TY - CONF A1 - Kuchenbecker, Petra T1 - Dynamische Lichtstreuung DLS nach ISO 22412:2017 N2 - Einführung in die Partikelgrößenbestimmung von Nano-Materialien mittels Dynamischer Lichtstreuung. Normative Grundlagen (ISO 22412 und OECD TG 125); Messprinzip, Auswertealgorithmen, Informationsgehalt der Daten, Metadaten, Reporting. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - DLS KW - Particle size KW - Nano PY - 2023 AN - OPUS4-57128 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Sachs, Patrick T1 - Dynamic mechanical analysis of epoxy-matrix cross linking measured in-situ using an elastomer container N2 - A new patented dynamic mechanical analysis (DMA) is presented, where the tensile, bending- or torsional stiffness of a media can be characterized in-situ during the phase transition from liquid to solid. An epoxy system, e.g. Hexion L285/H287, is filled into an elastomer container, such as a silicone tube. This can be mounted into a conventional DMA and, based on a linear viscoelastic approach, the storage modulus (E’;G’), the loss modulus (E’’;G’’) and the loss angle tan(delta) can be measured at constant temperature as a function of time in order to investigate the liquid to sol-gel to solid transition. With this new method, the stiffness increase as a result of the cure process can be directly measured more precisely than with a rheometer in a shear plate set-up, because using an elastomer container gives a defined cross section for calculating the Young’s modulus. T2 - 20th European Conference on Composite Materials, ECCM20 CY - Lausanne, Switzerland DA - 26.06.2022 KW - Dynamic mechanical analysis (DMA) KW - Thermoset polymers KW - Cure process KW - Cross linking PY - 2022 AN - OPUS4-55213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Reinsch, Stefan T1 - Dynamic Mechanical Analysis (DMA): Viscoelasticity N2 - Der Vortrag gibt einen Überblick über die am FB 56 der BAM betriebene Dynamisch-Mechanische Analyse mit dem Schwerpunkt auf Anwendungen für Glas N2 - The talk presents an overview over the method of Dynamic Mechanical Analysis used at the BAM division 5.6 Glass mainly focussed on glasses. T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - Berlin, Germany DA - 25.01.2019 KW - Dynamisch Mechanische Analyse KW - Dynamic mechanical analysis KW - Glas PY - 2019 AN - OPUS4-50436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sonntag, Nadja A1 - Jürgens, Maria A1 - Roohbakhshan, Farshad A1 - Agudo Jácome, Leonardo A1 - Olbricht, Jürgen T1 - Dwell-Fatigue and Cyclic Softening of Grade P92 Steel under LCF and TMF Conditions N2 - Tempered martensite-ferritic steels, such as the grade P92 steel studied in this contribution, exhibit pronounced macroscopic cyclic softening under isothermal low-cycle fatigue (LCF) and non-isothermal thermomechanical fatigue (TMF) conditions, which is considered to be the predominant degradation mechanism in high-temperature fatigue in this and other material groups. However, such softening processes are highly complex since microscopic (e.g., recovery) and macroscopic (e.g., crack initiation and growth), as well as global and local effects superimpose, especially under creep-fatigue conditions. In this contribution, we discuss the cyclic deformation and softening behavior of P92 in strain-controlled LCF, in-phase (IP) TMF, and out-of-phase (OP) TMF tests with and without dwell times in the temperature range from 300 °C to 620°C. EBSD-based dislocation analysis on various fatigued material states confirms the continuous redistribution and annihilation of geometrically necessary dislocations in all studied states, which can be quantitatively correlated with macroscopic softening despite different damage mechanisms for different test types. Deviations from this correlation are observed for OP TMF and LCF with dwell times, i.e., for conditions where optical microscopy reveals pronounced crack-oxidation interactions at the specimen surfaces. T2 - LCF9 - Ninth International Conference on Low Cycle Fatigue CY - Berlin, Germany DA - 21.06.2022 KW - LCF KW - TMF KW - EBSD PY - 2022 DO - https://doi.org/10.48447/LCF9-2022-111 AN - OPUS4-55128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S. A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels N2 - In this work, the focus was set on the corrosion process of condensate as drops on the surface of carbon steels (X52, X70), martensitic steel UNS S41500, and superaustenite UNS 08031 in CO2 atmosphere with impurities at 278 K (to simulate the transportation condition in a buried pipeline). Exposure tests were performed at both normal pressure and high pressure where CO2 is supercritical or in dense phase. The drop, 1 ‑ 10 µL in volume, was prepared by dropping CO2 saturated ultra-pure water onto the surface of steel coupons in a one-liter-autoclave. The CO2 gas stream, simulating the oxyfuel flue gas with varying concentration of impurities (SO2 and O2), was then pumped into the autoclave to observe the condensation and corrosion impacts of impurities. Comparable exposure tests were carried out with the same gas mixture and the same volume of water as vapor to observe the drop formation and the corrosion process that follows. The wettability and stability of drops on the surface of steel coupons in CO2 supercritical/dense phase environment was evaluated additionally by contact angle measurement. T2 - NACE 2018 CY - Phoenix, Arizona, USA DA - 15.04.2018 KW - Droplet corrosion KW - CCUS KW - Supercritical/dense phase CO2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel PY - 2018 AN - OPUS4-44767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Knauer, S. T1 - Droplet corrosion of CO2 transport pipeline steels N2 - In this work, the focus was set on the corrosion process of condensate as drops on the surface of carbon steels (X52, X70), martensitic steel UNS S41500, and superaustenite UNS 08031 in CO2 atmosphere with impurities at 278 K (to simulate the transportation condition in a buried pipeline). Exposure tests were performed at both normal pressure and high pressure where CO2 is supercritical or in dense phase. The drop, 1 ‑ 10 µL in volume, was prepared by dropping CO2 saturated ultra-pure water onto the surface of steel coupons in a one-liter-autoclave. The CO2 gas stream, simulating the oxyfuel flue gas with varying concentration of impurities (SO2 and O2), was then pumped into the autoclave to observe the condensation and corrosion impacts of impurities. Comparable exposure tests were carried out with the same gas mixture and the same volume of water as vapor to observe the drop formation and the corrosion process that follows. The wettability and stability of drops on the surface of steel coupons in CO2 supercritical/dense phase environment was evaluated additionally by contact angle measurement. T2 - NACE International Annual Corrosion Conference CY - Phoenix, AZ, USA DA - 15.04.2018 KW - CCUS KW - Supercritical/dense phase CO 2 KW - Carbon steels KW - Martensitic steel KW - Superaustenite steel KW - Droplet corrosion PY - 2018 AN - OPUS4-44922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Chen, Yue A1 - Hanke, T. A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Domain-level ontology formulation based on the Platform Material Digital (PMD) ontology: case study Brinell hardness N2 - A large amount of publicly available data is reproduced every day in the field of materials science, while these kind of material data can have different formats and types like paper-type publications, standards, datasheets or isolated datasets in repositories. However, gathering a specific library from such extensive and diverse material data is always challenging for the materials scientists and engineers, since the time-related limitations are not allowed to fully access the large publicly available databases; search across these disparate databases, manage the large volumes of heterogeneous datasets, and integrate data from multiple sources. To address these challenges and make data findable, accessible, interoperable, and reusable (FAIR), an efficient data management system is necessary to build comprehensive, documented, and connected data spaces in the future. A formal standardized knowledge representation through an ontology can address such problems and make data more available and interoperable between related domains. Ontology can also rich machine processable semantic descriptions that increases the performance of scientific searches. In this regard, the Platform MaterialDigital (PMD) is currently working on developing a high-level ontology for the materials and material related processes. For example, in one of the PMD projects of “KupferDigital”, we will try to develop a data ecosystem for digital materials research based on ontology-based digital representations of copper and copper alloys. As a case study, this paper describes the methodology for ontology development of Brinell hardness, based on PMD core ontology. The methodology we describe includes the following steps; gathering the required domain terminology from different resources like standards (DIN EN ISO 6506-1) and test reports, representing the performance of a standard-conformant hardness test and the treatment of the recorded values up to a “reportable” hardness value for a material, designing the process chain according to the semantic technologies, and developing a domain-level ontology of Brinell hardness based on PMD ontology semantic formalization. Apart the mentioned methodology, some interesting tools and methods were introduced and ontology design challenges and possible solutions for modelling materials and processes were discussed. Furthermore, a dataset from the Brinell hardness measurement of cast copper samples is prepared for testing the query process. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Copper KW - Materials Science KW - Ontology KW - Platform MaterialDigital (PMD) KW - Brinell hardness PY - 2022 AN - OPUS4-56092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roohbakhshan, Farshad A1 - Olbricht, Jürgen A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Dislocation-based modeling of high temperature deformation and fatigue in P92 ferritic-martensitic steels N2 - The employment of renewable energy resources, which are naturally intermittent, for electricity generation has altered the working conditions of conventional power plants from continuous (baseload) to cyclic or flexible operation. For a long time, 9-12% Cr ferritic-martensitic stainless steels have been widely used in power plants due to their favorable characteristics such as high creep strength at high temperatures and oxidation and corrosion resistance. The components of power plants are subjected to long term cyclic loadings including fatigue and creep-fatigue at high temperatures. As ferritic-martensitic steels are known to exhibit cyclic softening when subjected to such loading scenarios, it is crucial to study the material response in such conditions. Since it is impossible to test the material behavior exactly as the operation conditions of power plants, due to technical difficulties and cost issues, it is necessary to develop physically-based material models that can predict the material behavior in more realistic situations. In recent years, many material models have been proposed to describe the behavior of 9-12% Cr ferritic-martensitic stainless steels, which follow phenomenological or physically-based approaches. Phenomenological models provide a stress-strain relation based on empirical observations although they usually lack physical background. To alleviate this drawback and to allow for more flexibility and wider ranges of strain-rate and temperature, physically-based models are suggested. In this approach, microstructural evolution, dislocation movement and/or kinetics of plastic deformation processes are included. The physically-based models allow for a better extrapolation from the experiment results to other operation conditions and their material constants can be interpreted physically. Compared to the former approach, the material behavior can be described more accurately and flexibly and the number of material constants is less in general. In the presented work, the existing micromechanical models developed for P92 steel are compared and extended to allow for new dislocation-based strengthening/cyclic mechanisms. Their performance is assessed in the light of mechanical test data from creep-fatigue and thermo-mechanical fatigue experiments and detailed characterizations of the microstructure evolution in the fatigued material. T2 - 12th International Fatigue Congress CY - Poitiers, France DA - 27.05.2018 KW - 9-12% Cr ferritic-martensitic steels KW - Cyclic softening KW - Micromechanical model KW - Microstructural evolution KW - P92 steels PY - 2018 AN - OPUS4-47101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruns, Sebastian A1 - Bayerlein, Bernd A1 - Grönewald, Mathias A1 - Kryeziu, Jeonna A1 - Schilling, Markus A1 - Waitelonis, Jörg A1 - Portella, Pedro Dolabella A1 - Durst, Karsten T1 - Digitalizing a lab course for undergraduate students: ELN, ontology, data management N2 - We report about a joint project aiming at the digitalization of a lab course in materials testing. The undergraduate students were asked to prepare samples of a precipitation hardened aluminum alloy and characterize them using hardness and tensile tests. In a first step, we developed the frames for the digital labor notebook using eLabFTW. The primary data and the relevant metadata of each run were saved in a central database and made available for analysis and report issues. The whole set of results produced in a course was made available in the database. This database can be improved and serve as an open repository for data on this specific alloy. The logical frame for the joint project was provided by the PMD Core Ontology (PMDco), a mid-level ontology that enables the representation and description of processes and process chains in an MSE-specific manner, ensuring full traceability of generated data. For the digitalization of this lab course, the tensile test ontology (TTO) was applied which is designed as a module of the PMDco using strongly related semantic concepts. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Electronic Lab Notebook KW - FAIR data management KW - Digtial Representation KW - Knowledge graph and ontologies PY - 2023 AN - OPUS4-58207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit A1 - Portella, Pedro Dolabella A1 - Hartrott, P. A1 - Hadzic, N. A1 - Todor, A. A1 - Birkholz, H. A1 - Grundmann, J. T1 - Digitalisierung der Materialien in PMD & Mat-o-Lab - Eine normkonforme Anwendungsontologie des Zugversuchs N2 - Zur Bewältigung der Herausforderung bei der Digitalisierung von Materialien und Prozessen ist eine mit allen Stakeholdern konsistente Kontextualisierung von Materialdaten anzustreben, d.h. alle erforderlichen Informationen über den Zustand des Materials einschließlich produktions- und anwendungsbezogener Änderungen müssen über eine einheitliche, maschinenlesbare Beschreibung verfügbar gemacht werden. Dazu werden Wissensrepräsentationen und Konzeptualisierungen ermöglichende Ontologien verwendet. Erste Bemühungen in den beiden Projekten Plattform Material Digital und Materials-open-Laboratory führten zur Erstellung von Anwendungsontologien, die Prozesse und Testmethoden explizit beschreiben. Dabei wurde u.a. der Zugversuch an Metallen bei Raumtemperatur nach DIN EN ISO 6892-1 ontologisch beschrieben. Diese als Beispiel dienende Ontologieentwicklung wird in dieser Präsentation vorgestellt. T2 - Werkstoffprüfung 2021 CY - Online meeting DA - 02.12.2021 KW - Ontologie KW - Semantisches Web KW - Wissensrepräsentation KW - Digitalisierung KW - Zugversuch PY - 2021 AN - OPUS4-53929 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit T1 - Digital representation of materials testing data for semantic web analytics: Tensile stress relaxation testing use case N2 - This study aims to represent an approach for transferring the materials testing datasets to the digital schema that meets the prerequisites of the semantic web. As a use case, the tensile stress relaxation testing method was evaluated and the testing datasets for several copper alloys were prepared. The tensile stress relaxation testing ontology (TSRTO) was modeled following the test standard requirements and by utilizing the appropriate upper-level ontologies. Eventually, mapping the testing datasets into the knowledge graph and converting the data-mapped graphs to the machine-readable Resource Description Framework (RDF) schema led to the preparation of the digital version of testing data which can be efficiently queried on the web. T2 - ICMDA 2024: 7th International Conference on Materials Design and Applications CY - Tokyo, Japan  DA - 09.04.2024 KW - Digitalization KW - Tensile stress relaxation KW - Ontology KW - Mechanical testing KW - Semantic web PY - 2024 AN - OPUS4-59979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Heldmann, Alexander A1 - Hofmann, Michael A1 - Evans, Alexander A1 - Petry, Winfried A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - In this presentation, the results of the determination of the diffraction and single-crystal elastic constants of laser powder bed fused Inconel 718 are presented. The analysis is based on high-energy synchrotron diffraction experiments performed at the Deutsches Elektronen-Synchrotron. It is shown that the characteristic microstructure of laser powder bed fused Inconel 718 impacts the elastic anisotropy and therefore the diffraction and single-crystal elastic constants. Finally, the consequences on the diffraction-based residual stress determination of laser powder bed fused Inconel 718 are discussed. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Wolfsburg, Germany DA - 19.03.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction KW - In-Situ Testing KW - Diffraction Elastic Constants PY - 2024 AN - OPUS4-59900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Heldmann, A. A1 - Hofmann, M. A1 - Polatidis, E. A1 - Čapek, J. A1 - Petry, W. A1 - Serrano-Munoz, Itziar A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer-wise additive manufacturing process that provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of a diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative lattice plane suitable for residual stress analysis. In this contribution, the selection of a suitable lattice plane family for residual stress analysis is explored. Furthermore, the determination of an appropriate set of diffraction and single-crystal elastic constants depending on the underlying microstructure is addressed. In-situ loading experiments have been performed at the Swiss Spallation Neutron Source with the main scope to study the deformation behaviour of laser powder bed fused Inconel 718. Cylindrical tensile bars have been subjected to an increasing mechanical load. At pre-defined steps, neutron diffraction data has been collected. After reaching the yield limit, unloads have been performed to study the accumulation of intergranular strain among various lattice plane families. T2 - 11th European Conference on Residual Stresses CY - Prag, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction Elastic Constants KW - Microstructure KW - Electron Backscatter Diffraction PY - 2024 AN - OPUS4-60289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Junge, P. A1 - Greinacher, M. A1 - Kober, D. A1 - Mieller, Björn T1 - Dielectric properties of plasma sprayed coatings for insulation application N2 - Thermal spraying provides a rapid method for additive deposition of various ceramics as electrical insulation in applications where polymers are not suitable. New applications in complex shaped additive manufactured metal parts are emerging for example in large scale electrical devices. Microstructural and dielectric evaluation of coatings is crucial to the employment of such free-form processes. The properties and microstructure of the plasma sprayed alumina coatings are compared with dense reference samples of the same powder produced by spark plasma sintering (SPS). To obtain dense bulk samples from the coarse alumina powder for spray coating, SPS is used. Samples are fabricated by atmospheric plasma spraying (APS) of commercially available alumina powder (d50 = 33 µm) on copper substrates and by SPS of the same powder. Microstructure and porosity were analyzed by optical microscopy and scanning electron microscopy (SEM). Phase compositions were determined by X-ray diffraction (XRD). Dielectric properties such as DC resistance, dielectric strength, dielectric loss, and relative permittivity were determined according to the standards. The microstructure and dielectric properties of the coating and bulk material are compared to assess whether the coating is suitable for use in electrical insulation application. T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Dielectric characterization KW - Atmospheric plasma spraying KW - Spark plasma sintering KW - Electrical insulation PY - 2022 AN - OPUS4-55328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Schmies, Lennart T1 - Die Fraktographische Online-Datenbank der AG Fraktographie – Entwicklungsstand und weitere Planung N2 - Vortrag zum aktuellen Stand der fraktographischen online-Datenbank. Darstellung des AGM/DVM Gemeinschaftsausschusses REM in der Materialforschung und seiner Arbeitsgruppen Fraktographie, EBSD und 2D/3D-Prüfung. Ziele und Inhalte der fraktographischen Datenbank, Aufruf zum Mitmachen. Durchführung von Vergleichsversuchen, Entwicklung einer fraktographischen Symbolik, Ringversuch, Vorhaben iFrakto mit Entwicklung einer KI-gestützten Bruchflächenanalyse. T2 - Metallographietagung 2023 CY - Leoben, Austria DA - 13.09.2023 KW - Fraktographie KW - Machine Learning KW - Datenbank PY - 2023 AN - OPUS4-58467 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Skrotzki, Birgit A1 - Muth, Thilo T1 - Die Digitalisierung der Materialwissenschaft und Werkstofftechnik - ein Überblick N2 - Die Bereitstellung von zuverlässigen Werkstoffdaten stand für die Werkstoffprüfung seit dem 19. Jahrhundert in zentraler Stelle. Mit der zunehmender Digitalisierung unserer Gesellschaft gewinnt das Datenmanagement insbesondere im Hinblick auf die Modellierungs- und Simulationsaktivitäten an Bedeutung. In unserem Beitrag beschreiben wir die gegenwärtigen Aktivitäten in Deutschland – insbesondere die NFDI-MatWerk und die BMBF-Initiative MaterialDigital – sowie in Europa und Übersee. Abschließend heben wir die Auswirkungen auf die technische und akademische Aus- und Weiterbildung. T2 - DVM - Tagung Werkstoffprüfung CY - Online meeting DA - 03.12.2020 KW - Werkstoffdaten KW - Digitalisierung KW - Materialwissenschaft PY - 2020 AN - OPUS4-52044 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Stargardt, Patrick A1 - Töpfer, Jörg A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Development of textured multilayer thermoelectric generators based on calcium cobaltite N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Multilayer thermoelectric generators (ML-TEGs) are a promising alternative to conventional π-type generators due to their high filling factor, high capability of automated production and the texturing potential during the production process. Calcium cobaltite is a promising thermoelectric oxide (p-type) with highly anisotropic properties. The following study shows the development of a textured unileg ML-TEG using ceramic multilayer technology. Tape-casting and pressure assisted sintering are applied to fabricate textured calcium cobaltite. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10. Thermoelectric properties can be tuned either towards maximum power factor or towards maximum figure of merit depending on the pressure level. As electrical insulation material, a screen-printable glass-ceramic with high resistivity and adapted coefficient of thermal expansion is developed. From various commercial pastes a metallization with low contact resistance is chosen. The unileg ML-TEG is co-fired in one single step. The demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). These results provide the first proof-of-concept for fabricating co-fired multilayer generators based on textured calcium cobaltite with high power factor, high density, and high strength. T2 - Virtual Conference on Thermoelectrics 2021 (VCT) CY - Online meeting DA - 20.07.2021 KW - Thermoelectrics KW - Multilayertechnik KW - Screen printing PY - 2021 AN - OPUS4-52993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Paulick, C. T1 - Development of ceramic helical springs for sensor applications N2 - At high temperatures and in harsh environments ceramic springs are often superior to metallic ones and allow for innovative solutions. A further application was proposed by using ceramic springs as capacitive force sensor. Lower and upper coil surfaces are coated by electrically conducting layers. Deformation of such spring results in a change of capacity. Sensor application calls for helical springs with rectangular cross-section, a linear stress-strain characteristic over entire deformation range and low manufacturing tolerances relating to inner and outer diameter, coil cross section and spring pitch. Furthermore, complex spring design with integrated connecting elements has to be realized. Alumina, zirconia (Y-TZP) and silicon nitride springs were produced by hard machining starting from sintered hollow cylinders. After external and internal cylindrical grinding the hollow cylinders were filled with hard wax, followed by multi-stage cutting of spring coils with custom-made cutting discs. Finally, hard wax was removed by melting and burnout. Best surface and edge qualities of springs were reached using Y-TZP material and hot isostatic pressed alumina. Y-TZP springs produced with material-specifically selected cutting discs and optimized process parameters show sharp coil edges without spallings and mean roughness values of inner surfaces < 0.2 μm. Manufacturing tolerances of spring diameters, spring pitch, height and width of coil cross section are in the range of ± 10 microns. Good reproducibility of spring geometry by optimized hard machining technology allows for production of Y-TZP springs with spring constants differing less than ± 1 % within a series. According to DIN 2090 spring constant for rectangular coil cross section is proportional to the square of height and width of coil cross section and indirectly proportional to number of active coils and to the cube of the mean spring diameter. Hence, spring constants can be tailored over a range of many orders of magnitude by changing the spring dimensions. Good agreement was reached between calculated target spring constants and measured values on produced springs. Alumina and zirconia springs were characterized relating to deformation behavior under dynamic compression load with various deformation speeds and under static tensile loads over long periods of time. Contrary to alumina springs, a non-linear stress-strain behavior of TZP springs was proved in both test series. It is supposed, that pseudoelasticity caused by stress-induced transformation of tetragonal to monoclinic phase is responsible for this special feature of TZP springs. Therefore, TZP material cannot be used for capacitive spring sensors. T2 - European Ceramic Society Conference (ECerS) CY - Torino, Italy DA - 16.06.2019 KW - Ceramic spring KW - Sensor KW - Spring constant KW - Failure test KW - Microstructure PY - 2019 AN - OPUS4-48610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenbart, M. A1 - Bauer, F. A1 - Klotz, U. A1 - Weber, M. A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit A1 - Klengel, R. A1 - Steinmeier, L. A1 - Parvez, A. A1 - Hanke, T. A1 - Dziwis, G. A1 - Meissner, R. A1 - Tikana, L. A1 - Heisterkamp, J. T1 - Development of an ontology for the lifecycle of copper and copper alloys N2 - Efforts towards digitalization in the material science and technology community have enhanced in the last years. In 2019 the German digitalization initiative platform „MaterialDigital“1 (MD) has been started. Numerous projects concerning digitalization, including the copper related project „KupferDigital“ (copper digital) have been initiated under the umbrella of MD. The initiative strives to address numerous issues concerning data access, exchange, security, provenance and sovereignty. Heterogeneous data origin, storage and evaluation often result in problems concerning comparability and reproducibility of scientific and technological results. In many cases material data are recorded, but the methods of testing are insufficiently described, or such information is not communicated along with the raw data. The material data can also have numerous different formats such as paper printouts, pdfs, excel sheets or csv-files. Hence, gathering and integrating material data from different sources is challenging for potential users like materials scientists and engineers, especially if there are contradictory data where the reasons for contradictions is not clear due their vague description. In order to address these problems, data should comply to the so called „FAIR“ principle which calls for data to be findable, accessible, interoperable, and reusable (FAIR)2 and hence be accessible via so-called decentralized but interconnected data spaces. By using knowledge representation withontologies, data can be enriched with meaning and the methods of the testing procedures can be accurately provided. In this presentation we want to introduce our approach to such knowledge representation based on a high-throughput alloy development process for Cu-based alloys³ along with characterization techniques such as hardness testing and microstructural characterization (e.g. EBSD – Electron Backscattered Diffraction). T2 - Copper Alloys Conference CY - Dusseldorf, Germany DA - 22.11.2022 KW - Copper KW - Life cycle KW - Ontology PY - 2022 AN - OPUS4-56406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemiasheuski, Anton A1 - Bajer, Evgenia A1 - Oder, Gabriele A1 - Göbel, Artur A1 - Hesse, Rene A1 - Bettge, Dirk T1 - Development of an Automated 3D Metallography System (RASI) and its Application in Microstructure Analysis N2 - Many microstructural features exhibit non-trivial geometries, which can only be derived to a limited extent from two-dimensional images. E.g., graphite arrangements in lamellar gray cast iron have complex geometries, and the same is true for additively manufactured materials and three-dimensional conductive path structures. Some can be visualized using tomographic methods, but some cannot be due to weak contrast and/or lack of resolution when analyzing macroscopic objects. Classic metallography can help but must be expanded to the third dimension. The method of reconstructing three-dimensional structures from serial metallographic sections surely is not new. However, the effort required to manually assemble many individual sections into image stacks is very high and stands in the way of frequent application. For this reason, an automated, robot-supported 3D metallography system is being developed at BAM, which carries out the steps of repeated preparation and image acquisition on polished specimen. Preparation includes grinding, polishing and optionally etching of the polished surface. Image acquisition comprises autofocused light microscopic imaging at several magnification levels. The image stacks obtained are then pre-processed, segmented, and converted into 3D models, which in the result appear like microtomographic models, but with high resolution at large volume. Contrasting by classical chemical etching reveals structures that cannot be resolved using tomographic methods. The integration of further imaging and measuring methods into this system is underway. Some examples will be discussed in the presentation. T2 - Euromat 2023 CY - Frankfurt a. M., Germany DA - 04.07.2023 KW - Metallography KW - 3D Reconstruction KW - Roboter KW - Automation KW - Microstructure PY - 2023 AN - OPUS4-58202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wang, Bin A1 - Mair, Georg A1 - Gesell, Stephan T1 - Determination of Distribution Function used in MCS on Safety Analysis of Hydrogen Pressure Vessel N2 - The test data of static burst strength and load cycle strength of composite pressure vessels are often described by GAUSSian normal or WEIBULL distribution function to perform safety analyses. The goodness of assumed distribution function plays a significant role in the inferential statistics to predict the population properties by using limited test data. Often, GAUSSian and WEIBULL probability nets are empirical methods used to validate the distribution function; Anderson-Darling and KolmogorovSmirnov tests are the mostly favorable approaches for Goodness of Fit. However, the different approaches used to determine the parameters of distribution function lead mostly to different conclusions for safety assessments. In this study, six different methods are investigated to show the variations on the rates for accepting the composite pressure vessels according to GTR No. 13 life test procedure. The six methods are: a) NormLog based method, b) Least squares regression, c) Weighted least squares regression, d) A linear approach based on good linear unbiased estimators, e) Maximum likelihood estimation and f) The method of moments estimation. In addition, various approaches of ranking function are considered. In the study, Monte Carlo simulations are conducted to generate basic populations based on the distribution functions which are determined using different methods. Then the samples are extracted randomly from a population and evaluated to obtain acceptance rate. Here, the “populations” and “samples” are corresponding to the burst strength or load cycle strength of the pressure vessels made from composite material and a plastic liner (type 4) for the storage of hydrogen. To the end, the results are discussed, and the best reliable methods are proposed. T2 - ICHS2019 Conference CY - Adelaide, Australia DA - 24.09.2019 KW - Monte-Carlo Simulation KW - Distribution function KW - Weibull Distribution PY - 2019 AN - OPUS4-49652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goedecke, Caroline A1 - Altmann, Korinna A1 - Bannick, C. G. A1 - Kober, E. A1 - Ricking, M. A1 - Schmitt, T. A1 - Braun, Ulrike T1 - Detection of polymers in treated waste water using TED-GC-MS N2 - The presence of large quantities of plastic waste and its fragmentation in various environmental compartments are an important subject of current research. In the environment, (photo ) oxidation processes and mechanical abrasion lead to the formation of microplastics. However, until now, there are no established quality assurance concepts for the analysis of microplastic (<5 mm) in environmental compartments, including sampling, processing and analysis. The aim of the present work is the development of suitable examination methods and protocols (sampling, sample preparation and detection) to qualify and quantify microplastic in urbane water management systems. At first a fractional filtration system for sampling and the analytical tool, the so-called TED-GC-MS (thermal desorption gas chromatography mass spectrometry) were developed. The TED-GC-MS method is a two-step analytical procedure which consists of a thermal extraction where the sample is annealed and characteristic decomposition products of the polymers are collected on a solid phase. Afterwards these products are analysed using GC-MS. The developed fractional filtration for sampling and the TED-GC-MS for detection were used for quantitative analysis to screen the waste water influent and effluent of a Berlin waste water treatment plant for the most relevant polymers, polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and polyamide (PA). The results of the study revealed that the polymeres PE, PS and PP were detected in the effluent, and PE and PS were find in the raw waste water of the sewage treatment plant in Ruhleben, Berlin. Differences in polymer types and amounts were detected at different sampling dates and within different sieve fractions. Much higher amounts of polymers were observed in the raw waste water. The peak areas of the decomposition products, used for quantification of the polymers, were adjusted using so-called response factors since the TED-GC-MS method is more sensitive for PP and PS than for PE. It has been shown that PE is the most dominant polymer in the samples. Comparing the masses of polymers in the effluent and in the raw sewage, a removal of 99 % of the polymers in the water treatment plant can be assumed. These results are consistent with the literature where removal rates between 98-99 % were described. T2 - SETAC Europe CY - Rom, Italy DA - 13.05.2018 KW - Microplastics KW - Thermogravimetry KW - Waste water KW - Chromatography PY - 2018 AN - OPUS4-44968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Mäde, L. T1 - Detection and prediction of high temperature fatigue crack growth around notches in polycrystalline nickel base alloy N2 - Im Rahmen eines Vorhabens wurden Methoden zur Reduktion des Versuchsaufwandes bei der Modellerstellung für LCF-Lebensdauervorhersage untersucht. Einige dieser Methoden sind hier kurz vorgestellt. N2 - Methods for reducing the experimental effort necessary for the development of LCF life time prediction models were investigated. Some of these methods are briefly presented here. T2 - 4th International Symposium for Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - LCF KW - Mechanistic Modelling KW - Fatigue KW - Data Fusion PY - 2020 AN - OPUS4-50904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Eddah, Mustapha A1 - Bajer, Evgenia A1 - Markötter, Henning A1 - Kranzmann, Axel T1 - Destructive and non-destructive 3D-characterization of inner metal structures in ceramic packages N2 - Ceramic multilayer packages provide successful solutions for manifold applications in telecommunication, microsystem, and sensor technology. In such packages, three-dimensional circuitry is generated by combination of structured and metallized ceramic layers by means of tape casting and multilayer technology. During development and for quality assurance in manufacturing, characterization of integrity, deformation, and positioning of the inner metal features is necessary. Visualization with high resolution and material contrast is needed. Robot-assisted 3D-materialography is a useful technique to characterize such multimaterial structures. In that, many sections of the specimen are polished and imaged automatically. A three-dimensional representation of the structure is created by digital combination of the image stack. A quasi non-destructive approach is to perform X-ray computer tomography (CT) with different beam energies. The energies are chosen to achieve a good imaging of either the metal features, or the ceramic matrix of the structure. The combination of the respective tomograms results in a high contrast representation of the entire structure. Both methods were tested to characterize Ag and Ag/Pd conductors in a ceramic multilayer package. The results were compared in terms of information content, effort, and applicability of the methods. T2 - 98th DKG Annual Meeting - CERAMICS 2023 CY - Jena, Germany DA - 27.03.2023 KW - Ceramics KW - Synchrotron CT KW - 3D materialography PY - 2023 AN - OPUS4-57268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Design and fabrication of ceramic springs N2 - Ceramic springs offer versatile possibilities for load bearing or sensor applications in challenging environments. Although it may appear unexpected, a wide range of spring constants can be implemented by material selection and especially by the design of the spring. Based on a rectangular cross-section of the windings, it is possible to design a spring geometry that generates the desired spring constant simply by choosing appropriate diameter, height, widths, and number of windings. In a recent research project the calculation of helical compression springs made of rectangular steel (German standard DIN 2090) was applied for the design of ceramic springs. A manufacturing technology has been worked out to fabricate such springs from hollow cylinders of several highly dense technical ceramics by milling. Ceramic springs with precise rectangular section, without edge damage, and mean surface roughness smaller than 0.2 µm were produced after parameter optimization. Tolerances of less than 10 µm were achieved regarding spring diameter, height, and width of cross section. It is shown that the calculations outlined in the standard are valid for a variety of ceramic materials as well. Demonstrator springs with a wide range of spring constants have been fabricated, including zirconia springs with 0.02 N/mm, alumina springs with 1 N/mm and Si3N4 springs with 5 N/mm. A reproducibility study of six zirconia springs with a constant of 0.3 N/mm showed a relative difference in spring constants of less than +/- 1 %. This combination of a valid calculation approach for spring geometry and a reliable manufacturing technology allows for purposeful development and fabrication of ceramic springs with precise mechanical properties and superior chemical stability. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Ceramic spring KW - Hard machining KW - Spring constant PY - 2019 AN - OPUS4-48870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wang, Lei A1 - Darvishi Kamachali, Reza T1 - Density-based Thermodynamics of Microstructure Defects N2 - Systematic microstructure design requires reliable thermodynamic descriptions and phase diagrams of each and all microstructure elements. While such descriptions are well established for most bulk phases, thermodynamic assessment of crystal defects is greatly challenged by their individualistic aspects. In this talk, we present a density-based thermodynamic concept to describe defects based on available bulk thermodynamic data. Here dealing with grain boundaries (GBs), we apply this concept to compute GB (phase) diagram. Applications to segregation engineering of GBs in bulk and nanocrystalline alloys will be presented. We further develop this model to include the effect of elastic interactions due to atom size mismatch and obtain the corresponding GB (phase) diagram for the ternary Al-Cu-Li system. T2 - TMS 2021 CY - Online meeting DA - 15.03.2021 KW - Microstrucrue Design KW - Density-based Thermodynamics PY - 2021 AN - OPUS4-52337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wallis, Theophilus A1 - Darvishi Kamachali, Reza T1 - Density-based phase field modelling of the interplay between grain boundary segregation transition and structure N2 - Grain boundary (GB) chemical and structural variations can significantly influence materials performance. The former is generally ascribed to the structural gradient between the grain and GB. While GB segregation may be accompanied by chemical and structural variations, clear insights about the GB’s thermodynamic phase behaviour upon coupling between its chemistry and structure is lacking. Using the CALPHAD integrated density-based phase field model, we study the co-evolution of GB’s structure and segregation in Fe-Mn alloys. We found that the GB segregation transition is amplified if its structure can respond to chemical variation. Additionally, the coupling between GB structural and segregation evolution was found to enable co-existence of the spinodally formed low- and high-Mn phases within the GB. In the light of atomistic simulations, we expand on investigating the correlation between the parameters that characterise the GB density map with GB properties. T2 - TMS 2023 CY - San Diego, California, USA DA - 19.03.2023 KW - Grain boundary engineering KW - Density-based phase-field modelling KW - Microstructure design PY - 2023 AN - OPUS4-57970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Balzer, R. T1 - Density, microhardness and elastic moduli of hydrous soda-lime silicate glasses N2 - The effect of structural water on density, elastic constants and microhardness of water-bearing soda-lime-silica glasses of up to 21.5 mol% total water is studied. T2 - 25th International Congress on Glass (ICG2019) CY - Boston, MA, USA DA - 09.06.2019 KW - Elastic constants KW - Soda-lime-silica glass KW - Water content KW - Microhardness PY - 2019 AN - OPUS4-49537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Zocca, Andrea T1 - Dense Powder Beds for the Additive Manufacturing of Ceramics N2 - Many of the most successful and precise additive manufacturing (AM) technologies are based on the deposition layer-by-layer of a flowable powder. Since the first pioneering work at the end of the 1980th many developments have been introduced, greatly extending the use of different materials, improving the physical properties of the components built and enhancing the accuracy of the process. Still very important issues remain nowadays, hampering a completely autonomous production of parts and even restricting the freedom of design by means of these technologies. One of the major issues is the low density and stability of the parts during the building process, which implies the need of support structures: The powder bed surrounding the part has an essential role, since it should support the structure during building, until it’s ready for removal. Moreover, the microstructure of the powder bed is a template for the microstructure of the part produced. In this context, the use of submicron ceramic powders is still a challenge. Three approaches for the stabilization and densification of powder beds will be presented: The Layerwise Slurry Deposition process LSD, the gas flow assisted powder deposition and the Laser Induced Slipcasting (LIS) of ceramic powder compacts. T2 - 43rd International Conference and Exposition on Advanced Ceramics and Composites (ICACC 2019) CY - Daytona Beach, FL, USA DA - 27.01.2019 KW - Ceramics KW - Additive Manufacturing PY - 2019 AN - OPUS4-49627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Zocca, Andrea T1 - Dense Powder Beds for the Additive Manufacturing of Ceramics N2 - Regarding feedstocks for the additive manufacturing (AM) of ceramics, two features are most critical in classical powder based AM processes: a high particle packing density (typically >50% TD) must be achieved with very fine particles (typically submicron) in order to ensure sufficient sintering activity. Three innovative approaches will be introduced to overcome this problem: 1. Layer wise slurry deposition: The use of water based ceramic slurries as feedstock for the additive manufacture of ceramics has many advantages which are not fully exploit yet. In the layerwise slurry deposition (LSD) process a slurry with no or low organic content is repetitively spread as thin layers on each other by means of a doctor blade. During the deposition, the ceramic particles settle on the previously deposited and dried material to form thin layers with a high packing density (55-60%). The LSD therefore shares aspects both of tape casting and slip casting. The LSD differentiates from the classical powder-based AM layer deposition, which typically achieves with a flowable coarse grained powder a low packing density (35-50%) only, consequently hindering the ability of sintering ceramic parts to full density. The LSD is coupled with the principles of selective laser sintering (SLS) or binder jetting, to generate novel processes which take advantage of the possibility of achieving a highly dense powder-bed. 2. Laser induced slip casting: Contrary to the LSD process, which requires drying of each individual layer, the direct interaction of ceramic slurries with intense laser radiation, for the laser induced slip casting (LIS), is a promising approach for the additive manufacture of voluminous parts. 3. Gas flow assisted powder deposition: By the application of a vacuum pump a gas flow is realized throughout the powder bed. This gas flow stabilizes the powder bed and results into an enhanced flowability and packing density of the powder during layer deposition. The presentation will provide a detailed discussion of potentialities and issues connected to the mentioned technologies and will describe the most recent developments in their application to technical ceramics. T2 - SmatMade 2022 CY - Osaka, Japan DA - 25.10.2022 KW - Additive Manufacturing KW - Advanced ceramics PY - 2022 AN - OPUS4-59886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Hammerschmidt, T. A1 - Stotzka, R. A1 - Forti, M. A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit A1 - Lenze, A. A1 - Gedsun, A. A1 - Hickel, Tilmann A1 - Tsybenko, H. A1 - Chmielowski, M. A1 - Hunke, S. A1 - Shakeel, Y. T1 - Demonstration of the Infrastructure Use Case 02: Framework for curation and distribution of reference datasets N2 - In our current view, reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) aims to develop a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for the creation and distribution of reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - NFDI-MatWerk Conference CY - Siegburg, Germany DA - 27.06.2023 KW - Referenzdaten KW - Reference data KW - Creep KW - Metadata schema KW - Syngle Crystal alloy PY - 2023 AN - OPUS4-57924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Kalinka, Gerhard T1 - Deformation behavior of alumina and zirconia springs at room temperature N2 - At high temperatures and in harsh environments ceramic springs are often superior to metallic springs and allow for innovative solutions. A recently proposed application involves ceramic springs with metallized surfaces as capacitive force sensor. A strictly linear stress-strain characteristic of the spring is a precondition for such a sensor. Helical ceramic springs with rectangular cross-section have been produced from sintered hollow cylinders. Alumina, ATZ, Y-TZP, and Ce-TZP springs with identical dimensions were characterized and compared regarding deformation behavior. Spring deformation was investigated under various load scenarios. Dynamic compression was performed with deformation speeds from 0.3 to 30 mm/min. Spring constants of alumina springs are strain rate independent. By contrast, Y-TZP spring constant increases by approximately 3 % within the experimental framework. A high-precision test facility was developed to characterize spring displacement in nm range under static tensile load over long periods of time. Spring elongation with asymptotic course was observed for zirconia containing materials at room temperature. This effect is particularly strong in the case of Y-TZP. Up to 0.3 % time-dependent elongation was measured after 24 h under constant load. Deformation is completely reversible after unloading. Alumina springs do not show any time-dependent deformation under identical test conditions. Contrary to alumina springs, a non-linear stress-strain behavior of TZP springs at room temperature was proved in both test series. It is supposed, that pseudo-elasticity caused by stress-induced phase transformation from tetragonal to monoclinic is responsible for this special behavior of TZP springs. T2 - D-A-CH Keramiktagung CY - Leoben, Austria DA - 06.05.2019 KW - Phase transformation KW - Ceramic spring KW - Force-distance diagram KW - Deformation behavior PY - 2019 AN - OPUS4-48026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Bettge, Dirk T1 - Defects as a root cause for fatigue failure of metallic components N2 - The Topic of the presentationis a discussion on defects which can cause failure in cyclically loaded metallic components. Although also touching Features such as material defects such as pores or micro-shrinkages, etc. and geometric defects such as surface roughness and secondary notches (which are not considered in the design process) which origin in manufacturing, and others the presentation concentrates on non-metallic inclusions. It is prefaced by an introduction to the life cycle of a fatigue crack from initiation up to fracture. Special emphasis is put on the fact that only cracks which are not arrested during one of their distinct Propagation stages can grow to a critical size. T2 - VIII. International Conference on Engineering Failure Analysis CY - Budapest, Ungarn DA - 08.06.2018 KW - Metallic components KW - Material defects KW - Micro-shrinkages PY - 2018 AN - OPUS4-46875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Werner, Tiago A1 - Zerbst, Uwe A1 - Sommer, Konstantin A1 - Sprengel, Maximilian A1 - Bergant, M. A1 - Evans, Alex A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Yawny, A. T1 - Damage Tolerant Approach in Additively Manufactured Metallic Materials N2 - Damage tolerance counts as one of the most widespread approach to fatigue assessment and surely as one of the most promising in understanding the process-structure-property-performance relationships in additively manufactured metallic materials. Manufacturing defects, surface roughness, microstructural features, short and long crack fatigue propagation, residual stresses and applied loads can be taken into consideration in a fracture mechanics-based fatigue assessment. Many aspects are crucial to the reliable component life prediction. Among those a prominent role is played by an accurate measurement and modelling of the short crack fatigue behavior, and reliable statistical characterization of defects and residual stresses. This work aims at addressing the issues related to both experimental testing, fatigue and fatigue crack propagation, and fracture mechanics-based modelling of fatigue lives. Examples will be provided on an additively manufactured AISI 316 L. T2 - TMS2021 VIRTUAL CY - Online meeting DA - 15.03.2021 KW - AISI 316L KW - Additive Manufacturing KW - Damage Tolerance KW - Microstructure KW - Defects KW - Residual Stress PY - 2021 AN - OPUS4-52293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Damage progression of environmental stress cracking affected by manufacturing process-induced microstructural orientation N2 - Currently, the Full Notch Creep Test (FNCT) [1] method is used by material suppliers and end users in industry for the approval of container and pipe materials based on high-density polyethylene (PE-HD). The resistance to environmental stress cracking (ESC) of the material is evaluated using the time to failure of the specimen in an aqueous solution of a detergent [2, 3]. Usually specimens made of sheets with isotropic material properties, manufactured by hot pressing, are employed in order to obtain intrinsic properties of the material in terms of ESC failure. In contrast, the processes used in manufacturing to form containers and pipes, such as extrusion blow molding or extrusion, impose anisotropic properties to the material. These are mostly due to a microstructural orientation (polymer chains or crystallites) [4]. Furthermore, the different cooling conditions significantly affect the size distribution of crystallites as well as the overall morphology. It is therefore essential to understand the influence of process-induced material characteristics on failure due to ESC. A large number of studies on material properties as a function of microstructural preferential orientation have already been conducted [5-7]. However, effects on ESC as the major failure mechanism of containers and pipes are still rather unexplored [8, 9]. The most important factor is whether primarily intramolecular high-strength covalent bonds or the substantially weaker intermolecular van der Waals forces are predominantly loaded. In addition to the widely established classification by time to failure, the strain or crack opening displacement (COD) provides valuable information about the evolution and progression of damage as a function of time [10, 11]. Optical strain measurement using digital image correlation allows the differences in COD for isotropic and different angles of orientation of anisotropic specimens to be discussed. Also, a post-fracture surface analysis provides clarification on the craze-crack mechanism of the ESC. These different ESC-related properties of extruded and hot-pressed specimens have been investigated at different environmental medium temperatures and different initial stresses to provide a broad characterization of the fracture behavior of PE-HD. T2 - 36th International Conference of the Polymer Processing Society CY - Montreal, Canada DA - 26.09.2021 KW - Environmental stress cracking KW - High-density polyethylene KW - Fracture behavior KW - Microstructural orientation PY - 2021 AN - OPUS4-53400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Popiela, Bartosz A1 - Trappe, Volker T1 - Damage Mechanisms of Scarf Joint Repairs for Wind Turbine Rotor Blade Shell Applications N2 - Wind turbine rotor blades, made of fiber reinforced polymers (FRP), often fail before their projected 20-year lifespan, largely due to defects that originate during manufacturing and are propagated by operational fatigue and environmental conditions. The cost-intensive replacement outcomes lead to a high loss of earnings, and are one of the inhibitors of wind turbine production [1]. A potential repair alternative is to locally patch these areas of the blades with adhesively bonded structural repairs. However, the effects of such repair methods of the outer shell region on the structural integrity of the rotor blades are still largely unknown, and are thus investigated in this project. The shell components of rotor blades are made of FRP composite material sandwiching a lightweight core, often a rigid foam or Balsa wood. The repair methods involve replacing the lost load path with a new material that is joined to the parent structure [2]. Repairs in this project focus on the scarf method, which allow for a smoother load distribution across the joint, aiming to study the damage mechanism of glass FRP scarf repairs for wind turbine blade shell applications. Namely, the source and path of the damage initiation and propagation, role of the interface between parent and patch material, and the role of the fiber orientation mismatch at this interface are examined. Biaxial ±45° and 0/90° FRP specimens are produced with the vacuum-assisted resin infusion (VARI) process using E-glass non-crimp fabric. The patch layers are then joined using VARI with a scarf ratio of 1:50, using glass FRP fabric with half the areal weight of the parent side to allow for better drapability. The methods and practices in specimen production are based on common industry practice in rotor blade shell manufacturing and repairs. The specimens are tested under uniaxial tensile load, during which they are periodically monitored for damage onset. A comparison of the ±45° and 0/90° specimens allows for an understanding of the role of a highly mismatching fiber orientation in the transition zone between parent and patch material on the failure mechanism of the scarf joint. Although failure in both orientations begins as delamination at the joint edge, the difference in the mechanisms at play in the two different specimen types leads ultimately to different fracture paths. Namely, in the inter fiber failure mechanism of the ±45° specimens, the higher interlaminar strength compared to the intralaminar strength of the laminate leads to intralaminar failure of the ±45° scarf joint specimens. Alternatively, the competition in the 0/90° specimens lies between the interlaminar strength and fiber failure strength, and here we experience failure primarily across the scarf joint length. The scarf joint in the 0/90° specimens disrupts the continuity of the load-carrying 0° layers, directing the failure path to remain primarily along the scarf joint. Experimental results are compared to finite element analyses of scarf patch repairs on glass FRP sandwich specimens with the same respective layup orientations, where the damage initiation regions are identified and correlated to fiber orientation, serving as a bridge to future work which will experimentally examine the scarf repair patches on sandwich shell specimens. T2 - Joint Event: ICCS23 - 23rd International Conference on Composite Structures & MECHCOMP6 - 6th International Conference on Mechanics of Composites CY - Online meeting DA - 01.09.2020 KW - Wind turbine blade shells KW - Glass fiber reinforced polymers KW - Scarf repairs PY - 2020 AN - OPUS4-51175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Nolze, Gert A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic Operation Performance of 9-12% Cr Ferritic-Martensitic Steels. Part 2: Microstructural Evolution during Cyclic Loading and its Representation in a Physically-based Micromechanical Model N2 - The current trend towards cyclic, “flexible” operation of fossil-fueled power plants constitutes a major issue regarding lifetime and operational safety of the respective installations and their components, as was outlined in our complementary contribution (Part 1). The present contribution reports on the investigation of the microstructure evolution in cyclically loaded ferritic-martensitic steels and its representation in a physically-based micromechanical model. For this purpose, specimens of P92 steel grade from the mechanical test programme outlined in our companion contribution (Part 1) were analyzed by scanning electron microscopy (SEM), including backscattered diffraction (EBSD) mapping, and transmission electron microscopy (TEM). A novel method was implemented to improve angular resolution of EBSD scans. Additionally, a correlative microscopy approach was developed and used to correlate EBSD and TEM measurements on the same locations of thick regions of electron transparent specimens. By applying these techniques, a detailed quantitative microstructure description of the as-received material condition, namely in terms of subgrain morphology and dislocation density/distributions, was established. Comparisons of as-received and cyclically loaded conditions from tests interrupted at different stages of lifetime indicate a rapid redistribution of in-grain dislocations with a strong interaction between mobile dislocations and low angle grain boundaries (LABs). The proposed micromechanical model is formulated in a viscoplastic self-consistent (VPSC) scheme, which is a mean-field approach that allows us to include the crystal details at the level of slip systems while avoiding the considerable computational costs of full-field approaches (such as the classical crystal plasticity finite element analysis). Being physically-based, the model uses dislocation densities and includes the interaction between dislocations, e.g. annihilation of mobile dislocations, and evolution of microstructure, e.g. the grain coarsening. Particularly, the constitutive laws for dislocation evolution and interaction between dislocations and low angle boundaries are calibrated based on two-dimensional discrete dislocation dynamic (2D DDD) simulations, which are performed at a micro-/meso-scale. The results of the beforementioned EBSD experiments are considered as a direct input, involving e.g. the amount of geometrically necessary dislocations, average misorientations and grain characteristics. T2 - 45th MPA-Seminar 2019 CY - Leinfelden-Echterdingen, Germany DA - 01.10.2019 KW - Tempered martensite ferritic steel KW - Dislocation KW - Electron backscattered diffraction (EBSD) KW - Transmission electron microscopy (TEM) KW - Microstructure KW - Physically based material model PY - 2019 AN - OPUS4-49346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Jürgens, Maria A1 - Sonntag, Nadja A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic operation performance of 9 -12% cr ferritic martensitic steels part 1: cyclic mechanical behavior under fatigue and creep fatigue loading N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in fossil fueled power plants due to their excellent creep and oxidation resistance, but changes in electricity markets during the last two decades have considerably changed the typical working conditions of these facilities. The growing share of renewable energy sources in power generation forces most of these plants into flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue, raising the question which fundamental processes govern the reaction of ferritic-martensitic steels to cyclic load and temperature variations. The present contribution reports on current findings obtained in a multidisciplinary project funded by German Ministry of Education and Research (BMBF) which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses and related micromechanical modeling. In the present first part of our contribution, an overview will be given on the results obtained in the mechanical testing programme of the project. Mechanical analyses were carried out on P91 and (mainly) P92 steel grades, particularly looking at softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of creep and fatigue periods. For this purpose, cylindrical specimens were extracted from thick-walled steam pipes, orthogonal to the pipe axis, and subjected to strain controlled cyclic loading (± 0.2 to ±0.5 % mechanical strain) to different degrees of softening at temperatures up to 620 °C. The test results will be presented and discussed with a focus on the impact of hold periods (i.e. combined creep-fatigue conditions) on mechanical softening, lifetime and crack formation. Details on the microstructural evolution and their representation in a micromechanical model will be given in a second, complementary contribution to this conference. T2 - 45. MPA-Seminar CY - Stuttgart, Germany DA - 01.10.2019 KW - Tempered Martensite Ferritic Steels KW - Low Cycle Fatigue KW - Creep-Fatigue KW - Thermo-Mechanical Fatigue KW - P92 PY - 2019 AN - OPUS4-50050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Sonntag, Nadja A1 - Nolze, Gert A1 - Agudo Jácome, Leonardo A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit A1 - Jürgens, Maria T1 - Cyclic mechanical performance and microstructure evolution of P92 under LCF and TMF conditions N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in fossil fueled power plants due to their excellent creep and oxidation resistance, but changes in electricity markets during the last two decades have considerably changed the typical working conditions of these facilities. The growing contribution of renewable energy sources in power generation forces most of these plants into flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue, raising the question which fundamental processes govern the reaction of ferritic-martensitic steels to cyclic load and temperature variations. The present contribution reports on current findings obtained in a multidisciplinary project funded by German Ministry of Education and Research (BMBF) which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses and related micromechanical modeling. In this contribution, an overview will be given on the results obtained in the mechanical testing programme of the project. Mechanical analyses were carried out on P91 and (mainly) P92 steel grades, particularly looking at softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of fatigue and creep/relaxation periods. For this purpose, cylindrical specimens were extracted from thick-walled steam pipes, orthogonal to the pipe axis, and subjected to strain controlled cyclic loading (± 0.2 to ±0.5 % mechanical strain). Temperature intervals of TMF tests were chosen as either 300-620°C or 500-620°C, resembling so-called warm or hot start conditions of a power plant. The test results will be presented and discussed with a focus on the impact of hold periods during testing (combined creep/relaxation-fatigue conditions) on mechanical softening, lifetime and formation of cracks. The findings will be complemented by results on the modification of the hierarchical ferritic-martensitic microstructure under different loading scenarios. T2 - 4th International Workshop on Thermo-Mechanical Fatigue 2019 CY - Berlin, Germany DA - 13.11.2019 KW - Power plant KW - Tempered martensite ferritic steels KW - Thermo-Mechanical Fatigue KW - Microstructure modification KW - EBSD PY - 2019 AN - OPUS4-50053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen A1 - Jürgens, Maria A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Cyclic loading and creep-fatigue performance of P92 N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in power plants due to their excellent creep and oxidation resistance. The growing share of renewable energy sources in power generation forces many of these plants into more flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue. The present contribution reports on current findings obtained in a multidisciplinary project which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses. Mechanical analyses are carried out on P92 and P91 steel grades to give an overview of softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of creep and fatigue periods. Complementary microstructural investigations by scanning and transmission electron microscopy plus EBSD are used for phase identification, substrate/oxide interface characterization and quantification of the microstructure evolution under cyclic conditions. T2 - 44th MPA-Seminar CY - Leinfelden/Stuttgart, Germany DA - 17.10.2018 KW - Ferritic-martensitic steels KW - Fatigue KW - Creep-fatigue PY - 2018 AN - OPUS4-47116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Cyclic fatigue behavior of glass fiber reinforced epoxy resin at ambient and elevated temperatures N2 - The fatigue behavior of ±45° glass fiber reinforced epoxy resin under cyclic mechanical and constant thermal loading is investigated in this study. Tests at three different temperature levels in the range 296 K to 343 K have been performed in order to create S-N curves for each temperature level. The specimen damage is measured in-situ using optical grayscale analysis. The characteristic damage state (CDS) is evaluated for each specimen. It is shown that the point of CDS is suitable as a failure criterion to compare the resulting S-N curves. With micromechanical formulations, the temperature-dependent matrix effort is calculated for each stress-temperature level. In terms of matrix effort, the longest fatigue life is reached at high temperatures, while, in terms of stress, the lowest fatigue life is reached at the highest temperatures. T2 - ECCM18 - 18th European conference on composite materials CY - Athens, Greece DA - 24.06.2018 KW - Composite KW - Fatigue KW - Thermomechanics KW - Residual stresses KW - Temperature PY - 2018 AN - OPUS4-45346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Current and future technological advancement in polymer matrix composites enabled through fundamental discoveries N2 - This presentation is a summary of the work from the past 20 years’ development of PMC-testing at the BAM-FB 5.3 with respect to safety-relevant design of advanced light weight structures in aircraft, wind turbine and automotive applications. The talk begins with wood as an example from nature, and emphasizes that load case, fiber architectural design and the production process and quality have to go hand in hand to generate an advanced light weight structure. Since PMC-relevant basic findings of mankind span across hundreds of years, high-performance composite applications today are based more on long term experiences than on breakthrough inventions of modern days. In the second part of the talk, future plans and projects of FB-5.3 are presented, specifically addressing H2-safety, circular economy, recycling by design and digitalization of PMC-technologies. T2 - Abteilungsseminar CY - Online meeting DA - 07.09.2021 KW - Polymer Matrix Composites KW - Thermo mechanical fatigue PY - 2021 AN - OPUS4-54150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Gadelmeier, C. A1 - Gratzel, U. A1 - Agudo Jácome, Leonardo T1 - Creep Properties of the Refractory Chemically Complex AlMo 0.5 NbTa 0.5 TiZr Alloy N2 - The development of refractory CCAs has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy, which resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. The aim of this work is to evaluate the alloy’s mechanical behavior under tension in the temperature range 800-1000°C, by applying creep tests under vacuum (excluding oxidation effects). Some little temperature influence on minimum creep rate @ 1000 and 1100 °C was found and at a first glance, and Norton plots shows that deformation is probably both diffusion and dislocation controlled. However, further work is needed to stablish deformation and degradation micro mechanisms in the studied creep regime. T2 - SPP Kick-Off Meeting 2nd Phase CY - Online meeting DA - 14.04.2021 KW - Creep behavior KW - Chemically complex alloy KW - Microstructure PY - 2021 AN - OPUS4-53389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Epishin, A. A1 - Nolze, Gert A1 - Schriever, Sina A1 - Feldmann, Titus A1 - Ijaz, M. A1 - Viguier, B. A1 - Poquillon, D. A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. T1 - Creep of single-crystals of nickel-base superalloys at ultra-high homologous temperature N2 - The creep behavior of single-crystals of the nickel-base superalloy CMSX-4 was investigated at 1288°C, which is the temperature of the hot isostatic pressing (HIP) treatment applied to this superalloy in the industry. It was found that at this super-solvus temperature, where no Gamma’-strengthening occurs, the superalloy is very soft and rapidly deforms under stresses between 4 and 16 MPa. The creep resistance was found to be very anisotropic, e.g. the creep rate of [001] crystals was about 11 times higher than that of a [111] crystal. The specimens of different orientations also showed a very different necking behavior. The reduction of the cross-section area psi of [001] crystals reached nearly 100%, while for a [111] crystal psi=62%. The EBSD analysis of deformed specimens showed that despite such a large local strain the [001] crystals didn’t not recrystallize, while a less deformed [111] crystal totally recrystallized within the necking zone. From the shape of deformed specimens and TEM investigations it was concluded that the main strain contribution resulted from <011> {111} octahedral slip. T2 - EuroSuperalloys 2018 CY - Oxford, UK DA - 09.09.2018 KW - Nickel-base superalloys KW - Single-crystals KW - Creep PY - 2018 AN - OPUS4-45989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viguier, B. A1 - Epishin, A. A1 - Fedelich, Bernard T1 - Creep of single-crystals of nickel-base gamma-alloy at high temperatures N2 - Porosity in single-crystal nickel-base superalloys is removed by hot isostatic pressing (HIP) at temperatures above gamma’-solvus where the material is very soft and ductile. For example, single-crystal nickel-base superalloy CMSX-4 is HIPed at temperature 1288 °C, which is slightly higher than the gamma’-solvus temperature of this alloy equal to about 1280 °C. It is assumed that pore shrinking during HIP is mostly due to dislocation creep. Such a modelling of HIP of CMSX-4 was started in our group on the base of results of creep tests of [001] single-crystals at 1288 °C [1]. However, it was found later [2] that the alloy CMSX-4 shows very strong creep anisotropy at 1288 °C. Therefore, for calibration of the creep law, creep tests of different orientations under different stress levels are required at the HIP temperature. This was the main task of present work. Single-crystals of CMSX-4 of axial orientations [001], [011], [123] and [111] were cast by VIAM Moscow and tested by BAM Berlin under creep conditions at 1288 °C and stress levels between 4 MPa and 16 MPa. At all stress levels, the creep rate increases by an order of magnitude when changing the orientation from [001] to [111] with [011] and [123] orientations in between. Such a character of creep anisotropy corresponds to the orientation dependence of the Schmid factor for octahedral glide. The crystal viscoplasticity model developed in [1] was improved to better represent the time induced softening observed during creep. The creep tests for different stresses and orientations as well as pore closure were simulated. The results of pore closure simulation are compared with measurements of porosity decrease during Hiping. T2 - 15th International Conference on Creep and Fracture of Engineering Materials and Structures CY - Online meeting DA - 14.06.2021 KW - Nickel-base superalloys KW - Creep KW - Single-Crystal PY - 2021 AN - OPUS4-53935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander T1 - Creep behavior and microstructural evolution of LPBF 316L N2 - This presentation shows some experimental results of the characterization of the creep behavior of LPBF 316L, which has been poorly studied and understood to date. The presentation includes results regarding the mechanical properties, the initial microstructural state and its evolution under loading, and the damage mechanism. This work was done within the BAM focus area materials project AGIL. As a benchmark to assess the material properties of the LPBF 316L, a conventionally manufactured variant was also tested. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured alloys at BAM CY - Online Meeting DA - 19.04.2021 KW - 316L KW - Additive Manufacturing KW - Creep behavior PY - 2021 AN - OPUS4-52682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Creep and fracture behavior of conventionally and additively manufactured stainless steel 316L N2 - A critical task within the frame of establishing process-structure-property-performance relationships in additive manufacturing (AM) of metals is producing reliable and well-documented material behavior’s data and knowledge regarding the structure-property correlation, including the role of defects. After all, it represents the basis for developing more targeted process optimizations and more reliable predictions of performance in the future. Within this context, this contribution aims to close the actual gap of limited historical data and knowledge concerning the creep behavior of the widely used austenitic stainless steel 316L, manufactured by Laser-Powder-Bed-Fusion (L-PBF). To address this objective, specimens from conventional hot-rolled and AM material were tested under application-relevant conditions according to existing standards for conventional material, and microstructurally characterized before and after failure. The test specimens were machined from single blocks from the AM material. The blocks were manufactured using a standard scan and build-up strategy and were subsequently heat-treated. The creep behavior is described and comparatively assessed based on the creep lifetime and selected creep curves and characteristic values. The effect of defects and microstructure on the material’s behavior is analyzed based on destructive and non-destructive evaluations on selected specimens. The AM material shows shorter creep lives, reaches the secondary creep stage much faster and at a lower strain, and features lower creep ductility compared to its conventional counterpart. The creep damage behavior of the AM material is more microstructure than defect controlled and is characterized by the formation and accumulation of single intergranular damage along the whole volume. Critical features identified are the grain morphology and the grain-boundary as well as the dislocation’s density. Micro-computed tomography (µCT) proves to be an alternative to metallography to analyze the creep damage. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - 316L KW - Creep behavior KW - Laser powder bed fusion KW - Additive manufacturing KW - Microstructure PY - 2020 AN - OPUS4-51823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, O. A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Corrosive CO2-stream components, challenging for materials to be used in CC(U)S applications N2 - This contribution provides current findings regarding materials susceptibility for CCUS applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2 stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide the following recommendations for certain parts. Commercially available carbon steels are suitable for compression and pipelines as long as moisture content and impurities are limited (water 50 to 100 ppmv, SO2 and NO2 ca. 100 ppmv). Corrosion rates increase with increasing water content (0.2 – 20 mm/a). Condensation of acids and therefore droplet formation is always possible, even at low water contents. A low SO2 content within the CO2-stream might be more important than a low water content. Cr13-steels showed a general susceptibility to shallow pitting and pitting. So, they seem to be not suitable for CCUS applications. Low alloyed steels showed better corrosion behavior (predictable uniform corrosion). For direct contact with saline aquifer fluids only high alloyed steels shall be used. T2 - WCO Webinar on the occasion of Corrosion Awareness Day - Corrosion and Low-Carbon Energies CY - Frankfurt, Germany DA - 24.04.2020 KW - CO2-corrosion KW - CCUS KW - Pipeline KW - Carbon Capture PY - 2020 AN - OPUS4-50699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Wencke A1 - Manzoni, Anna Maria A1 - Stephan-Scherb, Christiane T1 - Corrosion induced alloy sulfidation in a high-entropy alloy (HEA) N2 - To apply high-entropy alloys (HEA) of the CrMnFeCoNi family in challenging atmospheres, their degradation behavior under harsh environments needs to be investigated. Oxidation studies to HEAs have not been extensively investigated and most of them are concentrated on environments like synthetic air, laboratory air, CO/CO2, O2 and H2O atmospheres. Main corrosion products which were identified after aging times of up to 100 h are Mn2O3 (≤800°C) and Mn3O4 (≥800°C). Another corrosive medium in high temperature applications is SO2, which preferentially forms sulfides on commercial steels for example. These can be occurred both in the oxide layer and at the oxide/metal interface. For instance, on Fe-Cr based alloys sulfides (Cr5S6) were detected along grain boundaries and their number increases with exposure time and Cr-content in the alloy. These sulfides show an increased hardness, compared to the bulk alloy, and cause an embrittlement of the grain boundaries. This is a serious material degradation phenomenon, now addressed for the case of HEAs. In the present study metal sulfides were identified after corrosion of the HEA CrMnFeCoNi alloy in an Ar-0.5vol.%SO2 atmosphere at 800°C for 24 h, 48 h, 96 h and 192 h exposure time. After all three duration times, a thin non-protective Cr2O3 layer has formed at the oxide/alloy interface. At the gas side a thick Mn3O4 layer with local voids containing sulfur could be detected by SEM-EDS analysis. Furthermore, S precipitates could be detected in the bulk material near the surface. These sulfides were characterized in detail by scanning and transmission electron microscopy. Based on these results, a model for grain boundary sulfidation of high-entropy alloy CrMnFeCoNi is discussed. T2 - EUROMAT 2021 EUROPEAN CONGRESS AND EXHIBITION ON ADVANCED MATERIALS AND PROCESSES CY - Online meeting DA - 13.09.2021 KW - High-entropy alloys KW - High-temperature corrosion KW - Sulfidation KW - Chromium oxide KW - Manganese oxide PY - 2021 AN - OPUS4-53455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Karafiludis, Stephanos A1 - Schneider, M. A1 - Haas, S. A1 - Hagen, S. A1 - Glatzel, U. A1 - Laplanche, G. A1 - Stephan-Scherb, C. T1 - Corrosion in the Co-Cr-Fe-Ni high entropy alloy family N2 - While a lage amount of research on high entropy alloys is oriented towards mechanical properties and the microstructural improvement it is also necessary to keep an eye on the environment that potential application materials will be submitted to. The Co-Cr-Fe-Ni based high entropy family has shown great potential over the years of high entropy research and some candidate alloys are chosen for an insight into their corrosion behaviour. Several atmospheres are studied, i.e. O2, H2O, SO2 and a mix thereof in argon as well as synthetic air. Just as for classic alloys, the chromium is the most important element in terms of protection agains further corrosion. The addition of manganese, as in case of the “Cantor alloy” CrMnFeCoNi, overpasses Cr when it comes to oxygen affinity and thus counteracts the layer formation of Cr2O3. Even without Mn, a temperature chosen too high will also affect the formation of the chromium oxide layer and spall it off, annulling its protective potential. We can also observe how trace elements influence the layer formation. These effects and their mechanisms will be discussed for the alloys CrFeNi, CoCrNi, CrMnFeCoNi and variations of Al10Co25Cr8Fe15Ni36Ti6 using a combination of electron microscopy, thermodynamic calculations and x-ray diffraction. T2 - MRS-T International Conference CY - Hsinchu, Taiwan DA - 17.11.2023 KW - Corrosion KW - Scanning electron microscopy KW - Mixed gas atmosphere PY - 2023 AN - OPUS4-58980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Corrosion Effects on Materials Considered for CC(U)S Applications N2 - Commercially available carbon steels are suitable for compression and pipelines as long as moisture content and impurities are limited. (water 50 to 100 ppmv, SO2 and NO2 ca. 100 ppmv) Corrosion rates increase with increasing water content. (0.2 – 20 mm/a) Condensation of acids and therefore droplet formation is always possible, even at low water contents. A low SO2 content within the CO2-stream might be more important than a low water content. Cr13-steels showed a general susceptibility to shallow pitting and pitting. So, they seem to be not suitable for CCUS applications. Low alloyed steels showed better corrosion behavior (predictable uniform corrosion). For direct contact with saline aquifer fluids only high alloyed steels shall be used. T2 - EFC Webinar CY - Online Meeting (Chongqing, China) DA - 18.05.2022 KW - Corrosion KW - CO2 quality KW - CO2 KW - CCS KW - CCU KW - Pipeline PY - 2022 AN - OPUS4-54854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.09.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion PY - 2019 AN - OPUS4-49302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Correlation of the precipitate size evolution and the creep rate of the aluminum alloy EN AW 2618A at 190 °C N2 - Ther results of research on correlation of precipitate size Evolution and the creep rate of the Aluminium alloy EN AW 2618A at 190 °C was presented. T2 - ICAA16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Creep KW - Aluminium KW - Coarsening PY - 2018 AN - OPUS4-45283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Günster, Jens T1 - Continuous layer deposition for the Additive Manufacturing of ceramics by Layerwise Slurry Deposition (LSD-print) N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method enabling the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder. Not only very fine, submicron powders can be processed with low organics, but also the dense powder bed provides excellent support to the parts built. The LSD technology can be combined with binder jetting to develop the so-called “LSD-print” process. LSD-print combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to traditional processing. The latest development of this technology shows that it is possible to print ceramic parts in a continuous process by depositing a layer onto a rotating platform, growing a powder bed following a spiral motion. The unique mechanical stability of the layers in LSD-print allows to grow a powder bed several centimeters thick without any lateral support. The continuous layer deposition allows to achieve a productivity more than 10X higher compared to the linear deposition, approaching a build volume of 1 liter/hour. T2 - 3rd Global Conference and Exhibition on Smart Additive Manufacturing, Design & Evaluation Smart MADE CY - Osaka, Japan DA - 10.04.2024 KW - Additive Manufacturing KW - Ceramic KW - Layerwise slurry deposition KW - LSD-print KW - Slurry KW - Binder jetting PY - 2024 AN - OPUS4-60055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas T1 - Concrete under cyclic loading a continuum damage model and a temporal multiscale approach N2 - The durability of concrete structures and its performance over the lifetime is strongly influenced by many interacting phenomena such as e.g. mechanical degradation due to fatigue loading, loss of prestress, degradation due to chemical reactions or creep and shrinkage. Failure due to cyclic loading is generally not instantaneous, but characterized by a steady damage accumulation. Many constitutive models for concrete are currently available, which are applicable for specific loading regimes, different time scales and different resolution scales. A key limitation is that the models often do not address issues related to fatigue on a structural level. Very few models can be found in the literature that reproduce deterioration of concrete under repeated loading-unloading cycles. The objective of this paper is the presentation of numerical methods for the simulation of concrete under fatigue loading using a temporal multiscale method. First, a continuum damage model for concrete is developed with a focus on fatigue under compressive stresses. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. Second, a multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach. This evolution equation is then solved on the long time scale using different time integration schemes. T2 - 6th European Conference on Computational Mechanics (ECCM 6) CY - Glasgow, UK DA - 11.06.2018 KW - Cycle jump KW - Fatigue damage KW - Concrete PY - 2018 AN - OPUS4-45696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Composite materials - focus polymer matrix composites (PMC) N2 - Lecture about polymer matrix composites as part of the first trainings event GW4SHM, properties, production, basic theory, testing. T2 - 1. Training GW4SHM-Project CY - BAM, Berlin, Germany DA - 23.11.2020 KW - Polymer matrix composites KW - Composite testing KW - NDT PY - 2020 AN - OPUS4-51868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Components in CO2-stream, corrosive to Materials to be Used in CC(U)S Applications N2 - CO2 quality specifications are not only a matter of CO2 purity (i.e. CO2 content). The “rest” also matters, in particular contents of reactive impurities affecting material corrosion (and rock alteration). Also chemical reactions in CO2 stream needs to be considered, in particular when combining CO2 streams of different compositions. T2 - WCO Forum at AMPP Annual International Corrosion Conference 2021 CY - Online Meeting DA - 26.04.2021 KW - Carbon capture storage KW - Corrosion PY - 2021 AN - OPUS4-52502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Rabe, Torsten T1 - Comparative study of suitable preparation methods to evaluate irregular shaped, polydisperse nanoparticles by scanning electron microscopy (SEM). N2 - Reliable characterization of materials at the nanoscale regarding their physio-chemical properties is a challenging task, which is important when utilizing and designing nanoscale materials. Nanoscale materials pose a potential toxicological hazard to the environment and the human body. For this reason, the European Commission amended the REACH Regulation in 2018 to govern the classification of nanomaterials, relying on number-based distribution of the particle size. Suitable methods exist for the granulometric characterization of monodisperse and ideally shaped nanoparticles. However, the evaluation of commercially available nanoscale powders is problematic. These powders tend to agglomerate, show a wide particle size distribution and are of irregular particle shape. Zinc oxide, aluminum oxide and cerium oxide with particle sizes less than 100 nm were selected for the studies and different preparation methods were used comparatively. First, the nanoparticles were dispersed in different dispersants and prepared on TEM-supported copper grids. Furthermore, individual powders were deposited on carbon-based self-adhesive pads. In addition, the samples were embedded by hot mounting and then ground and polished. The prepared samples were investigated by scanning electron microscopy (including the transmission mode STEM-in-SEM) and Dynamic Light scattering. The software package ImageJ was used to segment the SEM images and obtain the particle sizes and shapes and finally the number-based particles size distribution with size expressed as various descriptors. T2 - Ceramics 2021 CY - Online meeting DA - 19.04.2021 KW - Nanoparticles KW - Preparation KW - Characterization PY - 2021 AN - OPUS4-53272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Koppert, Ralf A1 - Rabe, Torsten T1 - Commercial LTCC for thin film deposition N2 - Low-temperature co-fired ceramics (LTCC) are used to fabricate multilayer circuits which are robust in harsh environments. Thick-film technology is well established for the metallization of circuit boards and microsystems. For specific sensor applications, the combination of LTCC and thin-film technology is advantageous to reach higher structure resolutions. Due to the high roughness of as-fired LTCC surfaces compared with silicon-wafers, the deposition of low-defect- films with narrowly specified properties is challenging. There is spare literature about thin films on commercial LTCC comparing different material systems or sintering techniques. For developing thin film sensors on multilayer circuits it is crucial to identify thin-film-compatible commercial LTCC material as well as the crucial surface properties. In this work we evaluate the thin-film capability of different LTCC surfaces. The as-fired surfaces of free-sintered, constrained-sintered (sacrificial tape), and pressure-assisted sintered commercial LTCCs (DP951, CT708, CT800), as well as respective polished surfaces, were analyzed by tactile and optical roughness measurements and scanning electron microscopy. The thin-film capability of the LTCC surfaces was assessed by sheet resistance and temperature coefficient of resistance (TCR) of deposited Ni thin-film layers. Contrary to the expectations, no correlation between roughness and thin-film capability was found. Ni thin films on constrained sintered DP951 show the lowest sheet resistance and highest TCR within the experimental framework of the as-fired surfaces. The influence of surface morphology on the film properties is discussed. T2 - KERAMIK 2022 / 97. DKG-Jahrestagung CY - Online meeting DA - 7.3.2022 KW - Roughness KW - Hydrogen sensor KW - LTCC PY - 2022 AN - OPUS4-54436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Yesilcicek, Yasemin A1 - Demir, E. A1 - Haas, S. A1 - Glatzel, U. T1 - Combining trace elements for microstructural optimization in the Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy N2 - Trace elements W and Hf have different influence on the microstructure and the mechanical properties when added to the Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy. The addition of both can thus merge both element’s beneficial influences when combined with the appropriate heat treatment: Hf enhances the cubicity of the γ’ particles in the γ matrix while the W reduces the negative influence of the Heusler phase: this phase can be completely dissolved when W is present in the alloy. T2 - ICHEM 2020 CY - Berlin, Germany DA - 27.09.2020 KW - High entropy alloys KW - Transmission electron microscopy KW - Lattice misfit KW - X-ray diffraction KW - Scanning electron microscopy PY - 2020 AN - OPUS4-51370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütter, H. A1 - Le, Quynh Hoa A1 - Knauer, S. A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Combining CO2 streams from different emitters ‐ a challenge for pipeline transportation N2 - Depending on the CO2 generating and the capture process as well as on consecutive purification steps applied, CO2 streams from different emitters may differ in their composition. When CO2 streams with different compositions are fed into a larger pipeline network, there are several aspects that must be considered: i) chemical reactions, such as acid formation, may occur within the joint CO2 stream; ii) there may be a variation of mass flow rate and CO2 stream composition within the pipeline network if the feed-in behavior of different CO2 sources changes with time. Potential impacts of changing CO2 stream compositions and mass flow rates in CCS cluster systems were investigated in the collaborative project "CLUSTER" (see also www.bgr.bund.de/CLUSTER). In this presentation, we focus on the experimental investigations of formation and condensation of strong acids and their impacts on the corrosion of pipeline steels. When SO2, NO2, O2 and H2O are present simultaneously in CO2 streams chemical cross-reactions may occur leading to the formation of strong acids such as sulfuric and nitric acid. To prevent this acid formation the concentration of at least one of these four impurities must be kept very low (e.g., Rütters et al., 2016). At temperatures below the acid dew point temperature, acids will condense, e.g., on pipeline steel surfaces. In turn, these acid condensates may trigger steel corrosion. To better understand the process of acid formation and condensation and its implications for steel corrosion, exposure tests were performed on pipeline steel X70 in dense CO2 with varying SO2, NO2 and O2 concentration under high pressure and at 278 K in an observable autoclave, in which water was added as droplets or as vapor. Further, electrochemical tests were carried out with X70 specimens immersed in 500 mL CO2-saturated synthetic condensate solution or in droplets of the same solution on the specimen’s surface. Depending on impurity concentrations in the CO2 streams, condensates consisting of different relative amounts of nitric and sulfuric acid were formed. In condensates containing both nitric and sulfuric acid, corrosion rates were higher than the sum of those of the individual acids. In addition, corrosion products and forms depended on the condensate composition. Investigations of water droplets on steel surfaces in impurity-containing dense-phase CO2 revealed the diffusion of SO2 and NO2, followed by cross-reactions forming corresponding acids. An increase in droplet size (from 1 to 5 µl) lead to higher corrosion rates. However, in comparison to measurements in bulk solution, corrosion reactions in droplets resulted in thick, high-resistance corrosion products and observed droplet corrosion rates were significantly lower. In addition, the possibility of acid droplet formation and growth in impure liquid CO2 is influenced by the wetting behavior of the acid droplet on the steel surface. Thus, the contact angle between a water droplet and the surface steel specimens in a CO2 atmosphere was investigated in a high pressure view cell following the sessile drop method. The contact angle wasand found to be larger at higher CO2 pressures (studied from 5 to 20 MPa) and at higher temperatures (e.g. 278 K to 333 K). Further, measured contact angles were larger on rough than on smooth metal surfaces. In addition, acid formation reduced the contact angle, i.e. lead to better wetting, thereby stimulating condensation that was followed by a corrosion process. These detailed insights on the complex interplay of acid formation, condensation, wetting behavior and corrosion allow a better assessment of material suitability for pipeline transportation of impure CO2 streams T2 - TCCS-10 The 10th Trondheim Conference on Carbon Capture, Transport and Storage CY - Trondheim, Norway DA - 17.06.2019 KW - arbon capture KW - utilization, and storage (CCUS) technology KW - corrosion KW - condensate KW - electrochemical characterization KW - pitting corrosion KW - impurities KW - carbon steel PY - 2019 UR - https://www.sintef.no/globalassets/project/tccs-10/dokumenter/tccs10---book-of-abstracts.pdf AN - OPUS4-48369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Schubert, Hendrik A1 - Günster, Jens T1 - Combination of layerwise slurry deposition and binder jetting (lsd-print) for the additive manufacturing of advanced ceramic materials N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. Powder bed fusion and binder jetting especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the “layerwise slurry deposition” (LSD) has been developed as a layer deposition method which enables the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder layer. This offers high flexibility in the ceramic feedstock used, especially concerning material and particle size. The LSD technology can be combined with binder jetting to develop the so-called “LSDprint” process for the additive manufacturing of ceramics. The LSDprint technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. In this presentation, the LSD process will be introduced and several examples of application ranging from silicate to high-performance ceramics will be shown. Recent developments towards the scale-up and industrialization of this process will be discussed, alongside future perspectives for the multi-material additive manufacturing. T2 - Shaping 8 CY - Dübendorf, Switzerland DA - 14.09.2022 KW - Additive Manufacturing KW - 3D printing KW - Ceramics PY - 2022 AN - OPUS4-56523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Knauer, S. A1 - Yevtushenko, O. T1 - CO2-stream impurities and their effects on corrosion susceptibility of materials to be used in CCUS systems N2 - Carbon Capture Utilization and Storage (CCUS) is a promising technology to reach the target for reduction of CO2 emissions. Crucial points for a sustainable and future-proof CCUS system are reliability and cost efficiency of the whole process chain, including separation of CO2 from the source, compression of CO2, its subsequent transportation to the injection site and injection into geological formations, e.g. aquifers. Recent studies have shown that even at a very low concentration of impurities, condensation of sulfuric and nitric acids in dense phase CO2 are possible and observable. Thus, impact of impure CO2 stream toward corrosion susceptibility of materials to be used in CCUS system need to be considered. In this talk, basing on results achieved from two German long-term projects (COORAL and CLUSTER), the dominating impurities of the CO2 stream and corrosion mechanisms are addressed. Investigations cover the whole CCUS process chain and provide a material recommendation for certain parts. T2 - Corrosion in Low-Carbon Energies - IFPEN-Lyon CY - Online meeting DA - 03.11.2020 KW - Corrosion KW - CCUS KW - Carbon dioxide PY - 2020 AN - OPUS4-51509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza T1 - Co-segregation phenomena and stability issues in high-entropy alloys using density-based phase-field modelling N2 - Several recent studies have revealed that the phase decomposition in medium- and high-entropy alloys is triggered by solute segregation at grain boundaries. The chemically complex nature of these alloys already clues that such segregation in materials should be something more than the interaction between solutes and grain boundary, but also affected by the solute-solute interactions during the segregation. In fact, experiments indicate the significance of such solute-solute interaction. Yet, the mechanisms of co-segregation in multi-component alloys are rather challenging to explore and rarely studied quantitatively. Recently, a CALPHAD-integrated density-based phase-field model has been proposed for studying grain boundary phenomena. Several applications of this model have shown its expansive capacity for investigating grain boundary segregation and phase behavior. In this talk, the applications of this model to studying co-segregation phenomena and grain boundary phase diagrams in multi-component alloys are presented ––the term ‘co-segregation’ here refers to co-evolution and any mutual interplay among the solutes and grain boundary during the segregation. In particular, the iron-based ternary and quaternary alloys are discussed. I show how a grain boundary may have its own miscibility gap and how this immiscibility can influence the co-segregation behavior. As an alternative to grain boundary phase diagrams, rather suited for binary and ternary alloys, a new concept of co-segregation maps for screening and segregation design in multi-component alloys is presented. Applying the co-segregation maps, the nonlinear Mn and Cr co-segregation in Fe-Co-Mn-Cr is discussed. T2 - 19th International Conference on Diffusion in Solids and Liquids (DSL-2023) CY - Crete, Greece DA - 26.06.2023 KW - CALPHAD KW - Co-segregation KW - Phase-field Simulation PY - 2023 AN - OPUS4-57965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Botsch, B A1 - Sonntag, U A1 - Bettge, Dirk A1 - Le, Quynh Hoa A1 - Schmies, Lennart A1 - Yarysh, Anna T1 - Classification of fracture surface types based on SEM images N2 - The following work deals with the quantitative fracture surface evaluation in damage analysis. So far, fracture surfaces have almost exclusively been evaluated qualitatively, i.e. the presence of fracture features is documented and their surface proportions are estimated, if necessary. Many years of experience are required, as well as an intensive comparison with defined comparative images from the literature. The aim of this work is the development of classifiers which can recognize fracture mechanisms or fracture features in scanning electron microscope images (SEM). The basis is 46 SEM images, which have been evaluated by fractography experts with regard to fracture features. The existing data set of images is expanded using augmentation methods in order to increase the variability of the data and counteract overfitting. Only convolutional neural networks (CNN) are used to create the classifiers. Various network configurations are tested, with the SegNet achieving the best results. T2 - Materialsweek 2021 CY - Online meeting DA - 07.09.2021 KW - Fractography KW - Fracture surface KW - Deep learning KW - SEM PY - 2021 AN - OPUS4-53418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sandoval Saldias, Janina A1 - Blank, Robin A1 - Stephan-Scherb, Christiane T1 - Chloridische Salzschmelzen als latente Wärmespeicher N2 - Latente Wärmspeicher auf der Basis von NaCl-KCl-MgCl2 Mischungen stellen eine kostengünstige Option für die Energiespeicherung von Prozesswärme dar. Der Beitrag gibt einen Überblick über die materialwissenschaftlichen Herausforderungen im System Salz-Legierung, welche gelöst werden müssen, um diese Speichertechnologie industriell zu etablieren. T2 - DMG Sektionstreffen Angewandte Mineralogie und Kristallographie CY - Online Meeting DA - 25.02.2021 KW - Wärmespeicher KW - Korrosion KW - Salzschmelzen PY - 2021 AN - OPUS4-52234 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Ta, N. A1 - Skrotzki, Birgit A1 - Darvishi Kamachali, Reza T1 - Chemo-mechanical coupling effect during precipitation in AlLiCu systems N2 - The influence of the chemo-mechanical coupling effect during precipitation in an AlLiCu alloy is presented and discussed. T2 - Plenary meeting DFG Priority program 1713 ("Chemomechanics") CY - Bochum, Germany DA - 19.11.2019 KW - Aluminium KW - Phase-field simulation KW - Chemo-mechanical coupling KW - Transmission electron microscopy PY - 2019 AN - OPUS4-49807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza A1 - Rockenhäuser, Christian A1 - Saxena, A. A1 - Skrotzki, Birgit A1 - Umer Bilal, M. A1 - Ramirez, Daniela Valencia A1 - Schwarze, C. A1 - Häusler, I. T1 - Chemo-mechanical Coupling Effect During Precipitation in AlLi and AlLiCu systems N2 - The chemo-mechanical coupling effect during precipitation in AlLi and AlLiCu systems is presented and effects of chemo-mechanical coupling on materials with different microstructures is discussed. The results of the simulations are then compared to electron-microscopical investigations. T2 - Plenary meeting DFG Priority program 1713 ("Chemomechanics") CY - Bochum, Germany DA - 17.12.2018 KW - Al-Li alloys KW - Phase field simulation KW - Precipitation KW - Inverse ostwald ripening KW - Transmission electron microscopy PY - 2018 AN - OPUS4-46961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Höhne, Patrick A1 - Lindemann, Franziska A1 - Koppert, Ralf A1 - Mieller, Björn T1 - Chemical resistance of commercial LTCC against thin film etching media N2 - Low-temperature co-fired ceramics (LTCC) are used to fabricate robust multilayer circuits. Typically, thick-film technology is applied for metallization. For specific sensor applications, thin films are deposited directly on the as-fired LTCC-surface. These deposited thin films are structured either by lift-off or by etching. The latter is less error-prone and thus preferred in industry provided the selected materials allow it. 200 nm Ni-thin films were deposited on three different commercial constrained-sintered LTCC (CT708, CT800 and DP951) by electron beam physical vapour deposition. The thin-films were structured by covering corresponding sections with a UV-curable photo resisn and subsequent etching of the uncovered surface, leaving behind the desired structure. The etched Ni-thin film showed high difference in failure rate and sheet resistance regarding the used LTCC-material. DP951 had the lowest sheet resistance and no failure, whereas the CT800 had a failure rate of 40 %. The LTCC with high failure rate showed a strong chemical attack by the used etching medium. To address this phenomenon, the chemical resistance of the three different commercial LTCC (CT708, CT800 and DP951) against four different commonly used etching media (sulphuric acid, phosphoric acid, aqua regia, and hydrofluoric acid) is investigated. The dissolved ions are analyzed by ICP-OES to correlate the LTCC-composition and its chemical resistance. T2 - KERAMIK 2023 / 98. DKG-Jahrestagung CY - Jena, Germany DA - 27.03.2023 KW - Glass-ceramics KW - Hydrogen sensors KW - Acids PY - 2023 AN - OPUS4-57273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grun, Benthe Birger A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit A1 - Avila, Luis A1 - Charmi, Amir T1 - Charakterisierung von Hochtemperaturwerkstoffen durch Zug- und Ermüdungsversuche an Kleinproben N2 - Die Verwendung von miniaturisierten Probengeometrien in der mechanischen Prüfung ermöglicht die Entnahme des Probenmaterials direkt aus kritischen Bereichen wie Fügeverbindungen und ermöglicht die Prüfung von kleinen Bauteilen wie additiv gefertigten Strukturen. In der vorliegenden Arbeit werden exemplarisch die Ergebnisse von vergleichenden Zug- und niederzyklischen Schwingversuchen (LCF) an dem austenitischen Stahl AISI 316L und der Nickelbasislegierung IN718 vorgestellt. Die Prüfergebnisse der Kleinproben aus AISI 316L weisen die charakteristischen Eigenschaften des Werkstoffs auf, und die Analyse der Zug- und Ermüdungsdaten führt zu Werten, die den Literaturdaten weitgehend entsprechen. Der direkte Vergleich mit Standardprobendaten zeigt jedoch systematische Abweichungen bei Zugfestigkeit, Dehngrenze und Gleichmaßdehnung, die in diesem Beitrag diskutiert werden. T2 - Werkstoffprüfung 2019 CY - Neu-Ulm, Germany DA - 03.12.2019 KW - Kleinprobenprüfung KW - Probengrößeneffekt KW - Low Cycle Fatigue KW - Zugversuch KW - AISI 316L KW - IN 718 PY - 2019 AN - OPUS4-50221 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Alig, I. A1 - Oehler, H. A1 - Brauch, Niels A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Charakterisierung von Behälterwerkstoffen aus Polyethylen N2 - Das langsame Risswachstum (slow crack growth, SCG) sowie der umgebungsbedingte Spannungsriss (environmental stress cracking, ESC) sind relevante Schädigungsmechanismen für teilkristalline Werkstoffe auf Basis von Polyethylen hoher Dichte (PE-HD). Der Vortrag gibt einerseits einen Überblick über die grundlegenden Struktur-Eigenschafts-Beziehungen in diesem Kontext, andererseits werden auch verschiedene praxisorientierte Prüfverfahren vorgestellt. Letztere wurden in gemeinsamen Forschungsprojekten von BAM und LBF mit dem Schwerpunkt Gefahrgutbehälter bzw. Pflanzenschutzmittel vergleichend untersucht und durch weitergehende Analytik ergänzt. T2 - 16. Tagung des Arbeitskreises Polymeranalytik Webkonferenz, Fraunhofer LBF und FGK CY - Online meeting DA - 22.03.2022 KW - Polyethylen KW - Full Notch Creep Test KW - Environmental Stress Cracking KW - Spannungsriss PY - 2022 AN - OPUS4-54547 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella T1 - Charakterisierung metallischer Werkstoffe für Anwendungen bei hohen Temperaturen N2 - In diesem Beitrag werden am Beispiel von Gasturbinen Verfahren zur Charakterisierung des werkstoff-mechanischen Verhaltens sowie der Gefügeentwicklung von Bauteilen für Anwendungen bei hohen Temperaturen aufgezeigt. Gasturbinen sind technisch gesehen sehr interessante Systeme, die in der Energietechnik und in der Luftfahrt von hoher wirtschaftlicher Relevanz sind. Seit Jahrzehnten gelten Gasturbinen als klassische Innovationstreiber, für ihre Entwicklung wurden bereits maßgebliche Erneuerungen im Bereich der Aerodynamik und der Werkstofftechnik hervorgebracht. T2 - Deutsche Physikalische Gesellschaft Senior Expert Netzwerk CY - Online meeting DA - 20.01.2021 KW - Superlegierungen KW - Gasturbinen PY - 2020 AN - OPUS4-52045 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kalinka, Gerhard A1 - Loose, Florian T1 - Carbon fibre composites exemplarily research at BAM N2 - Lightweighting as a cross-cutting technology contributes significantly to achieve the European Green Deal goals. Based on, but not limited to, advanced materials and production technologies, the demand for natural resources and CO2 emmissions are reduced by lightweighting during production, as well as use phase. Therefore, lightweighting is a crucial transformation technology assisting in decoupling economic growth from resource consumption. In this manner, lightweighting contributes significantly as a key technology of relevance for many industrial sectors such as energy, mobility, and infrastructure, towards resource efficiency, climate action and economic strength, as well as a resilient Europe. To strengthen international partnerships, addressing global issues of today at the edge of science with high performance lightweight material based on carbon fibers, an overview about the BAM expertise in carbon fiber reinforced materials is given. T2 - Meeting KCarbon CY - Berlin, Germany DA - 15.06.2023 KW - Lightweighting KW - Carbon Fibers KW - Recycling KW - Push-out Test KW - multi scale testing PY - 2023 AN - OPUS4-58094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza A1 - Wang, Lei A1 - Lin, L. L. A1 - Manzoni, Anna Maria A1 - Skrotzki, Birgit A1 - Thompson, G. B. T1 - CALPHAD-informed density-based grain boundary thermodynamics N2 - The Gibbs free energy of a grain boundary is a complex thermodynamic function of temperature, pressure, and composition. These complexities add to the intrinsic crystallographic and chemical constraints imposed by the adjacent bulk phase. Recently we have proposed a density-based model for assessing grain boundary thermodynamics that enables a CALPHAD-informed description of the grain boundary. As such, the Gibbs free energy of the grain boundary is directly linked with available CALPHAD thermodynamic data. In this talk, new aspects of interfacial segregation and phase transformation are revealed by benchmarking the current model for various experimental cases, including several steels, high-entropy alloys and aluminum alloys. The effects of elastic interactions on the grain boundary segregation and the application of the model to a nanocrystalline Pt-Au alloy, with numerous grain boundaries of various characters, will be discussed. T2 - DPG (Deutsche Physiker Gesellschaft) CY - Online meeting DA - 27.09.2021 KW - Density-based model KW - Defects thermodynamics KW - Defects phase diagram KW - CALPHAD KW - Crystal Defects PY - 2021 AN - OPUS4-53556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza T1 - CALPHAD integrated density-based phase diagrams and opening possibilities for grain boundary engineering N2 - Engineering grain boundaries demands a quantitative description of both their segregation and specific phase behavior. Recently I have proposed a density-based model for grain boundary thermodynamics that enables CALPHAD integrated derivation of grain boundary phase diagrams, broadly applied now in studying various alloys. Combining this model with experimental investigations, in this talk, new aspects of interfacial segregation and phase transformation revealed in polycrystalline alloys are discussed. The effect of elastic interaction on grain boundary phase behavior is incorporated. We consider Al alloys and novel high-entropy alloys and discuss a general strategy for grain boundary engineering. T2 - 18th Discussion Meeting on Thermodynamics of Alloys (TOFA) CY - Krakow, Poland DA - 12.09.2022 KW - CALPHAD KW - Microstructure Design KW - Materials Modelling PY - 2022 AN - OPUS4-56044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Tokarski, T. T1 - CALM down: Identifying unknown phases N2 - CALM is software for determining the Bravais lattice type and the resulting lattice parameters from a single Kikuchi pattern. It requires the definition of 4 bands and a single bandwidth from which all other band positions as well as bandwidths are derived. For band detection, it uses the Funk transform, which allows detection of twice as many bands as usual. CALM works for any symmetry and requires low-noise patterns of at least 320x240 pixels. The resulting errors are <2% even for such small patterns, assuming good quality. The relative errors are <0.5%. However, this requires a projection centre position best derived from a sample of a cubic phase in CALM. However, this must have been recorded under identical conditions. Hundreds of Kikuchi patterns of phases with different symmetries were examined. T2 - Chemnitz MTEX Workshop 2021 CY - Online meeting DA - 08.03.2021 KW - EBSD KW - Gitterkonstanten KW - Phasenidentifikation PY - 2021 AN - OPUS4-52345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kremberg, Jan T1 - Betriebsfestigkeit von Struktur-Klebungen im Anwendungsgebiet der CS22 N2 - Moderne Segelflugzeuge sind voll-verklebte tragende FKV-Strukturen. Über die Schwingfestigkeit der Faser-Kunststoff-Verbunde (FKV) und die Lebensdauerabschätzung dieser Werkstoffklasse auf Basis verschiedener Lastspektren wurden insbesondere von Christoph Kensche verschiedenen Arbeiten durchgeführt und auch auf dem Symposium für Segelflugzeugentwicklung vorgestellt. Hingegen ist die Betriebsfestigkeit von Struktur-Klebungen im Anwendungsbereich der CS22 vergleichsweise wenig untersucht worden. Über die Jahre wurden in verschiedenen Projekten immer wieder Probleme in Struktur-Klebungen (u.a. Betriebsbelastungsversuche an Versuchs-Holmen) identifiziert, analysiert und spezielle Prüfverfahren weiter entwickelt (Projekt „Tragflügel neuer Technologie für die allgemeine Luftfahrt“, FK SIF765). Im Rahmen des LuFo-Vorhabens GeAviBoo (General Aviation Booster) wurde in zwei Arbeitspaketen das Thema erneut aufgegriffen und Betriebsbelastungsversuche an Klebproben durchgeführt. Im Rahmen des Vortrages werden die Erkenntnisse der letzten 10 Jahre aufbereitet und die neusten Ergebnisse vorgestellt. T2 - Symposium für Segelflugzeugentwicklung CY - Online meeting DA - 19.11.2020 KW - Polymer Matrix Composites KW - Betriebsfestigkeit KW - Klebung KW - General Aviation PY - 2020 AN - OPUS4-51861 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh T1 - Betriebsfestigkeit von Reparaturstellen an Rotorblättern von Windkraftanlagen N2 - Hochleistungsverbundwerkstoffe, bzw. Glasfaser-Kunststoff-Verbunde (GFK), haben sich als Leichtbauwerkstoffe für Leichtflugzeuge und Rotorblätter von Windkraftanlagen etabliert. Die hohe spezifische Festigkeit und Steifigkeit qualifizieren sie besonders für diese Anwendung. Während der Fertigung werden Imperfektionen häufig in die Blattschalen eingebracht. Durch Witterungseinflüsse kommt es zum Schadensfortschritt. Infolgedessen treten Schäden in der Blattschale, die den sicheren Betrieb gefährden können, weit vor der projektierten Lebensdauer von 20 Jahren auf. Da der Austausch von ganzen Blättern sehr kostintensiv ist, ist eine lokale Reparatur des geschädigten Bereichs zur Wiederherstellung der strukturellen Integrität, viel preisgünstiger. Die Reparatur von Rotorblättern ist in den letzten Jahren zu einem wichtigen Thema geworden. Derzeit werden verschiedenste Reparaturkonzepte angewendet. Eine einheitliche Reparaturvorgabe gibt es bisher nicht. Die Auswirkungen der angewendeten Reparaturkonzepte auf die Betriebsfestigkeit der Reparaturstelle sind weitestgehend unbekannt und sollen deshalb in diesem Projekt untersucht werden. Gekrümmte Voll-Laminat sowie Sandwich Prüfkörper werden mit dem Vacuum-Assisted-Resin-Infusion-Prozess (VARI) produziert. Um einen Teil einer Rotorblattschale darzustellen, sind sie als GFK aufgebaut, beziehungsweise die Sandwich Strukturen mit einem Polyvinylchlorid-Schaumkern (PVC) Kern, wie im Original. Schalenreparaturen in verschiedenen Layup-Techniken und Geometrie werden eingebracht und die Materialeigenschaften mit zyklischen Ermüdungstests untersucht. Im Projekt werden ideal im Labor erzeugte Reparaturstellen mit in der Praxis angewendeten Ausführungstechniken eines Industriepartners experimentell verglichen. Für die in-situ Detektion der Schadensentwicklung während des Ermüdungsversuches kommt ein kombiniertes Felddehnungs- und Thermografie-Kamerasystem zum Einsatz. Das mechanische Verhalten und die Schadensentwicklung in den verschiedenen reparierten Prüfkörper wird miteinander sowie mit den Referenzproben ohne Reparaturstellen verglichen. Zudem wird in numerischen Modellen für die verschiedenen Reparaturtechniken eine Spannungsanalyse durchgeführt um hinsichtlich der Betriebsbeanspruchung eine Bewertung angeben zu können. T2 - Kolloquium Luftfahrzeugbau und Leichtbau, TU Berlin CY - Berlin, Germany DA - 18.06.2018 KW - Sandwich KW - Faserverstärkte Kunstoffe KW - Betriebsfestigkeit PY - 2018 AN - OPUS4-46026 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Gesell, Stephan T1 - Betriebsfestigkeit von Composite-Wasserstoffspeichern – Ansatz zur Simulation der Auswirkung der erstmaligen Prüfung N2 - Druckbehälter werden vor ihrer Inbetriebnahme obligatorisch einer hydraulischen Prüfung bis zum sog. Prüfdruck belastet. Damit sollen fehlerhaft gefertigte Individuen erkannt und ausgesondert werden. Mit dieser Prüfung werden aber auch diejenigen Einzelbehälter ausgesondert, die ohne einem nachvollziehbaren Fertigungsfehler, nur auf Basis der statistischen Streuung ggf. eine Festigkeit unterhalb des Prüfdrucks aufweisen. Da der Prüfdruck im Fall der Wasserstoffspeicher mindestens 20% über dem maximal zulässigem Betriebsdruck liegt, wäre damit ein Versagen im Betrieb ausgenommen, gäbe es die verschiedenen Alterungs- bzw. Ermüdungseffekt nicht. Um den Einfluss der erstmaligen Prüfung auf eine angenommene ausfallfreie Zeit bewerten zu können, wird hier die Alterung und die erstmalige Prüfung in Kombination analysiert. Hierzu wird auf Basis der Restfestigkeitsdaten aus einer umfangreichen Prüfkampagne ein Ansatz für die Beschreibung der Alterung ermittelt und auf andere Lastzustände übertragen. So kann für das Baumuster, das der o.g. Prüfkampagne zugrunde lag, mithilfe einer Monte-Carlo-Simulation gezeigt werden, dass mindestens 10.000 LW vor einem ersten Alterungsversagen mit 1 aus 1 Mio. In Abhängigkeit der Anzahl der Individuen, die bei der erstmaligen Prüfung versagen, und der Streuung der gesamten Population, kann diese Mindestfestigkeit auf realistisch 50.000 Lastwechsel steigen. Damit ist gezeigt, dass aufgrund der erstmaligen Prüfung eine Mindestfestigkeit erzeugt wird, die stark vom Alterungsverhalten abhängt. Im Ergebnis heißt dies, dass in den Vorschriften aktuell die Bedeutung des Mindestberstdrucks in der Baumusterprüfung überschätzt und die möglichst betriebsbegleitende Erfassung der Alterung unterschätzt sind. T2 - 29. Tagung Technische Zuverlässigkeit- 2019 (02TA502019) CY - Nürtingen bei Stuttgart, Germany DA - 07.05.2019 KW - Mindedestberstdruck KW - Alterung KW - Betriebsfestigkeit KW - Restberstfestigkeit KW - Aussonderugnsrate PY - 2019 AN - OPUS4-48023 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lindemann, Franziska T1 - Bestimmung der spezifischen Oberfläche mittels Gasadsorption (BET-Verfahren) N2 - Im Rahmen des 2. BAM-Akademie Info-Tages "Nano or not Nano" wurde die OECD TG 124 "Volume Specific Surface Area of Manufactured Nanomaterials" vorgestellt. Der Vortrag beschreibt die Bestimmung der spezifischen Oberfläche von dispersen und/oder porösen Pulvern mittels Gasadsorption nach dem BET-Verfahren. Es wird auf die Anwendbarkeit der Methode eingegangen und es werden praktische Hinweise zur Probenvorbereitung und Messung von Nanomaterialien gegeben. T2 - BAM Akademie II: Info-Tage "Nano or not Nano" CY - Online meeting DA - 25.01.2024 KW - OECD TG 124 KW - Nanopulver KW - VSSA KW - Nano powder KW - BET KW - Spezifische Oberfläche PY - 2024 AN - OPUS4-59623 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Skelettdichte mittels Gaspyknometrie N2 - Im Rahmen des 2. BAM-Akademie Info-Tages "Nano or not Nano" wurde die OECD TG 124 "Volume Specific Surface Area of Manufactured Nanomaterials" vorgestellt. Der Vortrag beschreibt detailliert das Messverfahren der He-Gaspyknometrie zur Bestimmung der Skelettdichte von Pulvern und geht auf Anwendbarkeit, Besonderheiten bei Nanopulvern und wichtige Einstellparameter für die Messung ein. T2 - BAM Akademie II: Info-Tage "Nano or not Nano" CY - Online meeting DA - 25.01.2024 KW - Pycnometry KW - Density KW - Nano powder PY - 2024 AN - OPUS4-59561 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößenverteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip des Zentrifugen-Sedimentationsverfahrens erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Es schließen sich umfangreiche Ausführungen zur praktischen Durchführung der Messung, insbesondere auch zu den vorbereitenden Arbeiten, sowie zur Auswertung der Rohdaten an. Nach einem Vergleich der Ergebnisse mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 14.04.2018 KW - Partikelgrößenverteilung KW - Analytische Zentrifuge PY - 2018 AN - OPUS4-45098 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößenverteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip des Zentrifugen-Sedimentationsverfahrens erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Es schließen sich umfangreiche Ausführungen zur praktischen Durchführung der Messung, insbesondere auch zu den vorbereitenden Arbeiten, sowie zur Auswertung der Rohdaten an. Nach einem Vergleich der Ergebnisse mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 03.06.2019 KW - Nanomaterial KW - Partikelgrößenverteilung KW - Analytische Zentrifuge PY - 2019 AN - OPUS4-48286 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößenverteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip des Zentrifugen-Sedimentationsverfahrens erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Es schließen sich umfangreiche Ausführungen zur praktischen Durchführung der Messung, insbesondere auch zu den vorbereitenden Arbeiten, sowie zur Auswertung der Rohdaten an. Gezeigt werden die Validierung sowie ein Beispiel zur regelmäßigen Verifizierung des Verfahrens. Nach Beispielen und Vergleichen zu Ergebnissen mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Seminar Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 09.05.2022 KW - Nano powder KW - Cetrifugal Liquid Sedimentation CLS KW - Particle size determination PY - 2022 AN - OPUS4-54863 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößen-verteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip einer Photozentrifuge erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Die praktische Durchführung der Messung und insbesondere auch die vorbereitenden Arbeiten, sowie die Auswertung der Rohdaten bilden den Schwerpunkt des Vortrags. Gezeigt werden auch die Validierung sowie ein Beispiel zur regelmäßigen Verifizierung des Verfahrens. Nach Anwendungsbeispielen und Vergleichen zu Ergebnissen mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Seminar Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 08.05.2023 KW - CLS KW - Particle size KW - Nano PY - 2023 AN - OPUS4-57679 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Bestimmung der elektrischen Durchschlagfestigkeit keramischer Werkstoffe - Einfluss von Messverfahren und -umgebung N2 - Als elektrische Durchschlagfestigkeit bezeichnet man die elektrische Feldstärke, bei der es zur Entladung durch ein isolierendes Medium kommt. Im Falle von Festkörpern ist dies ein zerstörender Prozess. Bei der messtechnischen Bestimmung der Durchschlagfestigkeit haben neben den verwendeten Messgeräten auch die eingesetzten Elektroden, die Form des Prüfkörpers und das Isoliermedium, in dem die Prüfung stattfindet, einen signifikanten Einfluss auf die ermittelten Messwerte. Im Vortrag werden die Einflüsse erläutert und anhand von Messreihen aus der Literatur und der eigenen Forschung quantifiziert. Aufgrund der vorgestellten Effekte wird klar, dass es sich bei elektrischer Durchschlagfestigkeit nicht um absolute Materialkennwerte handelt, sondern vielmehr um systemabhängige Größen. T2 - 7. Sitzung des Fachausschusses 6 - Material- und Prozessdiagnostik der Deutschen Keramischen Gesellschaft (DKG) CY - Online meeting DA - 16.02.2023 KW - Keramik KW - Hochspannungsprüfung KW - Durchschlagfestigkeit PY - 2023 AN - OPUS4-57015 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Beschreibung des Ermüdungsverhaltens von Endlos-Faserverstärkten-Kunststoff-Verbunden mit Hilfe mikromechanischer Modelle N2 - Im Rahmen des Vortrags werden die neusten Ergebnisse aus dem Fachbereich 5.3 zur Beschreibung des Ermüdungsverhaltens von FKV mittels Mikromechanischer-Modelle präsentiert. Explizit wird der theoretische Ansatz am Beispiel von GFK unter thermomechanischer Beanspruchung hergeleitet und an Hand von Versuchsergebnissen verifiziert. T2 - Webkonferenz Composites United, Composite Fatigue CY - Online meeting DA - 30.09.2021 KW - Faser-Kunststoff-Verbunde KW - thermomechanische Beanspruchung KW - Materialmodell PY - 2021 AN - OPUS4-54151 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Applied Crystallography as a tool for a better understanding of Fundamental Questions of high temperature corrosion phenomena N2 - Corrosion Science Meets X-Rays, Neutrons and Electrons. The presentation gives an overview on current research activities applying in-situ X-ray diffraction and spectroscopy for a better understanding of fundamental mechanisms of high temperature corrosion. Additionally the knowledge gain by applying neutron powder diffraction and EBSD analysis is presented. T2 - Joint meeting of german and polish crystallographic association 2020 CY - Wroclaw, Poland DA - 24.02.2020 KW - Corrosion KW - Oxidation KW - In situ KW - Diffraction PY - 2020 AN - OPUS4-50483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Elfetni, Seif A1 - Darvishi Kamachali, Reza T1 - Application of deep learning to multi-phase-field modelling and simulation N2 - Recent advances in Deep Learning (DL) have significantly impacted the field of materials modelling. DL tools have been recently considered as promising tools to address the complex relationships among processing, microstructure and property of materials. The thermal stability of polycrystalline materials is a highly interesting and complex problem that could be addressed using DL techniques. The Multi-Phase-Field (MPF) method has emerged as a powerful tool for addressing grain growth phenomena from multiple perspectives. Unlike sharp-interface based methods, the MPF approach bypasses the need for detailed information on individual grains. In this work, we use DL to address issues related to MPF simulations of grain growth including numerical efficiency, computing speed, and resource consumption. This presents specific challenges for high-performance computing (HPC) due to the large datasets and complex computations required by both MPF and DL methods. We study various 3D microstructure settings with the goal of accelerating the simulation process while exploring different physical effects. In particular, the impact of grain boundary and triple junction energies on grain growth are to be investigated. The results will be presented in terms of the evolving size and shape distribution of the grains. T2 - Euromat 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Phase-Field Simulation KW - Microstructure Evolution KW - Physics-informed Neural Network KW - Machine Learning PY - 2023 AN - OPUS4-58225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Ansätze zur digitalen Wissensrepräsentation aus der Plattform MaterialDigital (PMD) N2 - Die Digitalisierung von Materialien und Prozessen stellt eine große Herausforderung dar, die nur durch eine Bündelung der Bemühungen aller Beteiligten in diesem Bereich erreicht werden kann. Bei einer derartigen digitalen Beschreibung spielen Datenanalysemethoden, eine Qualitätssicherung von Prozessen inklusive Input- und Output-Daten sowie die Interoperabilität zwischen Anwendungen nach den FAIR-Prinzipien eine wichtige Rolle. Dies umfasst das Speichern, Verarbeiten und Abfragen von Daten in einer vorzugsweise standardisierten Form (Beteiligung von Normungsgremien). Zur Bewältigung dieser Herausforderung ist eine mit allen Stakeholdern konsistente Kontextualisierung der Materialdaten anzustreben, d.h. alle erforderlichen Informationen über den Zustand des Materials einschließlich produktions- und anwendungsbezogener Änderungen müssen über eine einheitliche, maschinenlesbare Beschreibung verfügbar gemacht werden. Dazu werden Wissensrepräsentationen und Konzeptualisierungen ermöglichende Ontologien verwendet. Eine zentrale Betrachtungsweise in diesem Zusammenhang ist die Realisierung von (automatisierten) Datenpipelines, die eine Beschreibung und Verfolgung von Daten ausgehend von ihrer Erzeugung, bspw. in einem Messgerät, bis zu ihrer globalen Verwendung in möglicherweise verschiedenen Kontexten beinhalten. Erste Bemühungen und Ansätze zu diesen Problemstellungen führten im Projekt Innovations-Plattform Material Digital (PMD, materialdigital.de) zur Erstellung von Anwendungsontologien, die Prozesse und Testmethoden explizit beschreiben. Dabei wurde u.a. der Zugversuch an Metallen bei Raumtemperatur nach ISO 6892-1 ontologisch beschrieben. Diese als Beispiel dienende Ontologieentwicklung wird in dieser Präsentation vorgestellt. Weiterhin wurde, ausgehend von der domänenspezifischen Entwicklung von Anwendungsontologien, eine Kernontologie erstellt, die eine übergeordnete Verbindung von ontologischen Konzepten aufgrund der Verwendung gleichen Vokabulars und semantischer Verknüpfungen erlaubt. Diese sowie die das PMD-Projekt selbst werden ebenfalls in dieser Präsentation vorgestellt. T2 - DVM Workshop: Grundlagen und Beispiele zur Digitalisierung für die Materialforschung und -prüfung CY - Online meeting DA - 19.10.2021 KW - Plattform Material Digital (PMD) KW - Ontologie KW - Zugversuch KW - Wissensrepräsentation KW - Semantic Web PY - 2021 AN - OPUS4-53565 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehmann, N. A1 - Lenting, C. A1 - Stawski, T. M. A1 - Agudo Jacome, Leonardo T1 - Anhydrite formation in planetary surface environments - The case of the Atacama Desert N2 - Gypsum (CaSO4∙2H2O), bassanite (CaSO4∙0.5H2O), and anhydrite (CaSO4) are essential evaporite minerals for the evolution of hyper-arid surface environments on Earth and Mars (Voigt et al. 2019; Vaniman et al. 2018). The formation mechanism of especially anhydrite has been a matter of scientific debate for more than a century (van’t Hoff et al. 1903). To date, there exists no model that can reliably predict anhydrite formation at earth’s surface conditions. While thermodynamics favor its formation, it is hardly achieved on laboratory time scales at conditions fitting either the Atacama Desert on Earth, or the surface of Mars (Wehmann et al. 2023). In light of most recent developments (e.g. Stawski et al. 2016), that advocate for a complex, non-classical nucleation mechanism for all calcium sulphates, we present an analysis of natural samples from the Atacama Desert to identify key features that promote the nucleation and growth of anhydrite under planetary surface conditions. Our analyses reveal at least three distinct anhydrite facies, with differing mineralogy and micro- to nano-structures. The facies are (1) aeolian deposits with sub-μm grain sizes, (2) (sub-)surface nodules that formed from aeolian deposits and (3) selenites with secondary anhydrite rims. Possible mechanisms of their formation will be discussed. T2 - 10th Granada-Münster Discussion Meeting CY - Münster, Germany DA - 29.11.2023 KW - Calcium sulfates KW - Nucleation KW - Planetary surface KW - Hyper-arid PY - 2023 AN - OPUS4-59111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Analytik von Mikroplastik mittels TED-GC-MS N2 - Der Vortrag stellt spektroskopische und neue thermoanalytische Verfahren zum Nachweis von Mikroplastik dar. Ein spezieller Focus ist auf der Anwendung edr Verfahren für terrestrische Proben. T2 - Fachgespräch Feststoffuntersuchungen 2018 CY - Essen Werden, Germany DA - 05.03.2018 KW - Mikroplastik KW - Analytik KW - GC-MS KW - Thermische Analyse PY - 2018 AN - OPUS4-44525 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Analysis of the fatigue strength of various repair concepts for wind turbine rotor blades N2 - High-performance composites, including glass-fiber reinforced plastic (GFRP) materials, are favored as a construction material for wind turbine rotor blades due to their high specific strength and stiffness properties. During the manufacturing process, however, imperfections are often introduced, then further propagated due to harsh environmental conditions and a variety of loads. This leads to failure significantly before their projected 20-year lifespan. As replacement of entire blades can be a costly potential outcome, localized repair of the damaged region to restore structural integrity and thus lengthen its lifespan has become an important issue in recent years. Rotor blades are often repaired using a common technique for composite laminates: adhesively bonded structural repair patches. These methods involve replacing the lost load path with a new material that is joined to the parent structure, and include scarf or plug repairs. However, there currently do not exist any standardized repair procedures for wind turbine rotor blades, as comparisons of blade properties repaired with the existing methods have not been studied in depth. Namely, there is a lack of understanding about the effects of various repair methods on the fatigue life of the shells of rotor blades. This study therefore aims to begin to fill this knowledge gap by testing the influence of different repair patches on the blades’ mechanical properties. Manufactured with the vacuum-assisted resin infusion process, the test specimens are produced as a curved structure with GFRP sandwiching a polyvinyl chloride foam core to best represent a portion of a rotor blade shell. Scarf repairs are then introduced with varying layup techniques, and material properties are examined with cyclical fatigue tests. Crack growth and development is monitored during fatigue testing by various non-destructive testing methods, including passive thermography with an infrared camera system, and a 3D deformation analysis system with ARAMIS. Large deformation fields and detection of in- and out-of-plane deformations is thus possible in-situ. The mechanical behavior and development of defects in the various repaired specimens is compared to each other as well as to reference test specimens with no repair patches. In-situ test data is combined with further non-destructive testing methods, including laminography, and active thermography, to develop a robust understanding of the effects of repair concepts. T2 - MSE Congress 2018 CY - Darmstadt, Germany DA - 26.09.2018 KW - Glass fiber reinforced polymers KW - Lightweight materials KW - Fatigue of sandwich structures KW - Wind turbine blades KW - Sandwich PY - 2018 AN - OPUS4-46102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Analysis of reaction layers and cooling simulations of co-fired thermoelectric multilayers N2 - Ceramic multilayer technology is an attractive approach for the cost-effective fabrication of thermoelectric generators. Therefore, efforts are being made to co-sinter two promising thermoelectric oxides, namely calcium cobaltite and calcium manganate. In this study, calcium cobaltite, calcium manganate and release tapes were pressure assisted sintered. A major challenge here is the cracking of calcium manganate during cooling. A relationship between the properties of the release tape used in pressure-assisted sintering and the cracking behavior was observed experimentally. To understand the origin of failure, formed reaction layers in the multilayer were analyzed by EDX and grazing incident XRD. Based on this analysis, bulk samples were prepared, and thermal expansion and Young's modulus and were determined thereon, if they were not known from the literature. The biaxial strength of the thermoelectric oxides was determined by the ball on three ball method. The thermal stresses during cooling of different multilayer designs were estimated by finite element simulations. The stresses caused by the reaction layers turned out to be negligible. The FEM study indicated further, and a validation experiment proved, that the thickness of the release tape has the main effect on thermal stresses during cooling in single material. For best performance, the design of a thermoelectric multilayer generator needs to consider thermoelectric performance and thermal stresses during cooling. T2 - Virtual Conference on Thermoelectrics CY - Online meeting DA - 20.07.2021 KW - Ceramic multilayer KW - Cooling simulations KW - Thermal stress KW - Thermoelectric PY - 2021 AN - OPUS4-52994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Kromm, Arne A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - ECNDT 2018 CY - Götheburg, Sweden DA - 11.06.2018 KW - Additive manufacturing KW - Ressidual stress KW - Neutron diffraction PY - 2018 AN - OPUS4-45761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - VAMAS - Workshop CY - BAM, Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Neutron diffraction KW - Ressidual stress PY - 2018 AN - OPUS4-45762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Ambient and high-temperature mechanical properties of intermetallic Fe3Al alloys with complex borides N2 - Due to the increasing scarcity of critical raw materials current high-temperature materials are sought to be replaced by alloys based on more abundant metals. One possibility within the class of intermetallics are iron aluminides, which combine sustainability and cost-efficiency with the prospect of mass savings. Iron aluminides show competitive specific strength up to 700 °C and excellent creep and wet corrosion resistance by small additions of Mo, Ti and B. Nevertheless, a Mo content of above 2 at.% which is needed for optimum corrosion resistance results in enhanced brittleness, especially at room temperature. This is why alloys with these Mo fractions were only mechanically tested under compressive loading so far. Still, testing of static and creep properties under tensile loading is required for reliable component design. Besides high standards for crack-free processing, data acquisition for tensile loads is especially complicated by environmental embrittling effects for iron aluminides. To cope with these challenges, the AiF research project “WAFEAL – Materials applications for iron aluminides” was initiated. The main goal is to collect standardised data on ambient and high-temperature tensile properties and creep properties. Samples with a nominal composition of Fe-26Al-4Mo-0.5Ti-1B [at.%] were manufactured via centrifugal casting in ceramic shell moulds followed by machining. Heat treatment for homogenisation and final polishing were carried out where appropriate. A summary of the achieved tensile and creep properties such as yield and tensile strength, maximum elongation, secondary creep rate and stress exponents will be given. Results will be also discussed regarding the influence of temperature, stress level and microstructure on the damage mechanisms. Furthermore, the effect of different alloy concentrations on the mechanical response at different temperatures will be outlined within a small experimental series. T2 - MSE Congress 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Tensile data KW - High temperature mechanical properties KW - Creep data KW - Fractography PY - 2022 AN - OPUS4-55993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radners, Jan A1 - Han, Ying A1 - von Hartrott, Philipp A1 - Skrotzki, Birgit T1 - Aluminum High Temperature Fatigue N2 - The high operating temperatures of radial compressor wheels in exhaust gas turbochargers lead to abchange in the original microstructure of the heat-resistant aluminum alloy EN AW-2618A (overaging). This is caused by thermal loads that are close to the age hardening temperature and can even exceed it for a short time. The aging mechanisms have been investigated together with low cycle fatigue (LCF), thermomechanical fatigue (TMF) and creep up to max. 190 °C in previous research projects. The behavior of the alloy under high cycle fatigue (HCF) and the influence of load spectra have hardly been investigated. Since the operating temperatures of centrifugal compressors are expected to increase in the future, this research project investigated the HCF behavior at 230 °C, a test temperature significantly higher than the age hardening temperature. The objectives of the project were to establish a suitable experimental database, to understand the relevant microstructural processes, and to further develop and adapt suitable models and evaluation methods. In addition to a basic characterization of the HCF behavior in the initial condition T61, the experimental investigation program included targeted mechanical tests to isolate the influencing factors of mean stress (𝑅 = −1, 𝑅 = 0.1), material overaging (T61, 10 h/230 °C, 1000 h/230 °C), test temperature (20 °C, 230 °C), test frequency (0.2 Hz, 20 Hz) as well as variable amplitudes. On this basis, the models and evaluation methods developed in the previous projects were adapted and further developed to reflect thermal and mechanical loads in the lifetime assessment. T2 - The FVV Transfer + Networking Event (Herbst 2023) CY - Würzburg, Germany DA - 04.10.2023 KW - Aluminum alloys KW - Fatigue KW - EN AW-2618A PY - 2023 AN - OPUS4-58537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Han, Ying A1 - Radners, J. A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Aluminium High Temperature Fatigue N2 - The studied aluminium alloy is EN AW-2618A (2618A). It is very widely used for exhaust gas turbo-charger compressor wheels. Due to long operating times, high cycle fatigue (HCF) and material aging under the influence of temperatures up to 230 °C is particularly relevant for the wheels. The wheels are typically milled from round wrought blanks. From such round blanks, different testpieces are extracted and a comprehensive series of HCF tests is conducted at room temperature. The tests investigate the materials fatigue performance in the T61 state for two load-ratios, namely R = -1 and R = 0.1. Additionally, two overaged material states are tested, accounting for the aging process the material undergoes during long operating times at high temperatures. The experimental results are evaluated and compared to each other. Furthermore, the design process of notched specimens is presented. With the notched specimens, it is aimed to quantify the notch sensitivity of the material. Relating thereto, two potential model parameters for the fatigue lifetime model are introduced. T2 - FVV Frühjahrstagung 2022 CY - Würzburg, Germany DA - 31.03.2022 KW - High Cycle Fatigue KW - Aluminium Alloy KW - EN AW-2618A PY - 2022 AN - OPUS4-54886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten T1 - Alternative Verfahren zur Strukturierung von Grünfolien und Laminaten N2 - Die Strukturierung keramischer Grünfolien und Laminate ist ein wesentlicher Prozessschritt in der keramischen Multilayer-Technologie und begründet die funktionelle Vielfalt keramischer Multilayer. Benötigt wird die Grünbearbeitung für die Herstellung elektrischer und thermischer Vias sowie innerer Kavitäten und Kanäle für Transport und Lagerung von Gasen und Flüssigkeiten in hochintegrierten Schaltungsträgern, Sensoren und Reaktoren. Standardverfahren in der industriellen Fertigung sind Heißschneiden, Stanzen und Laserbearbeitung. Darüber hinaus werden auch Bohren, Fräsen, Sägen und Heißprägen verwendet. Über die Erprobung weiterer Verfahren wie Wasserstrahlschneiden, Dampfstrahlätzen und Powder Blasting wird in der Literatur berichtet. Im Vortrag werden spezifische Vor- und Nachteile der eingesetzten Verfahren beleuchtet. Abschließend werden die Kriterien für die Auswahl des optimalen Strukturierungsverfahrens diskutiert. Zusammensetzung und Gefüge sowie die dadurch bedingten mechanischen und thermomechanischen Eigenschaften sowie das Absorptionsverhalten von Grünfolien sind sehr unterschiedlich. Daraus resultieren unterschiedliche optimale Bearbeitbarkeitsparameter. T2 - DKG-Seminar "Foliengieß- und Schlitzdüsenverfahen" CY - Hermsdorf, Germany DA - 05.11.2019 KW - Stanzen KW - Keramische Folien KW - Laserbearbeitung KW - Grünfolieneigenschaften PY - 2019 AN - OPUS4-49742 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -