TY - JOUR A1 - Suárez Ocaño, Patricia A1 - Manzoni, Anna Maria A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Laplanche, G. A1 - Agudo Jácome, Leonardo T1 - Influence of cooling rate on the microstructure and room temperature mechanical properties in the refractory AlMo0.5NbTa0.5TiZr superalloy N2 - Refractory chemically complex alloys with bcc-based microstructures show great potential for high-temperature applications but most of them exhibit limited room-temperature ductility, which remains a challenge. One such example is the AlMo0.5NbTa0.5TiZr alloy, mainly consisting of a nano-scaled structure with an ordered B2 matrix and a high-volume fraction of aligned cuboidal and coherently embedded A2 precipitates. This work aims to investigate how the cooling rate after hot isostatic pressing of the AlMo0.5NbTa0.5TiZr alloy affects its microstructure and its resulting hardness and fracture toughness at room temperature. A slow cooling rate of 5 °C/min leads to a coarse microstructure consisting of aligned slabs (mean A2 precipitate ≈ 25 nm) with a nanohardness of about 8 GPa. In contrast, after the fastest cooling rate (30 °C/min), the A2 precipitates become more cubic with an edge length of ≈ 16 nm, resulting in an increase in nanohardness by 10 %. The fracture toughness is roughly independent of the cooling rate and its mean value (≈ 4.2 MPa∙m1/2) resembles that of some B2 intermetallics and other A2/B2 alloys. As the lattice misfit between the A2 and B2 phases is known to play a key role in microstructure formation and evolution, its temperature dependence between 20 and 900 °C was investigated. These findings offer insights into the evolution of the microstructure and room-temperature mechanical properties of the AlMo0.5NbTa0.5TiZr alloy, which could help the development of advanced chemically complex alloys. KW - High entropy alloy KW - Lattice misfit KW - Scanning electron microscopy KW - Transmission electron microscopy KW - X-ray diffraction KW - Refractory alloy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572809 DO - https://doi.org/10.1016/j.jallcom.2023.169871 SN - 0925-8388 VL - 949 SP - 169871 PB - Elsevier B.V. AN - OPUS4-57280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eggeler, G. A1 - Wieczorek, N. A1 - Fox, F. A1 - Berglund, S. A1 - Bürger, D. A1 - Dlouhý, A. A1 - Wollgramm, P. A1 - Neuking, K. A1 - Schreuer, J. A1 - Agudo Jácome, Leonardo A1 - Gao, S. A1 - Hartmaier, A. A1 - Laplanche, G. T1 - On shear testing of single crystal Ni-base superalloys N2 - Shear testing can contribute to a better understanding of the plastic deformation of Ni-base superalloy single crystals. In the present study, shear testing is discussed with special emphasis placed on its strengths and weaknesses. Key mechanical and microstructural results which were obtained for the high-temperature (T ≈ 1000 °C) and low-stress (τ ≈ 200 MPa) creep regime are briefly reviewed. New 3D stereo STEM images of dislocation substructures which form during shear creep deformation in this regime are presented. It is then shown which new aspects need to be considered when performing double shear creep testing at lower temperatures (T < 800 °C) and higher stresses (τ > 600 MPa). In this creep regime, the macroscopic crystallographic [11−2](111) shear system deforms significantly faster than the [01−1](111) system. This represents direct mechanical evidence for a new planar fault nucleation scenario, which was recently suggested (Wu et al. in Acta Mater 144:642–655, 2018). The double shear creep specimen geometry inspired a micro-mechanical in-situ shear test specimen. Moreover, the in-situ SEM shear specimen can be FIB micro-machined from prior dendritic and interdendritic regions. Dendritic regions, which have a lower γ′ volume fraction, show a lower critical resolved shear stress. T2 - EuroSuperalloys 2018 CY - Oxford, UK DA - 09.09.2018 KW - Superalloy single crystals KW - Shear testing KW - Creep mechanisms KW - In-situ SEM micro shear deformation KW - Transmission electron microscopy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456591 DO - https://doi.org/10.1007/s11661-018-4726-9 SN - 1073-5623 SN - 1543-1940 VL - 49A IS - 9 SP - 3951 EP - 3962 PB - Springer US CY - New York AN - OPUS4-45659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Haas, S. A1 - Kropf, H. A1 - Duarte, J. A1 - Cakir, Cafer Tufan A1 - Dubois, F. A1 - Többens, D. A1 - Glatzel, U. T1 - Temperature evolution of lattice misfit in Hf and Mo variations of the Al 10 Co 25 Cr 8 Fe 15 Ni 36 Ti 6 compositionally complex alloy N2 - Misfits of γ- γ’ based Al10Co25Cr8Fe15Ni36Ti6 and its Mo- and Hf-variations are studied up to a temperature of 980 °C and compared with Ni- and Co-based superalloys. The trace elements decrease (Hf) or increase (Mo) the edge radii of the γ’ cuboids without changing their sizes. Atom probe measurements revealed that the Hf alloy prefers the γ’ phase while Mo prefers the γ matrix, leading to a lattice parameters enhancement of both phases, as could be revealed by synchrotron X-ray diffraction. The misfit is influenced in opposite ways: Hf increases the positive misfit, while Mo reduces it at all investigated temperatures. KW - Metal and alloys KW - Transmission electron microscopy KW - X-ray diffraction KW - Atom probe tomography KW - High entropy alloy PY - 2020 DO - https://doi.org/10.1016/j.scriptamat.2020.07.013 VL - 188 SP - 74 EP - 79 PB - Elsevier Ltd. AN - OPUS4-51025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Yesilcicek, Yasemin A1 - Demir, E. A1 - Haas, S. A1 - Glatzel, U. T1 - Combining trace elements for microstructural optimization in the Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy N2 - Trace elements W and Hf have different influence on the microstructure and the mechanical properties when added to the Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy. The addition of both can thus merge both element’s beneficial influences when combined with the appropriate heat treatment: Hf enhances the cubicity of the γ’ particles in the γ matrix while the W reduces the negative influence of the Heusler phase: this phase can be completely dissolved when W is present in the alloy. T2 - ICHEM 2020 CY - Berlin, Germany DA - 27.09.2020 KW - High entropy alloys KW - Transmission electron microscopy KW - Lattice misfit KW - X-ray diffraction KW - Scanning electron microscopy PY - 2020 AN - OPUS4-51370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gadelmeier, C. A1 - Agudo Jácome, Leonardo A1 - Suárez Ocano, Patricia A1 - Haas, S. A1 - Feuerbach, M. A1 - Glatzel, U. T1 - Strengthening mechanisms of single crystalline CrCoNi and CrMnFeCoNi at creep temperatures above 700 °C N2 - The main deference between high entropy alloys and conventional alloys is the solid solution strengthening effect, which moves from a single element to a multi-element matrix. Little is known about the effectiveness of this effect at high temperatures. Investigation of temperature dependent solid solution strengthening in single phase multicomponent alloys with medium and high entropy using creep testing was performed. Creep tests carried out on single phase SX CrCoNi , CrMnFeCoNi and pure Ni from 700 to 1200 °C excluding oxidation, grain boundaries and multiphase effects. It was found that the influence of solid solution strengthening of CrCoNi and CrMnFeCoNi increases by decreasing temperature (1200 to 700 °C), and dislocation forests occur in CrCoNi and CrMnFeCoNi in comparison to pure Ni. T2 - SPP Kick-Off Meeting 2nd Phase CY - Online meeting DA - 14.04.2021 KW - High entropy alloys KW - Mechanical properties KW - Transmission electron microscopy KW - Solid solution strengthening PY - 2021 AN - OPUS4-54381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the Nature of Melt Pool Boundaries in Additively Manufactured Stainless Steel by Nano-sized Modulation N2 - Additive manufacturing (AM) of metallic alloys has gained momentum in the past decade for industrial applications. The microstructures of AM metallic alloys are complex and hierarchical from the macroscopic to the nanometer scale. When using laser-based powder bed fusion (L-PBF) process, two main microstructural features emerge at the nanoscale: the melt pool boundaries (MPB) and the solidification cellular substructure. Here, details of the MPB are revealed to clearly show the three-dimensional nature of MPBs with changes of cell growth of direction and their relation to their surrounding cellular substructure, as investigated by transmission electron microscopy (TEM) for L-PBF 316L austenitic stainless steel (cf. Figure 1). A hitherto unknown modulated substructure with a period of 21 nm is further discovered within cells as the result of a partial Ga+-focused ion beam-induced ferritic transformation of the austenite. Cell cores and cell boundaries differ notably regarding the modulated substructure. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 AN - OPUS4-54836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria T1 - A decade of cube optimization in the Al- Co-Cr-Fe-Ni-Ti high entropy family N2 - The multi-phase approach has proven to widen the application properties of high entropy alloys. After a decade of testing different alloys in the Al-Co-Cr-Cu-Fe-Ni-Ti family the Al10Co25Cr8Fe15Ni36Ti6 was found to be a solid base for more fine-tuned microstructural optimization. Following the example of superalloys, the Al10Co25Cr8Fe15Ni36Ti6 alloy aims for a γ/γ' microstructures in order to guarantee a good microstructural stability at high temperatures. The shape and volume fraction of the γ' particles is known to influence the mechanical properties of superalloys, and they do so in the high entropy family as well [1]. Shape, misfit and creep properties of several modified versions of the Al10Co25Cr8Fe15Ni36Ti6 alloy are compared and discussed in this talk. T2 - Department seminar National Chung Hsing University CY - Taichung, Taiwan DA - 15.11.2023 KW - High entropy alloys KW - Transmission electron microscopy KW - X-ray diffraction KW - Creep KW - Phase analysis PY - 2023 AN - OPUS4-58979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early Material Damage in Equimolar CrMnFeCoNi in Mixed Oxidizing/Sulfiding Hot Gas Atmosphere N2 - The challenges to use more varied fuels at medium and high temperatures above 500 °C need to be addressed by tuning the materials towards a better resistance against increased corrosion. As a first step the corrosion processes need to be better understood, especially in the case of the unavoidable and highly corrosive sulfur-based gases. In this work oxidation/sulfidation of an equimolar CrMnFeCoNi high entropy alloy is studied at an early stage after hot gas exposure at 600 °C for 6 h in 0.5% SO2 and 99.5% Ar. The oxidation process is studied by means of x-ray diffraction, scanning and transmission electron microscopy and supported by thermodynamic calculations. It is found that the sulfur does not enter the bulk material but interacts mainly with the fast-diffusing manganese at grain boundary triple junctions at the alloy surface. Sub-micrometer scaled Cr-S-O rich phases close to the grain boundaries complete the sulfur-based phase formation. The grains are covered in different Fe, Mn and Cr based spinels and other oxides. T2 - Priority Programme (Schwerpunktprogramm) Compositionally Complex Alloys - High Entropy Alloys (SPP CCA - HEA) CY - Bayreuth, Germany DA - 12.07.2022 KW - High entropy alloy KW - Corrosion KW - Sulfiding KW - Cantor alloy KW - Transmission electron microscopy PY - 2022 AN - OPUS4-55395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early Material Damage in Equimolar CrMnFeCoNi in Mixed Oxidizing/Sulfiding Hot Gas Atmosphere N2 - The use of more and more varied fuels implies an increased list of criteria that need to be addressed when choosing a material for a combustion chamber and its supply pipes. The materials must be very resistant against corrosion, especially when the process takes place at temperatures above 500°C. In this work the influence of SO2 on the surface of the “Cantor alloy” is investigated. T2 - HEA-Symposium "Potential for industrial applications" CY - Dresden, Germany DA - 12.05.2022 KW - High entropy alloy KW - Corrosion KW - Sulfiding KW - Transmission electron microscopy PY - 2022 AN - OPUS4-55397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Agudo Jácome, Leonardo A1 - Pauli, Jutta A1 - Nofz, Marianne A1 - Müller, Ralf T1 - Silver in low-melting alkali zinc borate glasses N2 - Ein aktuelles Forschungsziel ist die Substitution von Bleioxid in niedrig schmelzenden Gläsern z.B. zur Anwendung in Silber-Metallisationspasten. Im Fokus steht hier die Untersuchung der Silberdiffusion in Alkali-Zink-Boratgläsern (X2O-ZnO-B2O3, X = Li, Na, K, Rb). Zudem wird der Redoxzustand des Silbers (Ag) und somit die Art der diffundierenden Silberspezies bestimmt. Hierzu wurde eine metallische Silberschicht mittels Sputterns auf Glaswürfel aufgebracht. Die Wärmebehandlung erfolgte nahe der Glasübergangstemperatur bei 470 °C über 2 h unter Luft und Stickstoffatmosphäre. Die Schichtdicke der Silberbeschichtung betrug 1.8 µm nach der Wärmebehandlung, gemessen mittels Weißlicht-Interferometer. Die Silberdiffusionsprofile wurden mittels Sekundär-Neutral-Teilchen-Massenspektrometrie gemessen. Die Diffusionskoeffizienten des Silbers liegen in der Größenordnung von ~10-14 cm2/s und unterscheiden sich nur gering in Abhängigkeit des Alkali-Ions im Glas. Mittels Fluoreszenz-Spektroskopie ließen sich gelöste Ag+-Ionen und [Agm]n+-Cluster nach der Wärmebehandlung unterscheiden. Zusätzlich konnten ausgeschiedene metallische Silber-Partikel im Natrium-enthaltenden Glas mittels Transmissionselektronenmikroskopie beobachtet werden. Diese haben einen mittleren Durchmesser von ~6 nm. N2 - Substitution of lead oxide in low-melting glasses, e.g., for application in silver metallization pastes, is a current research goal. This work is focused on the investigation of silver diffusion in alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb). In addition, the redox state of silver (Ag) and thus the type of diffusing silver species were studied. For this purpose, a metallic silver coating was applied on glass cubes by means of sputtering. Heat treatment of the samples was performed close to the glass transition temperatures at 470 °C for 2 h under air and nitrogen atmosphere. Coating thickness was 1.8 µm after heat treatment, measured by a white light interferometer. Silver diffusion profiles were measured by means of secondary neutral mass spectrometry. The silver diffusion coefficients are in the range of ~10-14 cm2/s and indicate no significant differences depending on the type of alkali ions in the glass. Dissolved Ag+-ions and [Agm]n+-clusters in the glasses were differentiated using fluorescence spectroscopy. Precipitated metallic silver particles in the sodium containing glass were observed by means of transmission electron microcopy. Their mean particle diameter was ~6 nm. T2 - Living Glass Surfaces XI - Year of Glass CY - Ilmenau, Germany DA - 14.09.2022 KW - Alkali zinc borate glasses KW - Silver diffusion KW - Transmission electron microscopy KW - Fluorescence spectroscopy KW - Silver cluster PY - 2022 AN - OPUS4-55736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -