TY - CONF A1 - Trappe, Volker T1 - Current and future technological advancement in polymer matrix composites enabled through fundamental discoveries N2 - This presentation is a summary of the work from the past 20 years’ development of PMC-testing at the BAM-FB 5.3 with respect to safety-relevant design of advanced light weight structures in aircraft, wind turbine and automotive applications. The talk begins with wood as an example from nature, and emphasizes that load case, fiber architectural design and the production process and quality have to go hand in hand to generate an advanced light weight structure. Since PMC-relevant basic findings of mankind span across hundreds of years, high-performance composite applications today are based more on long term experiences than on breakthrough inventions of modern days. In the second part of the talk, future plans and projects of FB-5.3 are presented, specifically addressing H2-safety, circular economy, recycling by design and digitalization of PMC-technologies. T2 - Abteilungsseminar CY - Online meeting DA - 07.09.2021 KW - Polymer Matrix Composites KW - Thermo mechanical fatigue PY - 2021 AN - OPUS4-54150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Agea-Blanco, Boris A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Behrens, H T1 - Sintering and Foaming of Silicate Glass Powders N2 - The lecture focuses on the mechanisms of non-desired gas bubble formation and foaming during the sintering of glass powder compacts. It is shown that foaming is driven by carbon gases and that carbonates, encapsulated in micropores or mechaniacally dissolved beneath the glass surface, provide the major foaming source. T2 - Sandanski Workshop Sinter crystallization 27th-29th September 2021 PROJECT “THEORY AND APPLICATIONS OF SINTER-CYSTALLIZATION” DN 19/7 CY - Online meeting DA - 27.10. 2021 KW - Sintering KW - Non-desired foaming PY - 2021 AN - OPUS4-53772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Waske, Anja A1 - Günster, Jens A1 - Widjaja, Martinus A1 - Neumann, C. A1 - Clozel, M. A1 - Meyer, A. A1 - Ding, J. A1 - Zhou, Z. A1 - Tian, X. T1 - Challenges in the Technology Development for Additive Manufacturing in Space N2 - Instead of foreseeing and preparing for all possible scenarios of machine failures, accidents, and other challenges arising in space missions, it appears logical to take advantage of the flexibility of additive manufacturing for “in-space manufacturing” (ISM). Manned missions into space rely on complicated equipment, and their safe operation is a great challenge. Bearing in mind the absolute distance for manned missions to the Moon and Mars, the supply of spare parts for the repair and replacement of lost equipment via shipment from Earth would require too much time. With the high flexibility in design and the ability to manufacture ready-to-use components directly from a computer-aided model, additive manufacturing technologies appear to be extremely attractive in this context. Moreover, appropriate technologies are required for the manufacture of building habitats for extended stays of astronauts on the Moon and Mars, as well as material/feedstock. The capacities for sending equipment and material into space are not only very limited and costly, but also raise concerns regarding environmental issues on Earth. Accordingly, not all materials can be sent from Earth, and strategies for the use of in-situ resources, i.e., in-situ resource utilization (ISRU), are being envisioned. For the manufacturing of both complex parts and equipment, as well as for large infrastructure, appropriate technologies for material processing in space need to be developed. KW - Additive manufacturing KW - Space KW - Process PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549204 DO - https://doi.org/10.1016/j.cjmeam.2022.100018 SN - 2772-6657 VL - 1 IS - 1 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-54920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Microstructure-Property-Correlation of a Mo-Ti-B alloyed iron aluminide N2 - Iron aluminides depict a sustainable and light-weight material class which could be employed in many applications requiring high strength at intermediate to high temperatures. According to first results, the alloy Fe-26Al-4Mo-0.5Ti-1B surpasses conventional materials in wet corrosion resistance and creep resistance up to 650 °C. For these reasons, the AiF research project “WAFEAL – Materials applications for iron aluminides” was initiated to transfer these findings into a standardised materials dataset and to derive best practices for processing. In the first place, a set of different microstructures adjusted by varying casting methods, wall thicknesses and heat treatments was investigated and correlated with hardness on macro and micro scale. Correlations were drawn between solidification rates and resulting grain sizes and hardness. The effect of vacancy hardening was only verified for wall thickness as low as 2.5 mm. Moreover, a common decrease of macrohardness after a heat treatment at 1000 °C for 100 h was observed irrespective of casting process or wall thickness. This effect was linked with an unexpected decrease of the complex boride phase fraction which acts as a hardening phase. T2 - Intermetallics 2021 CY - Bad Staffelstein, Germany DA - 04.10.2021 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Heat treatment KW - Wall thickness KW - Centrifugal casting KW - Die casting KW - Investment casting KW - Microstructure KW - Hardness KW - Complex borides PY - 2021 AN - OPUS4-53617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Stephan-Scherb, Christiane ED - Schorr, S. ED - Weidenthaler, C. T1 - Crystallographic challenges in corrosion research N2 - High-temperature corrosion is a widespread problem in various industries. As soon as a hot and reactive gas (CO2, O2, H2O, SO2, NOx, etc.) is in contact with a solid, physico-chemical processes at the surface and interfaces lead to material degradation. The processes are dynamic and controlled by thermodynamic and kinetic boundary conditions. Whether a reaction product is protective or not depends on various factors, such as chemical composition of the solid and the reactive media, surface treatment as well as diffusion and transport paths of cations and anions. Resulting chemical and structural inhomogeneities with the corrosion layers are characterized by off stoichiometry within cationic and anionic sub lattices. The competitive processes can be studied by various techniques of applied crystallography. This chapter gives an overview on the challenges of chemical-structural Analysis of reaction products by crystallographic methods such as X-ray diffraction and X-ray near-edge structure spectroscopy and scanning electron microscopy electron backscatter diffraction (SEM-EBSD) for corrosion science. KW - High-temperature corrosion KW - Oxidation KW - Diffraction KW - Spectroscopy KW - Oxides PY - 2021 DO - https://doi.org/10.1515/9783110674910-009 SP - 291 PB - De Gruyter ET - 1 AN - OPUS4-52903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kraus, David T1 - Thermo-mechanical fatigue of glass fiber reinforced polymer N2 - Glass fiber reinforced polymer (GFRP) materials in practical applications have to endure cyclic mechanical loading in a wide temperature range (e.g. aircraft applications, automotive, wind turbine blades). In this study the static strength and fatigue behavior of GFRP was investigated in a temperature range from 213 K to 343 K. Therefor the coefficients of thermal expansion of the composite as well as the matrix are measured in this temperature interval. The inverse laminate theory was extended and used to calculate the inter fiber-failure effort for a virtual UD-layer according to the layer wise strength approach. The experimentally determined results are compared with the micro-mechanical model according to Krimmer, which has been enhanced to include the effect of temperature and fiber-perpendicular failure modes. A correlation between matrix effort, the dilatational strain energy of the matrix and the damage state of the specimen is demonstrated. It is shown that a fatigue life assessment can be performed with the aid of a temperature-independent master fatigue curve, as it was similar done for the fatigue behavior of CFRP and GFRP to very high load cycles at room temperature. T2 - ICFC8 - The 8th International Conference on the Fatigue of Composites CY - Online meeting DA - 23.06.2021 KW - Glass fibre reinforced plastics KW - Fatigue KW - Thermo-mechanical-loading PY - 2021 AN - OPUS4-52910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Skrotzki, Birgit A1 - Schriever, Sina T1 - BAM reference data - Results of ASTM E139-11 creep tests on a reference material of Nimonic 75 nickel-base alloy N2 - Results of creep tests on a certified reference material at T = 600°C and a tensile creep load of 160 MPa are provided. The evaluated results include the times to reach 2% and 4% creep strain, respectively, and the creep rate after 400 h. The data were audited and are BAM reference data. KW - Reference data KW - Creep KW - Nickel-base alloy KW - Nimonic 75 KW - Reference material BCR-425 PY - 2021 DO - https://doi.org/10.5281/zenodo.5106606 PB - Zenodo CY - Geneva AN - OPUS4-52970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - Sintering of silver‑alkali zinc borate glass‑composites N2 - Since decades electric contacts based on silver metallization pastes are key components of photovoltaics and advanced microelectronics. For the metallization of commercial Si solar cells, high conductive silver glass pastes are cost effectively applicated by screen printing. Nevertheless, silver pastes are still one of the most crucial and expensive none Si materials in solar cells. Ever shorter time to market as well as increasing demands on reduced Ag consumption and line width require the targeted development of silver-glass-pastes with increased sinter ability and electrical conductivity. As a main difficulty, however, the liquid phase sintering of silver glass pastes is poorly understood so far. In the present study, the influence of different network modifier in alkali-zinc-borate paste glasses on liquid phase sintering of silver-glass-pastes was investigated. Low melting X2O-ZnO-B2O3 glasses with X = Na, Li and Rb (abbr. LZB, NZB, and RZB) were utilized to prepare silver-glass-composites containing 30 %Vol glass. Shrinkage behavior of the silver-glass-composites compared with that of pure silver and pure glass powder compacts was studied with heating microscopy. The powder compacts were uniaxially pressed and heated at 5 K/min to the glass softening temperature. Glass transformation temperature and viscosity of the glasses were respectively measured with dilatometry and rotational viscometry. The thermal behavior of the pure glasses was analyzed with thermal analysis. Additionally, the contact angle of glass on pure silver foil was determined by means of heating microscopy between room temperature and 830 °C. Thermal analysis of the alkali-zinc-borate-glasses under study has shown transformation temperatures between 450 °C (RZB), 460 °C (LZB) and 465 °C (NZB). For all glasses crystallization was found to start approximately at about 550 °C. However, different peak areas hint on a different degree of crystallization. Conformingly, the sintering behavior, measured in terms of area shrinkage, significantly differed for the silver-pastes under study. For silver-pastes with NZB or LZB-glass, sintering starts at 464 °C for NZB Ag pastes and at 451 °C for LZB Ag pastes and ends at 597 °C for NZB Ag paste and at 594 °C for LZB Ag paste. The sintering of the RZB Ag paste proceeds between 426 °C and 703 °C. The final densification was retarded possibly due to crystallization or swelling. The low sinter onset at 426 °C seems to correlate with the good wetting behavior of the RZB glass. Thus, the lowest apparent contact angle between the just densified powder compact sintered at a silver substrate was found for this glass. Moreover, microstructure analyses of the various composites indicate differences in silver dissolution and reprecipitation. T2 - Technology Crossover Extravaganza, HiTEC/CICMT/APEPS CY - Online meeting DA - 26.04.2021 KW - Silver-glass-metallization-paste KW - Sintering KW - Crystallization KW - Alkali ions KW - Sintering atmosphere PY - 2021 AN - OPUS4-52872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diener, S. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Literature review: Methods for achieving high powder bed densities in ceramic powder bed based additive manufacturing N2 - In additive manufacturing the powder bed based processes binder jetting and powder bed fusion are increasingly used also for the production of ceramics. Final part properties depend to a high percentage on the powder bed density. Therefore, the aim is to use the best combination of powder deposition method and powder which leads to a high packing of the particles. The influence of flowability, powder properties and deposition process on the powder bed density is discussed and the different deposition processes including slurry-based ones are reviewed. It turns out that powder bed density reached by slurry-based layer deposition exceeds conventional powder deposition, however, layer drying and depowdering are extra steps or more time-consuming for the slurry route. Depending on the material properties needed the most suitable process for the part has to be selected. KW - Additive Manufacturing KW - Powder-based processes KW - Powder bed density PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534992 DO - https://doi.org/10.1016/j.oceram.2021.100191 VL - 8 SP - 100191 PB - Elsevier Ltd. AN - OPUS4-53499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Towards digitalization of materials in PMD: An application ontology of the tensile test N2 - Due to the diversity of materials and the processes associated with their production and use, the complexity of the lifecycles of materials and the multitude of academic and industrial researchers participating in generation of data for material design impose a huge challenge. The topical goal of digitalizing materials and processes can only be adequately addressed by consolidating the efforts of all stakeholders in this field. There are many scattered activities, but there is a demand for an elimination of redundancies as well as an advance in acceptance and a common basis in the digitalization of materials. Furthermore, data analysis methods play an important role in both, the experimental and simulation-based digital description of materials, but they have been poorly structured so far. Therefore, the two joint projects Platform Material Digital (PMD, materialdigital.de) and Materials open Laboratory (Mat-o-Lab, matolab.de) aim to contribute to a standardized description of data processing methods in materials research. Besides stimulating the formation of a collaborative community in this respect, their main technical goals are the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. In this regard, data management in accordance with the FAIR (findability, accessibility, interoperability, reuseability) principles is addressed. There is a common agreement in the scientific community following current discussions that data is supposed to be conform to these principles. This includes storage, processing and querying of data in a preferably standardized form. To meet the challenge to contextualize material data in a way that is consistent with all stakeholders, all necessary information on the condition of the material including production and application-related changes have to be made available via a uniform, machine-readable description. For this purpose, ontologies are to be used since they allow for machine-understandable knowledge representations and conceptualizations that are needed for data management and the digitalization in the field of materials science. As first efforts in PMD and Mat-o-Lab, application ontologies are created to explicitly describe processes and test methods. Thereby, the well-known tensile test of metals at room temperature was described ontologically in accordance with the respective ISO standard 6892-1:2019-11. The efforts in creating this tensile test application ontology are shown in this presentation. Especially, the path of ontology development based on standards to be pursued is focused, which is in accordance with the generic recommendations for ontology development and which is supposed to be exemplary for the creation of other application ontologies. T2 - VirtMet: 1st International Workshop on Metrology for Virtual Measuring Instruments and Digital Twins CY - Online meeting DA - 21.09.2021 KW - Platform Material Digital (PMD) KW - Ontology KW - Tensile test KW - Standard KW - Ontology development PY - 2021 AN - OPUS4-53481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Fedelich, Bernard ED - Cailletaud, G. ED - Cormier, J. ED - Eggeler, G. ED - Maurel, V. ED - Nazé, L. T1 - Crystal orientation and elastic properties N2 - The elastic constants are the most basic mechanical properties of a material and are needed for any structural analysis of a component. For example, they have a major influence on the eigenfrequencies of vibrating parts. Single crystals of Ni-base superalloys are strongly anisotropic, which means that the observed properties are orientation dependent. Tensor algebra is then required to mathematically formulate the elastic properties and their relations to the crystal orientation. Hence, this chapter first summarizes some basic definitions and calculation rules for Rotation matrices, including the definition of the Euler angles, which are most commonly used to define the relative orientations of the crystal and the component. Parts of this chapter closely follow the lines of the excellent exposition of the topic by Olschewski. KW - Nickel-base superalloys KW - Elasticity PY - 2022 SN - 978-0-12-819357-0 SP - 41 EP - 67 PB - Elsevier Inc. AN - OPUS4-53435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Fedelich, Bernard ED - Cailletaud, G. ED - Cormier, J. ED - Eggeler, G. ED - Maurel, V. ED - Nazé, L. T1 - Crystal plasticity models: dislocation based N2 - The large number of TEM investigations and the regular microstructure of single-crystal nickel-base superalloys has boosted the development of a number of physically motivated constitutive laws. In contrast to the more phenomenological models discussed in the next chapter, these models use dislocation densities as internal variables. Obvious advantages are that the computed densities can be compared to TEM observations and the Deformation mechanisms can be easier translated into mathematical equations. KW - Nickel-base superalloys KW - Creep KW - Plasticity PY - 2022 SN - 978-0-12-819357-0 SP - 401 EP - 427 PB - Elsevier Inc. ET - 1 AN - OPUS4-53436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Influence of molecular orientation on the environmental stress cracking resistance N2 - Molecular orientation has a significant effect on the material properties of polymers. Preferential orientation of the microstructure (polymer chains or crystallites) in a specific direction or plane often enhances the material properties, especially if the high-strength covalent bonds are primarily exposed to loads instead of the weaker van der Waals bonds. However, the orientation-dependent microstructure and its mechanical behavior is in general already well understood by many scientific studies [1-3]. Isotropic materials are frequently required for an intrinsic material characterization without prevailing processing-induced properties, as is the case for Full Notch Creep Test (FNCT) [4] addressing environmental stress cracking (ESC) in high-density polyethylene (PE-HD) [5, 6]. Since ESC is one of the major limiting issues for long-term performance of PE-HD pipes and containers [7], which in contrast have a production-related preferential orientated microstructure due to extrusion or extrusion blow molding, it is important to additionally investigate the ESC resistance of such anisotropic microstructure. Investigations of the slow crack growth (SCG) with respect to the molecular orientation generally obtain a factor of 1.2 up to 4.7 between crack growth perpendicular to the extrusion direction and crack growth parallel to the extrusion direction 8. Based on FNCT investigations with an aqueous detergent solution as environmental medium, hot pressed sheets with isotropic morphology are compared with extruded sheets from which specimens with different orientation angles are taken. However, the time to failure obtained by FNCT is also significantly influenced by the different cooling conditions under which the final morphology is formed. The tendency of the specimen to fail due to ESC is investigated as a function of environmental medium temperature. For a more detailed analysis of the affecting parameters in the manufacturing process, the ESC resistance is discussed considering the differences in crystallinity as revealed by thermal analysis. T2 - 36th International Conference of the Polymer Processing Society CY - Montreal, Canada DA - 26.09.2021 KW - Environmental stress cracking KW - Orientation-dependent microstructure KW - High-density polyethylene KW - Full Notch Creep Test PY - 2021 AN - OPUS4-53399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Damage progression of environmental stress cracking affected by manufacturing process-induced microstructural orientation N2 - Currently, the Full Notch Creep Test (FNCT) [1] method is used by material suppliers and end users in industry for the approval of container and pipe materials based on high-density polyethylene (PE-HD). The resistance to environmental stress cracking (ESC) of the material is evaluated using the time to failure of the specimen in an aqueous solution of a detergent [2, 3]. Usually specimens made of sheets with isotropic material properties, manufactured by hot pressing, are employed in order to obtain intrinsic properties of the material in terms of ESC failure. In contrast, the processes used in manufacturing to form containers and pipes, such as extrusion blow molding or extrusion, impose anisotropic properties to the material. These are mostly due to a microstructural orientation (polymer chains or crystallites) [4]. Furthermore, the different cooling conditions significantly affect the size distribution of crystallites as well as the overall morphology. It is therefore essential to understand the influence of process-induced material characteristics on failure due to ESC. A large number of studies on material properties as a function of microstructural preferential orientation have already been conducted [5-7]. However, effects on ESC as the major failure mechanism of containers and pipes are still rather unexplored [8, 9]. The most important factor is whether primarily intramolecular high-strength covalent bonds or the substantially weaker intermolecular van der Waals forces are predominantly loaded. In addition to the widely established classification by time to failure, the strain or crack opening displacement (COD) provides valuable information about the evolution and progression of damage as a function of time [10, 11]. Optical strain measurement using digital image correlation allows the differences in COD for isotropic and different angles of orientation of anisotropic specimens to be discussed. Also, a post-fracture surface analysis provides clarification on the craze-crack mechanism of the ESC. These different ESC-related properties of extruded and hot-pressed specimens have been investigated at different environmental medium temperatures and different initial stresses to provide a broad characterization of the fracture behavior of PE-HD. T2 - 36th International Conference of the Polymer Processing Society CY - Montreal, Canada DA - 26.09.2021 KW - Environmental stress cracking KW - High-density polyethylene KW - Fracture behavior KW - Microstructural orientation PY - 2021 AN - OPUS4-53400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agea Blanco, Boris A1 - Walzel, S. A1 - Chi, J. A1 - Lüchtenborg, J. T1 - Making Binder Jetting Really Work for Technical Ceramics - Additive Manufacturing of Technical Ceramics N2 - As an alternative shaping method to the traditionally used processes, additive manufacturing (AM) can produce economical ceramic components in small lot sizes and/or with complex geometries. Powder-based additive manufacturing processes like binder jetting are popular in the field of metal AM. One reason is the increased productivity compared to other AM technologies. For ceramic materials, powder-based AM technologies result in porous ceramic parts, provided they are not infiltrated. CerAMing GmbH unites the advantages of powder-based processes with the production of dense ceramic by means of the Layerwise Slurry Deposition. By using a suspension, a high packing density of the powder bed is achieved which leads to high green body densities. Due to this advantage the approach overcomes the problems of other powder-based AM technologies. Furthermore, a very economical debinding time allows the production of parts with high wall thicknesses. KW - Additive Manufacturing KW - Binder Jetting KW - Layerwise Slurry Deposition KW - Lithography-based technologies KW - Technical Ceramics PY - 2021 SP - 49 EP - 52 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-52948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Tensile Test Ontology used in Platform Material Digital (PMD) N2 - Data analysis methods play an important role in both the experimental and simulation-based digital description of materials but have so far been poorly structured. The platform Material Digital (PMD) is supposed to contribute to a standardized description of data processing methods in materials research. The goal is the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. Therefore, application ontologies are created to explicitly describe processes and test methods. In this presentation, the first efforts within the joint project PMD in creating a tensile test application ontology in accordance with the ISO standard 6892-1:2019-11 are shown. Especially, the path of ontology development to be pursued based on standards was focused. Furthermore, the presentation includes a live demonstration of queries possibly performed to query data that was uploaded in the PMD triple store. T2 - Online Workshop: An introduction to the semantic web and ontologies CY - Online meeting DA - 23.04.2021 KW - Ontology KW - Tensile Test KW - Platform Material Digital KW - PMD KW - Knowledge Graphs KW - Semantic Web PY - 2021 AN - OPUS4-52949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrand, G. A1 - Sänger, Johanna Christiane A1 - Schirmer, U. A1 - Mantei, W. A1 - Dupuis, Y. A1 - Houbertz, R. A1 - Liefeith, K. T1 - Process Development for Additive Manufacturing of Alumina Toughened Zirconia for 3D Structures by Means of Two-Photon Absorption Technique N2 - Additive manufacturing is well established for plastics and metals, and it gets more and more implemented in a variety of industrial processes. Beside these well-established material platforms, additive manufacturing processes are highly interesting for ceramics, especially regarding resource conservation and for the production of complex three-dimensional shapes and structures with specific feature sizes in the µm and mm range with high accuracy. The usage of ceramics in 3D printing is, however, just at the beginning of a technical implementation in a continuously and fast rising field of research and development. The flexible fabrication of highly complex and precise 3D structures by means of light-induced photopolymerization that are difficult to realize using traditional ceramic fabrication methods such as casting and machining is of high importance. Generally, slurry-based ceramic 3D printing technologies involve liquid or semi-liquid polymeric systems dispersed with ceramic particles as feedstock (inks or pastes), depending on the solid loading and viscosity of the system. This paper includes all types of photo-curable polymer-ceramic-mixtures (feedstock), while demonstrating our own work on 3D printed alumina toughened zirconia based ceramic slurries with light induced polymerization on the basis of two-photon absorption (TPA) for the first time. As a proven exemplary on cuboids with varying edge length and double pyramids in the µm-range we state that real 3D micro-stereolithographic fabrication of ceramic products will be generally possible in the near future by means of TPA. This technology enables the fabrication of 3D structures with high accuracy in comparison to ceramic technologies that apply single-photon excitation. In sum, our work is intended to contribute to the fundamental development of this technology for the representation of oxide-ceramic components (proof-of-principle) and helps to exploit the high potential of additive processes in the field of bio-ceramics in the medium to long-term future. KW - Additive manufacturing KW - Ceramics 3D printing KW - Two-photon adsorption KW - Polymer-ceramic mixtures KW - Bio-ceramic engineering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526672 DO - https://doi.org/10.3390/ceramics4020017 VL - 4 IS - 2 SP - 224 EP - 239 PB - MDPI CY - Basel AN - OPUS4-52667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Monodisperse iron oxide nanoparticles as reference material candidate for particle size measurements N2 - In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important, especially with respect to the assessment of their environmental or biological impact. Furthermore, the European Commission’s REACH Regulations require the registration of nanomaterials traded in quantities of at least 1 ton. Powders or dispersions where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as nanomaterials. This creates a need for industrial manufacturers and research or analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution and will also target other key parameters like shape, structure, porosity or functional properties. In this respect, materials like iron oxide or titanium dioxide are considered as candidates to complement the already available silica, Au, Ag, and polystyrene reference nanoparticles. The thermal decomposition of iron oleate precursors in high boiling organic solvents can provide large quantities of iron oxide nanoparticles that can be varied in size and shape.[1, 2] The presence of oleic acid or other hydrophobic ligands as capping agents ensures stable dispersion in nonpolar solvents. Such monodisperse, spherical particles were synthesized at BAM and pre-characterized by electron microscopy (TEM, SEM including the transmission mode STEM-in-SEM) and dynamic light scattering comparing cumulants analysis and frequency power spectrum. 1. REACH regulations and nanosafety concerns create a strong need for nano reference materials with diverse properties. 2. Iron oxide nanoparticles are under development as new candidate reference material at BAM. 3. Narrow particle size distribution confirmed by light scattering and electron microscopy. T2 - Nanosafety 2020 CY - Online meeting DA - 05.10.2020 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Electron microscopy KW - Nanoplattform PY - 2020 AN - OPUS4-52774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker T1 - The effect of fiber orientation mismatch on scarf joint damage mechanisms under fatigue load N2 - Wind turbine rotor blades commonly fail before their projected 20-year lifespan largely due to defects that originate during manufacturing and are propagated by operational fatigue and environmental conditions. The cost-intensive replacement outcomes lead to a high loss of earnings, and are one of the inhibitors of wind turbine production. A potential repair alternative to restoring the mechanical properties of such lightweight fiber reinforced polymer (FRP) structures is to locally patch these areas with scarf joints. This type of repair allows for a smoother load distribution across the joint, and is favored especially on structures where minor aerodynamic contour changes are key. The effects of such repairs on the structural integrity, however, is still largely unknown. Building upon an understanding of the static load failure mechanism of GFRP scarf joints, presented at the ICCS23 Joint Event in 2020, the influence of the fiber orientation mismatch between parent and repair materials of 1:50 scarf joints on the failure mechanism of monolithic glass FRP specimens under cyclic fatigue load were examined in this study. Specimens with various layups were produced with the vacuum-assisted resin infusion (VARI) process using biaxial E-glass non-crimp fabric (NCF). The patch layers were then joined directly to the parent structure with the VARI using biaxial E-glass NCF with half the areal weight of the parent side to allow for better drapability. This mimics the soft-to-hard patch style utilized in wind turbine blade shell field repairs. The specimens were tested under uniaxial fatigue load, during which they were periodically monitored for damage onset. A comparison of the +45/-45° and 0/90° layups allowed for an understanding of the role of a highly mismatching fiber orientation in the transition zone between parent and patch material on the failure mechanism of the scarf joint. In addition to the tensile strength and stiffness property recovery assessment, a grayscale analysis using in-situ camera images determined the damage state leading to failure in each region across the scarf joint, which varied in the parent material versus scarf joint region, providing insight to the critical regions in this composite structure under cyclic loading. T2 - ICCS24 - 24th International Conference on Composite Structures CY - Online meeting DA - 14.06.2021 KW - Glass fiber reinforced polymers KW - Scarf repairs KW - Damage mechanisms PY - 2021 AN - OPUS4-52817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Schmid, Thomas A1 - Deubener, J. T1 - An overview of structural, physical and thermal properties of low melting zinc and lead borate glasses N2 - Low melting zinc borate glasses awake interest to replace lead borate glasses in the silver metallization pastes for solar cells or microelectronics. In the current study, characteristic properties of alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb) were compared to an earth alkali zinc borate glass (CaO-ZnO-B2O3). Additionally, zinc oxide is partially substituted by lead oxide or cooper oxide in the borate glasses (Li2O-PbO-B2O3, Na2O ZnO CuO-B2O3). The alkali zinc borate glasses indicate less differences in Raman spectra, and thus in structural properties, in comparison to the Ca and Pb ions influence. LPbB (Tg = 401 °C) has a lower viscosity than LZB (Tg = 468 °C) and CaZB has the highest glass transition temperature (Tg = 580 °C). The Angell plot for the alkali zinc borate glasses shows a high fragility m = 80. Besides Tg, the density measured by means of the Archimedean principle, molar volume, and coefficient of thermal expansion (CTE) of the glasses were investigated. Trends could be found according to alkali ions or intermediate oxides. The density increases with decreasing alkali ion size from KZB (2.632 g/cm3) to LZB (2.829 g/cm3) and increases from LZB to LPbB (3.764 g/cm3). CTE ranges between 7.09 10-6 K-1 for CaZB and 11.5 10 6 K 1 for KZB and RZB. The differential thermal analysis (DTA) and X ray diffraction (XRD) indicate crystallization of various crystalline phases during heating with 5 K/min in most cases. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Borate glasses KW - Glass structure KW - Viscosity KW - Young´s Modulus KW - Alkali ions PY - 2021 AN - OPUS4-52867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Sobek, P. A1 - Körner, S. A1 - Müller, Ralf T1 - Silver - alkali borate glass pastes N2 - Network modifier ions can decisively influence properties and structure of low melting alkali-zinc-borate glasses and thus cause complex effects on the liquid phase sintering of silver-glass metallization pastes. This effect was studied for X2O-ZnO-B2O3 (X = Li, Na, Rb) glasses for silver-glass metallization pastes. Viscosity and the glass transition temperature, Tg, were measured with rotational viscometry and dilatometry. Dried model pastes with 30 vol% LZB, NZB or RZB glass were prepared for sintering studies by means of heating microscopy measuring the silhouette area shrinkage of uniaxially pressed powder compacts during heating at 5 K/min. For comparison, the silhouette area shrinkage of pure glass and silver powder compacts were determined. Glass-silver wetting was investigated during heating of bulk glass cylinders placed on silver substrates. Glass RZB turned out to have the lowest viscosity among the glasses under study. Its glass transformation temperature, Tg, was found at 444 °C and it caused the lowest sintering onset for its glass and paste powder compacts. Slightly increased values of Tg were found for NZB and LZB (468 °C and 466 °C, respectively) and a slightly retarded sintering was found for both paste powder compacts. These results indicate that liquid phase sintering of silver-glass pastes under air atmosphere is mainly influenced by glass viscosity. T2 - GLASS MEETING 2020 CY - Online meeting DA - 07.12.2020 KW - Silver-glass metallization paste KW - Sintering KW - Alkali ions KW - Viscosity KW - Silver precipitates PY - 2020 AN - OPUS4-52871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraus, David A1 - Trappe, Volker T1 - Transverse damage in glass fiber reinforced polymer under thermo-mechanical loading N2 - In this study, the thermomechanical damage behavior of a glass fiber reinforced polymer material is investigated. The coefficients of thermal expansion of the composite as well as the matrix are measured in a wide temperature range. Quasi-static experiments with neat resin, unidirectional and multidirectional laminates are performed as well as fatigue experiments in a temperature range from 213 K to 343 K. This study focusses on the matrix damage due to fiber-parallel loading. A correlation between matrix effort, the dilatational strain energy of the matrix and the damage state of the specimen is demonstrated. It is shown that a fatigue life assessment can be performed with the aid of a temperature-independent master fatigue curve. KW - Composite KW - Glass fiber reinforced polymer KW - Thermo-mechanics KW - Fatigue KW - Damage KW - Temperature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527462 DO - https://doi.org/10.1016/j.jcomc.2021.100147 SN - 2666-6820 VL - 5 SP - 100147 PB - Elsevier B.V. AN - OPUS4-52746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Rabe, Torsten T1 - Limits of computer tomography aided characterization of different types of porous ceramic materials N2 - Ceramics with open porosity are attractive materials in many fields of applications covering medicine, catalysis, and filtration. Manifold technologies to produce porous ceramics are available, e.g. foaming and replica processes, resulting in various microstructures. Development and manufacturing of new materials is accelerating, while crucial characterization is becoming increasingly difficult and conventional measurements lack the desired speed. Computed tomography (CT) offers the possibility to three-dimensionally characterize entire samples with minimal sample preparation, while its main advantage is that it is non-destructive. Still, the assessment of quantitative results from CT measurements is not trivial. The poster presents CT characterizations of newly developed as well as commercially available openly porous ceramic samples. Properties such as porosity, permeability or pore characteristics were measured conventionally and compared to results calculated from CT-measurements using the commercial software VG StudioMax. The determined differences between measured and calculated values are presented and application areas as well as limits of the CT characterization are evaluated. T2 - Jahrestagung der Deutschen keramischen Gesellschaft 2021 CY - Online Meeting DA - 19.04.2021 KW - Ceramic KW - Porosity PY - 2021 AN - OPUS4-52724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Mechanical anisotropy of LPBF 316L: a modeling approach N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations relative to the build plate. Dynamic Young's modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography, and texture analysis with electron backscatter diffraction (EBSD). A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. T2 - 2. Online-Workshop "In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys " CY - Online meeting DA - 20.04.2021 KW - Anisotropy KW - Crystal plasticity KW - Additive manufacturing PY - 2021 AN - OPUS4-52603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander T1 - Creep behavior and microstructural evolution of LPBF 316L N2 - This presentation shows some experimental results of the characterization of the creep behavior of LPBF 316L, which has been poorly studied and understood to date. The presentation includes results regarding the mechanical properties, the initial microstructural state and its evolution under loading, and the damage mechanism. This work was done within the BAM focus area materials project AGIL. As a benchmark to assess the material properties of the LPBF 316L, a conventionally manufactured variant was also tested. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured alloys at BAM CY - Online Meeting DA - 19.04.2021 KW - 316L KW - Additive Manufacturing KW - Creep behavior PY - 2021 AN - OPUS4-52682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker T1 - Restoring lightweight strength - Effect of localized repairs on the mechanical properties of composites sandwich structures N2 - As a type of high-performance composite material, glass-fiber reinforced plastics (GFRP) are favored for the construction of wind turbine rotor blades due to their high specific strength and stiffness properties (Grasse et al, 2010). During the blade manufacturing process, however, imperfections are often introduced, then further propagated due to harsh environmental conditions and a variety of loads (Caminero et al, 2013; Trappe et al, 2018). This leads to failure significantly before their designed lifespan. Since replacement of entire blades can be a costly potential outcome, localized repairs of the damaged region to restore structural integrity and thus lengthen its lifespan can executed in the field by technicians accessing the blades directly by suspended roping. These methods involve replacing the lost load path with a new material that is joined to the parent structure. In recent years, considerable studies have been conducted to investigate the influence of different repair parameters on the stress distribution, ultimate strength, impact behavior, and residual stresses of bonded repaired structures [Caminero et al, 2013; Trappe et al, 2018; Shufeng et al, 2014; Harman and Rider, 2011; Ahn and Springer, 2000; Lekou and Vionis, 2002). However, there currently do not exist any standardized repair procedures for wind turbine rotor blades. Namely, there is a lack of understanding about the effects of the layup of various repair methods, especially on the damage mechanism and fatigue life of the shells of rotor blades (Caminero et al, 2013; Trappe et al, 2018). This work therefore aims to begin to enrich this knowledge gap by testing the influence of different variables among repair patches on the mechanical properties of sandwich composite structures. Manufactured with the vacuum-assisted resin infusion (VARI) process, the test specimens are produced as a GFRP structure to represent the outer shell portion of a wind turbine blade, then repaired with a scarf joint. Scarf repairs are favored as the most efficient of the common structural joints, as the removal of the damaged area with angled walls leads to a nearly uniform shear stress distribution along the bond surface and no eccentricity in the load distribution (Caminero et al, 2013; Lekou and Vionis, 2002; Siener, 1992). The performance of specific layup methods of repair patches, namely a large-to-small versus small-to-large scheme of repair layers, is studied with static and load-controlled fatigue testing, then compared to pristine test specimens as well as to each other in terms of mechanical property restoration. The transition layer between repair and parent material is especially of interest in the performance of the structure. Damage onset, crack development and eventual failure are monitored in-situ with non-destructive testing methods, including thermography with an infrared camera system and a 3D deformation analysis system, to develop a more robust understanding of the effects of these repair concept variables on wind turbine blade shell structures. T2 - Wind Energy Science Conference CY - Online Meeting DA - 25.05.2021 KW - Glass fiber reinforced polymers KW - Wind turbine blade shell structures KW - Scarf joint repair PY - 2021 AN - OPUS4-52687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Rabe, Torsten T1 - Comparative study of suitable preparation methods to evaluate irregular shaped, polydisperse nanoparticles by scanning electron microscopy (SEM). N2 - Reliable characterization of materials at the nanoscale regarding their physio-chemical properties is a challenging task, which is important when utilizing and designing nanoscale materials. Nanoscale materials pose a potential toxicological hazard to the environment and the human body. For this reason, the European Commission amended the REACH Regulation in 2018 to govern the classification of nanomaterials, relying on number-based distribution of the particle size. Suitable methods exist for the granulometric characterization of monodisperse and ideally shaped nanoparticles. However, the evaluation of commercially available nanoscale powders is problematic. These powders tend to agglomerate, show a wide particle size distribution and are of irregular particle shape. Zinc oxide, aluminum oxide and cerium oxide with particle sizes less than 100 nm were selected for the studies and different preparation methods were used comparatively. First, the nanoparticles were dispersed in different dispersants and prepared on TEM-supported copper grids. Furthermore, individual powders were deposited on carbon-based self-adhesive pads. In addition, the samples were embedded by hot mounting and then ground and polished. The prepared samples were investigated by scanning electron microscopy (including the transmission mode STEM-in-SEM) and Dynamic Light scattering. The software package ImageJ was used to segment the SEM images and obtain the particle sizes and shapes and finally the number-based particles size distribution with size expressed as various descriptors. T2 - Ceramics 2021 CY - Online meeting DA - 19.04.2021 KW - Nanoparticles KW - Preparation KW - Characterization PY - 2021 AN - OPUS4-53272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Günster, Jens T1 - Powder based Additive Manufacturing in Space N2 - Abstract of the event: 'The area of New Space is a vastly growing and dynamic field with a high innovative potential and many exciting ideas. After decades where activities in space were dominated and funded mainly by governmental agencies, a new industry is forming and new business models are being developed around ideas like satellite-based internet, space travel, space mining, geo-monitoring etc. For space applications, lightweight design is crucial to keep the costs at a minimum. This Innovation Day will introduce the field of New Space and present the variety of exciting opportunities that arise for composites based on their excellent lightweight potential.' Another research area is now arising in the field of 3D printing or additive manufacturing of fiber composite materials in space. At the event, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications. T2 - CU Innovation Day - New opportunities and applications in space with composites CY - Online meeting DA - 29.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Microgravity KW - Powder PY - 2022 AN - OPUS4-54559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Yue A1 - Schilling, Markus A1 - von Hartrott, P. A1 - Huschka, M. A1 - Olbricht, Jürgen A1 - Pirskawetz, Stephan A1 - Skrotzki, Birgit A1 - Hanke, T. A1 - Todor, A. T1 - Ontopanel: a diagrams.net plugin for graphical semantic modelling N2 - Ontologies that represent a map of the concepts and relationships between them, are becoming an effective solution for data standardization and integration of different resources in the field of materials science, as efficient data storage and management is the building block of material digitization. However, building a domain ontology is not a simple task. It requires not only a collaborative effort between ontologists and domain experts, but also the modeling approaches and tools play a key role in the process. Among all approaches, graphical representation of domain ontologies based on standard conceptual modeling languages is widely used because of its intuitiveness and simplicity. Various tools have been developed to realize this approach in an intuitive way, such as Protégé plugins and web visualization tools. The Materials-open-Lab (MatOLab) project, which aims to develop ontologies and workflows in accordance with testing standards for the materials science and engineering domains, adopted a UML (Unified Modeling Language) approach based on the diagrams.net. It is a powerful, popular, open-source graphical editor. In practical case studies, however, many users’ needs could not be met, such as reusing ontology, conversion, and data mapping. Users must switch between different tools to achieve a certain step, and thereby invariably increase learning cost. The lack of validation also leads to incorrect diagrams and results for users who are not familiar with the ontology rules. To address these issues, we designed Ontopanel, a diagrams.net-based plugin that includes a set of pipeline tools for semantic modeling: importing and displaying protégé-like ontologies, converting diagrams to OWL, validating diagrams by OWL rules, and mapping data. It uses diagrams.net as the front-end for method modeling and Django as the back-end for data processing. As a web-based tool, it is very easy to expand its functionality to meet changing practical needs. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Ontology KW - Tools KW - Material digital KW - Mat-o-lab KW - Graphic design KW - Ontology development KW - Data mapping KW - FAIR KW - Materials testing PY - 2022 AN - OPUS4-55884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Zia, Ghezal-Ahmed A1 - Schilling, Markus A1 - Skrotzki, Birgit A1 - von Hartrott, P. A1 - Hanke, T. A1 - Waitelonis, J. T1 - Towards Interoperability: Digital Representation of a Material Specific Characterization Method N2 - Certain metallic materials gain better mechanical properties through controlled heat treatments. For example, in age-hardenable aluminum alloys, the strengthening mechanism is based on the controlled formation of nanometer sized precipitates, which represent obstacles to dislocation movement. Precise tuning of the material structure is critical for optimal mechanical behavior in the application. Therefore, analysis of the microstructure and especially the precipitates is essential to determine the ideal parameters for the interplay of material and heat treatment. Transmission electron microscopy (TEM) is utilized to identify precipitate types and orientations in a first step. Dark-field imaging (DF-TEM) is often used to image the precipitates and to quantify their relevant dimensions. The present work aims at the digital representation of this material-specific characterization method. Instead of a time-consuming, manual image analysis, an automatable, digital approach is demonstrated. Based on DF-TEM images of different precipitation states of a wrought aluminum alloy, a modularizable digital workflow for quantitative precipitation analysis is presented. The integration of this workflow into a data pipeline concept will also be discussed. Thus, by using ontologies, the raw image data, their respective contextual information, and the resulting output data from the quantitative precipitation analysis can be linked in a triplestore. Publishing the digital workflow and the ontologies will ensure the reproducibility of the data. In addition, the semantic structure enables data sharing and reuse for other applications and purposes, demonstrating interoperability. The presented work is part of two digitization initiatives, the Platform MaterialDigital (PMD, materialdigital.de) and Materials-open-Laboratory (Mat-o-Lab). T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Interoperability KW - Ontology KW - Precipitation Analysis PY - 2022 AN - OPUS4-55892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Han, Ying A1 - Kruse, Julius A1 - Madia, Mauro A1 - Skrotzki, Birgit T1 - High cycle fatigue behavior of alloy EN AW-2618A N2 - The presentation shows the results of high cycle fatigue (HCF) tests from the aluminium alloy EN AW-2618A. This study investigates the mean stress influence in the T61 condition and the effect of overaging. For this purpose, axial HCF tests were carried out at room temperature and different stress ratios (R=-1, R=0.1) as well as with overaged conditions (T61+10h@230°C, T61+1000h@230°C). After completion of the tests, the fracture surfaces were examined to study crack initiation. T2 - The 18th International Conference on Aluminium Alloys CY - Toyama, Japan DA - 04.09.2022 KW - High Cycle Fatigue KW - Aluminium Alloy KW - EN AW-2618A PY - 2022 AN - OPUS4-55865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit T1 - Aging processes in precipitation hardened aluminum alloys N2 - The mechanical strength of wrought high-strength aluminum alloys is essentially based on precipitation hardening, possibly in combination with prior forming, e. g. by stretching. Important parameters for achieving an optimum combination of hardness, strength, ductility, toughness, and further properties such as corrosion resistance are age-hardening temperature and time. During thermal (mechanical) treatment, nucleation and growth of precipitates takes place, leading to the desired degree of hardening. In aluminum alloys, precipitation sequences are usually passed through, i. e. a sequence of metastable precipitates is formed before the stable phase can precipitate. The optimum combination of properties is therefore based on a certain (optimum) microstructure, which can, however, change during the use of a component, since the microstructure is not stable. This happens in particular when the operating temperatures are close to the aging temperature and/or the operating times are sufficiently long. An external mechanical load may accelerate the processes. The presentation gives some examples for this. T2 - Materials Science and Engineering Congress MSE 2022 CY - Darmstadt, Germany DA - 27.9.2022 KW - Aluminium alloy KW - Precipitation hardening KW - Aging KW - Degradation PY - 2022 AN - OPUS4-55877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf T1 - Alkali and alkaline earth zinc and lead borate glasses: Sintering and crystallization N2 - Glasses in the systems Me2O-ZnO-B2O3 with Me = Li, Na, K, Rb (MeZB), Na2O-ZnO-CuO-B2O3 (NZCuB), CaO-ZnO-B2O3 (CaZB), and Li2O-PbO-B2O3 (LPbB) as a reference, were studied by differential thermal analysis, dilatometry, rotational viscometry, and heating microscopy. A decrease of viscosity and sintering range was found with decreasing number of fourfold coordinated boron. The viscosity of the alkali zinc borate glasses varies only slightly. LPbB and CaZB stand out by their reduced and increased viscosities, respectively. Sodium, potassium, and calcium zinc borate glasses possess a fragility above 76. All glasses were sintered to full density before crystallization. Mostly binary zinc borate phases govern crystallization. A ternary crystalline phase was detected only in the potassium containing sample. The Weinberg glass stability parameter ranges between 0.07 and 0.12. This is caused by the presence of several crystalline phases and varying melting points of even the same crystalline phase in different glass matrices. KW - Alkali zinc borate glasses KW - Lead borate glasses KW - Viscosity KW - Sintering KW - Crystallization KW - Fragility PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556128 DO - https://doi.org/10.1016/j.nocx.2022.100116 SN - 2590-1591 VL - 15 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-55612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Schubert, Hendrik A1 - Günster, Jens T1 - Additive Manufacturing of advanced ceramics by layerwise slurry deposition and binder jetting (LSD-print) N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. Powder bed fusion and binder jetting especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder layer. This offers high flexibility in the ceramic feedstock used, especially concerning material and particle size. The LSD technology can be combined with binder jetting to develop the so-called “LSDprint” process for the additive manufacturing of ceramics. The LSDprint technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. In this presentation, the LSD process will be introduced and several examples of application ranging from silicate to high-performance ceramics will be shown. Recent developments towards the scale-up and industrialization of this process will be discussed, alongside future perspectives for the multi-material additive manufacturing. T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Layerwise slurry deposition KW - Laser induced slipcasting KW - Additive Manufacturing KW - Ceramics PY - 2022 AN - OPUS4-55543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne T1 - Alkali and alkaline earth zinc and lead borate glasses: Structure and properties N2 - Low melting Li2O-PbO-B2O3, Me2O-ZnO-B2O3, Me = Li, Na, K, Rb and CaO-ZnO-B2O3 glasses were studied with Raman and infrared spectroscopies to advance the structural understanding of zinc borate glasses as potential candidates for substitution of lead containing glasses. Although the effect of type of alkali ions on the number (N4) of fourfold coordinated boron (B4) in the glasses is small, the alkali ions direct the type of borate groups, i.e., pentaborate in lithium, sodium, and calcium zinc borate glasses, as well as diborate in potassium and rubidium containing ones. Both groups were simultaneously found in Li2O-PbO-B2O3. Alkali ions are mainly responsible for the formation of B4-units and metaborate. Zinc ions favorably compensate non-bridging oxygen and partially form ZnO4. With decreasing N4 and field strength of the alkali ions the atomic packing density, glass transition temper ature and Young’s Modulus also decrease. The coefficient of thermal expansion increases with decreasing N4. KW - Raman spectroscopy KW - IR spectroscopy KW - Alkali zinc borate glasses KW - Lead borate glasses KW - Physical properties KW - Young’s Modulus PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556109 DO - https://doi.org/10.1016/j.nocx.2022.100109 SN - 2590-1591 VL - 15 SP - 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-55610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Ambient and high-temperature mechanical properties of intermetallic Fe3Al alloys with complex borides N2 - Due to the increasing scarcity of critical raw materials current high-temperature materials are sought to be replaced by alloys based on more abundant metals. One possibility within the class of intermetallics are iron aluminides, which combine sustainability and cost-efficiency with the prospect of mass savings. Iron aluminides show competitive specific strength up to 700 °C and excellent creep and wet corrosion resistance by small additions of Mo, Ti and B. Nevertheless, a Mo content of above 2 at.% which is needed for optimum corrosion resistance results in enhanced brittleness, especially at room temperature. This is why alloys with these Mo fractions were only mechanically tested under compressive loading so far. Still, testing of static and creep properties under tensile loading is required for reliable component design. Besides high standards for crack-free processing, data acquisition for tensile loads is especially complicated by environmental embrittling effects for iron aluminides. To cope with these challenges, the AiF research project “WAFEAL – Materials applications for iron aluminides” was initiated. The main goal is to collect standardised data on ambient and high-temperature tensile properties and creep properties. Samples with a nominal composition of Fe-26Al-4Mo-0.5Ti-1B [at.%] were manufactured via centrifugal casting in ceramic shell moulds followed by machining. Heat treatment for homogenisation and final polishing were carried out where appropriate. A summary of the achieved tensile and creep properties such as yield and tensile strength, maximum elongation, secondary creep rate and stress exponents will be given. Results will be also discussed regarding the influence of temperature, stress level and microstructure on the damage mechanisms. Furthermore, the effect of different alloy concentrations on the mechanical response at different temperatures will be outlined within a small experimental series. T2 - MSE Congress 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Tensile data KW - High temperature mechanical properties KW - Creep data KW - Fractography PY - 2022 AN - OPUS4-55993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maaß, Robert T1 - The Federal Institute of Materials Research and Testing (BAM) – 150 Years of Enabling Scientific and Technological Breakthrough N2 - BAM! This issue of Advanced Engineering Materials celebrates 150 years of scientific and technical research at the interface between academia, industry and politics. Rooted in 1871 at the birth of the German Empire and at that time located in simple basements and barracks, the institutional development began around mechanical metallurgy of iron and steel and represents today a diverse portfolio of fore-front research that orients itself along tomorrow's societal challenges and long-term research horizons. KW - 150 Years KW - Adolf Martens PY - 2022 DO - https://doi.org/10.1002/adem.202200648 VL - 24 IS - 6 SP - 1 EP - 3 PB - Wiley-VCH GmbH AN - OPUS4-55388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker T1 - Fully-reversed fatigue behavior of scarf joint repairs for wind turbine blade shell applications N2 - Due to manufacturing imperfections which can propagate to damage under in-service loads, wind turbine rotor blades, made primarily of glass fiber reinforced polymers (GFRP), often fail significantly before their design life. To enable a quick and cost-effective return to service, localized repairs can be executed by technicians in the field, directly accessing the blades by suspended roping. Scarf joint repairs, shown to be highly efficient with a smooth load transition across angled joint walls and a restored aerodynamic profile, are the focus of this study. The damage mechanisms of these structures were examined under fully-reversed mechanical cyclic loading with a load ratio R = -1, which was made possible on the coupon scale by a custom designed anti-buckling support. The number of cycles to failure were compared across load levels. While the scarf joint ratio was held constant at 1:50, known from industry and literature to be a good compromise between restored mechanical properties and repair size, the layup sequence was varied between small-to-large and large-to-small. Hereby the effect of the presence of resin pockets and fiber orientation mismatch between the parent and repair structure on the failure mechanism as well as fatigue strength of ±45° GFRP scarf joint repair structures was studied. Strain development across the joint length was measured to assess stiffness degradation in addition to the fatigue strength recovery of scarf joint structures with respect to pristine reference specimens. Grayscale analysis was used to monitor the damage state leading to fracture across the specimens. Post-mortem fractography analysis with light microscopy described the global failure mechanisms as well as local damage distribution within the structure, all of which provided insight to critical variables in scarf joint GFRP structures under fully-reversed mechanical cyclic loading, allowing for the tailoring of such repairs on wind turbine blade shells for maximum restoration of service life. T2 - 20th European Conference on Composite Materials (ECCM20) CY - Lausanne, Switzerland DA - 26.06.2022 KW - Glass fiber reinforced polymers KW - Scarf repairs KW - Fatigue PY - 2022 AN - OPUS4-55638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönauer-Kamin, Daniela A1 - Hetzel, K. A1 - Moos, R. A1 - Bresch, Sophie T1 - Powder-Aerosol deposited (PAD) calcium manganate as n-type thermoelectric material N2 - Currently, calcium manganate CaMnO3 and calcium cobaltite Ca3Co4O9 are being investigated as n-type resp. p-type semiconducting materials as oxidation- and temperature-resistant thermoelectric materials for oxide multilayer thermoelectric generators (TEGs). In order to manufacture multilayer TEGs, pressure-assisted sintering processes at high temperatures are necessary to achieve optimal thermoelectric material properties. To realize TEGs in planar film technology, another method to obtain dense ceramic layers directly from the synthesized starting powders without a subsequent high temperature step is emerging recently: the powder aerosol deposition (PAD) method. In the present work, it is investigated whether PAD is suitable to produce dense ceramic films from Sm-doped CaMnO3 and Ca3Co4O9 powders. The resulting thermoelectric properties are characterized as a function of temperature. CaMnO3 powder could successfully be processed by PAD with resulting layer thicknesses of 5- 6 µm without any high-temperature sintering steps of the films. The electrical conductivity and the Seebeck coefficient of the films were determined in-plane from room temperature to 600 °C in air. The results show a Seebeck coefficient of around -200 µV/K, which is comparable to results of pressed and sintered bars. At 400 °C, the electrical conductivity corresponds to the conductivity of the bar. At higher temperatures the conductivity is better than with the reference. Below 400°C, the electrical conductivity is somewhat lower than that of the reference sample, a mild thermal treatment of the PAD layer improves it. It is expected that the thermal conductivity of the PAD film will be lower compared to the bars due to the nano-crystalline film morphology. This should result in a significantly increased ZT value for the PAD layers and a higher efficiency of the TEG. The work shows that both CaMnO3 and Ca3Co4O9 can be successfully processed by PAD, and the PAD films show comparable thermoelectric properties. T2 - 18th European Conference on Thermoelectrics CY - Barcelona, Spanien DA - 14.09.2022 KW - Film depositition KW - Calcium cobaltite PY - 2022 AN - OPUS4-55771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Müller, Ralf A1 - Nofz, Marianne A1 - Deubener, J. T1 - Liquid phase sintering of alkali zinc borate glass-bearing silver pastes for applications in photovoltaics and microelectronics N2 - Liquid phase sintering of glass bearing silver pastes used in photovoltaics and microelectronics is poorly understood. In particular, the role of different network modifiers acting in the glass component and the question of the most suitable atmospheric oxygen level during sintering are still under considerable debate. To tackle these issues, low-melting and lead-free X2O-ZnO-B2O3 glasses with X = Li, Na, K and Rb (LZB, NZB, KZB and RZB) were prepared. Infrared spectroscopy showed that the glass structure was similar to each other, while an increase of tetrahedrally coordinated boron with increasing field strength of the alkali was evident. In turn, the glass transition temperature (from differential thermal analysis) increased in the order: RZB (449 °C) < KZB (460 °C) < NZB (465 °C) < LZB (472 °C). Powders of each glass were mixed with organics to receive silver-glass-pastes containing 30 vol% glass and these were subjected to heating microscopy in air. Although similar onset temperatures of sintering were recorded for Ag-NZB and Ag-LZB glass pastes, and for Ag-RZB paste and KZB-Ag-paste, respectively, differences in the crystallization behavior and final densification were observed between the former and the latter group. These were translated in terms of differences in silver dissolution and reprecipitation among the two groups. Further, running the experiments in nitrogen gas showed that sintering of all pastes was considerably hampered. The slow-down of the sinter kinetics was found to be in line with the assumed lower oxidation and dissolution of silver ions into the glass-forming liquid. T2 - 26th International Congress on Glass CY - Berlin, Germany DA - 03.07.2022 KW - Silver metallization paste KW - Sintering KW - Glass KW - Alkali zinc borate glasses KW - Viscosity KW - Structure PY - 2022 AN - OPUS4-55728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Roßmöller-Felz, Mattis A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - In situ observation of silver precipitation in sodium zinc borate glass-forming melts N2 - Melting of Na2CO3-ZnO-B2O3 batches containing up to 16.8 wt% AgNO3 (5 mol% Ag2O in the target glass composition) was observed in situ by means of hot stage microscopy. In all batches metallic silver precipitation took place as most of the silver nitrate was reduced to metallic silver before Ag+ ions could be dissolved in the evolving borate melts. In turn, only traces of Ag+ (<300 ppmw) were dissolved in the sodium zinc borate glass melts under study. It is assumed that the oxidation to Ag+ was limited due to poor availability of reducible oxygen in the glass melts and presence of Na2O being a stronger base than Ag2O. Thus, the precipitated metallic silver formed droplets of different sizes. The larger droplets (d > 20 µm) were already settled at the bottom of the container and remained constant in size upon dwelling for 1 h at 1050 °C of about one hour and the subsequent cooling (45 K/min) to room temperature, whereas the smaller droplets (d < 20 µm) were mobile in the borate melt due to Marangoni and Stokes motion. For the latter droplets, coalescence was observed in situ. A growth of larger droplets at the expense of smaller ones, i.e., Ostwald ripening was also expected but could not be studied with the used experimental equipment. T2 - 26th International Congress on Glass CY - Berlin, Germany DA - 03.07.2022 KW - Glass melt KW - Silver KW - Sodium zinc borate glass KW - Hot stage microscopy KW - Precipitation PY - 2022 AN - OPUS4-55732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Junge, P. A1 - Stargardt, Patrick A1 - Kober, D. A1 - Greinacher, M. A1 - Rupprecht, C. T1 - Thermally Sprayed Al2O3 Ceramic Coatings for Electrical Insulation Applications N2 - Thermal spraying enables a fast and propelling way to additively deposit various ceramics as electric insulators, which are used in conditions where polymers are not suitable. Alumina (Al2O3) is among the most employed materials in the coating industry since it exhibits good dielectric properties, high hardness, high melting point while still being cost-effective. Various parameters (e.g. feedstock type, plasma gas mixture, plasma power) significantly influence the resulting coating in terms of microstructure, porosity, crystallinity, and degree of un-or molten particles. As a consequence, these parameters need to be investigated to estimate the impact on the electrical insulating properties of thermally sprayed alumina. This study focuses on the development of a novel electric insulation coating from Al2O3 feedstock powders deposited via atmospheric plasma spray (APS). The microstructure, porosity, and corresponding crystallographic phases have been analyzed with optical microscopy, XRD, and SEM images. To achieve an understanding of the parameters influencing the electrical insulation performance of the manufactured coatings, an in-depth analysis of the fundamental dielectric parameters e.g., DC resistance, breakdown strength, dielectric loss tangent, permittivity is presented. T2 - International Thermal Spray Conference and Exposition 2022 CY - Vienna, Austria DA - 04.05.2022 KW - Thermal Spray KW - Alumina KW - Dielectric properties PY - 2022 SP - 1 EP - 8 AN - OPUS4-55821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shakeel, Yusra A1 - Ávila Calderón, Luis Alexander A1 - Abdildina, Gulzaure A1 - Aversa, Rossella A1 - Blumenröhr, Nicolas A1 - Engstler, Michael A1 - Fell, Jonas A1 - Fritzen, Felix A1 - Hartmann, Volker A1 - Herrmann, Hans-Georg A1 - Jejkal, Thomas A1 - Joseph, Reetu A1 - Kirar, Ajay A1 - Laadhar, Amir A1 - Olbricht, Jürgen A1 - Ost, Philipp A1 - Pauly, Cristoph A1 - Pfeil, Andreas A1 - Roland, Michael A1 - Skrotzki, Birgit A1 - Soysal, Mehmet A1 - Stotzka, Rainer A1 - Vitali, Elias T1 - Creating Exemplary RDM Reference Datasets: Technical Process Overview N2 - The aim of the task area Materials Data Infrastructure (TA-MDI) of the consortium Materials Science and Engineering (MatWerk) of National Research Data Infrastructure (NFDI) is to shape scientific datasets obtained through the Participant Projects (PPs) from a data management perspective conforming to the FAIR principles, making use of the FAIR Digital Object (FAIR DO) concept, including structured metadata and storage solutions. As an example, they apply PP18 (BAM) as a use case to demonstrate the proposed technical workflow. T2 - All-Hands-on-Deck congress from the NFDI-MatWerk CY - Siegburg, Germany DA - 08.03.2023 KW - NFDI KW - Reference Dataset KW - FAIR KW - Research Data Management PY - 2022 AN - OPUS4-57149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen A1 - Kühn, Hans-Joachim ED - Schmauder, S. ED - Chawla, K. K. ED - Chawla, N. ED - Chen, W. ED - Kagawa, Y. T1 - High temperature mechanical testing of metals N2 - Performing mechanical tests at high temperatures is a nontrivial issue: Compared to room temperature testing, additional phenomena like time-dependent Deformation processes and oxidation effects raise the complexity of the material’s response, while more sophisticated test setups and additional control parameters increase the number of potential sources of error. To a large extent, these complications can be overcome by carefully following all recommendations given in the respective high temperature testing standards, but more comprehensive background information helps to identify points of specific importance in particular test campaigns. In this chapter, an overview is given on general high temperature testing issues like the appropriate choice of experimental equipment and key aspects of temperature measurement. In subsequent sections, the major static and dynamic high temperature test methods are reviewed and their Special features, as compared to testing at room temperature, are highlighted based on example data sets. Influences of specimen size and environmental effects are shortly outlined in a concluding section. In the whole chapter, a focus is set on testing of “classical” metallic high temperature materials, but many considerations are equally valid for testing of intermetallics, composites, and high temperature ceramics. KW - Creep, Creep Rupture, and Stress Rupture KW - Relaxation tests KW - Low Cycle Fatigue (LCF) KW - Thermomechanical Fatigue (TMF) KW - Fatigue crack propagation PY - 2018 SN - 978-981-10-6855-3 DO - https://doi.org/10.1007/978-981-10-6855-3_44-1 SP - 1 EP - 38 PB - Springer Nature Singapore Pte Ltd. CY - Singapore AN - OPUS4-44349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive Manufacturing of Dense Ceramics with Laser Induced Slip Casting (LIS) N2 - The possibility to produce dense monolithic ceramic parts with additive manufacturing is at the moment restricted to small parts with low wall thickness. Up to now, the additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - 42nd International Conference and Expo on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - Ceramics PY - 2018 AN - OPUS4-44182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Braun, Ulrike T1 - Fast identification of microplastics using thermal extractions methods N2 - A new and full automated system for the analysis of microplastics in environmental samples is presented. T2 - BAM-BfR Seminar 2018 CY - Berlin, Germany DA - 15.02.2018 KW - Mikroplastik KW - TED KW - Thermal degradation PY - 2018 AN - OPUS4-44179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Fast identification of microplastics using thermal extraction methods N2 - The presentation presents an overview about existing methods of microplastic detection with a special focus on thermo-analytical methods. T2 - Perkin Elmer Workshop Microplastics CY - Vienna, Austria DA - 11.01.2018 KW - Microplastics KW - TED-GC-MS KW - Analysis PY - 2018 AN - OPUS4-43803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Paulick, C. A1 - Kalinka, Gerhard T1 - Helical zirconia (TZP) springs manufacturing and testing under mechanical and thermal load N2 - Helical springs with a rectangular cross-section have been machined from sintered and grinded hollow cylinders with high geometrical precision and good reproducibility. Such springs made from tetragonal zirconia polycrystal (TZP) ceramic show excellent edge quality because of high fracture toughness and bending strength of the starting material. Hence, springs with desired geometric dimension and tailored spring constant can be manufactured for highly demanding applications at high temperatures and in harsh environments. Prior to any practical use, application limits of springs under mechanical and thermal load have to be analyzed. Therefore, different displacement experiments were carried out on the helical TZP springs. - Dynamic displacement tests at various temperatures from -15°C to +60°C using a piezo actor to load/unload springs with frequencies between 1 and 40 Hz: Springs remained undamaged and the spring constants were not altered, even after more than one million cycles of compression loading. - Long-time displacement measurements under static tensile loading at room temperature with a high-precision interferometer test facility: Significant spring elongation under constant strain was surprisingly proved over a period of many hours already at room temperature. - Creeping experiments for 48 h under static compression load at different temperatures up to 1000 °C: After cooling down and load removing no permanent length reduction of springs was observed for test temperatures up to 700 °C. However, reshaping of TZP springs by plastic deformation is possible at higher temperatures and opens up additional possibilities for spring design and manufacturing. T2 - German Ceramic Society, Annual Meeting 2018 CY - München, Germany DA - 09.04.2018 KW - Ceramic springs KW - Manufacturing KW - Mechanical and thermal testing PY - 2018 AN - OPUS4-44728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Cyclic fatigue behavior of glass fiber reinforced epoxy resin at ambient and elevated temperatures N2 - The fatigue behavior of ±45° glass fiber reinforced epoxy resin under cyclic mechanical and constant thermal loading is investigated in this study. Tests at three different temperature levels in the range 296 K to 343 K have been performed in order to create S-N curves for each temperature level. The specimen damage is measured in-situ using optical grayscale analysis. The characteristic damage state (CDS) is evaluated for each specimen. It is shown that the point of CDS is suitable as a failure criterion to compare the resulting S-N curves. With micromechanical formulations, the temperature-dependent matrix effort is calculated for each stress-temperature level. In terms of matrix effort, the longest fatigue life is reached at high temperatures, while, in terms of stress, the lowest fatigue life is reached at the highest temperatures. T2 - ECCM18 - 18th European conference on composite materials CY - Athens, Greece DA - 24.06.2018 KW - Composite KW - Fatigue KW - Thermomechanics KW - Residual stresses KW - Temperature PY - 2018 SP - 1 EP - 7 PB - European society for composite materials AN - OPUS4-45338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Cyclic fatigue behavior of glass fiber reinforced epoxy resin at ambient and elevated temperatures N2 - The fatigue behavior of ±45° glass fiber reinforced epoxy resin under cyclic mechanical and constant thermal loading is investigated in this study. Tests at three different temperature levels in the range 296 K to 343 K have been performed in order to create S-N curves for each temperature level. The specimen damage is measured in-situ using optical grayscale analysis. The characteristic damage state (CDS) is evaluated for each specimen. It is shown that the point of CDS is suitable as a failure criterion to compare the resulting S-N curves. With micromechanical formulations, the temperature-dependent matrix effort is calculated for each stress-temperature level. In terms of matrix effort, the longest fatigue life is reached at high temperatures, while, in terms of stress, the lowest fatigue life is reached at the highest temperatures. T2 - ECCM18 - 18th European conference on composite materials CY - Athens, Greece DA - 24.06.2018 KW - Composite KW - Fatigue KW - Thermomechanics KW - Residual stresses KW - Temperature PY - 2018 AN - OPUS4-45346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Nielow, D. A1 - Schumacher, David A1 - Lange, A. A1 - Hentschel, M.P. A1 - Redmer, Bernhard A1 - Ewert, U. A1 - Bruno, Giovanni T1 - X-ray laminographic inspection of sandwich shell segments for wind turbine rotor blades N2 - 3D structural investigations are described by X-ray laminography studies of sandwich shell segments, made of a PVC foam core, covered by non-crimp fabric glass fibre composite lay-ups processed by vacuum assisted resin infusion of epoxy. The specific scope of this study is to image transversal flaws within the foam core (joints) and of single ply overlaps. Test flaws were purposely implemented in order to simulate typical failure under cyclic load. In a dedicated test rig for shell structures, the flaw evolution/propagation is monitored by thermography and optical 3D inspection of deformation. Due to the unfavourable preconditions for classical computed tomography as of large aspect ratio, the samples were investigated by coplanar translational laminography. Its limited range of observation angles of ± 45°, results in anisotropic artefacts about the normal to the sample surface, but the typical flaws are well visualized in the as-prepared state, in a state of early damage, and in the repaired state. T2 - 12th European conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - X-ray laminography KW - Wind turbine KW - Rotor blade PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453931 SN - 978-91-639-6217-2 SP - 1 EP - 8 AN - OPUS4-45393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in the bulk of IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - ECNDT 2018 CY - Göteborg, Sweden DA - 11.06.2018 KW - Residual stress KW - Selective laser melting KW - Neutron diffraction KW - IN718 PY - 2018 UR - http://cdn.ecndt2018.com/wp-content/uploads/2018/05/ecndt-0315-2018-File001.pdf SP - 1 AN - OPUS4-45325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Nielow, D. A1 - Schumacher, David A1 - Lange, A. A1 - Hentschel, M.P. A1 - Redmer, Bernhard A1 - Ewert, U. A1 - Bruno, Giovanni T1 - X-ray laminographic inspection of sandwich shell segments for wind turbine rotor blades N2 - 3D structural investigations are described by X-ray laminography studies of sandwich shell segments, made of a PVC foam core, covered by non-crimp fabric glass fibre composite lay-ups processed by vacuum assisted resin infusion of epoxy. The specific scope of this study is to image transversal flaws within the foam core (joints) and of single ply overlaps. Test flaws were purposely implemented in order to simulate typical failure under cyclic load. In a dedicated test rig for shell structures, the flaw evolution/propagation is monitored by thermography and optical 3D inspection of deformation. Due to the unfavourable preconditions for classical computed tomography as of large aspect ratio, the samples were investigated by coplanar translational laminography. Its limited range of observation angles of ± 45°, results in anisotropic artefacts about the normal to the sample surface, but the typical flaws are well visualized in the as-prepared state, in a state of early damage, and in the repaired state. T2 - 12th European Conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - X-ray laminography KW - Wind turbine KW - Rotor blade PY - 2018 AN - OPUS4-45438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Jekel, M. A1 - Ruhl, A. S. T1 - Quantification and characterisation of activated carbon in activated sludge by thermogravimetric and evolved gas analyses N2 - Advanced wastewater treatment with powdered activated carbon (PAC) leads to a spread of PAC into different purification stages of wastewater treatment plants (WWTP) due to recirculation and filter back-wash. Currently, no methods for quantification of PAC in activated sludge are available. In this study, PAC containing activated sludge from four WWTP were examined by two-step thermogravimetric analysis (TGA) with heating up to 600°C in N2 and subsequently in synthetic air. Direct quantification of PAC according to temperature specific weight losses was possible for one WWTP. Quantification by combining specific mass losses was found to be an alternative direct method, with a detection limit of 1.2% PAC in dry sample mass. Additionally, evolved gas analysis (EGA) by infrared-spectroscopy (FTIR) during TGA revealed interaction mechanisms between PAC and activated sludge. Aliphatic compounds from activated sludge were identified as major substances influenced by PAC. In derivative thermogravimetry (DTG), a typical double peak at approximately 300°C was found to be related to carbonylic species with increased evolution of acetic acid in aged activated sludge. TGA and EGA are promising tools to understand, control and optimise the application of PAC in advanced wastewater treatment. KW - Advanced wastewater treatment KW - Powdered activated carbon KW - Sewage treatment plant KW - Thermoanalysis KW - Thermogravimetry KW - Fourier transform infrared spectroscopy PY - 2018 UR - http://www.sciencedirect.com/science/article/pii/S2213343718301313 DO - https://doi.org/10.1016/j.jece.2018.03.010 SN - 2213-3437 VL - 6 IS - 2 SP - 2222 EP - 2231 PB - Elsevier CY - Amsterdam AN - OPUS4-44978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mueller, Axel A1 - Duemichen, E. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Scholz, K. A1 - Bannick, C.-G. T1 - Analysing microplastics in samples of terrestrial systems N2 - The presence, fate and effects of microplastics (MP) in terrestrial systems are largely unknown. The few existing studies investigated either agricultural or industrial sites. Several techniques were used for analysis, primarly spectroscopic methods such as FTIR or Raman. Sample pretreatments like density separations are common to reduce matrix. A lack of harmonised and standardised sampling instructions for microplastic investigations in the terrestrial area was identified as particular critical, because different studies are barely comparable. The aim of the project is to develop a proposal for a harmonized procedure for sampling, sample preparation and the detection of microplastics in terrestrial matrices for total content determination. By detecting specific degradation products the thermal extraction desorption gas chromatography mass spectrometry (TED-GC-MS) allows a direct determination of mass content of MP in environmental samples. T2 - SETAC 2018 CY - Rome, Italy DA - 13.05.2018 KW - Microplastics KW - Soil sample KW - TED-GC-MS KW - Analysis PY - 2018 AN - OPUS4-44988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - LSD- 3D printing: Powder based Additive Manufacturing, from porcelain to technical ceramics N2 - Powder based Additive Manufacturing (AM) processes are widely used for metallic and polymeric materials, but rarely commercially used for ceramic materials, especially for technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. Technical ceramics powders are in fact typically very fine and poorly flowable, which makes them not suitable for AM. The layerwise slurry deposition (LSD) is an innovative process for the deposition of powder layers with a high packing density for powder based AM. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder This allows the use of fine powders and achieves high packing density (55-60%) in the layers after drying. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to *Denotes Presenter 42nd International Conference & Exposition on Advanced Ceramics & Composites 127 Abstracts the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. This presentation will give an overview of the milestones in the development of this technology, with focus on the latest results applied both to silicate and to technical ceramics. T2 - 42nd International Conference & Exposition on Advanced Ceramics and Composites CY - Daytona, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - 3D printing KW - Ceramic KW - Alumina KW - Porcelain KW - Silicon Carbide PY - 2018 AN - OPUS4-44017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Correlation of the precipitate size evolution and the creep rate of the aluminum alloy EN AW 2618A at 190 °C N2 - Ther results of research on correlation of precipitate size Evolution and the creep rate of the Aluminium alloy EN AW 2618A at 190 °C was presented. T2 - ICAA16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Creep KW - Aluminium KW - Coarsening PY - 2018 AN - OPUS4-45283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Skrotzki, Birgit T1 - Correlation of the precipitate size evolution and the creep rate of the aluminium alloy EN AW 2618A at 190 °C N2 - A short description of the work done on the topic "Correlation of the precipitate size evolution and the creep rate of the aluminium alloy EN AW 2618A at 190 °C" is given. T2 - International Conference on Aluminium Alloys 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Degradation KW - Aluminium KW - Creep KW - Coarsening PY - 2018 SN - 978-1-926872-41-4 SP - 99 AN - OPUS4-45284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Augenstein, E. A1 - Skrotzki, Birgit T1 - Long term ageing of alloy 2618A N2 - The result of an Investigation of the "Long term ageing of alloy 2618A" are discussed. T2 - International Conference on Aluminium Alloys 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2818A KW - Aluminium KW - Coarsening KW - Transmission electron microscopy KW - S-phase PY - 2018 SP - Paper 400101 AN - OPUS4-45287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Augenstein, E. A1 - Skrotzki, Birgit T1 - Long term ageing of alloy 2618A N2 - Results of the in vestigation of the "Long term ageing of alloy 2618A" were presented. T2 - ICAA 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Aluminium KW - Coarsening KW - Transmission electron microscopy KW - S-phase PY - 2018 AN - OPUS4-45288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Bokstein, B. A1 - Svetlov, I. A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. A1 - Viguier, B. A1 - Poquillon, D. T1 - A vacancy model for pore annihilation during hot isostatic pressing of single-crystal nickel-base superalloys N2 - An improved diffusion model is proposed for pore annihilation during HIP of single-crystal nickel-base superalloys. The model assumes the pore dissolution by emission of vacancies and their sink to the low angle boundaries. Calculation, considering distribution of the pore sizes, predicts the kinetics of pore annihilation similar to the experimental one. KW - Single crystal superalloys KW - Hot isostatic pressing (HIP) KW - Porosity KW - Diffusion KW - Vacancies PY - 2018 DO - https://doi.org/10.1134/S2075113318010100 SN - 2075-1133 VL - 9 IS - 1 SP - 57 EP - 65 PB - Pleiades Publishing, Ltd. AN - OPUS4-43990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Güther, Wolfgang A1 - Rabe, Torsten T1 - Strategies to improve spray dried multi-component granules N2 - Dry pressing of ceramic materials requires homogeneously soft granules with good flowability to allow rapid die filling and to avoid packing defects. Spray-drying granulation appears to be the best method for obtaining granules with high flowability in industrial scale. But, strength reducing internal microstructural defects caused by spray-dried granules with hollow and hard shells are often observed using nano and/or multi-component starting powders. Using the example of a ZTA composite, the potential of slurry optimization, ultrasound atomization and infrared drying for better granule properties and compaction behavior were investigated. Starting granules produced in a conventional spray dryer (Niro, Denmark) with a two fluid nozzle showed typical defects like large central pores and dimples. The early step of slurry preparation already possesses an essential optimization possibility in the form of stability adjustments. Granule compaction was clearly improved upon a specific reduction in slurry stability. The second optimization opportunity to improve the granule quality was the atomization step. Implementation of an ultrasound atomizing unit into the conventional spray dryer positively affected granule size distribution and therefor flowability and as well granule yield. But, a combination of both process optimizations delivered the best sinter bodies with highest density and strength due to further reduction in maximum size and fraction of pores. As last step of a spray drying process, the drying is the focus of further investigations. A current setup implying a spray dryer prototype utilizes stacked infrared heater in a countercurrent setup delivering a further increase in granule yield and enduring spraying process stability. T2 - 93. Jahrestagung der Deutschen Keramischen Gesellschaft CY - München, Germany DA - 10.04.2018 KW - Spray drying KW - Granules KW - Destabilization KW - Ultrasound PY - 2018 AN - OPUS4-44700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Schriever, Sina A1 - Augenstein, E. A1 - Karlin, J. A1 - Piesker, Benjamin A1 - Schweizer, C. A1 - Skrotzki, Birgit T1 - Lifetime Assessment of Aluminium radial compressor wheels considering material ageing N2 - The results of the project "Lifetime Assessment of Aluminium radial compressor wheels considering material ageing" were presented. T2 - FVV Frühjahrstagung 2018 CY - Bad Neuenahr, Germany DA - 22.03.2018 KW - Alloy 2618A KW - Degradation KW - S-phase KW - Dark-field transmission electron microscopy KW - Aluminum PY - 2018 AN - OPUS4-44706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Failure of PE-HD induced by liquid media (ESC) N2 - As the well-known damage mechanisms slow crack growth (SCG) and environmental stress cracking (ESC) are the major causes for possible failure of polyolefin-based materials, especially for PE-HD, they are highly relevant and need to be considered thoroughly. Furthermore, due to slight but perceptible differences in damaging effect, a differentiation between SCG and ESC is expedient. SCG appears in “inert” or “neutral” media without a decisive influence of the surrounding medium whereas ESC occurs in “active” media, which influence the failure behavior and time to failure crucially. To characterize the inherent resistance of the material against those damage mechanisms, the well-established Full-Notch Creep Test (FNCT) is used. In this study, the FNCT – usually applied according to ISO 16770 [3] using a few universal model liquid media and mainly for pipe materials – is extended by investigations with appropriate parameters of selected relevant PE-HD container materials also in real media, such as the topical fuels diesel and biodiesel. The investigations were performed using a novel FNCT-device with 12 individual sub-stations, each equipped with individual electronic stress and temperature control and continuous online monitoring of the specimen elongation. Especially, mechanical stress and temperature were varied systematically during FNCT and time to failure values, time-dependent elongation data as well as detailed fracture surface analysis by laser scanning microscopy (LSM) were combined for the first time (Fig. 1). Particularly, the fracture surface analysis provides a sound basis to characterize failure behavior, mainly regarding the balance between brittle crack propagation and ductile deformation. Therefore, fracture surface analysis is an essential tool for a decent assessment of SCG and ESC by FNCT measurements. T2 - 17th International Conference on Deformation, Yield and Fracture of Polymers (DYFP) CY - Kerkrade, The Netherlands DA - 25.03.2018 KW - Environmental stress cracking (ESC) KW - PE-HD KW - Full Notch Creep Test (FNCT) KW - Imaging techniques KW - Brittle / ductile fracture behavior KW - Crack propagation analysis PY - 2018 AN - OPUS4-44617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Cabeza, Sandra T1 - Influence of deposition hatch length on residual stress in selective laser melted Inconel 718 N2 - The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - WAM2018 CY - Grenoble, France DA - 09.04.2018 KW - Additive manufacturing KW - SLM KW - Residual stress KW - In718 PY - 2018 AN - OPUS4-44694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Surface-induced Crystallization of Glass N2 - Up to now, the mechanisms of surface nucleation and surface-induced texture formation are far from being understood. Corresponding phenomena are discussed hypothetically or even controversial, and related studies are restricted to very few glasses. In this talk the state of the art on mechanisms of surface nucleation are summarized. On one hand, mechanical damaged surfaces show high nucleation activity, at which the nucleation occurs at convex tips and edges preferentially. On the other hand, solid foreign particles are dominant nucleation sites at low damaged surfaces. They enable nucleation at temperatures even far above Tg. The nucleation activity of the particles is substantially controlled by their thermal and chemical durability. But no systematic studies on initially oriented crystal growth or nucleation from defined active nucleation sites have been pursued, so far. Therefore, the main objective of a just started project is to advance the basic understanding of the mechanisms of surface-induced microstructure formation in glass ceramics. We shall answer the question whether preferred orientation of surface crystals is the result of oriented nucleation or caused by other orientation selection mechanisms acting during early crystal growth. In both cases, crystal orientation may be caused by the orientation of the glass surface itself or the anisotropy and orientation of active surface nucleation defects. As a first attempt we focused on possible reorientation of separately growing surface crystals during early crystal growth. First results show clear evidence that separately growing crystals can reorient themselves as they are going to impinge each other. T2 - Glasforum der Deutschen Glastechnischen Gesellschaft (DGG) CY - Würzburg, Germany DA - 11.06.2018 KW - Crystallization KW - Silicate Glasses KW - Surface Nucleation PY - 2018 AN - OPUS4-45593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Feldmann, Ines A1 - Brauer, D.S. T1 - Sintering ability of fluoride-containing bioactive glass powder N2 - Sintered bioactive glass scaffolds of defined shape and porosity, e.g. made via additive manufacturing, must provide sufficient bioactivity and sinterability. As higher bioactivity is often linked to high corrosion and crystallization tendency, a certain compromise between sintering ability and bioactivity is therefore required. Groh et al. developed a fluoride-containing bioactive glass (F3), which allows fiber drawing and shows a bioactivity well comparable to that of Bioglass®45S5. To study whether and to what extent the sinterability of F3 glass powder is controlled by particle size, coarse and fine F3 glass powders (300-310µm and 0-32µm) were prepared by crushing, sieving and milling. Sintering, degassing and phase transformation during heating were studied with heating microscopy, vacuum hot extraction (VHE), DTA, XRD, and SEM. For the coarse glass powder, sintering proceeds slowly and is limited by surface crystallization of primary Na2CaSi2O6 crystals. Although the crystallization onset of Na2CaSi2O6 is shifted to lower temperature, full densification is attained for the fine powder. This finding indicate that certain porosity might be tuned via particle size variation. Above 900°C, intensive foaming is evident for the fine powder. VHE studies revealed that carbon species are the main foaming source. T2 - 92. Glastechnische Tagung CY - Bayreuth, Germany DA - 28.05.2018 KW - Sintering KW - Bioactive glass KW - Crystallization PY - 2018 AN - OPUS4-45568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaiser, T. M. A1 - Braune, C. A1 - Kalinka, Gerhard A1 - Schulz-Kornas, E. T1 - Nano-indentation of native phytoliths and dental tissues: implications for herbivore-plant combat and dental wear proxies N2 - Tooth wear induced by abrasive particles is a key process affecting dental function and life expectancy in mammals. Abrasive particles may be plant endogenous opal phytoliths, exogene wind-blown quartz dust or rain borne mineral particles ingested by mammals. Nano-indentation hardness of abrasive particles and dental tissues is a significant yet not fully established parameter of this tribological system. We provide consistent nano-indentation hardness data for some of the major antagonists in the dental tribosystem (tooth enamel, tooth dentine and opaline phytoliths from silica controlled cultivation). All indentation data were gathered from native tissues under stable and controlled conditions and thus maximize comparability to natural systems. Here we show that native (hydrated) wild boar enamel exceeds any hardness measures known for dry herbivore tooth enamel by at least 3 GPa. The native tooth enamel is not necessarily softer then environmental quartz grit, although there is little overlap. The native hardness of the tooth enamel exceeds that of any silica phytolith hardness recently published. Further, we find that native reed phytoliths equal native suine dentine in hardness, but does not exceed native suine enamel. We also find that native suine enamel is significantly harder than dry enamel and dry phytoliths are harder than native phytoliths. Our data challenge the claim that the culprit of tooth wear may be the food we chew, but suggest instead that wear may relates more to exogenous than endogenous abrasives. KW - Phytolith KW - Indentation hardness KW - Enamel KW - Dentine KW - Tooth wear PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-451417 UR - http://zoobank.org/5C7DBB2B-B27D-4CE6-9656-33C4A0DA0F39 DO - https://doi.org/10.3897/evolsyst.2.22678 VL - 2 SP - 55 EP - 63 PB - PENSOFT CY - USA AN - OPUS4-45141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Lindemann, Franziska A1 - Gemeinert, Marion A1 - Wohlleben, W. T1 - Advanced screening method using volume-specific surface area (VSSA) for nanomaterial classification of powders N2 - The EU recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. Within the European Project NanoDefine (www.nanodefine.eu) a two-tier approach has been developed, whereby firstly a screening method is applied for the rough classification as a nanomaterial or non-nanomaterial, and for borderline cases a confirmatory method (imaging methods or field flow fractionation) must be considered. One of the measurement methods well suited to particulate powder is the determination of volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nanomaterial or non-nanomaterial. The correct identification of a nanomaterial by VSSA method (positive test) is accepted by the EU recommendation. However, the application of the VSSA method is associated also by some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape. For particles containing micro-pores or having a microporous coating, false positive results will be produced. Furthermore, broad particle size distributions – as typically for ceramic materials – as well as multi-modal size distributions make necessary to adjust the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach will be tested (in relation with SEM and TEM measurements) in order to expand the actual knowledge and improve the method. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft mit Symposium Hochleistungskeramik CY - München, Germany DA - 10.04.2018 KW - VSSA KW - Nanoparticles PY - 2018 AN - OPUS4-45097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Lindemann, Franziska A1 - Wohlleben, W. T1 - Advanced screening method using volume-specific surface area (VSSA) for nanomaterial identification of powders N2 - The EC’s recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. However, it has been recently demonstrated that the implementation of this definition for regulatory purposes is conditioned by the large deviations between the results obtained by different sizing methods or due to practical reasons such as high costs and time-consuming (SEM, TEM). Within the European project NanoDefine (www.nanodefine.eu) a two-tier approach has been developed, whereby firstly a screening method is applied for the rough classification as a nano-/non-nanomaterial, and for borderline cases a confirmatory method (imaging methods or field flow fractionation) must be considered. One of the measurement methods well suited to particulate powder is the determination of volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nano- or non-nanomaterial. The correct identification of a nanomaterial by VSSA method is accepted by the EU recommendation. However, the application of the VSSA method is associated also by some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape, so that it changes considerably with the number of nano-dimensions of the particles. For particles containing micro-pores or having a microporous coating false positive results will be produced. Furthermore, broad particle size distributions make necessary to adjust the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach will be tested (in relation with SEM and TEM measurements) in order to expand the actual knowledge and to improve this good available and agglomeration tolerant method. T2 - Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - VSSA KW - Nanomaterial screening KW - Nano-powder characterization PY - 2018 AN - OPUS4-45099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Evolution of CFRP stress cracks observed by in situ X-ray refractive imaging N2 - Modern air-liners and rotor blades of wind turbines are basically made of fiber reinforced plastics (FRP). Their failure heavily impairs the serviceability and the operational safety. Consequently, knowledge of the failure behavior under static and cyclic loads is of great interest to estimate the operational strength and to compare the performance of different materials. Ideally, the damage evolution under operational load is determined with in-situ non-destructive testing techniques. Here, we report on in-situ synchrotron X-ray imaging of tensile stress induced cracks in carbon fiber reinforced plastics (CFRP) due to inter fiber failure. An in-house designed compact-tensile testing machine with a load range up to 15 kN was integrated into the beam path. Since conventional radiographs do not reveal sufficient contrast to distinct cracks due to inter fiber failure and micro cracking from fiber bundles, the Diffraction Enhanced Imaging technique (DEI) is applied in order to separate primary and scattered (refracted) radiation by means of an analyzer crystal. In the laboratory, scanning X-ray refraction topography of CFRP has been applied long before but it comes along with several disadvantages: the long total measuring time hampers real time (in-situ) measurements and the required small beam size hinders end-to-end imaging. The introduced technique overcomes both drawbacks. Imaging and tensile test rig are run unsynchronized at the greatest possible frame rate (0.7 s-1 at 28.8 µm pixel size) and smallest possible strain rate (5.5∙10-4 s-1). For 0°/90° non-crimped fabrics (ncf) the first inter fiber cracks occurred at 380 MPa (strain 0.7 %). Prior to failure at about 760 MPa (strain 2.0 %) we observe the evolution of a nearly equidistant 1 mm grid of cracks running across the entire sample in the fully damaged state before total failure. T2 - 41st Risø International Symposium on Materials Science - Materials and Design for Next Generation Wind Turbine Blades CY - Online meeting DA - 07.09.2020 KW - X-ray refraction KW - Diffraction Enhanced Imaging KW - Carbon Fiber Reinforced Plastics KW - In situ tensile test KW - Crack evolution PY - 2020 AN - OPUS4-51223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilbig, Janka A1 - Borges de Oliveira, F. A1 - Obaton, A.-F. A1 - Schwentenwein, M. A1 - Rübner, Katrin A1 - Günster, Jens T1 - Defect detection in additively manufactured lattices N2 - This paper investigates fast and inexpensive measurement methods for defect detection in parts produced by Additive Manufacturing (AM) with special focus on lattice parts made of ceramics. By Lithography-based Ceramic Manufacturing, parts were built both without defects and with typical defects intentionally introduced. These defects were investigated and confirmed by industrial X-ray Computed Tomography. Alternative inexpensive methods were applied afterwards on the parts such as weighing, volume determination by Archimedes method and gas permeability measurement. The results showed, that defects resulting in around 20% of change in volume and mass could be separated from parts free of defects by determination of mass or volume. Minor defects were not detectable as they were in the range of process-related fluctuations. Permeability measurement did not allow to safely identify parts with defects. The measurement methods investigated can be easily integrated in AM process chains to support quality control. KW - Additive manufacturing KW - Quality assurance KW - Defect detection KW - Lattices KW - Ceramics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513547 DO - https://doi.org/10.1016/j.oceram.2020.100020 VL - 3 SP - 100020 PB - Elsevier Ltd. AN - OPUS4-51354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for a yield function description of additively manufactured parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. From virtual experiments, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - Workshop on Additive Manufacturing, BAM CY - Berlin, Germany DA - 13.05.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-48064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Nano Powder - a Challenge for Granulometry N2 - If the particle size decreases, the ratio of surface area to volume increases considerably. This provides benefits for all surface-driven processes that run faster or at lower temperatures than larger particles. However, handling and characterization of the nanopowders are much more difficult. Particularly polydisperse powders with irregular shape, as grinding products, represent a challenge. Granulometry in the submicron and nanoscale often leads to incorrect results without knowledge of particle morphology. This presentation demonstrates potentials of using the volume-specific surface area (SV or VSSA) in the granulometric characterization of nanopowders, for instance, correlations between the volume-specific surface area and the median particle size are discussed considering the particle morphology and the model of the logarithmic normal distribution. Moreover, the presentation deals with the optimal dispersion of nanopowders during sample preparation. Indirect ultrasound device with defined cooling was developed to prevent both contamination by sonotrode abrasion and sample changes by heat. Successful granulometric characterization of nanopowders demands both improved dispersion technology and very often an effective combination of two or more measurement methods. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft CY - Leoben, Austria DA - 06.05.2019 KW - Nano screening KW - VSSA KW - Nano particle KW - Particle size PY - 2019 AN - OPUS4-47976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Rabe, Torsten T1 - Superior granule properties by spray drying controlled destabilized slurries with ultrasound N2 - Homogeneous introduction of organic additives is a key of ceramic powder processing. Addition of organics to ceramic slurries holds advantages compared to dry processing like organic content reduction and a more homogeneous additive distribution on the particle surface. Investigations of the alumina slurries were primarily based on zeta potential measurements and sedimentation analysis by optical centrifugation. Both methods were combined to determine a suitable additive type, amount and composition, whereas the spray drying suitability has been ensured by viscosity measurements. Granules, yielded by spray drying of such ideally dispersed alumina slurries, are mostly hollow and possess a hard shell. Those granules cannot easily be processed and can only hardly be destroyed in the following shaping step, leading to sinter bodies with many defects and poor strength and density. The precise slurry destabilization, carried out after ideally dispersing the ceramic powder, shows a strong influence on the drying behavior of the granules and hence on the granule properties. A promising degree of destabilization and partial flocculation was quantified by optical centrifugation and resulted in improved granule properties. Spray drying the destabilized alumina slurries yielded homogeneous “non-hollow” granules without the above mentioned hard shell. Sample bodies produced of these granules exhibited a reduction of defect size and number, leading to better results for sinter body density and strength. The positive effect of the slurry destabilization has been further improved, by exchanging the atomizing unit from a two-fluid one to an ultrasound atomizer with only minor slurry adjustments necessary. The controlled destabilization and ultrasound atomization of the ceramic slurry show excellent transferability for zirconia and even ZTA (zirconia toughened alumina) composite materials. T2 - Partec 2019 CY - Nuremberg, Germany DA - 09.04.2019 KW - Destabilization KW - Slurry KW - Ultrasound KW - Atomization PY - 2019 AN - OPUS4-48291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Popiela, Bartosz A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Restoration of structural integrity – a comparison of various repair concepts for wind turbine rotor blade shells N2 - Localized patches are a cost- and time-effective method for repairing fiber-reinforced polymer (FRP) sandwich wind turbine rotor blade shells. To increase the understanding of their effect on the fatigue of the blades, this study examines the effect of various layup methods of localized repair patches on the structural integrity of composite sandwich structures. Manufactured with the vacuum-assisted resin infusion (VARI) process, the shell test specimens are produced as a curved structure with glass fiber reinforced polymer (GFRP) sandwiching a polyvinyl chloride (PVC) foam core. Patch repairs are then introduced with varying layup techniques, and material properties are examined with cyclic fatigue tests. The transition region between patch and parent material is studied in greater detail with finite element method (FEM) simulations, with a focus on the effect of fiber orientation mismatch. Damage onset, crack development, and eventual failure are monitored with in-situ non-destructive testing methods to develop a robust understanding of the effects of repair concepts on material stiffness and strength. T2 - SMAR 2019 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Lightweight materials KW - Glass fiber reinforced polymers KW - Sandwich KW - Wind turbine blades PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-482170 SP - 1 EP - 8 PB - German Society for Non-Destructive Testing (DGZfP e.V.) AN - OPUS4-48217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Agea-Blanco, Boris A1 - Blaeß, Carsten A1 - Waurischk, Tina T1 - Sintering and foaming of silicate glass powders N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites, glass bonded ceramics or pastes. Powder processing, however, can substantially affect sinterability, e.g. by promoting surface crystallization. On the other hand, densification can be hindered by gas bubble formation for slow crystallizing glass powders. Against this background, we studied sintering and foaming of silicate glass powders with different crystallization tendency for wet milling and dry milling in air, Ar, N2, and CO2 by means of heating microscopy, DTA, Vacuum Hot Extraction (VHE), SEM, IR spectroscopy, XPS, and ToF-SIMS. In any case, foaming activity increased significantly with progressive milling. For moderately milled glass powders, subsequent storage in air could also promote foaming. Contrarily, foaming could be substantially reduced by milling in water and 10 wt% HCl. Although all powder compacts were uniaxially pressed and sintered in air, foaming was significantly affected by different milling atmosphere and was found most pronounced for milling in CO2 atmosphere. Conformingly, VHE studies revealed that foaming is mainly driven by carbonaceous species, even for powders milled in other gases. Current results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. T2 - IMAPS/ACerS 15th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT 2019) CY - Shanghai, China DA - 16.04.2019 KW - Glass powder KW - Sintering KW - Foaming PY - 2019 AN - OPUS4-48196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Tielemann, Christopher A1 - Busch, R. A1 - Patzig, C. A1 - Müller, Ralf A1 - Höche, T. T1 - Oriented surface crystallization in 18BaO·22CaO·60SiO2 and MgO·CaO·2SiO2 glasses N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. The vast majority of previous work does not consider possible effects of surface preparation and surrounding atmosphere. Moreover, very few observations of surface crystal orientation were made on separately grown crystals. The aim of our project is to advance the basic understanding of oriented surface crystallization, e.g. whether preferred orientation of surface crystals results from oriented nucleation or reorientation mechanisms during early crystal growth. In both cases, crystal orientation may reflect the orientation of the glass surface or that of anisotropic active surface nucleation sites. Therefore, we focus on orientation of surface crystals separately growing under controlled conditions. First results on diopside (MgCaSi2O6) and walstromite (BaCa2Si3O9) crystals growing from 18BaO·22CaO·60SiO2 and MgO·CaO·2SiO2 glass surfaces, respectively, indicate that different orientation mechanisms may occur. Neighbored walstromite crystals were found to gradually reorient themselves when they are going to impinge each other during stepwise isothermal treatments (log η = 4,5 Pa*s) of polished glass samples. Nevertheless, no preferred crystal orientation was evident for separate crystals. For diopside crystals growing from polished glass surfaces (1 μm diamond lapping foil), strong preferred orientation was observed for 3.5 to 85 min annealing at 850 °C. Electron Backscatter Diffraction (EBSD) studies showed that the c-axis of surface crystals is oriented parallel to the glass surface and that separated diopside crystals as small as 600 nm are already oriented. Studies on glass surfaces, polished with diamond lapping foils starting from 16 μm down to 1 μm grain, revealed that crystal orientation may scatter arround this preferential orientation and that this scatter progressively decreases with decreasing polishing grain size. T2 - 93rd Annual Meeting of the German Society of Glass Technology (DGG) in conjunction with the French Union for Science and Glass Technology (USTV) Annual Meeting CY - Nuremberg, Germany DA - 13.05.2019 KW - Surface crystallization KW - Orientation KW - Glass KW - Diopside PY - 2019 AN - OPUS4-48198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Addressing ESC using FNCT enhanced by optical fracture surface analysis N2 - During their lifetime, polymer components subjected to mechanical loads and environmental influences show a loss of their mechanical properties required for their specific applications. In this respect, the craze-crack damage mechanism slow crack growth (SCG) is relevant for PE-HD components used in high-performance applications such as pipes and containers for the storage and transport of dangerous goods. SCG is considered to be the major failure mechanism in polyolefins and it typically occurs suddenly and unexpectedly. Due to the fields of application, SCG is a safety relevant issue. To test for the resistance of PE-HD pipe and container materials against SCG, the full-notch creep test (FNCT) is widely applied in Europe. In this study, SCG phenomena in PE-HD are investigated in detail based on an improved FNCT, especially including the consideration of the influence of environmental liquids effecting the damage mechanism. Using an enhanced fracture surface and a crack propagation analysis with imaging techniques such as light microscopy (LM), laser scanning microscopy (LSM), X-ray computed tomography (CT-scan) and scanning electron microscopy (SEM), detailed data concerning SCG are obtained. The combined application of FNCT and such imaging techniques is explicitly advantageous and recommended to gain important information on damage occurring to PE-HD induced by mechanical stress and the influence of environmental liquids, which is essential within the Fourth Industry Revolution. T2 - PPS Europe-Africa 2019 Regional Conference (PPS 2019) CY - Pretoria, South Africa DA - 18.11.2019 KW - Polyethylene, PE-HD KW - Full-Notch Creep Test (FNCT) KW - Fracture surface analysis KW - Slow crack growth KW - Environmental stress cracking KW - Laser Scanning Microscopy (LSM) KW - Scanning Electron Microscopy (SEM) PY - 2019 AN - OPUS4-50939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Marschall, Niklas A1 - Niebergall, Ute A1 - Böhning, Martin T1 - An optical criterion for the assessment of Full-Notch Creep Test (FNCT) fracture surfaces N2 - The full-notch creep test (FNCT) is a common method to evaluate the environmental stress cracking (ESC) behavior of high-density polyethylene (PE-HD) container materials . The test procedure as specified in ISO 16770 provides a comparative measure of the resistance against ESC using the time to failure of specimens mechanically loaded in a well-defined liquid environment. Since the craze-crack damage mechanism underlying the ESC process is associated with brittle failure, the occurrence of globally brittle fracture surfaces is a prerequisite to consider an FNCT measurement as representative for ESC . Therefore, an optical evaluation of FNCT fracture surfaces concerning their brittleness is essential. Due to the experimental setup, an inevitable increase of the true mechanical stress and the associated appearance of small ductile parts on fracture surfaces is induced in any case. Hence, an FNCT experiment is considered as 'valid', if the corresponding fracture surface is predominantly brittle . Based on laser scanning microscopy (LSM) height data of FNCT fracture surfaces , a universal and easy-to-use phenomenological criterion was developed to assess the validity of distinct FNCT experiments. This criterion is supposed to facilitate a quick evaluation of FNCT results in practical routine testing. T2 - PPS Europe-Africa 2019 Regional Conference (PPS 2019) CY - Pretoria, South Africa DA - 18.11.2019 KW - Full-Notch Creep Test (FNCT) KW - Polyethylene, PE-HD KW - Fracture surface analysis KW - Environmental stress cracking (ESC) KW - Optical criterion KW - Brittle fracture PY - 2019 AN - OPUS4-50940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schilling, Markus T1 - Environmental Stress Cracking (ESC) and Slow Crack Growth (SCG) of PE-HD induced by external fluids N2 - High-density polyethylene (PE-HD) is widely used as a packaging material. Typical applications are pipes and containers for storage and transport of dangerous goods. For these applications, the understanding of the craze-crack damage mechanisms slow crack growth (SCG) and environmental stress cracking (ESC) is of importance. Since these mechanisms are considered to be the major causes of failure, their understanding is essential for inspection and release of those materials. A well-established test method for the assessment of these damage mechanisms is the full-notch creep test (FNCT). It is used in this study for a detailed investigation of crack propagation phenomena in PE-HD container materials under the influence of different fluids such as air, water and aqueous detergent solutions (Arkopal N 100) as well as biodiesel and diesel. Based on the results of the FNCT, a classification scheme of different fluids is proposed, which allows for an assignment of the respective damage mechanisms. Hereby, it is differentiated between (i) inert, (ii) purely surface-active and (iii) additionally sorptive, bulk-active fluids with respect to SCG. If the test fluid changes the intrinsic properties (at the surface or in the bulk), the damage mechanism is addressed to ESC behavior. In FNCT investigations, stress, temperature and specimen geometry were varied systematically. In addition to the time to failure as common measure for the resistance of a PE-HD type against crack propagation, specimen elongation was considered in detail. Several imaging techniques were applied for fracture surface analysis of specimens tested in FNCT to gain novel information on SCG and ESC behavior. From height profiles obtained by laser scanning microscopy (LSM) and information on surface structures from scanning electron microscopy (SEM), indicators for the differentiation of the crack propagation mechanisms could be derived. Based on the LSM data, an algorithm for the distinction between ductile shear deformation and brittle crack growth as dominating failure mechanism was developed. Imaging techniques were also used for determination of crack propagation rates, which were related to time-resolved FNCT elongation data. From the time-resolved determination of crack lengths of partly damaged FNCT specimens, an increasing length of craze zone with a progressively propagating crack was revealed for the first time. This relation of crack and craze zones was specified by fracture mechanical considerations. N2 - Polyethylen hoher Dichte (PE-HD) wird als Werkstoff für Rohre und Behälter für den Transport und zur Lagerung von Gefahrgütern verwendet. Für die Beurteilung und technische Freigabe dieser Materialien ist das Verständnis der beiden Schädigungsmechanismen „langsames Risswachstum“ (engl.: „slow crack growth“, SCG) und „umgebungsbedingter Spannungsriss“ (engl.: „environmental stress cracking“, ESC) essentiell. Eine etablierte Prüfmethode zur Bewertung dieser Schädigungsmechanismen ist der Full-Notch Creep Test (FNCT), der in dieser Arbeit zur systematischen Untersuchung des Risswachstums in PE-HD Behältermaterialien unter Einwirkung von Luft, Wasser und wässrigen Netzmittellösungen (Arkopal N 100) sowie Biodiesel und Diesel verwendet wird. Aus den Ergebnissen des FNCT wird ein Klassifikationsschema für Fluide vorgeschlagen, welches ebenfalls eine Zuordnung zu den Schädigungsmechanismen erlaubt. Hierbei wird in (i) inerte, (ii) rein oberflächen-aktive und (iii) zusätzliche sorptive, volumen-aktive Fluide hinsichtlich des langsamen Risswachstums (SCG) unterschieden. Wenn ein Fluid lokal die intrinsischen Materialeigenschaften des Polymers verändert, wird der Schädigungsmechanismus dem umgebungsbedingten Spannungsriss (ESC) zugeordnet. Bei den FNCT-Untersuchungen wurden die mechanische Spannung, die Temperatur und die Prüfkörpergeometrie systematisch variiert. Zusätzlich zur Standzeit wurde die Prüfkörperdehnung zeitabhängig erfasst. Aus einer erweiterten Bruchflächenanalyse konnten neuartige Informationen über SCG und ESC erhalten werden. Hierzu wurden verschiedene Bildgebungsverfahren verwendet. Insbesondere wurden mit Laserscanningmikroskopie (LSM) Höhenprofile und mit Rasterelektronenmikroskopie (REM) Oberflächeninformationen zur Charakterisierung der Rissfortschrittsmechanismen erhalten. Auf Basis der LSM wurde unter Zuhilfenahme von Höhenprofildaten ein Algorithmus zur Unterscheidung zwischen duktiler Scherverformung und sprödem Risswachstum als dominierende Schädigungsmechanismen entwickelt. Die aus den bildgebenden Verfahren ermittelten Rissfortschrittsraten konnten mit den Daten der während des FNCT erfassten Dehnung der Prüfkörper in Beziehung gesetzt werden. Weiterhin wurde mithilfe von zeitaufgelösten Risslängendaten erstmals eine direkte Korrelation der Risslänge zu vorgeschädigten, fibrillierten Bereichen (Crazes) im PE-HD Prüfkörper während des FNCT nachgewiesen. Demnach vergrößert sich die Craze-Länge linear mit zunehmender Risslänge. Dieser Zusammenhang zwischen Riss- und Craze-Längen wurde auf mathematisch, bruchmechanischer Grundlage bestätigt. KW - High-density polyethylene (PE-HD) KW - Full-Notch Creep Test (FNCT) KW - Slow crack growth (SCG) KW - Environmental Stress Cracking (ESC) KW - Biodiesel KW - Diesel KW - Crack propagation analysis KW - Fracture Surface Analysis KW - Test Improvement KW - Imaging PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:tuda-tuprints-115443 DO - https://doi.org/10.25534/tuprints-00011544 SP - 1 EP - 212 CY - Darmstadt AN - OPUS4-50941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Popiela, Bartosz A1 - Trappe, Volker T1 - Damage Mechanisms of Scarf Joint Repairs for Wind Turbine Rotor Blade Shell Applications N2 - Wind turbine rotor blades, made of fiber reinforced polymers (FRP), often fail before their projected 20-year lifespan, largely due to defects that originate during manufacturing and are propagated by operational fatigue and environmental conditions. The cost-intensive replacement outcomes lead to a high loss of earnings, and are one of the inhibitors of wind turbine production [1]. A potential repair alternative is to locally patch these areas of the blades with adhesively bonded structural repairs. However, the effects of such repair methods of the outer shell region on the structural integrity of the rotor blades are still largely unknown, and are thus investigated in this project. The shell components of rotor blades are made of FRP composite material sandwiching a lightweight core, often a rigid foam or Balsa wood. The repair methods involve replacing the lost load path with a new material that is joined to the parent structure [2]. Repairs in this project focus on the scarf method, which allow for a smoother load distribution across the joint, aiming to study the damage mechanism of glass FRP scarf repairs for wind turbine blade shell applications. Namely, the source and path of the damage initiation and propagation, role of the interface between parent and patch material, and the role of the fiber orientation mismatch at this interface are examined. Biaxial ±45° and 0/90° FRP specimens are produced with the vacuum-assisted resin infusion (VARI) process using E-glass non-crimp fabric. The patch layers are then joined using VARI with a scarf ratio of 1:50, using glass FRP fabric with half the areal weight of the parent side to allow for better drapability. The methods and practices in specimen production are based on common industry practice in rotor blade shell manufacturing and repairs. The specimens are tested under uniaxial tensile load, during which they are periodically monitored for damage onset. A comparison of the ±45° and 0/90° specimens allows for an understanding of the role of a highly mismatching fiber orientation in the transition zone between parent and patch material on the failure mechanism of the scarf joint. Although failure in both orientations begins as delamination at the joint edge, the difference in the mechanisms at play in the two different specimen types leads ultimately to different fracture paths. Namely, in the inter fiber failure mechanism of the ±45° specimens, the higher interlaminar strength compared to the intralaminar strength of the laminate leads to intralaminar failure of the ±45° scarf joint specimens. Alternatively, the competition in the 0/90° specimens lies between the interlaminar strength and fiber failure strength, and here we experience failure primarily across the scarf joint length. The scarf joint in the 0/90° specimens disrupts the continuity of the load-carrying 0° layers, directing the failure path to remain primarily along the scarf joint. Experimental results are compared to finite element analyses of scarf patch repairs on glass FRP sandwich specimens with the same respective layup orientations, where the damage initiation regions are identified and correlated to fiber orientation, serving as a bridge to future work which will experimentally examine the scarf repair patches on sandwich shell specimens. T2 - Joint Event: ICCS23 - 23rd International Conference on Composite Structures & MECHCOMP6 - 6th International Conference on Mechanics of Composites CY - Online meeting DA - 01.09.2020 KW - Wind turbine blade shells KW - Glass fiber reinforced polymers KW - Scarf repairs PY - 2020 AN - OPUS4-51175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Sobek, P. A1 - Körner, S. A1 - Müller, Ralf T1 - Sintering of silver-alkali zinc borate glass composites N2 - High conductive silver-glass-metallization-pastes are key components in photovoltaics and advanced microelectronics. However, the underlying mechanisms of liquid phase sintering as silver dissolution, diffusion and reprecipitation are poorly understood so far. In the current work, the influence of different network modifier in alkali-zinc-borate paste-glasses on liquid phase sintering of silver-glass-composites was studied. Therefore, silver-glass-composites containing 30 vol% glass were prepared, using low melting X2O-ZnO-B2O3 glasses with X = Na, Li, and Rb (NZB, LZB, and RZB). Glass transition temperature, viscosity, glass-silver wetting, crystallization and sintering behavior was studied by means of thermal analysis, dilatometry, heating microscopy and microscopy. Similar glass transition temperatures of 450 °C (RZB), 460 °C (LZB) and 465 °C (NZB) were found by means of thermal analysis for glasses under study. Also, all glasses have a similar crystallization onset at about 550 °C, even though exhibiting with a different degree of crystallization. Despite these similarities, however, the sintering behavior, measured in terms of area shrinkage, significantly differs for the composites. This finding indicates a different degree of silver dissolution. Assuming that dissolved silver reduces the viscosity, this effect could explain why glass crystallization starts at lower temperature in the composites. For example, the crystallization peak of LZB at 629 °C measured for pure glass powder compacts was decreased to 586 °C for the composite. Confirmatively, microstructure analyses indicate different degrees of silver dissolution, as e.g. revealed by different amount of silver precipitates within the residual glass phase, and reprecipitation. Best silver dissolution appeared for the RZB glass. Nevertheless, the final densification of RZB was retarded probably due to swelling and crystallization. T2 - XRM Workshop CY - Halle, Germany DA - 03.03.2020 KW - Silver-glass-metallization-paste KW - Sintering KW - Alkali ions PY - 2020 AN - OPUS4-51243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinellato, Fabio A1 - Wilbig, Janka A1 - Al-Sabbagh, Dominik A1 - Colombo, P. A1 - Günster, Jens T1 - Gas flow assisted powder deposition for enhanced flowability of fine powders: 3D printing of alpha-tricalcium phosphate N2 - The possibility of creating patient-specific individual implants makes Additive Manufacturing technologies of special interest for the medical sector. For substitution of bone defects, powder based Additive Manufacturing by Binder Jetting is a suitable method to produce complex scaffold-like structures made of bioceramics with easily adapted geometries and controlled porosity. The process inherent residual porosity in the printed part, even though desired as it supports bone ingrowth, also leads to limited mechanical strength. Currently, bioceramic scaffolds made by Binder Jetting feature suitable biocompatible and biodegradable properties, while a sufficient mechanical stability is rather challenging. The purpose of this work is to apply the gas flow assisted powder deposition introduced in 2014 by Zocca et al., to the powder bed during printing of bioceramic tablets and scaffolds using α-TCP powder as feedstock. This enables exploiting the advantages of an increased powder bed density, thereby improving the mechanical properties of the printed parts. KW - Additive Manufacturing KW - Binder Jetting KW - Gas flow assisted powder deposition KW - Alpha-tricalcium phosphate KW - Scaffold PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510138 DO - https://doi.org/10.1016/j.oceram.2020.100003 SN - 2666-5395 VL - 1 SP - 100003 PB - Elsevier Ltd. AN - OPUS4-51013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Melo Bernardino, Raphael A1 - Valentino, S. A1 - Franchin, G. A1 - Günster, Jens A1 - Zocca, Andrea T1 - Manufacturing of ceramic components with internal channels by a novel additive/subtractive hybridizazion process N2 - A new approach for fabrication of ceramic components with inner channels is proposed, as a result of the combination of two additive and one subtractive manufacturing processes. In this project, porcelain parts are manufactured by the Layerwise Slurry Deposition (LSD) process, meanwhile end milling and Direct Ink Writing (DIW) are applied to create channels on the surface of the deposited ceramic. Unique to the LSD process is the Formation of a freestanding powder bed with a mechanical strength comparable to conventional slip casted ceramic green bodies. Combining these three processes allows the manufacturing of ceramic objects containing an internal path of ink, which in this case was a graphite-based ink that can be further eliminated by heat treatment to obtain a porcelain object embedded with channels. The results show the capabilities of this method and its potential to fabricate not only parts with inner channels, but also multi-material and multi-functional components (such as integrated electronic circuits). KW - Additive Manufacturing KW - Layerwise Slurry Deposition KW - Hybrid Manufacturing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510012 UR - https://www.sciencedirect.com/science/article/pii/S2666539520300109?via%3Dihub DO - https://doi.org/10.1016/j.oceram.2020.100010 VL - 2 SP - 100010 PB - Elsevier Ltd. AN - OPUS4-51001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Fatigue loading of sandwich shell test specimens with simulated production imperfections and in-situ NDT N2 - A shell test bench was developed at BAM 5.3 which allows for static and fatigue testing of curved fiber-reinforced plastic (FRP) structures, during which in-situ the damage state can be non-destructively inspected by thermography and strain-field measurement techniques. Sandwich shell specimens with typical wind turbine blade manufacturing defects were designed and tested. The tested imperfections show a fairly significant reduction (up to 90%) of the shell test specimens‘ lifetime, depending on the type of imperfection. Using the in-situ NDT methods incorporated in the shell test bench, the location and cycle time of the initial defects and the damage evolution was investigated. T2 - 7. International Conference on Fatigue of Composites CY - Vicenza, Italy DA - 04.07.2018 KW - Fatigue of sandwich shell structures KW - Non-destructive testing KW - Wind turbine blades PY - 2018 AN - OPUS4-50126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Fatigue loading of sandwich shell test specimens with simulated production imperfections and in-situ NDT N2 - A shell test bench was developed at BAM 5.3 which allows for static and fatigue testing of curved fiber-reinforced plastic (FRP) structures, during which in-situ the damage state can be non-destructively inspected by thermography and strain-field measurement techniques. Sandwich shell specimens with typical wind turbine blade manufacturing defects were designed and tested. The tested imperfections show a fairly significant reduction (up to 90%) of the shell test specimens‘ lifetime, depending on the type of imperfection. Using the in-situ NDT methods incorporated in the shell test bench, the location and cycle time of the initial defects and the damage evolution was investigated. T2 - 7. International Conference on Fatigue of Composites CY - Vicenza, Italy DA - 04.06.2018 KW - Fatigue of sandwich shell structures KW - Non-destructive testing KW - Wind turbine blades PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-501275 SP - 1 EP - 7 AN - OPUS4-50127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Effective composite testing – from specimen size to component scale N2 - Even for the basic measurements of material data for design and engineering of composite structures there is a need to upgrade standards. With a new shear frame test rig more precise values can be obtained. With advanced methods in the research on the fatigue behaviour of FRP it was found a load level of infinite life for GFRP and CFRP. This is in the range of typical strain values of airliners and rotor blades in normal operation. Statistically the mean time between damage events on rotor blades is 6 years (Deutscher Windenergie Report 2006). Due to imperfection in the production the shell structures get cracks after a few years fare before the designed life time. A shell test rig was built at BAM for efficient research on the effects of defects in production. Test blades of ~10m are an efficient way for SHM research and evaluation of NDT-methods and blade geometry. T2 - colloquium genesis-puc CY - Rio de Janeiro, Brazil DA - 01.11.2019 KW - Polymer matrix composites KW - Nondestructive testing KW - New standards PY - 2019 AN - OPUS4-50129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Polymer matrix composites investigated with NDT at BAM N2 - Statistically the mean time between damage events on rotor blades is 6 years (Deutscher Windenergie Report 2006). Due to imperfection in the production the shell structures get cracks after a few years fare before the designed life time. A shell test rig was built at BAM for efficient research on the effects of defects in production. In-situ and ex-situ NDT give a better understanding from degradation processes in composite materials. With advanced methods in the research on the fatigue behaviour of FRP it was found a load level of infinite life for GFRP and CFRP. This is in the range of typical strain values of airliners and rotor blades in normal operation. Due to the fibre-composite nature NDT techniques have to be suitable to a wide length scale to image micro cracking as well as bigger defects. Therefore different techniques have to be applied and developed. T2 - Colloquium Abendi CY - São Paulo, Brazil DA - 05.11.2019 KW - Polymer matrix composites KW - Non-destructive testing PY - 2019 AN - OPUS4-50130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Fatigue life evaluation and certification according to CS22 N2 - The common fatigue life certification of aircrafts according to the certification Standards 23 and 25 follows a building block approach. Static tests at room temperature as well in humid and high temperature conditions are done on the coupon level. Additionally, a full-scale static and fatigue test must be performed on the complete airframe (minimum on the fuselage together with the wing). For each type-certificate the complete building block approach test program must be performed. Traditionally in Germany, the certification of sailplanes (Certification Standard 22) follows rather a family concept. A shared data base was created over the last 50 years based upon a large number of material testing. In addition to static tests at room temperature and hot-humid conditions, fatigue tests are also done on the coupon level. Additional static and fatigue tests were done on complex structures such as spar-beams, fuselages and full-scale wing structures. However, for each type-certificate, only static tests should be performed in full-scale. This concept is determined by the certification memorandum CM-S-006 “Composite Lightweight Aircraft” 2017. The presentation was given as an introduction to the discussion about the future expectations and developments of the EASA concerning the type-certification of lightweight aircrafts according to CS22 at the OSTIVE Sailplane Development Panel Meeting at the EASA in Cologne on the 11th of October 2019. T2 - OSTIV Sailplane Development Panel Meeting 2019, Europäische Agentur für Flugsicherheit (EASA) CY - Cologne, Germany DA - 11.10.2019 KW - Certification Standard 22 KW - EASA KW - Sailplane Development Panel KW - Fatigue Life Evaluation PY - 2019 AN - OPUS4-50147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zemke, F. A1 - Schölch, V. A1 - Bekheet, M.F. A1 - Schmidt, Franziska T1 - Surfactant-assisted sol–gel synthesis of mesoporous bioactive glass microspheres N2 - Spherical mesoporous bioactive glasses in the silicon dioxide (SiO2)-phosphorus pentoxide (P2O5)–calcium oxide (CaO) system with a high specific surface area of up to 300m2/g and a medium pore radius of 4 nm were synthesized by using a simple one-pot surfactant-assisted sol–gel synthesis method followed by calcination at 500–700°C. The authors were able to control the particle properties by varying synthesis parameters to achieve microscale powders with spherical morphology and a particle size of around 5–10 mm by employing one structure-directing agent. Due to a high Calcium oxide content of 33·6mol% and a phosphorus pentoxide content of 4·0mol%, the powder showed very good bioactivity up to 7 d of immersion in simulated Body fluid. The resulting microspheres are promising materials for a variety of life science applications, as further processing – for example, granulation – is unnecessary. Microspheres can be applied as materials for powder-based additive manufacturing or in stable suspensions for drug release, in bone cements or fillers. KW - bioactive KW - biomaterials KW - bone PY - 2019 DO - https://doi.org/10.1680/jnaen.18.00020 SN - 2045-9831 SN - 2045-984X VL - 8 IS - 2 SP - 126 EP - 134 PB - ICE Publishing CY - London AN - OPUS4-50148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Lima, P. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - Additive Manufacturing of Silicon Carbide by LSD-print N2 - The layerwise slurry deposition (LSD) has been established in the recent years as a method for the deposition of ceramic powder layers. The LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade; each layer is sequentially deposited and dried to achieve a highly packed powder layer. The combination of binder jetting and LSD was introduced as a novel technology named LSD-print. The LSD-print takes advantage of the speed of binder jetting to print large areas, parallel to the flexibility of the LSD, which allows the deposition of highly packed powder layers with a variety of ceramic materials. The working principle and history of the LSD technology will be shortly discussed. A theoretical background will be also discussed, highlighting advantages and drawbacks of the LSD compared to the deposition of a dry powder. The last part of the talk will be dedicated to highlight recent results on the LSD-print of SiSiC of geometrically complex components, in collaboration between BAM and HC Starck Ceramics GmbH. Density, microstructure and mechanical properties of LSD-printed and isostatic pressed samples will be discussed and compared. T2 - XVI ECerS CONFERENCE CY - Torino, Italy DA - 16.06.2019 KW - Additive Manufacturing KW - Silicon Carbide KW - 3D printing KW - Layerwise Slurry Deposition PY - 2019 AN - OPUS4-49220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Lima, P. A1 - Günster, Jens A1 - Lüchtenborg, Jörg T1 - Advanced ceramics by powder bed 3D printing N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. However, the flowability of the powder used in these processes is essential to achieve defect-free and densely packed powder layers. For standard powder bed AM technologies, this limits the use of many raw materials which are too fine or too cohesive. This presentation will discuss the possibilities to either optimize the powder raw material to adapt it to the specific AM process, or to develop novel AM technologies which are able to process powders in a wider range of conditions. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of very fine ceramic particles. T2 - Smart Made CY - Osaka, Japan DA - 01.09.2019 KW - Additive Manufacturing KW - Ceramic KW - Powder KW - Layerwise slurry deposition KW - 3D printing PY - 2019 AN - OPUS4-49221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilbig, Janka A1 - Borges de Oliveira, F. A1 - Schwentenwein, M. A1 - Günster, Jens T1 - Quality Aspects of Additively Manufactured Medical Implants - Defect Detection in Lattice Parts N2 - Additive Manufacturing technologies are developing fast to enable a rapid and flexible production of parts. Tailoring products to individual needs is a big advantage of this technology, which makes it of special interest for the medical device industry and the direct manufacturing of final products. Due to the fast development, standards to assure reliability of the AM process and quality of the printed products are often lacking. The EU project Metrology for Additively Manufactured Medical Implants (MetAMMI) is aiming to fill this gap by investigating alternative and cost efficient non-destructive measurement methods. T2 - yCAM Forum CY - Mons, Belgium DA - 03.03.2019 KW - Additive Manufacturing KW - Metrology PY - 2019 AN - OPUS4-49141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hlavacek, Petr A1 - Gluth, Gregor A1 - Lüchtenborg, Jörg A1 - Sturm, Patrick A1 - Mühler, T. A1 - Kühne, Hans-Carsten A1 - Günster, Jens T1 - A Novel Approach to Additive Manufacturing of Alkali-activated Materials: Laser-induced Slip Casting (LIS) of Lithium Aluminate/Silica Slurries N2 - Additive manufacturing of alkali-activated materials currently attracts a lot of attention, because of the possibility to produce customized high-performance elements for a range of applications, potentially being more resource-efficient than conventionally produced parts. Here, we describe a new additive manufacturing process for alkali-activated materials that is based on selective laser-heating of lithium aluminate/microsilica slurries. The new process-material combination allows to manufacture elements with complex geometries at high building rates and high accuracy. The process is versatile and transferrable to structures of sizes differing by orders of magnitude. The mechanical strength of the obtained materials was in the range of values reported for conventional metakaolin-based geopolymers, and superior to what has been hitherto reported for alkali-activated materials produced by additive manufacturing. This mechanical performance was obtained despite the fact that the degree of reaction of the lithium aluminate and the microsilica was low, suggesting that significant reactions took place only at the surface of the microsilica particles. KW - Laser-induced slip casting KW - Alkali-activated materials KW - Additive manufacturing PY - 2019 DO - https://doi.org/10.29272/cmt.2018.0011 SN - 2612-4882 VL - 1 IS - 2 SP - 138 EP - 144 PB - Techna Group AN - OPUS4-49142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fleck, M. A1 - Tielemann, Christopher A1 - Scheffler, F. A1 - Brauer, D. S. A1 - Müller, Ralf T1 - Surface crystallization of BT0.75S (fresnoite) glass in different atmosphere N2 - Fresnoite glass with excess SiO2 exhibits oriented surface crystallization, in contrast to the stoichiometric glass composition. Recent EBSD studies documented that the crystals in BTS (2BaO-TiO2-xSiO2, x=0-3) can occur in a distinct [101]-orientation perpendicular to the surface and claimed that this orientation is not a result of growth selection. During these previous studies, however, the effect of surface preparation and surrounding atmosphere during the crystallization experiments were not considered. As these parameters may influence crystal orientation, we studied the surface crystallization of a BTS glass (2BaO-TiO2–2.75SiO2) under controlled conditions with the help of light, electron and polarisation microscopy as well as EBSD. Heat treatments for one hour at 840°C of fractured BTS glass surfaces in air resulted in a large number of not-separable surface crystals. This large number of crystals can be caused by dust particles, which act as nucleation agents. As crystal growth velocity could further be influenced by humidity, our experiments are performed in a filtered and dried air atmosphere. The crystal morphology and orientation will be analysed in dependence of the sample preparation and a differing surrounding atmosphere. T2 - 93rd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meeting of French Union for Science and Glass Technology (USTV) CY - Nuremberg, Germany DA - 13.05.2019 KW - BTS KW - Fresnoit KW - Glass ceramic KW - Glass-ceramic KW - Glass PY - 2019 AN - OPUS4-49294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Müller, Ralf T1 - Characterization of early crystallization stages in surface-crystallized diopside glass-ceramics N2 - Structure formation in glass-ceramics by means of surface crystallization is a challenging open question and remains elusive to definite answers. In several glass-ceramic systems, oriented crystal layers have been observed at the immediate surface, including diopside and some fresnoite systems. However, it is still open to debate, whether oriented surface crystallization is the result of oriented nucleation or growth selection effects. In the same vein, there is still discussion whether surface nucleation is governed by surface chemistry effects or by defects serving as active nucleation sites. In order to help answer these questions, annealing experiments at 850°C have been performed on a MgO·CaO·2SiO2 glass, leading to the crystallization of diopside at the surface. Different annealing durations and surface treatment protocols (i.a. lapping with diamond slurries between 16 µm and 1 µm grain size) have been applied. Particular focus has been put on earliest crystallization stages, with crystal sizes down to about 200 nm. The resultant microstructure has been analyzed by electron backscatter diffraction (EBSD) and two different kinds of textures have been observed, with the a- or b-axis being perpendicular to the sample surface and the c-axis lying in the sample plane. Even at shortest annealing durations, a clear texture was present in the samples. Additionally, selected samples have been investigated with energy-dispersive x-ray spectroscopy in the scanning transmission electron microscope (STEM-EDX). The diopside crystals have been found to exhibit distinguished submicron structure variations and the glass around the crystals was shown to be depleted of Mg. T2 - 93rd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meeting of French Union for Science and Glass Technology (USTV) CY - Nuremberg, Germany DA - 13.05.2019 KW - Glass KW - Crystallization KW - Diopside KW - EBSD KW - Orientation PY - 2019 AN - OPUS4-49296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Subcritical crack growth in hydrous silicate glass N2 - Ambient water influences sub-critical crack growth (SCCG) from microscopic surface flaws, leading to stress corrosion at the crack tip. The complex influence of humidity accelerating slow crack propagation (region I) is well studied only for dry commercial NCS glass (< 1000 ppm water). To shed light on this influence, the effect of water is mimicked by studying SCCG water-bearing glasses. For this purpose, water-bearing silicate glasses of 8 wt% total water were synthesized at 0.5 GPa and compared to dry glasses. SCCG was measured in double cantilever beam geometry. For dry glasses, 3 trends in crack velocity vs. stress intensity, KI, curve were found. The slope in region I increases in the order NCS < NBS < BaCS < NZnS < NAS glass. The velocity range of region II, reflecting the transition between corrosion affected and inert crack growth (region III), varies within one order of magnitude among these glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam0.5. For hydrous glasses, it is found that water strongly decreases Tg, form a new sub-Tg internal friction peak caused by molecular water, and makes the glasses more prone to SCCG. The observed trends will be discussed in terms of the effects of Youngs Modulus on the strain energy release rate and energy dissipation related to mechanical glass relaxation phenomena. T2 - 25th International Congress on Glass (ICG2019) CY - Boston, MA, USA DA - 09.06.2019 KW - Internal friction KW - Soda-lime silicate glass KW - Crack growth KW - Water content KW - DCB PY - 2019 AN - OPUS4-49536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Balzer, R. T1 - Density, microhardness and elastic moduli of hydrous soda-lime silicate glasses N2 - The effect of structural water on density, elastic constants and microhardness of water-bearing soda-lime-silica glasses of up to 21.5 mol% total water is studied. T2 - 25th International Congress on Glass (ICG2019) CY - Boston, MA, USA DA - 09.06.2019 KW - Elastic constants KW - Soda-lime-silica glass KW - Water content KW - Microhardness PY - 2019 AN - OPUS4-49537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -