TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Pressure-assisted sintering of tape cast calcium cobaltite for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by using the Seebeck effect. Calcium cobaltite Ca3Co4O9 is a promising p-type oxide thermoelectric material for applications between 600 °C and 900 °C in air. The properties and morphology of Ca3Co4O9 are strongly anisotropic because of its crystal structure of alternating layers of CoO2 and Ca2CoO3. By aligning the plate-like grains, the anisotropic properties can be assigned to the component. Pressure-assisted sintering (PAS), as known from large-scale production of low temperature co-fired ceramics, was used to sinter multilayers of Ca3Co4O9 green tape at 900 °C with different pressures and dwell times. In-situ shrinkage measurements, microstructural investigations and electric measurements were performed. Pressure-less sintered multilayers have a 2.5 times higher electrical conductivity at room temperature than dry pressed test bars with randomly oriented particles. The combination of tape casting and PAS induces a pronounced alignment of the anisotropic grains. Relative density increases from 57 % after free sintering for 24 h to 94 % after 2 h of PAS with 10 MPa axial load. By applying a uniaxial pressure of 10 MPa during sintering, the electrical conductivity (at 25°C) improves by a factor of 15 compared to test bars with randomly oriented particles. The high temperature thermoelectric properties show the same dependencies. The smaller the applied axial load, the lower the relative densities, and the lower the electrical conductivity. Longer dwell times may increase the density and the electrical conductivity significantly if the microstructure is less densified as in the case of a small axial load like 2 MPa. At higher applied pressures the dwell time has no significant influence on the thermoelectric properties. This study shows that PAS is a proper technique to produce dense Ca3Co4O9 panels with good thermoelectric properties similar to hot-pressed tablets, even in large-scale production. T2 - Electroceramics XVI CY - Hasselt, Belgium DA - 09.07.2018 KW - Texturation KW - Hot Press KW - Calcination KW - Multilayer PY - 2018 AN - OPUS4-45491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Croteau, Jean-Francois A1 - Pai Kulyadi, E. A1 - Agudo Jácome, Leonardo A1 - Kale, C. A1 - García-Tabarés Valdivieso, E. A1 - Perez Fontenla, A. T. A1 - Siu, D. A1 - Kang, D. A1 - Eisenlohr, P. A1 - Bieler, T. R. A1 - Solanki, K. N. A1 - Manzoni, Anna Maria A1 - Atieh, S. A1 - Balint, D. A1 - Hooper, P. A1 - Jacques, N. A1 - Cantergiani, E. T1 - Electro-hydraulic forming of SRF cavities: Effect of strain rate on niobium single crystals N2 - An investigation of the dislocation substructure and mechanical properties of high-purity niobium single crystals with different initial crystal orientations deformed in tension at strain rates of 10^{-4} to 10^3 s^{-1} is presented. Specimens were cut from a large grain niobium disk used for the manufacturing of SRF cavities. Different crystallographic tensile directions exhibited significantly different softening and hardening behaviors and elongation at fracture. Such anisotropy is reduced at high strain rates. Also, different dislocation substructures were observed with TEM at low and high strain rates. At low strain rates, dislocation cells with a high density of long dislocations were observed. At high strain rates, homogeneously distributed dislocations with a higher dislocation dipole density were observed. The relationship between the differences in dislocation substructures and mechanical properties at low and high strain rates and the potential effects on the superconducting properties are discussed. T2 - 2021 International Conference on RF Superconductivity (SRF'21) CY - Online meeting DA - 28.06.2021 KW - Dislocation substructure KW - Strain rate dependence KW - Transmission electron microscopy (TEM) PY - 2021 UR - https://indico.frib.msu.edu/event/38/attachments/158/1089/TUPCAV012_poster.pdf AN - OPUS4-54540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Alig, I. A1 - Oehler, H. A1 - Brauch, Niels A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Charakterisierung von Behälterwerkstoffen aus Polyethylen N2 - Das langsame Risswachstum (slow crack growth, SCG) sowie der umgebungsbedingte Spannungsriss (environmental stress cracking, ESC) sind relevante Schädigungsmechanismen für teilkristalline Werkstoffe auf Basis von Polyethylen hoher Dichte (PE-HD). Der Vortrag gibt einerseits einen Überblick über die grundlegenden Struktur-Eigenschafts-Beziehungen in diesem Kontext, andererseits werden auch verschiedene praxisorientierte Prüfverfahren vorgestellt. Letztere wurden in gemeinsamen Forschungsprojekten von BAM und LBF mit dem Schwerpunkt Gefahrgutbehälter bzw. Pflanzenschutzmittel vergleichend untersucht und durch weitergehende Analytik ergänzt. T2 - 16. Tagung des Arbeitskreises Polymeranalytik Webkonferenz, Fraunhofer LBF und FGK CY - Online meeting DA - 22.03.2022 KW - Polyethylen KW - Full Notch Creep Test KW - Environmental Stress Cracking KW - Spannungsriss PY - 2022 AN - OPUS4-54547 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Kolsch, Nico A1 - Günster, Jens T1 - Laser beam melting additive manufacturing at μ-gravity N2 - In-space manufacturing (ISM) provides the opportunity to manufacture and repair critical components on future human spaceflight missions. For explorations to Mars and beyond, ISM is a key strategy not only due to the long travel distances and high costs of supply from earth but also to be able to safely work in space for years. Human spaceflight is still dependent on shipments from earth that can fail for several reasons. ISM is a valuable alternative to ensure the timely and safe resupply of space missions. With additive manufacturing (AM) technologies, components are built directly from a 3D computer-aided-design (CAD) model which offers the advantages of freedom of design and the production of complex and ready-to-use parts. A virtual tool box with 3D models in space or the supply of information instead of components from earth to space can strongly benefit future missions. For industrial use, most research has focused on laser based additive manufacturing processes such as laser beam melting (LBM) where metallic powder particles are spread into a uniform powder bed and melted by a laser to the desired shape. In the absence of gravity, the handling of metal powders, which is essential for the process, is challenging. We present an evolution of an AM system, where a gas flow throughout the powder bed is applied to stabilize the powder bed. This is needed to compensate for the missing gravitational forces in microgravity experiments on parabolic flight campaigns. The system consists of a porous building platform acting as a filter for the fixation of metal particles in a gas flow. It is driven by reduced pressure established by a vacuum pump underneath the platform. The system creates a drag force that directs the particles towards the porous building platform, similar to the effect of the gravitational force. The AM system with its gas-flow-assisted powder deposition has been tested in several parabolic flight campaigns, and stainless-steel powder has successfully been processed during microgravity conditions. Different powder recoating mechanisms have been investigated to assess the homogeneous distribution of the powder as well as the attachment of the next layer to the powder bed. These mechanisms included different container designs with parallel double blades and with a V-shape at the bottom, and a roller recoating system. The samples presented are the first metal parts ever manufactured using LBM in μ-gravity. In addition to manufacturing in a μ-gravity environment, the experiments have shown the feasibility to manufacture components at different accelerations during the parabolic flight: hyper gravity (1.8 g), μ-gravity (< 0.01 g) and 1 g. Recent results will also be presented describing the application of this LBM setup in a parabolic flight campaign with mixed lunar, martian and µ-gravity acceleration, during which the processing of a lunar regolith simulant powder was tested. For ISM, the development and testing of the proposed AM system demonstrates that LBM can be considered a viable technology for the manufacturing of metal and ceramic parts in a μ-gravity or reduced-gravity environment. T2 - International Conference on Advanced Manufacturing CY - Online meeting DA - 07.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Laser beam melting KW - Microgravity KW - Stainless steel KW - Lunar regolith simulant PY - 2022 AN - OPUS4-54450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Schulz, Bärbel A1 - Mrkwitschka, Paul A1 - Rabe, Torsten T1 - Influence of surface treatment on the strength of a dental zirconia for implants N2 - Roughening of zirconia dental implants is a common clinical practice to improve ingrowth behavior. It depends on the manufacturer of the implant at which stage of the manufacturing process and by which method the surface is roughened. Systematic studies on this topic are rarely found in the literature. Therefore, the influence of surface treatment on the strength of a dental zirconia was investigated as part of a research project on the development of ceramic implants. The material under test was a commercial zirconia consisting of a Y-TZP matrix and Ce-TZP inclusions in the sintered state. This material is characterized by a slightly higher fracture toughness and slightly reduced strength compared to typical 3Y-TZP. Sets of samples were sandblasted in the white-fired or sintered condition. The ball-on-three-ball-strength of these samples was measured and compared to the strength of as-fired samples and polished samples. The complete study was performed two times for validation of the results. It is found that the average strength of TZP ceramics differs by almost 500 MPa depending on the surface treatment. Conventionally sintered specimens with as-fired surface exhibit a strength of 880 MPa. Sandblasting in the white fired state reduces the strength to 690 MPa. Both polishing and sandblasting in the sintered condition result in an increase in strength to about 1180 MPa. Comparative microstructural investigations, roughness measurements and X-ray phase analyses were carried out to determine the causes of these huge differences in strength. These findings may challenge the practice of white body surface treatment and give reason for further investigations on other commercial dental TZP materials. T2 - 97th DKG Annual Meeting - CERAMICS 2022 CY - Online meeting DA - 07.03.2022 KW - Ceramics KW - Implants KW - Biaxial strength PY - 2022 AN - OPUS4-54453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Navigating the Nanoworld: Understanding Materials Properties with the Transmission Electron Microscope N2 - The field of materials science is defined as “the study of the properties of solid materials and how those properties are determined by a material’s composition and structure.”. Many –if not most– of the materials that are produced nowadays owe their properties to structures engineered down to the nanoscopic level. This need has been partly realized thanks to the understanding of materials’ building blocks via characterization techniques that reach this level of resolution. Transmission electron microscopy, since its first implementation in the early 1930s (in Berlin), has been implemented to achieve imaging –and spectral– analysis at lateral resolutions down to the atomic level. In this contribution, a series of practical examples will be presented, where applied materials are characterized by a range of transmission electron microscopy techniques to understand structural and functional properties of a wide range of materials. Among these materials examples will be presented on structural conventionally and additively manufactured metallic alloys, high entropy alloys, dissimilar aluminum-to-steel welds, magnetic nanoparticles, ceramic coatings, high temperature oxidation products. Addressed will be either the effect of processing route or that of the exposure to experimental conditions similar to those found in the respective intended applications. T2 - UA/UAB/UAH MSE Graduate Seminar CY - Online meeting DA - 19.01.2022 KW - Transmission electron microscopy (TEM) KW - Characterization KW - Microstructure KW - 3D PY - 2022 AN - OPUS4-54238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten T1 - Viskose Rissschließung in Gläsern und Glasmatrixkompositen N2 - Um die Langzeitbeständigkeit von Hochtemperatur-Festoxidbrennstoffzellen (SOFC) sicherzustellen, ist das grundlegende Verständnis der viskosen Schließung oder Heilung von Rissen, als Folge wechselnder thermischer oder mechanischer Belastung, in Gläsern und teilkristallinen Materialien ein entscheidender Faktor. In Glas ist die Rissheilung hauptsächlich durch viskoses Fließen bestimmt. In teilkristallinen Schmelzen bewirkt der kristalline Volumenanteil die Erhöhung der effektiven Viskosität. Um die Auswirkungen des kristallinen Volumenanteils auf die Rissheilung zu ergründen, wurden Glasmatrixkomposite mit variierten inerten kristallinen Fülleranteilen, die während der Wärme-behandlung konstant blieben, hergestellt. Verwendet wurde ein kristallisationsträges Natrium-Calcium-Silicatglas und ZrO2 als inerter Füller. Komplexe, reproduzierbare Rissstrukturen wurden durch Vickers-Eindrücke erzeugt und die viskose Rissschließung während isothermer Wärmebehandlungs-schritte mittels Laser-Scanning-Mikroskopie verfolgt. Die Untersuchungen zeigen, dass, verglichen zum füllerfreien Glas, der kristalline Phasenanteil die effektive Viskosität erhöht und dadurch großräumiges Fließen verlangsamt. Dies verzögert das Aufweiten der Risse. Dieser Effekt erschwert die Rissverkürzung und führt oftmals zu großen gerundeten Kavitäten und dadurch zu einer verzögerten Rissschließung. Wird dieses Aufweiten verringert, ist zunächst ein lokales viskoses Fließen der Restglasphase weiterhin gegeben, sodass sich die Risse sogar schneller schließen. Für kristalline Anteile > 27 Vol% bildet sich dann ein stabiles Perkolationsgerüst aus, das die weitere Rissschließung auch lokal unterbindet. Nur innerhalb größerer glasiger Bereiche ist hierbei noch eine Rissschließung zu beobachten. Ein Optimum der Risslängenverkürzung konnte bei 17 Vol% beobachtet werden. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Glas KW - Hochtemperaturbrennstoffzelle KW - Glasmatrixkomposit KW - Rissheilung PY - 2021 AN - OPUS4-54245 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Koppert, Ralf A1 - Rabe, Torsten T1 - Commercial LTCC for thin film deposition N2 - Low-temperature co-fired ceramics (LTCC) are used to fabricate multilayer circuits which are robust in harsh environments. Thick-film technology is well established for the metallization of circuit boards and microsystems. For specific sensor applications, the combination of LTCC and thin-film technology is advantageous to reach higher structure resolutions. Due to the high roughness of as-fired LTCC surfaces compared with silicon-wafers, the deposition of low-defect- films with narrowly specified properties is challenging. There is spare literature about thin films on commercial LTCC comparing different material systems or sintering techniques. For developing thin film sensors on multilayer circuits it is crucial to identify thin-film-compatible commercial LTCC material as well as the crucial surface properties. In this work we evaluate the thin-film capability of different LTCC surfaces. The as-fired surfaces of free-sintered, constrained-sintered (sacrificial tape), and pressure-assisted sintered commercial LTCCs (DP951, CT708, CT800), as well as respective polished surfaces, were analyzed by tactile and optical roughness measurements and scanning electron microscopy. The thin-film capability of the LTCC surfaces was assessed by sheet resistance and temperature coefficient of resistance (TCR) of deposited Ni thin-film layers. Contrary to the expectations, no correlation between roughness and thin-film capability was found. Ni thin films on constrained sintered DP951 show the lowest sheet resistance and highest TCR within the experimental framework of the as-fired surfaces. The influence of surface morphology on the film properties is discussed. T2 - KERAMIK 2022 / 97. DKG-Jahrestagung CY - Online meeting DA - 7.3.2022 KW - Roughness KW - Hydrogen sensor KW - LTCC PY - 2022 AN - OPUS4-54436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gadelmeier, C. A1 - Agudo Jácome, Leonardo A1 - Suárez Ocano, Patricia A1 - Haas, S. A1 - Feuerbach, M. A1 - Glatzel, U. T1 - Strengthening mechanisms of single crystalline CrCoNi and CrMnFeCoNi at creep temperatures above 700 °C N2 - The main deference between high entropy alloys and conventional alloys is the solid solution strengthening effect, which moves from a single element to a multi-element matrix. Little is known about the effectiveness of this effect at high temperatures. Investigation of temperature dependent solid solution strengthening in single phase multicomponent alloys with medium and high entropy using creep testing was performed. Creep tests carried out on single phase SX CrCoNi , CrMnFeCoNi and pure Ni from 700 to 1200 °C excluding oxidation, grain boundaries and multiphase effects. It was found that the influence of solid solution strengthening of CrCoNi and CrMnFeCoNi increases by decreasing temperature (1200 to 700 °C), and dislocation forests occur in CrCoNi and CrMnFeCoNi in comparison to pure Ni. T2 - SPP Kick-Off Meeting 2nd Phase CY - Online meeting DA - 14.04.2021 KW - High entropy alloys KW - Mechanical properties KW - Transmission electron microscopy KW - Solid solution strengthening PY - 2021 AN - OPUS4-54381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Agudo Jácome, Leonardo T1 - Incipient Oxidation and Deformation Mechanisms of the Chemically Complex Alloy AlMo 0.5 NbTa 0.5 TiZr in the high temperature regime N2 - The development of refractory chemically complex alloys (rCCAs) has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy. It was named as “high entropy superalloy” as it resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. However, the continuous phase in Ni Base alloys is an fcc solution and the cuboidal γ’ precipitates present the L12 intermetallic structure. On the opposite, this CCA has a reversed microstructure where the continuous matrix is formed by an ordered B2 phase which contains cuboidal precipitates of a disordered BCC phase. Some of the most importat results of microstructural analysis, creep test and oxidation are presented in the following work. The as-cast sample shows a bcc/B2 structure with hexagonal phase precipitates in amorphous state whereas the annealed sample also shows a combination of these phases but with larger bcc precipitates and a fully crystallized hexagonal intermetallic. It was found that porosity was higher in the annealed samples (Kinkerdall effect) and the hardness was higher in samples with faster cooling rate due smaller nanostructure. Norton plots show both diffusion and dislocation controlled deformation, and it was found different kinetics between dry and humid air oxidation with the presence of spallation. T2 - CONVEMI 2021 (Venezuelan congress of microscopy and microanalysis) CY - Online meeting DA - 29.10.2021 KW - High entropy superalloys KW - Mechanical properties KW - Oxidation behavior KW - Microstructural analysis PY - 2021 AN - OPUS4-54382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -