TY - CONF A1 - Meyer, Lena A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - How will we explore, work, and live on the moon? N2 - 3D-printed landing pads on the moon: Paving the road for large area sintering of lunar regolith. A prerequisite for lunar exploration and beyond is the manufacturing of objects directly on the moon, given the extreme costs involved in the shipping of material from Earth. Looking at processes, raw materials, and energy sources, equipment will certainly have to be brought from Earth at the beginning. Available on the moon are lunar regolith as raw material and the sun as an energy source. One of the first steps towards the establishment of a lunar base is the creation of infrastructure elements, such as roads and landing pads. We’ll introduce you to the ESA-project PAVER that demonstrates the sintering and melting of lunar regolith simulant material to produce large scale 3D printed elements that could be used during human and robotic lunar explorations. T2 - Berlin Science Week CY - Online meeting DA - 09.11.2022 KW - Additive manufacturing KW - Lunar regolith simulant KW - EAC-1A KW - Space exploration PY - 2022 UR - https://www.youtube.com/watch?v=StfLuVhKkUE AN - OPUS4-56377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena T1 - Additive Fertigung unter Mikrogravitationsbedingungen für Anwendungen im Weltraum N2 - Präsentation der Aktivitäten an der BAM im Bereich Additive Fertigung unter Mikrogravitationsbedingungen für Anwendungen im Weltraum beim Arbeitsgruppentreffen der AG Werkstoffe & Prozesse vom Netzwerk Space2Motion. T2 - Arbeitsgruppentreffen beim Netzwerk Space2Motion CY - Online meeting DA - 09.11.2022 KW - Additive Fertigung KW - Mikrogravitation PY - 2022 AN - OPUS4-56353 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Meyer, Lena T1 - Laser beam melting additive manufacturing at μ-gravity N2 - At the Workshop "Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing" at the Institute of Materials Physics in Space, German Aerospace Center (DLR) in Cologne, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications in microgravity. T2 - Workshop 'Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing' CY - Cologne, Germany DA - 11.08.2022 KW - Additive manufacturing KW - In-space manufacturing KW - Microgravity KW - μ-gravity KW - Laser beam melting KW - Advanced manufacturing KW - Aerospace KW - Process monitoring PY - 2022 AN - OPUS4-56521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Schubert, Hendrik A1 - Günster, Jens T1 - Combination of layerwise slurry deposition and binder jetting (lsd-print) for the additive manufacturing of advanced ceramic materials N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. Powder bed fusion and binder jetting especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the “layerwise slurry deposition” (LSD) has been developed as a layer deposition method which enables the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder layer. This offers high flexibility in the ceramic feedstock used, especially concerning material and particle size. The LSD technology can be combined with binder jetting to develop the so-called “LSDprint” process for the additive manufacturing of ceramics. The LSDprint technology combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. In this presentation, the LSD process will be introduced and several examples of application ranging from silicate to high-performance ceramics will be shown. Recent developments towards the scale-up and industrialization of this process will be discussed, alongside future perspectives for the multi-material additive manufacturing. T2 - Shaping 8 CY - Dübendorf, Switzerland DA - 14.09.2022 KW - Additive Manufacturing KW - 3D printing KW - Ceramics PY - 2022 AN - OPUS4-56523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandić Lipińska, M. A1 - Davenport, R. A1 - Imhof, A. B. A1 - Waclavicek, R. A1 - Fateri, M. A1 - Meyer, Lena A1 - Gines-Palomares, J. C. A1 - Zocca, Andrea A1 - Makaya, A. A1 - Günster, Jens T1 - PAVER - Contextualizing laser sintering within a lunar technology roadmap N2 - The Global Exploration Strategy of the International Space Exploration Coordination Group (ISECG) describes a timeframe of 2020 and beyond with the ultimate aim to establish a human presence on Mars towards the 2040ies. The next steps lie on the Moon with a focus on the coming 10 years. Early lunar surface missions will establish a capability in support of lunar science and prepare and test mission operations for subsequent human exploration of Mars and long-duration human activities on the Moon. Given the extreme costs involved in the shipping of material from Earth, a prerequisite for future human exploration is the manufacturing of elements directly on the Moon’s surface. Unlike the equipment, which at the beginning will have to be brought from Earth, raw materials and energy could be available following the concept of In-Situ Resource Utilization. The ESA OSIP PAVING THE ROAD (PAVER) study investigates the use of a laser to sinter regolith into paving elements for use as roadways and launch pads thus mitigating dust issues for transport and exploration vehicles. The ESA-funded study examines the potential of using a laser (12 kW CO2 laser with spot beam up to 100 mm) for layer sintering of lunar and martian regolith powders to manufacture larger 3D elements and provide know-how for the automatic manufacture of paving elements in the lunar environment. The project contributes to the first step toward the establishment of a lunar base and will lead to the construction of equipment capable of paving areas and manufacturing 3D structures. PAVER project sets the starting point for an examination of the larger context of lunar exploration. Mission scenarios will look at different phases of lunar exploration: Robotic Lunar Exploration, Survivability, Sustainability, and Operational Phase. A proposed Technology Roadmap investigates the mission scenario and analyses how, and to which extent, laser melting/sintering will play a role in the various phases of exploration. The paper contextualizes laser sintering within selected mission scenarios and discusses the different kinds of infrastructure that can be produced at each phase of the mission. The outcome of the study includes the detailing of the TRL steps in the project and an outline of a timeline for the different elements. Covered aspects include terrain modelling such as operation pads, roadways, or towers, non-pressurized building structures to protect machinery, and habitat envelopes, to protect and shield humans against dust, micrometeoroids, and radiation. T2 - 73rd International Astronautical Congress (IAC) CY - Paris, France DA - 18.09.2022 KW - Additive manufacturing KW - ISRU KW - Infrastructure KW - Lunar habitat KW - Paving KW - Solar sintering PY - 2022 AN - OPUS4-56529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Alig, I. A1 - Oehler, H. A1 - Brauch, Niels A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Charakterisierung von Behälterwerkstoffen aus Polyethylen N2 - Das langsame Risswachstum (slow crack growth, SCG) sowie der umgebungsbedingte Spannungsriss (environmental stress cracking, ESC) sind relevante Schädigungsmechanismen für teilkristalline Werkstoffe auf Basis von Polyethylen hoher Dichte (PE-HD). Der Vortrag gibt einerseits einen Überblick über die grundlegenden Struktur-Eigenschafts-Beziehungen in diesem Kontext, andererseits werden auch verschiedene praxisorientierte Prüfverfahren vorgestellt. Letztere wurden in gemeinsamen Forschungsprojekten von BAM und LBF mit dem Schwerpunkt Gefahrgutbehälter bzw. Pflanzenschutzmittel vergleichend untersucht und durch weitergehende Analytik ergänzt. T2 - 16. Tagung des Arbeitskreises Polymeranalytik Webkonferenz, Fraunhofer LBF und FGK CY - Online meeting DA - 22.03.2022 KW - Polyethylen KW - Full Notch Creep Test KW - Environmental Stress Cracking KW - Spannungsriss PY - 2022 AN - OPUS4-54547 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Kolsch, Nico A1 - Günster, Jens T1 - Laser beam melting additive manufacturing at μ-gravity N2 - In-space manufacturing (ISM) provides the opportunity to manufacture and repair critical components on future human spaceflight missions. For explorations to Mars and beyond, ISM is a key strategy not only due to the long travel distances and high costs of supply from earth but also to be able to safely work in space for years. Human spaceflight is still dependent on shipments from earth that can fail for several reasons. ISM is a valuable alternative to ensure the timely and safe resupply of space missions. With additive manufacturing (AM) technologies, components are built directly from a 3D computer-aided-design (CAD) model which offers the advantages of freedom of design and the production of complex and ready-to-use parts. A virtual tool box with 3D models in space or the supply of information instead of components from earth to space can strongly benefit future missions. For industrial use, most research has focused on laser based additive manufacturing processes such as laser beam melting (LBM) where metallic powder particles are spread into a uniform powder bed and melted by a laser to the desired shape. In the absence of gravity, the handling of metal powders, which is essential for the process, is challenging. We present an evolution of an AM system, where a gas flow throughout the powder bed is applied to stabilize the powder bed. This is needed to compensate for the missing gravitational forces in microgravity experiments on parabolic flight campaigns. The system consists of a porous building platform acting as a filter for the fixation of metal particles in a gas flow. It is driven by reduced pressure established by a vacuum pump underneath the platform. The system creates a drag force that directs the particles towards the porous building platform, similar to the effect of the gravitational force. The AM system with its gas-flow-assisted powder deposition has been tested in several parabolic flight campaigns, and stainless-steel powder has successfully been processed during microgravity conditions. Different powder recoating mechanisms have been investigated to assess the homogeneous distribution of the powder as well as the attachment of the next layer to the powder bed. These mechanisms included different container designs with parallel double blades and with a V-shape at the bottom, and a roller recoating system. The samples presented are the first metal parts ever manufactured using LBM in μ-gravity. In addition to manufacturing in a μ-gravity environment, the experiments have shown the feasibility to manufacture components at different accelerations during the parabolic flight: hyper gravity (1.8 g), μ-gravity (< 0.01 g) and 1 g. Recent results will also be presented describing the application of this LBM setup in a parabolic flight campaign with mixed lunar, martian and µ-gravity acceleration, during which the processing of a lunar regolith simulant powder was tested. For ISM, the development and testing of the proposed AM system demonstrates that LBM can be considered a viable technology for the manufacturing of metal and ceramic parts in a μ-gravity or reduced-gravity environment. T2 - International Conference on Advanced Manufacturing CY - Online meeting DA - 07.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Laser beam melting KW - Microgravity KW - Stainless steel KW - Lunar regolith simulant PY - 2022 AN - OPUS4-54450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten T1 - Viskose Rissschließung in Gläsern und Glasmatrixkompositen N2 - Um die Langzeitbeständigkeit von Hochtemperatur-Festoxidbrennstoffzellen (SOFC) sicherzustellen, ist das grundlegende Verständnis der viskosen Schließung oder Heilung von Rissen, als Folge wechselnder thermischer oder mechanischer Belastung, in Gläsern und teilkristallinen Materialien ein entscheidender Faktor. In Glas ist die Rissheilung hauptsächlich durch viskoses Fließen bestimmt. In teilkristallinen Schmelzen bewirkt der kristalline Volumenanteil die Erhöhung der effektiven Viskosität. Um die Auswirkungen des kristallinen Volumenanteils auf die Rissheilung zu ergründen, wurden Glasmatrixkomposite mit variierten inerten kristallinen Fülleranteilen, die während der Wärme-behandlung konstant blieben, hergestellt. Verwendet wurde ein kristallisationsträges Natrium-Calcium-Silicatglas und ZrO2 als inerter Füller. Komplexe, reproduzierbare Rissstrukturen wurden durch Vickers-Eindrücke erzeugt und die viskose Rissschließung während isothermer Wärmebehandlungs-schritte mittels Laser-Scanning-Mikroskopie verfolgt. Die Untersuchungen zeigen, dass, verglichen zum füllerfreien Glas, der kristalline Phasenanteil die effektive Viskosität erhöht und dadurch großräumiges Fließen verlangsamt. Dies verzögert das Aufweiten der Risse. Dieser Effekt erschwert die Rissverkürzung und führt oftmals zu großen gerundeten Kavitäten und dadurch zu einer verzögerten Rissschließung. Wird dieses Aufweiten verringert, ist zunächst ein lokales viskoses Fließen der Restglasphase weiterhin gegeben, sodass sich die Risse sogar schneller schließen. Für kristalline Anteile > 27 Vol% bildet sich dann ein stabiles Perkolationsgerüst aus, das die weitere Rissschließung auch lokal unterbindet. Nur innerhalb größerer glasiger Bereiche ist hierbei noch eine Rissschließung zu beobachten. Ein Optimum der Risslängenverkürzung konnte bei 17 Vol% beobachtet werden. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Glas KW - Hochtemperaturbrennstoffzelle KW - Glasmatrixkomposit KW - Rissheilung PY - 2021 AN - OPUS4-54245 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viguier, B. A1 - Epishin, A. A1 - Fedelich, Bernard T1 - Creep of single-crystals of nickel-base gamma-alloy at high temperatures N2 - Porosity in single-crystal nickel-base superalloys is removed by hot isostatic pressing (HIP) at temperatures above gamma’-solvus where the material is very soft and ductile. For example, single-crystal nickel-base superalloy CMSX-4 is HIPed at temperature 1288 °C, which is slightly higher than the gamma’-solvus temperature of this alloy equal to about 1280 °C. It is assumed that pore shrinking during HIP is mostly due to dislocation creep. Such a modelling of HIP of CMSX-4 was started in our group on the base of results of creep tests of [001] single-crystals at 1288 °C [1]. However, it was found later [2] that the alloy CMSX-4 shows very strong creep anisotropy at 1288 °C. Therefore, for calibration of the creep law, creep tests of different orientations under different stress levels are required at the HIP temperature. This was the main task of present work. Single-crystals of CMSX-4 of axial orientations [001], [011], [123] and [111] were cast by VIAM Moscow and tested by BAM Berlin under creep conditions at 1288 °C and stress levels between 4 MPa and 16 MPa. At all stress levels, the creep rate increases by an order of magnitude when changing the orientation from [001] to [111] with [011] and [123] orientations in between. Such a character of creep anisotropy corresponds to the orientation dependence of the Schmid factor for octahedral glide. The crystal viscoplasticity model developed in [1] was improved to better represent the time induced softening observed during creep. The creep tests for different stresses and orientations as well as pore closure were simulated. The results of pore closure simulation are compared with measurements of porosity decrease during Hiping. T2 - 15th International Conference on Creep and Fracture of Engineering Materials and Structures CY - Online meeting DA - 14.06.2021 KW - Nickel-base superalloys KW - Creep KW - Single-Crystal PY - 2021 AN - OPUS4-53935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen A1 - Schilling, Markus A1 - Chen, Yue A1 - Füting, M. A1 - Todor, A. A1 - von Hartrott, P. A1 - Hanke, T. T1 - Wie digitalisieren wir die Werkstoffprüfung? Entwicklung standardisierter Versuchsbeschreibungen und Daten-Infrastrukturen in aktuellen Digitalisierungs-Initiativen N2 - Die Entwicklung digitaler Prozesse für die Materialwissenschaft und Werkstofftechnik muss naturgemäß auch die Charakterisierungsmethoden der Werkstoffprüfung abbilden, die oft durch eine hohe Komplexität gekennzeichnet sind. Als vorteilhaft erweist sich dabei der hohe Standardisierungsgrad, der sich z.B. in klaren Anforderungen an die eingesetzten Prüfmittel und festgelegten Vorgehensweisen ausdrückt. Diese können (und müssen) in entsprechenden digitalen Versuchsbeschreibungen abgebildet werden, wobei sich die klaren Datenstrukturen und Terminologien als vorteilhaft erweisen. T2 - Tagung Werkstoffprüfung 2021: Werkstoffe und Bauteile auf dem Prüfstand Prüftechnik – Kennwertermittlung – Schadensvermeidung CY - Online meeting DA - 02.12.2021 KW - Digitalisierung KW - Standardisierung KW - Normung KW - Ontologien KW - Wissensrepräsentation PY - 2021 AN - OPUS4-53943 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -