TY - CONF A1 - Trappe, Volker A1 - Altmann, Korinna A1 - Marzik, Julian T1 - Roving-Alterung und mechanische Eigenschaften N2 - Im statistischen Mittel steht eine Windkraftanlage (WKA) in Deutschland alle 6 Jahre wegen eines Schadens an den Rotorblättern und verursacht Kosten von 20k€-40k€ infolge Ertragsausfall und Reparaturkosten. Bei über 30.000 WKA in Deutschland verursacht dies jährlichen Kosten von 100-200 Mio. €. Zu 70% sind die Ursachen Fertigungsfehler. Diesem Themenkomplex widmet sich FB-5.3 in Kooperation mit FBs der Zerstörungsfreien Prüfung (Abt. 8) schon seit Jahren. Im aktuellen Projekt geht es um einen vorzeitigen Verschleiß der Rotorblätter infolge der Verwendung gealterter Glasfaser-Rovings. (GF). Die Entwicklung moderner Windkraftanlagen hatte in Europa seinen Ursprung in den 90er Jahren. OEMs und GF-Hersteller waren dicht beisammen. Die Globalisierung des Marktes führt heute zu einer weltweiten Verschiffung der GF in feucht-warmen Containern. Je nach Beschaffenheit (Chemie) der Schlichten (Oberflächenbehandlung) von GF können diese stark altern (Hydrolyse-Effekte) und die Festigkeit kann im Bauteil um bis zu 50% abgemindert sein. In einer Kooperation mit der Rotorblattallianz, einem Zusammenschluss der OEMs, Halbzeugherstellern und Forschungsinstituten, wurden schon vor 5 Jahren in einem Forschungsprojekt (FB-5.3; VH 5538) die chemischen Mechanismen der Alterung exemplarisch für eine Glasfaser-Roving-Type aufgeklärt. Im aktuellen Projekt (FB-5.3; VH 5304) wird ein beschleunigtes Alterungsverfahren (erhöhte Temperatur und Feuchte) am Roving im un-impregnierten Zustand entwickelt und die Festigkeit nachfolgend nach Einbettung in eine Epoxid-Harz-Matrix bestimmt. Je nach Alterungszustand zeigt sich eine Abnahme der Zwischenfaserbruchfestigkeit von bis zu 50%. Nicht alle Glasfaser-Roving-Typen zeigen diesen Effekt. Es ist gelungen für OEMs und Halbzeughersteller ein handhabbares Verfahren zur innerbetrieblichen Qualitätssicherung zu entwickeln, da die wenigsten Firmen über komplexe Analyseverfahren, wie an der BAM, verfügen. T2 - Composite United - AG Faserverbund in der Windenergie CY - Braunschweig, Germany DA - 09.05.2023 KW - Faserkunststoffverbunde KW - Windenergie KW - Alterung PY - 2023 AN - OPUS4-58409 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Schmitz, Sebastian T1 - Risserkennung an Bohrlochproben N2 - Es wird eine neu entwickelte Methode zur Thermographiebasierten Rissmessung vorgestellt. Darüber hinaus wird eine numerische Vorarbeit präsentiert, die zeigt, dass anhand der gemeisamen Auswertung der Versuchsdaten aus unterschiedlicher Sensorik die Möglichkeit besteht, die unter Ermüdungsbelastung in Bohrlochproben auftretenden Risse in Geometriekategorien zu unterteilen. T2 - Tagung Werkstoffprüfung 2018 CY - Bad Neuenahr, Germany DA - 06.12.2018 KW - LCF KW - Crack KW - Data Fusion KW - Thermographie PY - 2018 AN - OPUS4-46977 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Rissentwicklung in CFK-Laminaten nachgewiesen durch in situ Röntgen-Refraktion N2 - In Leichtbauanwendungen sind Materialien mit geringen Dichten und hohen Festigkeiten gefragt. Insbesondere Faser-Kunststoff-Verbunde (FKV) erfüllen diese Anforderungen und werden zunehmend für Strukturbauteile eingesetzt. Die Oberflächen moderner Rotorblätter von Windkraftanlagen werden aus FKV gefertigt. Das Versagen dieser Materialien hat massiven Einfluss auf die Einsatzfähigkeit der gesamten Windkraftanlage. Daher ist die Kenntnis des Versagensverhaltens dieser Komponenten unter statischer und zyklischer Belastung von großem Interesse, um die Betriebsbeanspruchung abzuschätzen. Im Idealfall wird die Schadensentwicklung unter Betriebslast mit zerstörungsfreien in-situ-Prüfverfahren ermittelt. Hier berichten wir über die Beobachtung der Rissentwicklung in Carbon-Faserverstärkten Kunststoffen (CFK) unter kontinuierlicher Zugbelastung durch in-situ Synchrotron-Röntgenrefraktionsradiographie. Eine selbst entwickelte elektromechanische Zugprüfmaschine mit einem Kraftbereich bis zu 15 kN wurde in den Strahlengang an der BAMline (BESSY II) integriert. Da in herkömmlichen (Absorptions-) Radiographien Defekte wie Zwischenfaserbrüche oder Faser-Matrix-Enthaftung keinen ausreichenden Kontrast verursachen, wird zur Kontrastanhebung die Röntgenrefraktion benutzt. Hier wird das sogenannte Diffraction Enhanced Imaging (DEI) angewandt, um Primär- und gebrochene Strahlung mit Hilfe eines Analysatorkristalls zu trennen. Diese Technik ermöglicht schnelle Messungen mit einem Gesichtsfeld von einigen Quadratmillimetern (hier: 14 mm × 7.2 mm) und ist ideal für in-situ Untersuchungen. Die Bildgebung und der Zugversuch erfolgen mit einer Bildfrequenz von 0.7 / s und einer Dehnrate von 0.00055 / s . Bei 0°/90° Fasergelegen treten die ersten Zwischenfaserrisse bei 380 MPa (Dehnung 0.8 %) auf. Vor dem Versagen bei ca. 760 MPa (Dehnung 2.0 %) beobachten wir die Ausbildung eines nahezu äquidistanten Rissmusters (Risse in ca. 1 mm Abstand), das sich im geschädigten Zustand über die gesamte Probe erstreckt. T2 - DACH-Jahrestagung 2023 CY - Friedrichshafen, Germany DA - 15.05.2023 KW - Röntgen-Refraktion KW - Synchrotronstrahlung KW - CFK KW - Rissentwicklung PY - 2023 AN - OPUS4-57622 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the Nature of Melt Pool Boundaries in Additively Manufactured Stainless Steel by Nano-sized Modulation N2 - Additive manufacturing (AM) of metallic alloys has gained momentum in the past decade for industrial applications. The microstructures of AM metallic alloys are complex and hierarchical from the macroscopic to the nanometer scale. When using laser-based powder bed fusion (L-PBF) process, two main microstructural features emerge at the nanoscale: the melt pool boundaries (MPB) and the solidification cellular substructure. Here, details of the MPB are revealed to clearly show the three-dimensional nature of MPBs with changes of cell growth of direction and their relation to their surrounding cellular substructure, as investigated by transmission electron microscopy (TEM) for L-PBF 316L austenitic stainless steel (cf. Figure 1). A hitherto unknown modulated substructure with a period of 21 nm is further discovered within cells as the result of a partial Ga+-focused ion beam-induced ferritic transformation of the austenite. Cell cores and cell boundaries differ notably regarding the modulated substructure. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 AN - OPUS4-54836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker T1 - Restoring lightweight strength - Effect of localized repairs on the mechanical properties of composites sandwich structures N2 - As a type of high-performance composite material, glass-fiber reinforced plastics (GFRP) are favored for the construction of wind turbine rotor blades due to their high specific strength and stiffness properties (Grasse et al, 2010). During the blade manufacturing process, however, imperfections are often introduced, then further propagated due to harsh environmental conditions and a variety of loads (Caminero et al, 2013; Trappe et al, 2018). This leads to failure significantly before their designed lifespan. Since replacement of entire blades can be a costly potential outcome, localized repairs of the damaged region to restore structural integrity and thus lengthen its lifespan can executed in the field by technicians accessing the blades directly by suspended roping. These methods involve replacing the lost load path with a new material that is joined to the parent structure. In recent years, considerable studies have been conducted to investigate the influence of different repair parameters on the stress distribution, ultimate strength, impact behavior, and residual stresses of bonded repaired structures [Caminero et al, 2013; Trappe et al, 2018; Shufeng et al, 2014; Harman and Rider, 2011; Ahn and Springer, 2000; Lekou and Vionis, 2002). However, there currently do not exist any standardized repair procedures for wind turbine rotor blades. Namely, there is a lack of understanding about the effects of the layup of various repair methods, especially on the damage mechanism and fatigue life of the shells of rotor blades (Caminero et al, 2013; Trappe et al, 2018). This work therefore aims to begin to enrich this knowledge gap by testing the influence of different variables among repair patches on the mechanical properties of sandwich composite structures. Manufactured with the vacuum-assisted resin infusion (VARI) process, the test specimens are produced as a GFRP structure to represent the outer shell portion of a wind turbine blade, then repaired with a scarf joint. Scarf repairs are favored as the most efficient of the common structural joints, as the removal of the damaged area with angled walls leads to a nearly uniform shear stress distribution along the bond surface and no eccentricity in the load distribution (Caminero et al, 2013; Lekou and Vionis, 2002; Siener, 1992). The performance of specific layup methods of repair patches, namely a large-to-small versus small-to-large scheme of repair layers, is studied with static and load-controlled fatigue testing, then compared to pristine test specimens as well as to each other in terms of mechanical property restoration. The transition layer between repair and parent material is especially of interest in the performance of the structure. Damage onset, crack development and eventual failure are monitored in-situ with non-destructive testing methods, including thermography with an infrared camera system and a 3D deformation analysis system, to develop a more robust understanding of the effects of these repair concept variables on wind turbine blade shell structures. T2 - Wind Energy Science Conference CY - Online Meeting DA - 25.05.2021 KW - Glass fiber reinforced polymers KW - Wind turbine blade shell structures KW - Scarf joint repair PY - 2021 AN - OPUS4-52687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Popiela, Bartosz A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Restoration of structural integrity – Repairs for wind turbine blade shells N2 - Wind turbine rotor blade shells are manufactured as sandwich structures with fiber-reinforced polymer (FRP) due to the material’s high specific stiffness and strength. With a growing renewable energy industry and thereby a spread of wind energy farms, especially in offshore applications, the need to fully utilize turbines through their designed lifespan is becoming increasingly essential. However, due to imperfections during manufacturing, which are then propagated by harsh environmental conditions and a variety of loads, blades often fail before their projected lifespan. Thus, the need for localized repair patch methods for the outer shell portions of the blades has become of greater interest in recent years, as it is crucial to the optimal compromise between continuation of wind energy production, cost efficiency, and restoration of structural performance. To increase the understanding of the effect on the fatigue life of the rotor blades, this study tests localized repair patch methods and compares them to each other as well as to reference, non-repaired specimens. Manufactured with the vacuum-assisted resin infusion process, the shell test specimens are produced as a curved structure with glass FRP sandwiching a polyvinyl chloride foam core to best represent a portion of a rotor blade shell. Patch repairs are then introduced with varying layup techniques, and material properties are examined with cyclic fatigue tests. The intermediate scale test specimens allow for the observation of material as well as structural variables, namely of interest being the stiffness and strength restoration due to the repair patches. Damage onset, crack development, and eventual failure are monitored with in-situ non-destructive testing methods to develop a robust understanding of the effects of repair concepts. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Wind turbine blade shells KW - Fiber reinforced polymers KW - Sandwich structures KW - Fatigue PY - 2019 AN - OPUS4-48859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni T1 - Residual stress formation in selective laser melted parts of alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotron- and the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates a dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from both X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - Forschungsseminar OvGU Magdeburg CY - Magdeburg, Germany DA - 15.11.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-46876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni A1 - Portella, Pedro Dolabella T1 - Residual stress Formation in selective laser melted parts of Alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-45979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Richter, Tim A1 - Rhode, Michael A1 - Schröpfer, Dirk T1 - Reliable welding of high-entropy alloys N2 - The importance of high-entropy alloy (HEAs) in the field of materials research is increasing continuously and numerous studies have been published, recently. These are mainly focused on manufacturing of different alloy systems having excellent structural properties from low to high temperatures. Therefore, HEAs are of high potential for many applications in very demanding conditions. However, this is so far limited by poor knowledge and experience regarding economic and reliable component manufacturing. The processability of HEAs has hardly been investigated so far, indicated by the small number of publications worldwide: welding <30 and machining <5. Hence, this contribution provides an overview about the current state of the art on processing of HEAs. Fundamental principles are shown for safe weld joints while ensuring high component integrity. For safe welding, the combined consideration of complex interactions of material, construction and process is necessary. Recent studies on different HEAs showed the influence of heat input by means of different welding processes on the microstructure and respective properties. Based on intensive literature survey and on our initial study, the main research objectives of processing HEAs are presented. T2 - ICHEM 2020 - Third International Conference on High Entropy Materials CY - Berlin, Germany DA - 27.09.2020 KW - High Entropy Alloy KW - Welding KW - Welding processing influences PY - 2020 AN - OPUS4-51591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Reaction sintering and sintering additives for cost-effective production of thermoelectric oxides N2 - Thermoelectric oxides attract much interest recently. Although their thermoelectric properties are inferior to non-oxides, they exhibit distinct advantages. Thermoelectric oxides are stable in air at higher temperatures, their raw materials are less toxic, and more abundant. To enhance attractivity of these materials for industrial applications, production costs need to be reduced. Conventionally, the legs of thermoelectric generators are sintered from green bodies of previously synthesized powder. Reaction-sintering is a fabrication method without a powder synthesis step, as the final phase is formed during the sintering from a raw material mixture. Moreover, the reduction of chemical potential during reaction-sintering is effective as an additional driving force for sintering. We show that reaction-sintering increases the densification of CaMnO3 (n-type, Sm doped). Consequently, the electrical conductivities improved by about 100 % leading to superior power factors (PF = 230 µW/mK² for CaMnO3). Another approach to reduce the production costs is to lower the sintering temperature by adding sinter additives. The addition of 4 wt% CuO to CaMnO3 lowers the sinter temperature from 1250 °C to 1050 °C. The achieved power factor PF = 264 µW/mK is more than two times higher as reported in literature for the same dopant. T2 - Virtual Conference on Thermoelectrics (VCT) CY - Online meeting DA - 21.07.2020 KW - Thermoelectrics KW - Reaction sintering KW - Sintering additives KW - Calcium manganate KW - Calcium cobaltite PY - 2020 AN - OPUS4-51070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -