced test results and Monte-Carlo simulations. As main criterial for this the expected failure rate in a probabilistic meaning is used. This finally ends up with recommendations for relevant RC&S especially with respect to GTR 13. T2 - 9th International Conference on Hydrogen Safety CY - Online meeting DA - 21.09.2021 KW - Hydrogen KW - Burst test KW - Composite pressure vessels KW - Net zero KW - Monte-Carlo-Analysis PY - 2021 SP - 133 EP - 146 PB - IGEM AN - OPUS4-55668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheffler, F. A1 - Fleck, M. A1 - Santiago, C. F. A1 - Brauer, D. S. A1 - Müller, Ralf T1 - Morphologies of Fresnoite surface crystals of BT0.75S glass under different atmospheric conditions N2 - Fresnoite glass-ceramics are characterized by piezoelectric, pyroelectric and non-linear optical properties. These properties can be adjusted by orienting the fresnoite crystals during crystallization. Crystallization begins at the surface. The first surface crystals are not oriented perpendicular and, therfore, produce a surface layer that has not the intended properties. To overcome this issue, the formation of fresnoite surface crystals at different atmospheric conditions was studied. T2 - 9th Int. Otto Schott Colloquium CY - Jena, Germany DA - 09.09.2019 KW - Glass KW - Surface crystallization KW - Crystal orientation PY - 2019 AN - OPUS4-50460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Marynowski, P. A1 - Wozny, K. T1 - Morphology and chemical composition of inconel 686 after high-temperature corrosion N2 - The work presents the microstructure, chemical composition and mechanical properties of Inconel 686 coatings after high - temperature corrosion in environment of aggressive gases and ashes. To produce the Ni - based coatings the QS Nd:YAG laser cladding process was carried out. As the substrate used 13CrMo4-5 boilers plate steel. Ni - base alloys characterize the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. Formed clad were characterized by high quality of metallurgical bonding with the substrate material and sufficiently low amount of the iron close to the clad layer surface. After corrosion experiment the oxide scale on the substrate and clad created. The scale on 13CrMo4-5 steel had 70 μm thickness while the scale of the clad had less than 10 μm. The microstructure, chemical composition of the obtained clad and scales were investigated by scanning electron microscope (SEM) and electron probe microanalyzer (EPMA) equipped with the EDS detectors. T2 - 27th International conference on metallurgy and materials CY - Brno, Czech Republic DA - 23.05.2018 KW - laser cladding KW - Inconel 686 KW - High - temperature corrosion KW - Aggressive environment KW - Oxide scale PY - 2018 SP - 1010 EP - 1016 AN - OPUS4-49660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kraus, David A1 - Kübler, Stefan A1 - Eisermann, René T1 - Multiaxial fatigue damage of glass fiber reinforced polymers N2 - Fiber reinforced polymers (FRPs) are a well established material in lightweight applications, e.g. in automotive, aerospace or wind energy. The FRP components are subjected to multiaxial mechanical as well as hygrothermal loads. Common operation temperatures are in the range of 213 K and 373 K (-60 °C and 100 °C) at a relative humidity of 10% to 90%. In spacecraft applications, the environmental conditions are even more extreme. However, the correlation between multiaxial mechanical loading and harsh environment conditions have to-date not been investigated in detail. The project aims to investigate the fatigue behavior of FRPs dependent on multiaxial mechanical loading, temperature, and humidity. Extensive experimental testing is performed on flat plate and cylindrical tube specimens, accompanied by numerical and analytical calculations. T2 - 24. Nationales SAMPE Symposium CY - Dresden, Germany DA - 06.02.2019 KW - Composite KW - Fatigue KW - Thermomechanics KW - Distributed fiber optic sensors PY - 2019 AN - OPUS4-47335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, E. T1 - Nano metal fluorides for wood protection against fungi N2 - Wood treated with nano metal fluorides is found to resist fungal decay. Sol−gel synthesis was used to synthesize MgF2 and CaF2 nanoparticles. Electron microscopy images confirmed the localization of MgF2 and CaF2 nanoparticles in wood. Efficacy of nano metal fluoride-treated wood was tested against brown-rot fungi Coniophora puteana and Rhodonia placenta. Untreated wood specimens had higher mass losses (∼30%) compared to treated specimens, which had average mass loss of 2% against C. puteana and 14% against R. placenta, respectively. Nano metal fluorides provide a viable alternative to current wood preservatives. KW - Brown-rot fungi KW - Coniophora puteana KW - Fluoride nanoparticles KW - Fluorolytic sol−gel KW - Rhodonia placenta KW - SEM wood characterization KW - Wood protection PY - 2018 DO - https://doi.org/10.1021/acsanm.8b00144 SN - 2574-0970 VL - 2018 SP - 1 EP - 6 PB - American Chemical Society (ACS) CY - Washington DC, US AN - OPUS4-44730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Nano Powder - a Challenge for Granulometry N2 - If the particle size decreases, the ratio of surface area to volume increases considerably. This provides benefits for all surface-driven processes that run faster or at lower temperatures than larger particles. However, handling and characterization of the nanopowders are much more difficult. Particularly polydisperse powders with irregular shape, as grinding products, represent a challenge. Granulometry in the submicron and nanoscale often leads to incorrect results without knowledge of particle morphology. This presentation demonstrates potentials of using the volume-specific surface area (SV or VSSA) in the granulometric characterization of nanopowders, for instance, correlations between the volume-specific surface area and the median particle size are discussed considering the particle morphology and the model of the logarithmic normal distribution. Moreover, the presentation deals with the optimal dispersion of nanopowders during sample preparation. Indirect ultrasound device with defined cooling was developed to prevent both contamination by sonotrode abrasion and sample changes by heat. Successful granulometric characterization of nanopowders demands both improved dispersion technology and very often an effective combination of two or more measurement methods. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft CY - Leoben, Austria DA - 06.05.2019 KW - Nano screening KW - VSSA KW - Nano particle KW - Particle size PY - 2019 AN - OPUS4-47976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaiser, T. M. A1 - Braune, C. A1 - Kalinka, Gerhard A1 - Schulz-Kornas, E. T1 - Nano-indentation of native phytoliths and dental tissues: implications for herbivore-plant combat and dental wear proxies N2 - Tooth wear induced by abrasive particles is a key process affecting dental function and life expectancy in mammals. Abrasive particles may be plant endogenous opal phytoliths, exogene wind-blown quartz dust or rain borne mineral particles ingested by mammals. Nano-indentation hardness of abrasive particles and dental tissues is a significant yet not fully established parameter of this tribological system. We provide consistent nano-indentation hardness data for some of the major antagonists in the dental tribosystem (tooth enamel, tooth dentine and opaline phytoliths from silica controlled cultivation). All indentation data were gathered from native tissues under stable and controlled conditions and thus maximize comparability to natural systems. Here we show that native (hydrated) wild boar enamel exceeds any hardness measures known for dry herbivore tooth enamel by at least 3 GPa. The native tooth enamel is not necessarily softer then environmental quartz grit, although there is little overlap. The native hardness of the tooth enamel exceeds that of any silica phytolith hardness recently published. Further, we find that native reed phytoliths equal native suine dentine in hardness, but does not exceed native suine enamel. We also find that native suine enamel is significantly harder than dry enamel and dry phytoliths are harder than native phytoliths. Our data challenge the claim that the culprit of tooth wear may be the food we chew, but suggest instead that wear may relates more to exogenous than endogenous abrasives. KW - Phytolith KW - Indentation hardness KW - Enamel KW - Dentine KW - Tooth wear PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-451417 UR - http://zoobank.org/5C7DBB2B-B27D-4CE6-9656-33C4A0DA0F39 DO - https://doi.org/10.3897/evolsyst.2.22678 VL - 2 SP - 55 EP - 63 PB - PENSOFT CY - USA AN - OPUS4-45141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Riechers, Birte A1 - Maaß, Robert T1 - nanoindentation data associated with the publication "On the elastic microstructure of bulk metallic glasses" in Materials&Design 2023 N2 - This dataset consists of indentation data measured with a conospherical tip in a Hysitron-Bruker TI980 Nanoindenter on the surface of a <100> Silicon wafer and a polished cross-sectional cut of a Zr65Cu25Al10 bulk metallic glass. It is associated with the following publication: Birte Riechers, Catherine Ott, Saurabh Mohan Das, Christian H. Liebscher, Konrad Samwer, Peter M. Derlet and Robert Maass "On the elastic microstructure of bulk metallic glasses" Materials and Design xxx, (2023) 111929. https://doi.org/10.1016/j.matdes.2023.111929 All experimental information can be found in this paper and in the accompanying supplementary information. This electronic version of the data was published on the "Zenodo Data repository" found at http://zenodo.org/deposit in the community "Bundesanstalt fuer Materialforschung und -pruefung (BAM)". The authors have copyright to these data. You are welcome to use the data for further analysis, but are requested to cite the original publication whenever use is made of the data in publications, presentations, etc. Any questions regarding the data can be addressed to birte.riechers@bam.de who would also appreciate a note if you find the data useful. KW - Metallic glasses KW - Nanoindentation KW - Elastic microstructure PY - 2023 DO - https://doi.org/10.5281/zenodo.7818224 PB - Zenodo CY - Geneva AN - OPUS4-57352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Navigating the Nanoworld: Understanding Materials Properties with the Transmission Electron Microscope N2 - The field of materials science is defined as “the study of the properties of solid materials and how those properties are determined by a material’s composition and structure.”. Many –if not most– of the materials that are produced nowadays owe their properties to structures engineered down to the nanoscopic level. This need has been partly realized thanks to the understanding of materials’ building blocks via characterization techniques that reach this level of resolution. Transmission electron microscopy, since its first implementation in the early 1930s (in Berlin), has been implemented to achieve imaging –and spectral– analysis at lateral resolutions down to the atomic level. In this contribution, a series of practical examples will be presented, where applied materials are characterized by a range of transmission electron microscopy techniques to understand structural and functional properties of a wide range of materials. Among these materials examples will be presented on structural conventionally and additively manufactured metallic alloys, high entropy alloys, dissimilar aluminum-to-steel welds, magnetic nanoparticles, ceramic coatings, high temperature oxidation products. Addressed will be either the effect of processing route or that of the exposure to experimental conditions similar to those found in the respective intended applications. T2 - UA/UAB/UAH MSE Graduate Seminar CY - Online meeting DA - 19.01.2022 KW - Transmission electron microscopy (TEM) KW - Characterization KW - Microstructure KW - 3D PY - 2022 AN - OPUS4-54238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kilo, M. A1 - Contreras Jaimes, A. A1 - Diegeler, A. A1 - Niebergall, R. A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Reinsch, Stefan T1 - New Approaches for the Preparation and Characterisation of New Glasses N2 - The new robot-assisted glass melting device at BAM is presented by the manufacturing team within the joint project GlasDigital together with an automatic thermo-optical measurement technique. T2 - UST-DGG joint meeting CY - Orléans, France DA - 23.05.2023 KW - Glass melting KW - Thermo-optical measurement PY - 2023 AN - OPUS4-58733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kilo, M. A1 - Contreras, A. A1 - Diegeler, A. A1 - Niebergall, R. A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Reinsch, Stefan T1 - New Approaches for the Preparation and Characterisation of New Glasses N2 - The new robot-assisted glass melting device at BAM is presented by the manufacturing team within the joint project GlasDigital together with an automatic thermo-optical measurement technique. T2 - USTV-DGG joint meeting CY - Orleans, France DA - 22.05.2023 KW - Glass KW - Robotic melting PY - 2023 AN - OPUS4-60374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - News from the working area - Semantic Interoperability N2 - This presentation provides a comprehensive overview of recent developments and the current status within the Semantic Interoperability work area, with a particular emphasis on the advancements related to the Platform MaterialDigital Core Ontology (PMDco). The presentation will delve into the collaborative and community-supported curation process that has been instrumental in shaping PMDco. Additionally, we will introduce the innovative Ontology Playground, showcasing its role in fostering experimentation and exploration within the realm of ontology development. T2 - MaterialDigital Vollversammlung CY - Karlsruhe, Germany DA - 21.09.2023 KW - Semantic Representation KW - FAIR data management KW - Semantic Interoperability KW - Knowledge graph and ontologies KW - PMD Core Ontology KW - MaterialDigital PY - 2023 AN - OPUS4-58422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shakeel, Y. A1 - Soysal, M. A1 - Vitali, E. A1 - Ost, P. A1 - Aversa, R. A1 - Ávila Calderón, Luis Alexander A1 - Engstler, M. A1 - Fell, J. A1 - Fritzen, F. A1 - Hermmann, H.-G. A1 - Laadhar, A. A1 - Olbricht, Jürgen A1 - Pauly, C. A1 - Roland, M. A1 - Skrotzki, Birgit T1 - NFDI-MatWerk - Reference Datasets N2 - Within NFDI-MatWerk (“National Research Data Infrastructure for Material Sciences”/ “Nationale Forschungsdateninfrastruktur für Materialwissenschaften und Werkstofftechnik“), the Task Area Materials Data Infrastructure (TA-MDI) will provide tools and services to easily store, share, search, and analyze data and metadata. Such a digital materials environment will ensure data integrity, provenance, and authorship. The MatWerk consortium aims to develop specific solutions jointly with Participant Projects (PPs), which are scientific groups or institutes covering different domains, from theory and simulations to experiments. The Data Exploitation Methods group of the Karlsruhe Institute of Technology-Steinbuch Centre of Computing, as part of TA-MDI, is developing specific solutions in close collaboration with three PPs. PP07, together with the University of Stuttgart, aims at the image-based prediction of the material properties of stochastic microstructures using large-scale supercomputers. PP13, in cooperation with the University of Saarland, focuses on tomographic methods at various scales in materials research. PP18, together with the Federal Institute for Materials Research and Testing (“Bundesanstalt für Materialforschung und -prüfung”), aspires to define the criteria for materials reference datasets and usage analytics. The requirements and goals are comparable for each PP: their research outputs, which are scientific datasets, should conform to the FAIR (Findable, Accessible, Interoperable, Reusable) principles. We aim to shape them from a data management perspective making use of the FAIR Digital Object concept, including structured metadata and storage solutions. The results will be a blueprint which will act as a reference for future datasets. Even though the collaboration is in an early stage, the initial steps already show the added value of this approach. This research has been supported by the Federal Ministry of Education and Research (BMBF) – funding code M532701 / the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project number NFDI 38/1, project no. 460247524. T2 - HMC Conference 2022 CY - Online meeting DA - 05.10.2022 KW - NFDI KW - NFDI-MatWerk KW - Reference Data KW - FAIR KW - Creep PY - 2022 AN - OPUS4-56611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Shakeel, Yusra A1 - Olbricht, Jürgen A1 - Aversa, Rossella A1 - Skrotzki, Birgit T1 - NFDI-MatWerk PP18 / IUC02 Reference Data: Creep Data of a single crystalline Ni-Base Alloy N2 - Reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) of the consortium Materials Science and Engineering (MatWerk) of National Research Data Infrastructure (NFDI) aims to develop, together with BAM and other Participant Projects (PP), a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for identifying reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - All-Hands-on-Deck congress from the NFDI-MatWerk CY - Siegburg, Germany DA - 08.03.2023 KW - Referenzdaten KW - Reference data KW - Creep KW - Syngle Crystal alloy KW - Metadata schema PY - 2023 AN - OPUS4-57146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehmann, N. A1 - Lenting, C. A1 - Stawski, Tomasz A1 - Agudo Jacome, Leonardo A1 - Jahn, S. T1 - Non classical nucleation in calcium sulfates Insights from the hyper arid Atacama Desert N2 - Gypsum (CaSO4∙2H2O) and anhydrite (CaSO4) are among the dominant evaporite minerals in the Atacama Desert [1]. They are distributed ubiquitously, and play a key role in local landscape evolution. The formation mechanism of especially anhydrite has been a matter of scientific debate for more than a century [2]. To date, there exists no model that can reliably predict anhydrite formation at earth’s surface conditions. While thermodynamics favor its formation [3], it is hardly achieved on laboratory time scales at conditions fitting the Atacama Desert. Long induction times for nucleation have recently been modeled by Ossorio et al. [4]. However, anhydrite can be readily found in the Atacama Desert. Recently, the mineral was synthesized in flow-through reactors as a byproduct of K-jarosite dissolution at high water activity (aw=0.98) and room temperature [5], even-though the thermodynamic stability field begins only under a value of ~0.8. Additionally, recent studies investigated the nano-structure of various calcium-sulfates, which advocate for highly non-classical crystallization behavior [6]. The specific roles of particulates, ionic or organic reagents working as catalysts for the non-classical crystallization pathway remain to be determined. Here, we present recent results from flow-through experiments as well as analyses of anhydrite samples from the Atacama Desert. Flow-through experiments were performed to systematically explore the domains of flow rate, composition, ionic-strengths and starting materials. Neither primary, nor secondary anhydrite was produced in any of these experiments. Analyses on Atacama samples reveal the existence of at least three distinct anhydrite facies, with differing mineralogy and micro- to nano-structures. The facies are (1) aeolian deposits with sub-µm grain sizes, (2) (sub-)surface nodules that formed from aeolian deposits and (3) selenites with secondary anhydrite rims. Possible mechanisms of their formation will be discussed. T2 - Goldschmidt2023 CY - Lyon, France DA - 13.07.2023 KW - Gypsum KW - Anhydrite KW - Atacama Desert KW - Local landscape evolution PY - 2023 AN - OPUS4-58988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Trappe, Volker A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Non-destructive characterization methods for polymer matrix composites N2 - The mechanical behavior of fiber reinforced composites with polymer matrix is governed by several mechanisms operating at different length scales. In this contribution we describe first non-destructive techniques which are adequate for the characterization of the fiber-matrix interphase at a microscopic level. In a second step we describe on a mesoscopic level the influence of manufacturing related elements on the mechanical properties of rotor blades for wind turbines. We concentrate on thermography, laminography and ultrasound in connection with mechanical testing systems. Finally we present methods for monitoring rotor blades by using embedded optical fibers. T2 - Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ, Brasilien CY - Online meeting DA - 26.11.2020 KW - Polymer matrix composites PY - 2020 AN - OPUS4-52043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Novel insights into high temperature corrosion phenomena by advanced X-ray methods N2 - A variety of materials of technological interest change their properties through contact with reactive media. Solid-gas reactions lead to a variety of reaction products on the surfaces and internal interfaces. The observation of nucleation and growth processes in the environment where they occur (in situ) from a chemical-structural perspective is especially challenging for aggressive atmospheres. The talk presents innovative approaches to study corrosion mechanisms using advanced X-ray methods. Using energy dispersive X-ray diffraction and X-ray absorption spectroscopy in different tailor made environmental reaction chambers, valuable insights into high temperature oxidation and sulfidation processes were gained. Fe-based alloys were exposed to hot and reactive atmospheres containing gases like SO2, H2O and O2 at 650°C. During the gas exposure the tailor made reaction chambers were connected to a high energy diffraction end station at the synchrotron. The crystallization and growth of oxide and sulfide reaction products at the alloy surfaces were monitored by collecting full diffraction pattern every minute. Careful examination of shape and intensity of phase-specific reflections enabled to a detailed view on growth kinetics. These studies showed, oxides are the first phases occurring immediately after experimental start. As soon as reactive gas media enter the chamber, the conditions change and different reaction products, such as sulfides start to grow. A comparison of different gas environments applied, illustrated the differences in the type of reaction products. The in situ observation of high temperature material degradation by corrosion made it possible to study the contribution of phases, which are not stable at room temperature. For instance, wuestite (Fe1-xO), was frequently observed at high temperatures in humid gases on Fe with 2 wt.% and 9 wt.% chromium, but not at room temperature. The strength of the occurrence of this phase additionally explains why, despite a higher Cr content, ferritic alloys with 9 wt.% Cr in a challenging atmosphere prevent the intrinsic formation of protective layers. The in situ observations were supplemented by careful considerations of thermodynamic boundary conditions and detailed post characterization by classical metallographic analysis. Additionally, the structure and chemistry of the dominant oxide layers were evaluated using X-ray absorption near edge structure spectroscopy. The talk will give an overview about chances and challenges for studying high temperature corrosion phenomena by advanced X-ray methods. T2 - MRS Spring Meeting CT08.02.01 CY - Online Meeting DA - 18.04.2021 KW - XRD KW - Spectroscopy KW - Corrosion KW - High temperature KW - In-situ PY - 2021 AN - OPUS4-52486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jentzsch, Stefan A1 - Stock, Daniel A1 - Häcker, Ralf A1 - Klingbeil, Dietmar A1 - Kindrachuk, Vitaliy T1 - Numerical and experimental investigations on metal shear band formation at high strain rates with a Hopkinson bar setup N2 - The essence of dynamic failure is closely linked to the formation of adiabatic shear bands (ASB), which result from the localization of shear strain under high deformation speeds accompanied by a rapid temperature increase. Understanding this phenomenon is crucial in view of safety issues when impacts of fast rotating machine components (i.e. aircraft turbine blades) may occur. Our contribution addresses both the experimental evidence and characterization of ASBs due to high-speed impact tests at the Split HOPKINSON pressure bar (SHPB) setup and the finite element analysis to determine the parameters of the underlying constitutive model, which is closely related to JOHNSON-COOK (JC) material model. Experimental investigations were performed on notched shear specimens made of the fine -grained structural steel S690QL and the displacements in the regions affected by shear localization were measured with subset-based local Digital Image Correlation (DIC). The displacement fields, obtained in the SHPB tests, were considered as an objective to validate and to identify the constitutive parameters with. The JC model could reasonably reproduce the displacement distribution. In order to overcome the issues with mesh dependency we provide a nonlocal extension based on the implicit gradient model approach. T2 - GAMM Annual Meeting 2023 CY - Dresden, Germany DA - 30.05.2023 KW - Gradient-enhanced damage KW - Adiabatic shear bands KW - Split Hopkinson bar KW - Digital image correlation KW - Viscoplasticity KW - Finite element analysis PY - 2023 AN - OPUS4-57827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ganesh, Rahul A1 - Gesell, Stephan A1 - Kuna, M. A1 - Fedelich, Bernard A1 - Kiefer, B. T1 - Numerical calculation of ΔCTOD for thermomechanical fatigue crack growth N2 - The cyclic crack tip opening displacement ΔCTOD is a promising loading Parameter to quantify the crack propagation under thermomechanical fatigue (TMF). In this work, suitable techniques are investigated and compared for an accurate calculation of ΔCTOD under TMF loading using a viscoplastic temperature dependent material model. It turned out that collapsed special crack tip elements give the best results. An efficient FEM-technique is developed to simulate the incremental crack growth by successive remeshing, whereby the deformations and internal state variables are mapped from the old mesh onto the new one. The developed techniques are demonstrated and discussed for two-dimensional examples like TMF-specimens. Recommendations are made regarding important numerical control parameters like optimal size of crack tip elements, length of crack growth increment in relation to plastic zone size and ΔCTOD value. N2 - Zur Bewertung des Rissfortschritts unter thermomechanischer Ermüdung (TMF) ist die zyklische Rissöffnungsverschiebung ΔCTOD ein aussichtsreicher bruchmechanischer Beanspruchungsparameter. In dieser Arbeit werden unter Anwendung eines viskoplastischen, temperaturabhängigen Materialmodells geeignete FEM-Techniken für die akkurate Berechnung des ΔCTOD bei TMF erprobt und verglichen. Als beste Technik hat sich die Verwendung kollabierter Rissspitzenelemente erwiesen. Es wurde ein effizienter FEM-Algorithmus zur Simulation der Rissausbreitung mit inkrementeller Neuvernetzung entwickelt, bei dem die Verformungen und inelastischen Zustandsvariablen jeweils vom alten auf das neue Netz übertragen werden. Die erarbeiteten Techniken werden am Beispiel von zweidimensionalen Strukturen und TMF-Proben vorgestellt und diskutiert. Dabei werden wesentliche Kontrollparameter der Simulation wie optimale Grösse der Rissspitzenelemente, Länge des Rissinkrementes in Relation zur plastischen Zone und dem ΔCTOD-Wert empfohlen. T2 - 53. Tagung des Arbeitskreises "Bruchmechanik und Bauteilsicherheit" CY - Online meeting DA - 18.02.2021 KW - Crack tip opening displacement KW - Thermomechanical fatigue KW - Crack growth PY - 2021 SP - 1 EP - 10 PB - DVM (Deutscher Verband für Materialforschung und -prüfung) CY - Berlin AN - OPUS4-52519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ganesh, Rahul A1 - Gesell, Stephan A1 - Kuna, M. A1 - Fedelich, Bernard A1 - Kiefer, B. T1 - Numerical calculation of ΔCTOD for thermomechanical fatigue crack growth N2 - The cyclic crack tip opening displacement ΔCTOD is a promising loading Parameter to quantify the crack propagation under thermomechanical fatigue (TMF). In this work, suitable techniques are investigated and compared for an accurate calculation of ΔCTOD under TMF loading using a viscoplastic temperature dependent material model. It turned out that collapsed special crack tip elements give the best results. An efficient FEM-technique is developed to simulate the incremental crack growth by successive remeshing, whereby the deformations and internal state variables are mapped from the old mesh onto the new one. The developed techniques are demonstrated and discussed for two-dimensional examples like TMF-specimens. Recommendations are made regarding important numerical control parameters like optimal size of crack tip elements, length of crack growth increment in relation to plastic zone size and ΔCTOD value. T2 - 53. Tagung des Arbeitskreises "Bruchmechanik und Bauteilsicherheit" CY - Online meeting DA - 18.02.2021 KW - Crack tip opening displacement KW - Thermomechanical fatigue KW - Crack growth PY - 2021 AN - OPUS4-52520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gesell, Stephan A1 - Ganesh, Rahul A1 - Kuna, Meinhard A1 - Fedelich, Bernard A1 - Kiefer, Björn T1 - Numerical calculation of ΔCTOD for thermomechanical fatigue crack growth N2 - The cyclic crack tip opening displacement ΔCTOD is a promising loading Parameter to quantify the crack propagation under thermomechanical fatigue (TMF). In this work, suitable techniques are investigated and compared for an accurate calculation of ΔCTOD under TMF loading using a viscoplastic temperature dependent material model. It turned out that collapsed special crack tip elements give the best results. An efficient FEM-technique is developed to simulate the incremental crack growth by successive remeshing, whereby the deformations and internal state variables are mapped from the old mesh onto the new one. The developed techniques are demonstrated and discussed for two-dimensional examples like TMF-specimens. Recommendations are made regarding important numerical control parameters like optimal size of crack tip elements, length of crack growth increment in relation to plastic zone size and ΔCTOD value. T2 - ESIS Technical Meeting on Numerical Methods (TC8) CY - Online meeting DA - 06.04.2021 KW - Crack tip opening displacement KW - Thermomechanical fatigue KW - Crack growth PY - 2021 AN - OPUS4-52410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Stargardt, Patrick A1 - Greinacher, M. T1 - Numerical study of electric field distribution in breakdown strength testing of ceramics N2 - Dielectric breakdown of insulators is a combined electrical, thermal, and mechanical failure. The exact breakdown mechanism in ceramics and the formulation of useful models are still subject of investigation. Recent studies highlighted that several experimental aspects of dielectric breakdown strength testing affect the test results, and thus impede the recognition of fundamental principles. Excess field strength near the electrode can lead to premature breakdown in the insulating liquid. This would cause superficial damage to the test specimen and thus falsify the measurement results. The field strength distribution is influenced by the ratio of permittivity of the sample and the surrounding insulating liquid. Premature breakdown depends on the breakdown strength of the liquid and the actual test voltage. The test voltage again depends on the specimen thickness. To systematically investigate these relations, a numerical simulation study (FEM) of the electric field distribution in a typical testing rig with cylindrical electrodes was performed. The permittivity of the sample and the insulating liquid was parameterized, as well as the sample thickness. The electric field distribution was calculated for increasing test voltage. Field strength maxima are compared to experimental breakdown strength of typical insulating liquids and experimental breakdown locations on alumina. Strategies are discussed to adjust the insulation liquid and the sample thickness to reduce the influence of the testing setup on the dielectric breakdown strength results. T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Ceramics KW - Dielectric breakdown strength KW - Electric field distribution KW - Alumina PY - 2022 AN - OPUS4-55325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian T1 - Obtaining, validating, and storing material parameters N2 - Several aspects of obtaining, validating, and storing material parameters are presented and discussed pertaining especially to calibration, inter-laboratory testing and statistical validation. T2 - 2019 Summer School Priotrity Program 1713 "Chemomechanics" CY - Ebernburg, Germamy DA - 06.05.2019 KW - Materials science KW - Calibration KW - Data storage PY - 2019 AN - OPUS4-48012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Schiller, B.N. A1 - Beck, M. A1 - Bettge, Dirk T1 - On the corrosion behaviour of co 2 injection pipe steels: role of cement N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost-effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells, the corrosion resistance of the materials used needs to be determined. In this study, representative low-cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were investigated in simulated pore water at 333 K and under CO2 saturation condition to represent the worst-case scenario: CO2 diffusion and aquifer fluid penetration. These simulated pore waters were made from relevant cement powder to mimic the realistic casing-cement interface. Electrochemical studies were carried out using the pore water made of cement powder dissolved in water in comparison with those dissolved in synthetic aquifer fluid, to reveal the effect of cement as well as formation water on the steel performance. Two commercially available types of cement were investigated: Dyckerhoff Variodur® and Wollastonite. Variodur® is a cement containing high performance binder with ultra-fine blast furnace slag which can be used to produce high acid resistance concrete. On the other hand, Wollastonite is an emerging natural material mainly made of CaSiO3 which can be hardened by converting to CaCO3 during CO2 injection. The results showed the pH-reducing effect of CO2 on the simulated pore water/aquifer (from more than 10 to less than 5) leading to the active corrosion process that happened on both 1.8977 and 1.7225. Electrochemical characterization showed negative free corrosion potential and polarisation curves without passive behaviors. The tested coupons suffered from pitting corrosion, which was confirmed by surface analysis. Interestingly, basing on the pit depth measurements from the tested coupons and the hardness of cement powder, it is suggested that Variodur® performed better than Wollastonite in both aspects. The electrochemical data was compared to that resulted from exposure tests to give a recommendation on material selection for bore-hole construction. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Cement KW - Carbon capture KW - Corrosion and storage (CCUS) technology KW - Utilization KW - Carbon steel KW - Crevice corrosion PY - 2019 SP - Paper 200597, 1 EP - 4 PB - SOCIEMAT CY - Madrid, Spain AN - OPUS4-49109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Schiller, B.N A1 - Beck, M. A1 - Bettge, Dirk T1 - On the corrosion behaviour of CO2 injection pipe steels: Role of cement N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost-effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells, the corrosion resistance of the materials used needs to be determined. In this study, representative low-cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were investigated in simulated pore water at 333 K and under CO2 saturation condition to represent the worst-case scenario: CO2 diffusion and aquifer fluid penetration. These simulated pore waters were made from relevant cement powder to mimic the realistic casing-cement interface. Electrochemical studies were carried out using the pore water made of cement powder dissolved in water in comparison with those dissolved in synthetic aquifer fluid, to reveal the effect of cement as well as formation water on the steel performance. Two commercially available types of cement were investigated: Dyckerhoff Variodur® and Wollastonite. Variodur® is a cement containing high performance binder with ultra-fine blast furnace slag which can be used to produce high acid resistance concrete. On the other hand, Wollastonite is an emerging natural material mainly made of CaSiO3 which can be hardened by converting to CaCO3 during CO2 injection. The results showed the pH-reducing effect of CO2 on the simulated pore water/aquifer (from more than 10 to less than 5) leading to the active corrosion process that happened on both 1.8977 and 1.7225. Electrochemical characterization showed negative free corrosion potential and polarisation curves without passive behaviors. The tested coupons suffered from pitting corrosion, which was confirmed by surface analysis. Interestingly, basing on the pit depth measurements from the tested coupons and the hardness of cement powder, it is suggested that Variodur® performed better than Wollastonite in both aspects. The electrochemical data was compared to that resulted from exposure tests to give a recommendation on material selection for bore-hole construction. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Carbon capture KW - Utilization, and storage (CCUS) technology KW - Corrosion KW - Carbon steel KW - Mortel KW - Crevice corrosion PY - 2019 AN - OPUS4-49105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Ontology-oriented modeling of the Vickers hardness knowledge graph N2 - This research deals with the development of the Vickers hardness knowledge graph, mapping the example dataset in them, and exporting the data-mapped knowledge graph as a machine-readable Resource Description Framework (RDF). Modeling the knowledge graph according to the standardized test procedure and using the appropriate upper-level ontologies were taken into consideration to develop the highly standardized, incorporable, and industrial applicable models. Furthermore, the Ontopanel approach was utilized for mapping the real experimental data in the developed knowledge graphs and the resulting RDF files were successfully evaluated through the SPARQL queries. T2 - ICMMM 2023: 10th International Conference on Mechanics, Materials and Manufacturing CY - Washington, D.C., USA DA - 18.08.2023 KW - Ontology KW - Knowledge graph KW - Data mapping KW - Vickers hardness KW - FAIR data PY - 2023 AN - OPUS4-58100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Ontology-Oriented Modeling of the Vickers Hardness Knowledge Graph N2 - This research deals with the development of the Vickers hardness knowledge graph, mapping the example dataset in them, and exporting the data-mapped knowledge graph as a machine-readable Resource Description Framework (RDF). Modeling the knowledge graph according to the standardized test procedure and using the appropriate upper-level ontologies were taken into consideration to develop the highly standardized, incorporable, and industrial applicable models. Furthermore, the Ontopanel approach was utilized for mapping the real experimental data in the developed knowledge graphs and the resulting RDF files were successfully evaluated through the SPARQL queries. KW - Data Mapping KW - FAIR Data KW - Ontology KW - Knowledge Graph KW - Vickers Hardness PY - 2024 DO - https://doi.org/10.4028/p-k8Gj2L VL - 149 SP - 33 EP - 38 PB - Trans Tech Publications Ltd CY - Switzerland AN - OPUS4-59981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Yue A1 - Schilling, Markus A1 - von Hartrott, P. A1 - Huschka, M. A1 - Olbricht, Jürgen A1 - Pirskawetz, Stephan A1 - Skrotzki, Birgit A1 - Hanke, T. A1 - Todor, A. T1 - Ontopanel: a diagrams.net plugin for graphical semantic modelling N2 - Ontologies that represent a map of the concepts and relationships between them, are becoming an effective solution for data standardization and integration of different resources in the field of materials science, as efficient data storage and management is the building block of material digitization. However, building a domain ontology is not a simple task. It requires not only a collaborative effort between ontologists and domain experts, but also the modeling approaches and tools play a key role in the process. Among all approaches, graphical representation of domain ontologies based on standard conceptual modeling languages is widely used because of its intuitiveness and simplicity. Various tools have been developed to realize this approach in an intuitive way, such as Protégé plugins and web visualization tools. The Materials-open-Lab (MatOLab) project, which aims to develop ontologies and workflows in accordance with testing standards for the materials science and engineering domains, adopted a UML (Unified Modeling Language) approach based on the diagrams.net. It is a powerful, popular, open-source graphical editor. In practical case studies, however, many users’ needs could not be met, such as reusing ontology, conversion, and data mapping. Users must switch between different tools to achieve a certain step, and thereby invariably increase learning cost. The lack of validation also leads to incorrect diagrams and results for users who are not familiar with the ontology rules. To address these issues, we designed Ontopanel, a diagrams.net-based plugin that includes a set of pipeline tools for semantic modeling: importing and displaying protégé-like ontologies, converting diagrams to OWL, validating diagrams by OWL rules, and mapping data. It uses diagrams.net as the front-end for method modeling and Django as the back-end for data processing. As a web-based tool, it is very easy to expand its functionality to meet changing practical needs. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Ontology KW - Tools KW - Material digital KW - Mat-o-lab KW - Graphic design KW - Ontology development KW - Data mapping KW - FAIR KW - Materials testing PY - 2022 AN - OPUS4-55884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Optical properties of dental ceramics: Characterization via UV-Vis and photoluminescence spectroscopies N2 - When it comes to dental treatments, success is not only measured by attained functionality but, to a large extent, the associated aesthetics. This can become challenging for certain restorations and implants due to the complex optical characteristic of a tooth, which reflects, absorbs, diffuses, transmits, and even emits light. Thus, to get acceptable aesthetic results, favourable shade matching of ceramic restorations and implants should be achieved by strict control of optical response, which translates into a materials design question. Optical response is affected by several factors such as the composition, crystalline content, porosity, additives, grain size and the angle of incidence of light on the dental ceramics. The properties to be characterized are colour (and its stability), translucency, opalescence, refractive index, and fluorescence. Several techniques can be applied for the characterization of these properties and in this presentation, an overview will be given. Moreover, particular emphasis will be given on the capacitation of less familiarized public to UV-Vis absorption and photoluminescence (PLE) spectroscopies that are versatile and widely employed for functional and structural characterization of glasses and glass ceramic materials. T2 - 2nd BAYLAT Workshop of CERTEV - FAU CY - Nuremberg, Germany DA - 04.12.2023 KW - Optical properties KW - Dental ceramics KW - Optical spectroscopy PY - 2023 AN - OPUS4-60364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea T1 - Optical properties of glasses and ceramics N2 - Optical glasses and glass ceramics are present in many devices often used in our daily routine, such as the mobile phones and tablets. Since the 1960´s with the development of glass lasers, and more recently, within the search for efficient W-LEDs, sensors and solar converters, this class of materials has experienced extreme research progress. In order to tailor a material for such applications, it is very important to understand and characterize optical properties such as refractive index, transmission window, absorption and emission cross sections, quantum yields, etc. These properties can often be tuned by appropriate compositional choice and post-synthesis processing. In this lecture we will discuss the optical properties of glasses and glass ceramics, relevant to that end. T2 - 2nd CeRTEV Glass School CY - São Carlos, SP, Brazil DA - 22.04.2024 KW - Optical properties of glasses and ceramics PY - 2024 AN - OPUS4-60370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Rabe, Torsten T1 - Optimized spray granules for dry pressing by means of slurry destabilization and ultrasonic atomization N2 - The homogeneous introduction of organic additives is a prerequisite for good processability of ceramic powders during dry pressing. The addition of organic additives by wet route via ceramic slurries offers advantages over dry processing. The organic content can be reduced and a more homogeneous distribution of the additives on the particle surface is achieved. In addition to the measurements of zeta potential and viscosity, sedimentation analysis by optical centrifugation was also tested and successfully used to characterize the ceramic slurries and accurately evaluate of the suitability of different types, amounts, and compositions of organic additives. Spray drying of well-stabilized slurries usually results in mostly hollow granules with a hard shell leading to sintered bodies with defects and reduced strength and density. By purposefully degrading the slurry stability after dispersion of the ceramic powder, the drying behavior of the granules in the spray drying process and thus the granule properties can be influenced. Destabilization of the slurry and thus partial flocculation was quantified by optical centrifugation. Spray drying of the destabilized alumina slurries resulted in "non-hollow" granules without the detrimental hard shell and thus improved granule properties. Further improvement of the granules was achieved by installing ultrasonic atomization in the spray dryer. A narrower granule size distribution was achieved, which had a positive effect on, among other things, the flowability of the granules. Specimens produced from this granules had fewer defects of smaller size, leading to better results for the density and strength of the sintered bodies. The observations made for alumina could be transferred to zirconia and as well to ZTA with 20 wt% zirconia. T2 - Ceramics in Europe 2022 CY - Krakau, Poland DA - 10.07.2022 KW - Ultrasound KW - Spray drying KW - Slurry PY - 2022 AN - OPUS4-56171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin A1 - Menneken, Martina A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, Christiane T1 - Orientation dependent corrosion N2 - Ferritic-martensitic Fe-Cr alloys are widely utilised as materials for high temperature applications such as super heater tubes in coal, biomass or co-fired power plants. Various corrosive gases are produced in combustion processes, but especially SO2 is known to cause catastrophic application failure. In order to understand the effect of orientation and grain size of the alloy on the initial corrosion processes we analysed metal coupons of Fe-Cr- alloys (2-13 wt. % Cr) by electron backscattered diffraction (EBSD) before and after exposure to SO2 containing atmospheres in 650°C for short time spans (2 min – 12 h). An infra red heated furnace with integrated water-cooling was used for the ageing procedures to conduct short time experiments and to keep the reaction products in a ‘frozen’ state. EBSD characterization of oxides formed on the surface of the alloys showed a topotactic relationship between grain orientation of the alloys and the oxides. With increasing scale thickness this relation diminishes possibly due to lattice strain. There appears to be no correlation between oxide growth and absolute, initial orientation, grain size, or the quality of polishing. An initially topotactic relationship between scale and steel had been already described for the formation of magnetite in hot steam environments, indicating that the initial corrosion mechanisms are mainly depending on the presence of Oxygen, and not changed by the presence of Sulphur. However, Sulphur is incorporated into the oxide scale in the low Cr alloy, and mainly observable in the inner corrosion zone for the higher alloyed material. Furthermore, oxides formed directly on grain boundaries in higher Cr alloyed materials are enriched in Cr compared to oxides on grain faces. T2 - EFC Workshop Dechema CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - Crystal Orientation KW - High Temperature Corrosion PY - 2018 AN - OPUS4-47279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Oriented Surface Crystallization N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. For silicate glasses we found a good correlation between the calculated surface energy of crystal faces and oriented surface nucleation. Surface energies were estimated assuming that crystal surfaces resemble minimum energy crack paths along the given crystal plane. This concept was successfully applied by Rouxel in calculating fracture surface energies of glasses. Several oriented nucleation phenomena can be herby explained assuming that high energy crystal surfaces tend to be wetted by the melt. This would minimize the total interfacial energy of the nucleus. Furthermore, we will discuss the evolution of the microstructure and its effect on the preferred crystal orientation. T2 - 26th International Congress on Glass CY - Berlin, Germany DA - 03.07.2022 KW - Glass KW - Surface energy KW - Crystal orientation PY - 2022 AN - OPUS4-56074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Tielemann, Christopher A1 - Busch, R. A1 - Patzig, C. A1 - Müller, Ralf A1 - Höche, T. T1 - Oriented surface crystallization in 18BaO·22CaO·60SiO2 and MgO·CaO·2SiO2 glasses N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. The vast majority of previous work does not consider possible effects of surface preparation and surrounding atmosphere. Moreover, very few observations of surface crystal orientation were made on separately grown crystals. The aim of our project is to advance the basic understanding of oriented surface crystallization, e.g. whether preferred orientation of surface crystals results from oriented nucleation or reorientation mechanisms during early crystal growth. In both cases, crystal orientation may reflect the orientation of the glass surface or that of anisotropic active surface nucleation sites. Therefore, we focus on orientation of surface crystals separately growing under controlled conditions. First results on diopside (MgCaSi2O6) and walstromite (BaCa2Si3O9) crystals growing from 18BaO·22CaO·60SiO2 and MgO·CaO·2SiO2 glass surfaces, respectively, indicate that different orientation mechanisms may occur. Neighbored walstromite crystals were found to gradually reorient themselves when they are going to impinge each other during stepwise isothermal treatments (log η = 4,5 Pa*s) of polished glass samples. Nevertheless, no preferred crystal orientation was evident for separate crystals. For diopside crystals growing from polished glass surfaces (1 μm diamond lapping foil), strong preferred orientation was observed for 3.5 to 85 min annealing at 850 °C. Electron Backscatter Diffraction (EBSD) studies showed that the c-axis of surface crystals is oriented parallel to the glass surface and that separated diopside crystals as small as 600 nm are already oriented. Studies on glass surfaces, polished with diamond lapping foils starting from 16 μm down to 1 μm grain, revealed that crystal orientation may scatter arround this preferential orientation and that this scatter progressively decreases with decreasing polishing grain size. T2 - 93rd Annual Meeting of the German Society of Glass Technology (DGG) in conjunction with the French Union for Science and Glass Technology (USTV) Annual Meeting CY - Nuremberg, Germany DA - 13.05.2019 KW - Surface crystallization KW - Orientation KW - Glass KW - Diopside PY - 2019 AN - OPUS4-48198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Oriented Surface Crystallization in Glasses N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. For silicate glasses we found a good correlation between the calculated surface energy of crystal faces and oriented surface nucleation. Surface energies were estimated assuming that crystal surfaces resemble minimum energy crack paths along the given crystal plane. This concept was successfully applied at the Institute of Physics of Rennes in calculating fracture surface energies of glasses. Several oriented nucleation phenomena can be herby explained assuming that high energy crystal surfaces tend to be wetted by the melt. This would minimize the total interfacial energy of the nucleus. Furthermore, we will discuss the evolution of the microstructure and its effect on the preferred crystal orientation. T2 - ACerS GOMD 2024- Glass & Optical Materials Division Meeting CY - Las Vegas, NV, USA DA - 19.05.2024 KW - Surface nucleation KW - Oriented surface crystallization KW - Surface energy PY - 2024 AN - OPUS4-60238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simkin, Roman A1 - Kranzmann, Axel A1 - Pfennig, Anja A1 - Heide, G. T1 - Oxidation behavior of FeCr model alloys in synthetic air at temperatures above 600 °C N2 - The life time of mechanical components in high temperature applications is basically determined by their workings. Corrosion determines the loss of material corresponding to the loss of the effective load-bearing section and consequently increasing stress levels. To improve the material selection for such applications a numerical life prediction corrosion model for different alloys and environments is needed. Based on the ferritic alloys FeCr and FeCrCo a first quantitative model is to be developed. For this purpose, the alloys are aged at 600°C, 650°C and 700°C in synthetic air under normal pressure for between 10 and 240 hours. The first objective is to establish a quantitative relationship between the oxidation rate as a function of composition and microstructure of the alloys. The influence of the inner interface as an essential parameter for transport by diffusion on the oxidation kinetics is discussed in this presentation. T2 - Gordon Research Conference CY - New London, New Hempshire, USA DA - 21.07.2019 KW - High temperature corrosion KW - Oxidation KW - Synthetic air KW - Modeling KW - FeCr- alloys PY - 2019 AN - OPUS4-49464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - Particle size determination of a commercially available CeO2 nano powder - SOPs and reference data N2 - Compilation of detailed SOPs for characterization of a commercially available CeO2 nano powder including - suspension preparation (indirect and direct sonication), - particle size determination (Dynamic Light Scattering DLS and Centrifugal Liquid Sedimentation CLS) with reference data, respectively. For sample preparation and analysis by Scanning Electron Microscopy (SEM) of this powder see related works (submitted, coming soon). KW - Wet dispersion KW - Nano powder KW - Particle size KW - CeO2 KW - Ceria KW - DLS KW - CLS PY - 2023 DO - https://doi.org/10.5281/zenodo.10061079 PB - Zenodo CY - Geneva AN - OPUS4-58785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Meyer, Lena A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - PAVER - Contextualizing laser sintering within a lunar technology roadmap N2 - The Global Exploration Strategy of the International Space Exploration Coordination Group (ISECG) describes a timeframe of 2020 and beyond with the ultimate aim to establish a human presence on Mars towards the 2040ies. The next steps lie on the Moon with a focus on the coming 10 years. Early lunar surface missions will establish a capability in support of lunar science and prepare and test mission operations for subsequent human exploration of Mars and long-duration human activities on the Moon. Given the extreme costs involved in the shipping of material from Earth, a prerequisite for future human exploration is the manufacturing of elements directly on the Moon’s surface. Unlike the equipment, which at the beginning will have to be brought from Earth, raw materials and energy could be available following the concept of In-Situ Resource Utilization. The ESA OSIP PAVING THE ROAD (PAVER) study investigates the use of a laser to sinter regolith into paving elements for use as roadways and launch pads thus mitigating dust issues for transport and exploration vehicles. The ESA-funded study examines the potential of using a laser (12 kW CO2 laser with spot beam up to 100 mm) for layer sintering of lunar and martian regolith powders to manufacture larger 3D elements and provide know-how for the automatic manufacture of paving elements in the lunar environment. The project contributes to the first step toward the establishment of a lunar base and will lead to the construction of equipment capable of paving areas and manufacturing 3D structures. PAVER project sets the starting point for an examination of the larger context of lunar exploration. Mission scenarios will look at different phases of lunar exploration: Robotic Lunar Exploration, Survivability, Sustainability, and Operational Phase. A proposed Technology Roadmap investigates the mission scenario and analyses how, and to which extent, laser melting/sintering will play a role in the various phases of exploration. The paper contextualizes laser sintering within selected mission scenarios and discusses the different kinds of infrastructure that can be produced at each phase of the mission. The outcome of the study includes the detailing of the TRL steps in the project and an outline of a timeline for the different elements. Covered aspects include terrain modelling such as operation pads, roadways, or towers, non-pressurized building structures to protect machinery, and habitat envelopes, to protect and shield humans against dust, micrometeoroids, and radiation. T2 - 73rd International Astronautical Congress (IAC) CY - Paris, France DA - 18.09.2022 KW - Additive manufacturing KW - Solar sintering KW - ISRU KW - Infrastructure KW - Lunar habitat KW - Paving PY - 2022 SP - 1 EP - 9 AN - OPUS4-56519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Meyer, Lena A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - PAVER - Contextualizing laser sintering within a lunar technology roadmap N2 - The Global Exploration Strategy of the International Space Exploration Coordination Group (ISECG) describes a timeframe of 2020 and beyond with the ultimate aim to establish a human presence on Mars towards the 2040ies. The next steps lie on the Moon with a focus on the coming 10 years. Early lunar surface missions will establish a capability in support of lunar science and prepare and test mission operations for subsequent human exploration of Mars and long-duration human activities on the Moon. Given the extreme costs involved in the shipping of material from Earth, a prerequisite for future human exploration is the manufacturing of elements directly on the Moon’s surface. Unlike the equipment, which at the beginning will have to be brought from Earth, raw materials and energy could be available following the concept of In-Situ Resource Utilization. The ESA OSIP PAVING THE ROAD (PAVER) study investigates the use of a laser to sinter regolith into paving elements for use as roadways and launch pads thus mitigating dust issues for transport and exploration vehicles. The ESA-funded study examines the potential of using a laser (12 kW CO2 laser with spot beam up to 100 mm) for layer sintering of lunar and martian regolith powders to manufacture larger 3D elements and provide know-how for the automatic manufacture of paving elements in the lunar environment. The project contributes to the first step toward the establishment of a lunar base and will lead to the construction of equipment capable of paving areas and manufacturing 3D structures. PAVER project sets the starting point for an examination of the larger context of lunar exploration. Mission scenarios will look at different phases of lunar exploration: Robotic Lunar Exploration, Survivability, Sustainability, and Operational Phase. A proposed Technology Roadmap investigates the mission scenario and analyses how, and to which extent, laser melting/sintering will play a role in the various phases of exploration. The paper contextualizes laser sintering within selected mission scenarios and discusses the different kinds of infrastructure that can be produced at each phase of the mission. The outcome of the study includes the detailing of the TRL steps in the project and an outline of a timeline for the different elements. Covered aspects include terrain modelling such as operation pads, roadways, or towers, non-pressurized building structures to protect machinery, and habitat envelopes, to protect and shield humans against dust, micrometeoroids, and radiation. T2 - 73rd International Astronautical Congress (IAC) CY - Paris, France DA - 18.09.2022 KW - Additive manufacturing KW - ISRU KW - Infrastructure KW - Lunar habitat KW - Paving KW - Solar sintering PY - 2022 AN - OPUS4-56529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Maren A1 - Wachtendorf, Volker A1 - Böhning, Martin A1 - Niebergall, Ute T1 - PE-HD as a polymeric fuel storage tank material: Photooxidation, fuel sorption and long-term storage N2 - High-density polyethylene (PE-HD) is a commodity thermoplastic polymer which is typically used for packing of dangerous goods. Its good resistance against photooxidation, fuels, chemicals and other environmental factors in addition to low production costs makes PE-HD attractive for fuel storage applications. Typical engine fuels stored in polymer tanks are petrol, diesel and biodiesel that receives increasing attention as proper alternative to fossil fuels. One of the major problems with biodiesel is its susceptibility to oxidize due to its chemical composition of unsaturated fatty acids which also can cause polymer degradation. The aim of this study is to investigate the influence of different environmental factors, UV radiation and commonly stored fuels, on the mechanical, physical and chemical properties of two types of PE-HD polymers (stabilized and non-stabilized). The influence on the mechanical properties was tested by Charpy and tensile tests, chemical and physical properties were evaluated by Fourier-transform infrared spectroscopy (FTIR) and by dynamical mechanical analysis (DMA) tests. Samples were characterized after varying exposure time of UV radiation and after fully and partially immersion in biodiesel. In addition, similar experiments were conducted using diesel for comparison. T2 - MoDeSt2018 CY - Tokio, Japan DA - 02.09.2018 KW - PE-HD KW - Biodiesel KW - UV-irradiation KW - Long-term storage KW - Diesel PY - 2018 AN - OPUS4-45894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Jürgens, Maria A1 - Mosquera Feijoo, Maria A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Saliwan Neumann, Romeo A1 - Nolze, Gert A1 - Fedelich, Bernard A1 - Kranzmann, Axel A1 - Skrotzki, Birgit T1 - Performance of 9-12%Cr steels under cyclic loading and cyclic oxidation conditions N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in power plants due to their excellent creep and oxidation resistance. The growing share of renewable energy sources in power generation forces many of these plants into more flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue. The present contribution reports on current findings obtained in a multidisciplinary project which combines cyclic mechanical and cyclic oxidation testing with detailed microstructural analyses. Mechanical analyses are carried out on P92 and P91 steel grades to give an overview of softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of creep and fatigue periods (creep-fatigue interaction). Oxidation testing focuses on the grades P92 and VM12 with the intention of clarifying the impact of frequent passes through intermediate temperature levels on the kinetics of steam-side oxidation and the characteristics of the evolving oxide scales. An attempt is made to evaluate their composition, strength, integrity and adhesion after up to 250 temperature cycles. Flat coupons as well as curved tube sections are tested to assess the mutual influence of geometry on oxide scale integrity. Complementary microstructural investigations by scanning and transmission electron microscopy plus EBSD are used for phase identification and substrate/oxide interface characterisation. The evolutions of grain size and dislocation density under different test conditions are quantified. T2 - International Conference on Power Plant Operation & Flexibility CY - London, UK DA - 04.07.2018 KW - Ferritic-martensitic steels KW - Low cycle fatigue KW - Thermo-mechanical fatigue KW - Cyclic oxidation PY - 2018 AN - OPUS4-47115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galleani, Gustavo A1 - Lodi, Thiago A. A1 - Conner, Robin L. A1 - Jacobsohn, Luiz G. A1 - de Camargo, Andrea S.S. T1 - Photoluminescence and X-ray induced scintillation in Gd3+-Tb3+ co-doped fluoride-phosphate glasses, and derived glass-ceramics containing NaGdF4 nanocrystals N2 - The glass system (50NaPO3–20BaF2–10CaF2–20GdF3)-xTbCl3 with x = 0.3, 1, 3, 5, and 10 wt % was investigated. We successfully produced transparent glass ceramic (GC) scintillators with x = 1 through a melt-quenching process followed by thermal treatment. The luminescence and crystallization characteristics of these materials were thoroughly examined using various analytical methods. The nanocrystallization of Tb3+-doped Na5Gd9F32 within the doped fluoride-phosphate glasses resulted in enhanced photoluminescence (PL) and radioluminescence (RL) of the Tb3+ ions. The GC exhibited an internal PL quantum yield of 33 % and the integrated RL intensity across the UV-visible range was 36 % of that reported for the commercial BGO powder scintillator. This research showcases that Tb-doped fluoridephosphate GCs containing nanocrystalline Na5Gd9F32 have the potential to serve as efficient scintillators while having lower melting temperature compared to traditional silicate and germanate glasses. KW - Glass scintillator KW - Fluoride phosphate glasses KW - Gd3+ KW - Tb3+ PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603588 DO - https://doi.org/10.1016/j.omx.2023.100288 VL - 21 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-60358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Platform MaterialDigital Core Ontology (PMDco): A Community Driven Mid-Level Ontology in the MSE Domain N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - Patents4Science CY - Berlin, Germany DA - 05.10.2023 KW - Knowledge Representation KW - Semantic Interoperability KW - FAIR data management KW - Knowledge graph and ontologies KW - PMD Core Ontology PY - 2023 AN - OPUS4-58507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - Fliegener, S. A1 - Grundmann, J. A1 - Hanke, T. A1 - von Hartrott, P. A1 - Waitelonis, J. T1 - PMD Core Ontology (PMDco) N2 - The PMD Core Ontology (PMDco) is a comprehensive framework for representing knowledge that encompasses fundamental concepts from the domains of materials science and engineering (MSE). The PMDco has been designed as a mid-level ontology to establish a connection between specific MSE application ontologies and the domain neutral concepts found in established top-level ontologies. The primary goal of the PMDco is to promote interoperability between diverse domains. PMDco's class structure is both understandable and extensible, making it an efficient tool for organizing MSE knowledge. It serves as a semantic intermediate layer that unifies MSE knowledge representations, enabling data and metadata to be systematically integrated on key terms within the MSE domain. With PMDco, it is possible to seamlessly trace data generation. The design of PMDco is based on the W3C Provenance Ontology (PROV-O), which provides a standard framework for capturing the generation, derivation, and attribution of resources. By building on this foundation, PMDco facilitates the integration of data from various sources and the creation of complex workflows. In summary, PMDco is a valuable tool for researchers and practitioners in the MSE domains. It provides a common language for representing and sharing knowledge, allowing for efficient collaboration and promoting interoperability between diverse domains. Its design allows for the systematic integration of data and metadata, enabling seamless traceability of data generation. Overall, PMDco is a crucial step towards a unified and comprehensive understanding of the MSE domain. PMDco at GitHub: https://github.com/materialdigital/core-ontology KW - Ontology KW - Semantic Web technologies KW - Digitalization KW - Data Interoperability KW - PMD Core Ontology PY - 2023 UR - https://github.com/materialdigital/core-ontology/blob/f2bd420348b276583fad6fa0fb4225f17b893c78/pmd_core.ttl PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-59352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Birkholz, H. A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Grundmann, J. A1 - Hanke, T. A1 - Waitelonis, J. A1 - Sack, H. A1 - Mädler, L. T1 - PMD Core Ontology: A Community Driven Mid-Level Ontology in the MSE Domain N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this presentation, an approach how to maintain a comprehensive and intuitive MSE-centric terminology composing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures is shown. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Knowledge Representation KW - Semantic Interioerability KW - Mid-Level Ontology for MSE KW - FAIR Data Management PY - 2023 AN - OPUS4-58201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Birkholz, Henk A1 - Jung, Matthias A1 - Waitelonis, Jörg A1 - Mädler, Lutz A1 - Sack, Harald T1 - PMD core ontology: Building Bridges at the Mid-Level – A Community Effort for Achieving Semantic Interoperability in Materials Science N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. This poster presents an approach to create and maintain a comprehensive and intuitive MSE-centric terminology by developing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - TMS - Specialty Congress 2024 CY - Cleveland, Ohio, US DA - 16.06.2024 KW - Interoperability KW - Semantic Interoperability KW - Digtial Representation KW - Knowledge graph and ontologies PY - 2024 AN - OPUS4-60378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Waitelonis, J. T1 - PMD Workshop: Use and benefits of the PMDco N2 - This is an interactive workshop of the Plattform MaterialDigital (PMD) on Semantic Web technologies (SWT) where we delve into the world of ontology development and data structuring in the field of materials science and engineering (MSE). This workshop is designed to equip participants with essential skills in categorizing classes within ontologies, with a special emphasis on the PMD Core Ontology (PMDco). Discover the immense value of ontologies for MSE data reproducibility and reuse and harness the power of PMDco to foster your data management practices. In this workshop, you will explore the intricacies of class categorization when developing ontologies in the MSE domain. Through interactive discussions and hands-on exercises, you will learn effective techniques for structuring and organizing ontologies to enhance data retrieval and analysis. You will gain valuable insights into best practices and considerations for class categorization, aiming at optimal data organization and management within your MSE projects. One of the highlights of this workshop is the introduction to PMDco, a mid-level ontology in the field of MSE developed community-driven in the frame of the project PMD. Learn about PMDco, its underlying concepts, and its application in detail. Discover how PMDco provides a comprehensive framework for MSE data representation, enabling seamless integration and interoperability across different systems and platforms. In addition to exploring PMDco, this workshop will illustrate the benefits of data interoperability and SWT with respect to leveraging the full potential of MSE data. T2 - NFDI MatWerk Conference 2023 CY - Siegburg, Germany DA - 27.06.2023 KW - Workshop KW - Ontology KW - Plattform MaterialDigital KW - PMDco PY - 2023 AN - OPUS4-57802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Birkholz, H. A1 - Grundmann, J. A1 - Hanke, T. A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Mädler, L. A1 - Sack, H. T1 - PMDco - Platform MaterialDigital Core Ontology N2 - The PMD Core Ontology (PMDco) is a comprehensive set of building blocks produced via consensus building. The ontological building blocks provide a framework representing knowledge about fundamental concepts used in Materials Science and Engineering (MSE) today. The PMDco is a mid-level ontology that establishes connections between narrower MSE application ontologies and domain neutral concepts used in already established broader (top-level) ontologies. The primary goal of the PMDco design is to enable interoperability between various other MSE-related ontologies and other common ontologies. PMDco’s class structure is both comprehensive and extensible, rendering it an efficient tool to structure MSE knowledge. The PMDco serves as a semantic middle-layer unifying common MSE concepts via semantic mapping to other semantic representations using well-known key terms used in the MSE domain. The PMDco enables straight-forward documentation and tracking of science data generation and in consequence enables high-quality FAIR data that allows for precise reproducibility of scientific experiments. The design of PMDco is based on the W3C Provenance Ontology (PROV-O), which provides a standard framework for capturing the production, derivation, and attribution of resources. Via this foundation, the PMDco enables the integration of data from various data origins and the representation of complex workflows. In summary, the PMDco is a valuable advancement for researchers and practitioners in MSE domains. It provides a common MSE vocabulary to represent and share knowledge, allowing for efficient collaboration and promoting interoperability between diverse domains. Its design allows for the systematic integration of data and metadata, enabling seamless tracing of science data. Overall, the PMDco is a crucial step towards a unified and comprehensive understanding of the MSE domain in general. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Knowledge Representation KW - Ontology KW - Semantic Interoperability KW - FAIR KW - Automation PY - 2023 AN - OPUS4-58197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Sack, H. T1 - PMDco - Platform MaterialDigital Core Ontology: Achieving High-Quality & Reliable FAIR Data N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this poster presentation, an approach how to maintain a comprehensive and intuitive MSE-centric terminology composing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures is shown. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - DVM Arbeitskreis Betriebsfestigkeit - Potenziale der Betriebsfestigkeit in Zeiten des technologischen und gesellschaftlichen Wandels CY - Munich, Germany DA - 11.10.2023 KW - Digitalization KW - Semantic Web Technologies KW - FAIR KW - Data Interoperability KW - PMD Core Ontology PY - 2023 AN - OPUS4-58602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - Hanke, T. A1 - Waitelonis, J. A1 - Sack, H. T1 - PMDco: Achieving High-Quality & Reliable FAIR Data N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this presentation, an approach how to maintain a comprehensive and intuitive MSE-centric terminology composing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures is shown. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - Kupfer-Symposium CY - Jena, Germany DA - 29.11.2023 KW - Ontology KW - Semantic Web Technologies KW - Plattform MaterialDigital KW - PMDco PY - 2023 AN - OPUS4-59031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Polymer matrix composites investigated with NDT at BAM N2 - Statistically the mean time between damage events on rotor blades is 6 years (Deutscher Windenergie Report 2006). Due to imperfection in the production the shell structures get cracks after a few years fare before the designed life time. A shell test rig was built at BAM for efficient research on the effects of defects in production. In-situ and ex-situ NDT give a better understanding from degradation processes in composite materials. With advanced methods in the research on the fatigue behaviour of FRP it was found a load level of infinite life for GFRP and CFRP. This is in the range of typical strain values of airliners and rotor blades in normal operation. Due to the fibre-composite nature NDT techniques have to be suitable to a wide length scale to image micro cracking as well as bigger defects. Therefore different techniques have to be applied and developed. T2 - Colloquium Abendi CY - São Paulo, Brazil DA - 05.11.2019 KW - Polymer matrix composites KW - Non-destructive testing PY - 2019 AN - OPUS4-50130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönauer-Kamin, D. A1 - Bresch, Sophie A1 - Paulus, D. A1 - Moos, R. T1 - Powder Aerosol deposited (PAD) calcium cobaltite as textured p type thermoelectric material N2 - Oxide thermoelectric semiconducting materials like p-type calcium cobaltite Ca3Co4O9 are investigated as oxidation- and temperature-resistant thermoelectric materials for thermoelectric generators (TEGs). To realize TEGs in planar film technology, the powder aerosol deposition (PAD) method is emerging recently. PAD is a method to obtain dense ceramic films directly from the synthesized starting powders without a subsequent high temperature step. In the present work, Ca3Co4O9 (CCO) powders are processed by PAD to ceramic films at room temperature. The thermoelectric properties of the films (film thickness 10 – 20 µm) are characterized from room temperature to 900°C. Additionally, the layer morphology and texture of the films will be investigated. As result, the Seebeck coefficient of the CCO-PAD film is comparable to pressed and sintered CCO-bulk materials during the 1st heating cycle to 900°C. The morphology of the films after the thermal treatment shows strong aligned crystallites resulting in a strong texture of the films. The electrical conductivity increases strongly during the 1st heating cycle to 900°C and stays almost constant afterwards. Compared to CCO-bulks, the films provide higher electrical conductivity which could be explained by the oriented crystal growth in-plane direction of the film. The relationship between thermoelectric properties and layer morphology as a function of thermal annealing parameters will be further investigated. T2 - KERAMIK 2023 / 98. DKG-Jahrestagung CY - Jena, Germany DA - 27.03.2023 KW - Layer depostion KW - Texture KW - Heat treatment PY - 2023 AN - OPUS4-57285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Günster, Jens T1 - Powder based Additive Manufacturing in Space N2 - Abstract of the event: 'The area of New Space is a vastly growing and dynamic field with a high innovative potential and many exciting ideas. After decades where activities in space were dominated and funded mainly by governmental agencies, a new industry is forming and new business models are being developed around ideas like satellite-based internet, space travel, space mining, geo-monitoring etc. For space applications, lightweight design is crucial to keep the costs at a minimum. This Innovation Day will introduce the field of New Space and present the variety of exciting opportunities that arise for composites based on their excellent lightweight potential.' Another research area is now arising in the field of 3D printing or additive manufacturing of fiber composite materials in space. At the event, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications. T2 - CU Innovation Day - New opportunities and applications in space with composites CY - Online meeting DA - 29.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Microgravity KW - Powder PY - 2022 AN - OPUS4-54559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönauer-Kamin, Daniela A1 - Hetzel, K. A1 - Moos, R. A1 - Bresch, Sophie T1 - Powder-Aerosol deposited (PAD) calcium manganate as n-type thermoelectric material N2 - Currently, calcium manganate CaMnO3 and calcium cobaltite Ca3Co4O9 are being investigated as n-type resp. p-type semiconducting materials as oxidation- and temperature-resistant thermoelectric materials for oxide multilayer thermoelectric generators (TEGs). In order to manufacture multilayer TEGs, pressure-assisted sintering processes at high temperatures are necessary to achieve optimal thermoelectric material properties. To realize TEGs in planar film technology, another method to obtain dense ceramic layers directly from the synthesized starting powders without a subsequent high temperature step is emerging recently: the powder aerosol deposition (PAD) method. In the present work, it is investigated whether PAD is suitable to produce dense ceramic films from Sm-doped CaMnO3 and Ca3Co4O9 powders. The resulting thermoelectric properties are characterized as a function of temperature. CaMnO3 powder could successfully be processed by PAD with resulting layer thicknesses of 5- 6 µm without any high-temperature sintering steps of the films. The electrical conductivity and the Seebeck coefficient of the films were determined in-plane from room temperature to 600 °C in air. The results show a Seebeck coefficient of around -200 µV/K, which is comparable to results of pressed and sintered bars. At 400 °C, the electrical conductivity corresponds to the conductivity of the bar. At higher temperatures the conductivity is better than with the reference. Below 400°C, the electrical conductivity is somewhat lower than that of the reference sample, a mild thermal treatment of the PAD layer improves it. It is expected that the thermal conductivity of the PAD film will be lower compared to the bars due to the nano-crystalline film morphology. This should result in a significantly increased ZT value for the PAD layers and a higher efficiency of the TEG. The work shows that both CaMnO3 and Ca3Co4O9 can be successfully processed by PAD, and the PAD films show comparable thermoelectric properties. T2 - 18th European Conference on Thermoelectrics CY - Barcelona, Spanien DA - 14.09.2022 KW - Film depositition KW - Calcium cobaltite PY - 2022 AN - OPUS4-55771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 1st Sino-German Workshop on 3D Printing in Space CY - Beijing, China DA - 20.02.2019 KW - Zero-g KW - Additive Manufacturing KW - µ-gravity PY - 2019 AN - OPUS4-49628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 2nd Sino-German Workshop on 3D Printing in Space CY - Berlin, Germany DA - 28.10.2019 KW - µ-gravity KW - Additive Manufacturing KW - Zero-g PY - 2019 AN - OPUS4-49629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Mühler, T. T1 - Powder-based Additive Manufacturing: beyond the comfort zone of powder deposition N2 - In powder-based Additive Manufacturing (AM) processes, an object is produced by successively depositing thin layers of a powder material and by inscribing the cross section of the object in each layer. The main methods to inscribe a layer are by binder jetting (also known as powder 3D printing) or by selective laser sintering/melting (SLS/SLM). Powder-based AM processes have found wide application for several metallic, polymeric and also ceramic materials, due to their advantages in combining flexibility, easy upscaling and (often) good material properties of their products. The deposition of homogeneous layers is key to the reproducibility of these processes and has a direct influence on the quality of the final parts. Accordingly, powder properties such as particle size distribution, shape, roughness and process related properties such as powder flowability and packing density need to be carefully evaluated. Due to these requirements, these processes have been so far precluded to find commercial use for certain applications. In the following, two outstanding cases will be presented. A first example is that powder-based AM processes are widely used for many metallic and polymeric materials, but they find no commercial application for most technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. The processing of technical ceramics in fact typically requires very fine and poorly flowable powder, which makes them not suitable for the standard processes. There have been several approaches to adapt the raw materials to the process (e.g. by granulation), but in order to maintain the superior properties of technical ceramics it seems necessary to follow the opposite approach and adapt the process to the raw materials instead. This was the motivation for developing the Layerwise Slurry Deposition (LSD), an innovative process for the deposition of powder layers with a high packing density. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder. This allows achieving high packing density (55-60%) in the layers after drying. It is also important, that standard ceramic raw materials can be used. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. Moreover, due to the compact powder bed, no support structures are required for fixation of the part in the printing process. Figure 1 shows the schematics of the working principle of the LSD-3D print and illustrates some examples of the resolution and features achievable. The second outstanding case here described is the application of powder-based AM in environments with reduced or zero gravity. The vision is to be able to produce repair parts, tools and other objects during a space mission, such as on the International Space Station (ISS), without the need of delivering such parts from Earth or carrying them during the mission. AM technologies are also envisioned to play an important role even for future missions to bring mankind to colonize other planets, be it on Mars or on the Moon. In this situation, reduced gravity is also experienced (the gravitational acceleration is 0.16 g on the Moon and 0.38 g on Mars). These environments cause the use of AM powder technologies to be very problematic: the powder layers need to be stabilized in order to avoid dispersion of the particles in the chamber. This is impossible for standard AM powder deposition systems, which rely on gravitation to spread the powder. Also in this case, an innovative approach has been implemented to face this technological challenge. The application of a gas flow through a powder has a very strong effect on its flowability, by generating a force on each particle, which is following the gas flow field. This principle can be applied in a simple setup such as the one shown in Figure 2. In this setup, the gas flow causes an average pressure on the powder bed in direction of the arrows, generating a stabilizing effect which acts in the same direction of the gravitational force. This effect can be used in addition to normal gravity on Earth to achieve a better stabilization of 3D printed parts in the powder bed. In this case, even a significant increase of packing density of the powder was measured, compared to the same experimental setup without gas flow. This is due to the fact that the force on each single particle follows the gas flow field, which is guiding the particles to settle between the pores of the powder bed, thus achieving an efficient packing. The same principle can be applied in absence of gravitation, where the gas flow acts to stabilize the powder layers. It has been shown that ceramic powder could be deposited in layers and laser sintered in µ-gravity conditions during a DLR (Deutsches Zentrum für Luft- und Raumfahrt) campaign of parabolic flights, as shown in Figure 2. A follow-up campaign is dedicated to the deposition of metallic (stainless steel) powder in inert atmosphere and to study the effects of laser melting in µ-gravity. In conclusion, the description of these two example cases shows how the development of novel technological processes can address some of the limitations of standard powder-based AM, in order to enable the use of new materials, such as technical ceramics, or to tackle the challenges of AM in space. T2 - WMRIF 2018 Early Career Scientist Summit CY - London, NPL, UK DA - 18.06.2018 KW - 3D-printing KW - Additive Manufacturing KW - Powder KW - SLM PY - 2018 AN - OPUS4-46338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -